Что такое лямдазон: Лямбда зонд: что это такое, как он работает и зачем нужен

Содержание

Лямбда зонд: что это такое, как он работает и зачем нужен

В настоящее время, когда все более жесткие экологические нормы диктуют автопроизводителям использования тех или иных решений для уменьшения вредных выбросов в атмосферу, катализаторами оборудуются все без исключения автомобили. Не спорим, катализатор вещь необходимая, но его эффективная работа зависит от постоянного контроля топливно-воздушной смеси. Для этого служит специальный кислородный датчик — так называемый «лямбда зонд». Что такое, и каково его назначение — попробуем рассказать в этом материале.

Лямбда зонд: что это такое

Лямбда-зонд – это датчик выпускного коллектора, который сравнивает воздух в выпускном коллекторе с воздухом, окружающим двигатель, генерируя электрический сигнал на блок управления двигателя посредством химической реакции. Лямбда зонд также иногда называют кислородным датчиком, поскольку его основная задача состоит в определении количества остаточного кислорода в выхлопных газах.

После того, как блок управления получает сигнал от лямбда датчика, он регулирует соотношение топлива и воздуха в цилиндрах двигателя с помощью дросселя и форсунок. Выходное значение сигнала, который лямбда-датчик посылает на блок управления двигателем, изменяется в зависимости от содержания кислорода в выхлопной трубе.

Таким образом, используя лямбда датчик, блок управления двигателем может обеспечить наилучшее соотношение компонентов, благодаря чему двигатель работает экономно и производит меньше вредных веществ. Когда лямбда датчик холодный, он действует только как электрическое сопротивление. Когда температура поднимается, она начинает генерировать напряжение.

Особенности лямбда зонда

Принцип измерения остаточного кислорода в выхлопных газах (задача с лямбда зондом) известен с конца 1960-х годов. Bosch был вовлечен в разработку функционального лямбда датчика. Вот почему датчик кислорода изначально назывался датчиком Bosch. Одним из первых пользователей был автомобиль Volvo. Первые лямбда зонды 1970-х годов называются простыми. Чтобы обеспечить надежный сигнал, они должны быть сначала нагреты до рабочей температуры, а именно отработавших газов. Однако это может занять несколько минут. С 1980-х годов производители автомобилей начали использовать лямбда зонды с подогревом. В отличие от простых лямбда датчиков, не было необходимости ждать, пока выхлопные газы нагревают их из-за дополнительного отопительного контура. Просто активный нагрев значительно улучшил эффект зонда. Потребовалось около 30 секунд, чтобы начать работать с момента запуска двигателя. Последние лямбда зонды – это так называемые плоские зонды. Им нужно всего около 10 секунд, чтобы полностью активировать функцию. В будущем ожидается дальнейшее сокращение этого времени.

Современные автомобили содержат два лямбда датчика в выхлопной трубе вместо одного. Первый лямбда зонд расположен перед каталитическим нейтрализатором и выполняет свою классическую функцию. Второй лямбда зонд расположен за катализатором и предназначен для проверки эффективности катализатора.

Существует три типа лямбда зондов – диоксид циркония и диоксид титана, где сигнал переключается только между двумя предельными значениями. Третий тип – это широкополосные датчики, которые могут считывать значения равномерно по всему спектру.

Циркониевый лямбда датчик генерирует напряжение, зависящее от разности содержания кислорода в дымовых газах и содержания кислорода в окружающей среде. Чем больше эта разница, тем больше напряжение. Для зондов диоксида циркония максимальное значение напряжения составляет приблизительно один вольт. Титановые датчики генерируют напряжение до пяти вольт. Титановые лямбда зонды работают, например, как датчик температуры в радиаторе. В зависимости от состава выхлопа электрическое сопротивление зонда варьируется. Изменение электрического сопротивления не является непрерывным.

К чему приводит неисправность оборудования?

Неисправность лямбда зонда может быть причиной многих проблем, связанных с высоким расходом топлива или работой двигателя.

Отказ лямбда датчика может вызвать несколько различных проблем. Изношенный лямбда зонд относительно легко обнаружить, основываясь на запахе бензина, который выделяется в транспортном средстве, даже когда двигатель прогрет до рабочей температуры. Этот запах означает, что смесь интенсивней, чем должна быть. Говоря о запахе бензина из выхлопа, мы можем судить о другом признаке износа этого оборудования. Этот признак – увеличение расхода топлива.

Если в выпускном коллекторе имеется два лямбда зонда, и проблема заключается только в диагностическом лямбда зонде и, следовательно, в датчике, который находится, ниже по потоку от катализатора и проверяет только эффективность катализатора, между двумя лямбда зондами будет несоответствие. Это приведет к тому, что контрольная лампа двигателя загорится на приборной панели, но работа двигателя, мощность или расход топлива не изменятся.

Лямбда датчик в выхлопной трубе подвергается очень нежелательным воздействиям, таким как высокая температура и агрессивное химическое воздействие выхлопных газов. Поэтому естественно, что лямбда-датчик изнашивается через определенный промежуток времени. Лямбда зонд должен проверяться каждые 30 000 километров.

Неисправный лямбда зонд. Почему нельзя ездить с неисправным лямбда-зондом. Неисправности лямбда-зонда и их устранения.

Немало автомашин, что были выпущены в 70-80-ых годах, оснащены каталитическими нейтрализаторами или катализаторами выхлопных газов, которые позволяют значительно уменьшить токсичность выработанных веществ, тем самым, снизив урон, что переносит окружающая среда. Важно то, что функционирование катализатора сохраняется лишь в случае образования идеальной смеси, а если говорить точнее, то на одну часть горючего требуется около 14.6 — 14.8 частиц нормального атмосферного воздуха с оптимальным содержанием кислорода. Что бы в смеси не содержалось слишком много или слишком мало подобных частиц, нужно использовать электрическое управление подачей топлива. В подобной системе, лямбда-зонд осуществляет контроль над качеством сгораемого состава. К сожалению, такой механизм очень хрупкий, неустойчивый и часто подвергается поломкам. При остановке работы лямбда-зонда, не требуется каких-либо специализированных устройств, что бы обнаружить неисправность, однако, эксплуатация транспортного средства прекращается. 

Как работает лямбда зонд

Лямбда-зонд способен определить химические вещества в газах выхлопа посредством отбора кислорода в них и распознавания процентного состава. Если состояние смеси оптимальное, такой показатель должен соответствовать 0. 1 — 0.3 процента. Из-за нестабильного режима подачи топлива в двигатель на протяжении значительного времени, показатели могут колебаться. Лямбда-зонд монтируется напрямую в выпускной коллектор и очень часто, его устанавливают в место, где соединяются патрубки, которые отходят от разнообразных цилиндров, хотя бывают и другие вариации.

Модифицируют разные типы лямбда-зондов. Например, на экономичных транспортных средствах и на автомобилях, предыдущих годов выпуска, подобные устройства отличаются наличием двухканальной компоновки. Они способны определять лишь отклонения в содержании кислорода в отрицательную или положительную сторону. Этому процессу сопутствуют изменения в напряжении электронного сигнала, которое передается на электрический блок. На сегодняшний день, практически все автомашины элитных и средних классов, укомплектованы широкополосными лямбда-зондами, предназначенными определять процентные отклонения содержания от нормы требуемого элемента. Это помогает достичь значительных улучшений в работе двигателя, а именно:

1.Снижается затратное количество топлива.

2. Существенно повышаются ресурсы автомобиля.

3. Повышается устойчивость удержания циклов холостого хода.

Неисправный лямбда зонд — можно ли ездить с неисправным лямбда зондом

Если лямбда-зонд неисправен, значительно ухудшается качество смеси топлива, что, в свою очередь, ухудшает эксплуатацию двигателя. В любой ситуации, не включая механические повреждения, которые сопровождаются разгерметизацией, проблемы с лямбда-зондом проявляются систематически, постепенно ухудшая работу мотора. Также, исключением из правила можно назвать обрыв проводки, что, по своей сути, не является непосредственной поломкой лямбда-зонда. Категорически не рекомендуется игнорировать поломку лямбда-зонда и эксплуатировать транспортное средство, так как это может привести к абсолютному выходу мотора из строя, за чем обязательно последует дорогостоящий ремонт.

Причины неисправности лямбда зонда

Существует множество причин неисправности лямбда-зонда, однако, в нашей статье мы выделили несколько основных и наиболее частых причин поломки этого устройства:

1.Если корпус датчика разгерметизировался и внутрь проникли выхлопные газы и атмосферный воздух.

2. Если лямбда-зонд перегрелся из-за неисправностей в системе зажигания и неправильного тюнинга двигателя.

3. Лямбда-зонд может выйти из строя из-за продолжительных воздействий внешней среды, попросту это можно назвать старением.

4. Если рабочая поверхность лямбда-зонда блокируется продуктами сгорания недоброкачественного горючего.

5. Если оптимальное электропитание нарушено или прервана линия, которая ведет к блоку управления.

6. В результате мощного удара с последующим разрушениям внутренних элементов. Такое часто происходит во время долгой езды по разрушенным поверхностям дорожного покрытия.

Лямбда зонд

Что касается электротехнической стороны эксплуатации лямбда-зонда, то этот механизм не способен формировать однородные сигналы. Посредством того, что типичный лямбда-зонд расположен в выпускном коллекторе, происходит следующее — когда выхлопные газы достигнут точки его нахождения, уже происходит несколько рабочих оборотов, что существенно ухудшает качество образования смеси и провоцирует дестабилизацию работы двигателя. Ввиду этого, лямбда-зонд меняет напряжение, которое подается на центральный блок впрыскового управления, принимающего нужные меры.

Как проверить, работает ли лямбда зонд

С самого начала механизм перестает качественно выполнять нужные функции в оптимальных режимах эксплуатации мотора, если его электротехнические характеристики ухудшаются до того, что датчик не формирует нужный сигнал. Проявления неисправностей лямбда-зонда заключаются в дестабилизации циклов холостого хода, что начинают плавать в диапазоне, который имеет протяженность 300-600 оборотов в минуту. Если достигнуть слишком высоких оборотов, однако, не принадлежащих к критическим, качество топливной смеси может резко измениться. В этом случае, транспортное средство сильно дергается, из-под капота слышно отрывистые хлопки, а контрольная лампа, которая свидетельствует о неправильной работе мотора, вспыхивает на приборной панели. Когда обороты снижаются, то и признаки неисправности лямбда-зонда исчезают.

При игнорировании подобных симптомов, наступает второй этап развития неисправностей. При этом, устройство не будет работать, если мотор не прогрет. Пока температура двигателя не достигнет необходимой, транспортное средство будет показывать все признаки поломки газораспределительной системы или впускного механизма. Например, можно отметить, значительное ухудшение мощности, различные хлопки, рывки, а также, заторможенные реакции при изменении положения педали газа. Из-за абсолютной остановки подачи горючего, машина может замедляться или дергаться, также можно увидеть перегревание мотора. После нескольких минут движения в таком режиме наступает временная стабилизация автомобиля.

Если водитель не примет никаких мер, прибор может окончательно выйти из строя, что повлечет за собой немало негативных последствий. В частности, существенно ухудшится динамика и езда в непрерывном режиме станет невозможна, расход топлива значительно повысится, а выхлопные газы станут более токсичны, что легко можно определить по резкому неприятному запаху с явным оттенком топлива. Интересно то, что некоторые современные автомашины способны заблокировать все действия автомобилиста и перейти в аварийный режим, если лямбда-зонд неисправен.

В корпус датчика поступает атмосферный воздух, почему нельзя ездить на авто в этом случае

Как говорилось выше, при разгерметизации лямбда-зонда, невозможно продолжать эксплуатацию транспортного средства, так как мотор может полностью выйти из строя. При этом, газы выхлопа поступают в канал, используемый для накопления атмосферного воздуха, что бы сопоставить два вида газов и определить оптимальное содержание кислорода. При торможении мотором, атмосферный воздух проходит через цилиндры с меньшим количеством примесей, а лямбда-зонд примечает, что кислорода в коллекторе больше, чем во внешней среде. Это формирует мощные отрицательные сигналы, которые нарушают оптимальную работу блока впрыскового управления.

Что касается внешних признаков, то существенная часть мощности теряется,  незначительно повышаются обороты при вдавливании педали газа, слышны громкие хлопки и рывки. Кроме того, в катализаторе начинает гореть топливо, что сопровождается неприятным запахом, выбрасыванием сажи из выхлопной трубы, которая оседает на корпусы свечей и выпускные клапаны.

Электронная диагностика работы лямбда зонда

Для профессионального осмотра лямбда-зонда необходимо применить электронный осциллограф. Также, можно использовать мультиметр, однако, он способен лишь констатировать тот факт, что устройство вышло из строя. Прибор необходимо проверять на работающем моторе, который разогрет до 80-90 градусов по Цельсию, так как неразогретый двигатель не будет давать точных показаний.

Существует довольно много признаков неисправности прибора. Например, ровные характеристики сигнала или повышение уровня, которое не превышает 0.1 В. Также, обратите внимание на форму кривой, изменения в напряжении должны быть крутыми, а не плавно увеличенными. Кроме того, по мнению специалистов, уровень сигнала в лямбда-зонде должен меняться каждые 120 мс, а иначе — он неисправен.

Чистка лямбда зонда для удаления продуктов сгорания своими руками

Для этого, необходимо демонтировать устройство, когда температура поверхности будет около 50 градусов Цельсия. Затем, снимаем с него защитный колпачок и погружаем в ортофосфорную кислоту контакты. Требуется обмыть ней лямбда-зонд несколько раз, после чего промыть его простой водой. Далее, высушиваем устройство и монтируем обратно. Не забудьте смазать резьбу специализированной пастой-герметиком.

Ремонт лямбда зонда или полная замена узла лямбда зонда

Фактически все производители автомобилей в один голос утверждают про невозможность ремонта лямбда-зонда и про то, что в случае поломки, необходима полная замена узла. Выйти из ситуации можно купив специальный универсальный датчик, который снабжен переходником для конкретного типа автомобиля.

Помните, что лишь своевременное обнаружение поломки и применение необходимых мер поможет избежать вам вышеописанных неприятностей.

Лямбда зонд: признаки неисправности и диагностика

Кислородный датчик, иначе «лямбда-зонд», выполняет важную роль регулировки соотношения объема воздуха к объему топлива в камере сгорания автомобиля, таким образом деталь корректирует состав топливной смеси для достижения максимальной эффективности работы мотора при минимальной токсичности выбросов в атмосферу. Кислородный датчик не только положительно влияет на окружающую экологию, но и позволяет двигателю работать в полную мощность на минимальном расходе топлива.

Как правило, лямбда-зонд устанавливается перед и после катализатора, для двигателей V6, V8, V10 количество датчиков в два раза больше. В среднем ресурс датчика кислорода составляет 50 -100 тыс. км, в зависимости от качества детали и условий эксплуатации автомобиля. Следить за состоянием лямбда-зонда крайне важно, так как неисправность детали приводит к серьезным нарушениям в работе двигателя. Если вы обнаружили поломку, не стоит ее игнорировать, рекомендуем произвести замену детали в кратчайшие сроки. Кроме того, существует несколько факторов, которые могут привести к досрочной поломке датчика: использование химических средств для очистки корпуса датчика, попадание на поверхность антифриза или тормозной жидкости, повышенное содержание свинца в составе топлива, использование топливной смеси низкого качества, эксплуатация некачественного или «забитого» топливного фильтра.

Внешние признаки выхода из строя кислородного датчика:
  • увеличение расхода топлива
  • рывки во время движения
  • неисправная работа катализатора
  • повышение токсичности выхлопа
  • наличие кода неисправности (DTC)

Если вы заметили один из приведенных симптомов, советуем провести диагностику и оценить состояние установленного лямбда-зонда.

Как проверить состояние лямбда-зонда

  1. Проведите визуальный осмотр датчика на наличие утечек в системе выпуска отработавших газов, сажи или загрязнений на поверхности детали (в этом случае деталь лучше сразу заменить). Работающий датчик должен быть светло-серого цвета, если же цвет изменился на красный – скорее всего произошло загрязнение топливными присадками, и необходима замена детали.
  2. Проверьте провода и электрические разъемы системы управления двигателем на наличие признаков попадания воды.
  3. Если в вашем распоряжении есть вольтметр, вы можете провести диагностику датчика на работающем двигателе:
    — отключите лямбда-датчик от штатной колодки и подключите к вольтметру;
    — при режиме в 2500 оборотов /мин и вынутой вакуумной трубке датчик должен выдавать 0,9 В; неисправный датчик покажет результаты ниже 0,3 В. При работе двигателя в 1500 оборотов/мин датчик должен показывать напряжение примерно в 0,5 В.
  4. Проверьте диагностические коды DTC — такую процедуру лучше проводить в условиях автосервиса.

Купить лямбда вы можете у нас в интернет-магазине «Железка73.рф». Мы обязательно поможем сделать правильный выбор, ответим на все ваши вопросы. Обращайтесь, это выгодно и удобно.

Производитель Номер детали Наименование Применяемость*
DENSO DOX0106 Лямбда-зонд DENSO LEXUS LS
DENSO DOX0109 Лямбда-зонд DENSO SUZUKI SWIFT
DENSO DOX0110 Лямбда-зонд DENSO LEXUS LS
DENSO DOX0113 Лямбда-зонд DENSO DAIHATSU COPEN
DENSO DOX0114 Лямбда-зонд DENSO AUDI A4
DENSO DOX0125 Лямбда-зонд DENSO AUDI 100
DENSO DOX0119 Лямбда-зонд DENSO AUDI Q7
DENSO DOX0120 Лямбда-зонд DENSO ALFA ROMEO 145
DENSO DOX1371 Лямбда-зонд DENSO FORD FIESTA
DENSO DOX1000 Лямбда-зонд DENSO DAEWOO ARANOS
DENSO DOX0307 Лямбда-зонд DENSO SUBARU FORESTER
DENSO DOX0343 Лямбда-зонд DENSO MITSUBISHI OUTLANDER
DENSO DOX0351 Лямбда-зонд DENSO FIAT SEDICI
DENSO DOX0238 Лямбда-зонд DENSO LEXUS GS
DENSO DOX0261 Лямбда-зонд DENSO TOYOTA PREVIA
DENSO DOX0306 Лямбда-зонд DENSO SUBARU IMPREZA
DENSO DOX1409 Лямбда-зонд DENSO HONDA ACCORD V
DENSO DOX0237 Лямбда-зонд DENSO TOYOTA YARIS
DENSO DOX2004 Лямбда-зонд DENSO FORD C-MAX I
DENSO DOX0111 Лямбда-зонд DENSO TOYOTA COROLLA

* Применяемость деталей конкретно для Вашего автомобиля уточняйте по телефону: 72-60-60.

Лямбда зонд (датчик кислорода) – что такое, где стоит, как работает, причины и признаки неисправности — Словарь автомеханика

Лямбда зонд, так же называемый датчик кислорода или просто лямбда – это специальный контроллер, измеряющий наличие и количество остаточного кислорода в автомобильных выхлопных газах. Назначение данного устройства – предоставлять электронной системе управления впрыском топлива данные о качестве и полноте сгорания топлива. Она нужна для создания оптимальных условий работы катализатора выхлопа.

Применение катализаторов обусловлено жесткими экологическими нормами, предъявляемыми к автомобильным выхлопам, поскольку данные устройства способствуют снижению содержания там углекислоты. Но для полноценного функционирования нужно, чтобы в цилиндрах сгорало строго определенное количество воздуха с минимальной долей отклонения. Для обеспечения настолько точного регулирования сгорающего состава применяются системы питания с регулируемым электроникой впрыском. Датчик кислорода (лямбда-зонд) в них играет роль контролера в выпускном тракте.


Место установки лямбда-зонда

Для максимально эффективного измерения остатков воздуха в сгоревшей смеси датчик кислорода лямбда зонд монтируется в выпускном коллекторе, располагаясь как можно ближе к катализатору. Информация с него считывается электронным блоком управления топливной системой, которая при необходимости увеличивает или уменьшает интенсивность впрыска топлива в цилиндры.

Современные автомобили оборудованы еще одним лямбда-зондом, размещаемым на выходе катализатора, что позволяет еще больше повысить точность приготовления смеси.

Схема лямбда зонда


Принцип действия

По принципу работы кислородные датчики бываю нескольких типов:

На основе оксида циркония.

На основе оксида титана. При изменении состава выхлопа реагирует изменением электрического сопротивления.

Широкополосный. Изменяется напряжение и полярность тока. Реагирует не только на отклонения состава рабочей смеси, но и на его численное значение.

Работа лямбда зонда основывается на применении гальванического элемента, снабженного парой электродов. Один из них обвевается выхлопными газами, а другой – чистым атмосферным воздухом. В работу датчик лямбда зонд включается только после разогрева до 300 и более градусов, когда циркониевый электролит становится проводником, а различие в количествах поступающего кислорода из выхлопной трубы и атмосферы приводит к появлению напряжения на электродах.

Во время пуска и прогрева двигателя кислородный датчик в управлении топливным впрыском не участвует, а коррекция осуществляется через другие сигнализаторы (датчики температуры системы охлаждения, положения дросселя, числа оборотов и прочими).

Помимо нагреваемых циркониевых, существуют холодные контроллеры на основе двуокиси титана. Они не генерируют электричество, а изменяют сопротивление воздушному потоку, что и становится сигналом для систем управления впрыском. Такой лямбда датчик кислорода хорош тем, что начинает работать сразу после пуска двигателя, но он не получил широкого распространения из-за сложности конструкции и дороговизны. Встретить лямбда зонд данного типа можно на некоторых моделях Nissan, BMW и Jaguar.

Работа лямбда-зонда


Причины выхода из строя

Датчик кислорода может начать работать неправильно или вовсе сломаться по целому ряду причин, среди которых:

  • разрыв в питающей или контрольной электроцепи;
  • замыкание;
  • засорение, что случается при использовании топлива с присадками. Особенно пагубно влияют свинец, силикон, сера;
  • регулярные термические перегрузки, связанные с проблемами зажигания;
  • механическое повреждение, что порой случается после поездок по бездорожью.

По мере службы датчика, замедляется его реакция на изменение состава топливной смеси. Возраст датчика наиболее заметен на моторах с непосредственным впрыском. Датчик лямбда зонд прослужит гораздо меньше положенного при плохом состоянии маслосъемных колец, а также в результате попадание в цилиндры антифриза.

Когда лямбда датчик кислорода выходит из строя, содержание углекислоты в выхлопе резко повышается от значения в 0,1-0,3% до 3%, а часто и 7%. Если кислородный датчик не работает, снизить это значение без его ремонта или замены очень сложно. Даже в моделях с двумя зонтами при выходе из строя одного из них, для нормализации работы потребуется серьезное изменение настроек электроники.


Признаки выхода лямбда-зонда из строя

О том, что датчик кислорода сломался, говорят такие признаки:

    С заменой неисправного датчика не стоит затягивать, иначе чревато выходом из строя катализатора.

  1. ухудшение разгонной динамики;
  2. прерывистый холостой ход;
  3. скачок расхода топлива;
  4. рост токсичности выхлопа, хотя этот параметр без специального оборудования определить невозможно.

Чтобы лямбда зонд внезапно не вышел из строя, его нужно регулярно заменять, примерно через каждые 50-80 тыс. километров не подогреваемые датчики; 100 тыс. – подогреваемые и каждые 160 тыс. км – планарные. Но прежде чем выбрасывать старую лямбду конечно же нужно проверить лямбда-зонд и узнать его реальное состояние

Специалисты рекомендуют производить проверку лямбда датчика и систему, регулирующую топливную смесь, каждые 30 тыс. км.

Это не защитит от поломок вследствие механического повреждения или засорения, но спасет от поломки из-за износа.

Своевременная замена лямбда-зонда, это:

Кроме очистки в кислоте и проверке разъёма питания, датчик лямбда зонда, ремонту не поддается.

  • экономия до 15% топлива;
  • минимизация токсичности выхлопа;
  • продление ресурса катализатора;
  • улучшение динамических характеристик автомобиля.

Устранение неисправностей

Официально технологии ремонта лямбда-зондов нет. То есть, если поломка не в контактной сети, то устройство подлежит замене. Подпольными СТО практикуется восстановление датчиков, переставших работать из-за отложения нагара под защитным колпачком, путем удаления налета. Делается это с помощью промывки датчика в ортофосфорной кислоте, не уничтожающей его электроды.

Мойка помогает далеко не всегда, и если датчик после нее не заработал, его все же придется заменить.

Связанные термины

зачем нужен и как проверить лямбда-зонд

Назначение лямбда-зонда или датчика кислорода — передача информации о составе рабочей смеси с выпускного коллектора в ЭБУ. Качество сгорания топливно-воздушной смеси (ТВС) напрямую влияет на работу двигателя.

Корректная работа датчика кислорода помогает:

  • Повысить производительность мотора благодаря определению близкого к идеалу пропорции впрыскиваемого топлива и воздуха.
  • Уменьшить выработку вредных газов (CO, CH, NOx), выбрасываемых в атмосферу и наладить экономичную работу автомобиля за счет правильно подобранного состава рабочей смеси.

На современные автомобили с инжекторным двигателем ставят один или несколько катализаторов и два и более лямбда зонда. Где находятся датчики кислорода? Зависит от вида авто. Распространены системы с двумя устройствами, которые расположены до и после катализатора. Таким образом определяется избыток кислорода в смеси до попадания газов в устройство. В автомобилях с одним зондом — установлен спереди, на выпускном коллекторе.

Как работает датчик кислорода

ЭБУ отмеряет количество подаваемого топлива с помощью форсунок, задавая объем на определенной момент. Зонд обеспечивает обратную связь, что позволяет точно определить пропорции бензина, дизеля или газа. ЭБУ запрашивает информацию один раз в 0.5 секунды на холостом ходу. На повышенных оборотах частота запросов пропорционально увеличивается. Анализируя данные, блок управления корректирует состав ТВС, делая её беднее или богаче. Поддержание оптимальной ТВС — назначение лямбда-зондов. Идеальным соотношением воздуха и топлива считается пропорции 14.7:1 (бензин), 15.5:1 (газ) и 14.6:1 (дизель).

Виды ДК по устройству конструкции и принцип работы:

  • Двухточечный, узкополосный (простой). Работает основываясь на измерении количества кислорода в выхлопных газах. Чем беднее ТВС, тем ниже напряжение, богаче — выше.
  • Широкополосный. Генерирует сигнал более широкого диапазона для точной оценки пропорции в ТВС.

Срок службы лямбда-зонда

Средняя продолжительность жизни на российском бензине 40 000–100 000 км. Для увеличения срока службы рекомендуется заливать качественное топливо с низким содержанием примесей и тяжелых металлов. Самодиагностикой определить неисправность достаточно сложно, установить причину — практически невозможно. Это может быть износ, низкое качество бензина, механическое повреждение и другие факторы.

Если у вас возникли подозрения в неисправности ДК, обратитесь к профессиональным диагностам. При помощи осциллограммы специалист определит причины неисправности и подскажет пути устранения.

Из-за чего выходит из строя лямбда-зонд

  • Механическое повреждение. Сильный удар в результате аварии, наезда на бордюр или езды по бездорожью отрицательно влияет на состояние зонда;
  • Некорректная работа двигателя и неисправности системы зажигания приводят к перегреву ДК и поломке;
  • Засорение системы. Основной причиной неисправности будут продукты сгорания некачественного топлива. Чем больше тяжелых металлов, тем скорее он забьется;
  • Поломка в поршневой группе. Неисправные поршень, поршневой палец и шатун пропускают масло в выхлопную систему, которое забивает зонд;
  • Попадание жидкости. Загрязнение любого вида сократит срок работы зонда;
  • Замыкание в проводке;
  • Слишком богатая или бедная топливно-воздушная смесь;
  • Разгерметизация выпускной системы пропускает воздух и отработавшие газы, что выводит лямбда-зонд из строя;
  • Пропуски зажигания;
  • Присадки и «улучшайзеры» топлива;
  • Естественный износ.

Выход из строя лямбда-зонда происходит постепенно. Последствия выливаются в аварийный режим управления двигателем. Так производители уберегают машину от серьезных поломок, а водителя от аварийных ситуаций.

Неисправность предотвращается регулярной профилактикой и диагностикой, выявляющей поломки на начальных стадиях. Если кислородный датчик вышел из строя, читайте о способах его отключения.

Признаки неисправности лямбда-зонда

  • Повышается уровень токсичности газов. Определить токсичность можно с помощью диагностики. Внешне никак не диагностируется, даже запах выхлопа практически не изменится.
  • Увеличивается расход топлива. Каждый автомобилист следит за наполненностью бака, старается найти свою крейсерскую скорость, когда расход минимальный. Поэтому увеличившееся потребление топлива заметит сразу. В зависимости от серьезности неисправности, он вырастает на 1–4 литра. Повышенный расход, конечно, способен вызвать не только неисправный ДК.
  • Выдаются ошибки кислородного датчика (P0131, P0135, P0141 и другие), загорается «Check Engine». Обычно чек появляется при неисправности зондов или катализатора. Диагностика установит точную причину.
  • Перегревается катализатор. Неисправные лямбда-зонды подают неправильные сигналы в ЭБУ, что может привести к некорректной работе катализатора, его перегреву вплоть до раскаленного состояния, и последующего выхода из строя.
  • Появляется дерганье и нехарактерные хлопки в двигателе. Лямбда-зонды перестают генерировать правильный сигнал, из-за чего дестабилизируется работа оборотов холостого хода. Обороты колеблются в широком диапазоне, что приводит к ухудшению качества топливной смеси.
  • Ухудшаются динамические характеристики автомобиля, теряется мощность, тяга. Подобные признаки появляются в запущенных ситуациях. Неисправные датчики также перестают работать на непрогретом двигателе, а машина различными способами сигнализирует о неполадках в системе.

Если вас беспокоит один из этих признаков неисправности датчика кислорода, обратитесь к специалисту. С помощью диагностического оборудования он определит точную область поломки и поможет в исправлении. На карте ниже вы можете выбрать ближайшего профессионального диагноста и записаться к нему прямо с нашего сайта.

Как проверить лямбда-зонд

Итак, автомобиль едет рывками, повысился расход топлива, загорелся «Check Engine». Признаки не характерны только для поломки лямбды, поэтому нужна полная диагностика систем. Но если вы уверены, что дело в нем, рассказываем, как проверить датчик своими руками.

Проверять кислородные датчики рекомендуют через замер значений напряжения. Подобную проверку мультиметром, тестером и омметром можно провернуть в собственном гараже.

Порядок действий следующий:

  1. Прогрейте двигатель до рабочей температуры.
  2. Снимите и осмотрите зонд и проводку на предмет механических повреждений и загрязнений. Если он погнут, поцарапан или покрыт наростом сажи, свинцовым налетом, белым или серым нагаром, меняйте.
  3. Проверьте работоспособность лямбда-зонда омметром. Часто причина неисправности кроется в поломке спирали подогрева или проводов к нему. Как его «прозвонить»? Присоедините омметр между проводами нагревателя, предварительно отсоединенные от колодки. При исправной работе сопротивление сигнальной цепи на разных автомобилях варьируется от 2 до 10 Ом и от 1 ком до 10 мОм в цепи подогрева. Если его нет совсем, в проводке обрыв.
  4. Протестируйте сигнал зонда с помощью мотор-тестера, стрелочного вольтметра или осциллографа. Подсоедините тестер между проводом массы и сигнальным, поднимите обороты до 3 000 Нм, засеките время и следите за показаниями. Они должны изменяться от 0.1 до 0.9 вольт. Рекомендуем заменить датчик, если диапазон изменений меньше или за 10 секунд сменилось меньше 9–10 показаний. Причина ошибки может быть в «усталости» и медленном отклике системы.
  5. Проверьте исправность лямбда-зонда через опорное напряжение. Заведите машину, измерьте напряжение между массой и сигнальным проводом. Если показатели отличаются от 0.45 вольт больше, чем на 0.2, датчик или цепи в цепи, ведущие к нему, неисправны.

Если нет приборов для проверки, обратитесь к специалистам. Они проведут полную диагностику и точно назовут причину неисправности за меньшие деньги и время, которые бы вы потратили на покупку устройств и выявление неисправности самостоятельно.

Для чего нужен лямбда зонд?

Кратко:

Лямбда зонд устанавливается в любых транспортных средствах, приводимых в движение с помощью двигателей внутреннего сгорания. Лямбда зонд:

• Регулирует смесеобразование, удерживая расход топлива на максимально низком уровне.
• Обеспечивает катализатору оптимальные условия работы, что в итоге влияет на срок службы катализатора и низкий уровень токсичности выхлопа.

Подробно:

Подробное понимание того, как устроен и для чего нужен лямбда зонд никак не повлияет на обнаружение и устранение неисправности этого датчика, если вы внимательно будете следовать тем советам, которые мы даём в наших статьях.
Даже простое чтение статьи будет для вас пустой тратой времени, поскольку, когда у вас перегорает лампочка, вы не стремитесь понять, как она работает, а просто меняете её на новую. Ведь всё, что на самом деле нужно вам, это исправный автомобиль. Поэтому, смело пропускайте эту статью и переходите к статьям, которые непосредственно расскажут вам, как проверить, подобрать и заменить ваш датчик.
Если же вы всё-таки решительно настроены вникнуть в суть работы лямбда зонда, желаем удачи.

Функция лямбда зонда в современном автомобиле.

На все автомобили, начиная с конца 80-х годов прошлого века, устанавливаются катализаторы, задачей которых является очищение выхлопных газов от вредных примесей. Для оптимальной и эффективной работы катализатора необходимо подготовить строго определённое качество воздушно-топливной смеси для двигателя и проконтролировать качественные характеристики выхлопных газов, возникших в результате её сгорания. Эту функцию выполняет лямбда зонд.

Лямбда зонд – также называемый кислородным датчиком или датчиком кислорода – измеряет количество остаточного кислорода в выхлопных газах. Отсюда пошло основное название этого датчика – кислородный. Исходя из количества остаточного кислорода, датчик посылает сигналы в электронный блок управления двигателем, который, в свою очередь, регулирует количество подаваемого топлива или, другими словами, изменяет качество воздушно-топливной смеси. Именно поэтому так важна герметичность выхлопной системы в местах установки этих датчиков, поскольку, в результате подмеса воздуха извне параметры этих измерений нарушаются. Идеальное соотношение воздуха и топлива в смеси обозначается греческой буквой λ (лямбда) и равняется приблизительно 15 к 1, где 15 частей это воздух, а 1 часть это топливо. Отсюда и пошло наиболее распространённое в России название датчика – лямбда зонд.

Лямбда зонд установлен в трубы выхлопной системы автомобиля так, чтобы его рабочие поверхности обтекали выхлопные газы. Эти рабочие поверхности состоят из многослойных материалов обеспечивающих тестирование смеси. Тестирование смеси эффективно идёт только при высокой температуре рабочей поверхности, поэтому все современные датчики снабжены функцией принудительного прогрева. Для подробного рассмотрения конструкции датчика обратитесь к схеме 1.

Первый (верхний, регулирующий) лямбда зонд.

До начала 2000-х годов на автомобиль устанавливался только один датчик. Этот датчик устанавливался на отрезок выхлопной трубы между двигателем и катализатором и впоследствии, после появления второго датчика, получил свои нынешние названия: первый датчик или верхний или регулирующий. В задачу этого датчика входил вышеописанный процесс измерений и поскольку он устанавливается выше, чем второй этот датчик был назван верхним. Регулирующим он был назван по причине того, что именно он несёт основную нагрузку по регулированию воздушно-топливной смеси. Этот же датчик принимает на себя главный удар раскалённых токсичных газов двигателя, ещё не очищенных от ядовитых примесей катализатором. За счёт этого он и выходит из строя в среднем в 5-7 раз чаще, чем второй датчик.

Второй (нижний, диагностирующий) лямбда зонд.

После 2000-х годов, дополнительно к Первому датчику, в автомобилях стали устанавливать ещё один, при этом местоположение Первого не изменилось. Второй датчик стали устанавливать на отрезок выхлопной трубы от катализатора до глушителя. Задачей этого дополнительного датчика стала проверка качества очистки выхлопных газов, прошедших через катализатор. Он получил название «Второй» или «Нижний», поскольку устанавливался под днищем автомобиля. Другим названием этого датчика стало «Диагностирующий», оно отражало его функциональную отличие от Первого датчика – проверять качество очистки выхлопных газов. После появления Второго датчика блок управления рассчитывает параметры идеальной воздушно-топливной смеси на основании показаний их обоих. В результате удалось добиться дополнительного снижения расхода топлива и высочайшей степени очистки выхлопных газов от ядовитых примесей — 95%.

Следует заметить, что поскольку Второй датчик установлен после катализатора, где газы уже очищены от агрессивных примесей, он выходит из строя значительно реже и то в результате либо разрушения катализатора, либо в результате механического или термического повреждения.

Конструктивно оба датчика  очень похожи. Тем не менее они имеют ряд различий, обусловленных их функциональностью. В последние годы первые и вторые лямбда зонды стали также отличаться и конструктивно. В качестве регулирующих датчиков всё чаще применяются сложные и дорогостоящие широкополосные датчики, в то время как в качестве диагнотических по прежнему используют циркониевые лямбда зонды.

Схематичное обозначение местоположения лямбда зондов на современном автомобиле.

Все автомобили объёмом двигателя более 2-х литров имеют по два Первых датчика и два Вторых датчика. Установка четырех датчиков продиктована большей мощностью таких двигателей требующих наличия двух катализаторов. В последние годы, в связи с введением более строгих требований по выбросам, стали устанавливать до трёх катализаторов, а соответственно понадобился и пятый кислородный датчик.


Разновидности лямбда зондов.

Лямбда зонд из диоксида циркония является самым распространённым на сегодняшний день типом кислородных датчиков.
Менее распространёнными датчиками является широкополосные датчики и датчики воздух — топливо.
Совсем редкими являются лямбда зонд их диоксида титана, которые постепенно вытесняются из-за своей дороговизны.

что это, принцип работы, описание, драгоценные металлы в нем

С каждым годом количество автомобилей растет, что самым неблагоприятным образом сказывается на экологической ситуации. Страдают от загазованного воздуха не только жители крупных городов, но и вся планета в целом, поскольку озоновый защитный слой атмосферы становится все меньше. По этой причине в цивилизованном мире установлены жесткие правила, требующие установки на автомобилях катализаторов – устройств, поглощающих токсичные компонента выхлопных газов. Это несгоревшие углеводороды, окись углерода и окислы азота.


Катализатор – устройство полезное, но для его эффективной работы нужно создать соответствующие условия. Необходимо постоянно контролировать качество топливно-воздушной смеси.

Что это такое

Оптимальный состав топливно-воздушной смеси содержит 1 часть бензина на 14,7 частей атмосферного воздуха. Если принять такое соотношение за единицу, то его отклонение в большую/меньшую сторону свидетельствует об обогащенном или обедненном составе смеси. Чтобы катализатор работал максимально эффективно, отклонение от оптимальной единицы должно быть не более одного процента.

Технически проблема решается посредством установки встроенного в электронную систему подачи топлива лямбда-зонда, который поддерживает состав топливно-воздушной смеси в катализаторе в оптимальных пределах.

Принцип работы лямбда-зонда

Конструкция датчика состоит из следующих основных элементов:

  • металлический корпус;
  • керамический изолятор;
  • электрический нагреватель;
  • электропроводка и токопроводящие контакты.


В процессе работы двигателя внутреннего сгорания содержание кислорода в атмосферном воздухе и в выпускном коллекторе выхлопной системы разное. Один электрод лямбда-датчика «дышит» наружным воздухом, а второй выхлопными газами. Соответственно, ионы кислорода создают в твердом электролите разность потенциалов. Это напряжение передается на бортовую систему управления подачей топлива, в результате чего в режиме реального времени оптимизируется состав топливно-воздушной смеси.

Корректное измерение отклонения количества кислорода в катализаторе возможно только при температуре не ниже 300 градусов. Это обусловлено тем, что циркониевый электролит при меньшей температуре в качестве проводника не работает. Поэтому при холодном пуске лямбда-датчик не принимает участия, а за состав подаваемой в двигатель топливно-воздушной смеси на этом этапе отвечают иные электронные устройства. В современных датчиках кислорода имеется электрический подогрев управляемых бортовым электронным блоком.

Максимальная температура для работы лямбда-датчика также ограничена и не должна превышать 1000 градусов. Поэтому устройство, установленное для быстрого прогрева на выпускном коллекторе перед катализатором, чувствительно к перегреву вследствие длительной езды на максимальных оборотах двигателя.


Может ли работать автомобиль без лямбда-зонда

Ресурс кислородного датчика не превышает 80 000 км и зависит от исправности двигателя, условий эксплуатации автомобиля. Но больше всего на срок эксплуатации влияет качество топлива. Иногда достаточно израсходовать несколько баков некачественного бензина, и датчик перестает работать вообще.

Признаки неисправности катализатора:

  • Холостые обороты самопроизвольно падают до 500-600. Причина – в систему поступает обедненная смесь, не обеспечивающая стабильность работы в режиме холостого хода.
  • На ходу заметна существенная потеря мощности. Автомобиль с трудом набирает обороты, преодолевает подъемы, медленно разгоняется. Причина та же – некорректное содержание топливно-воздушной смеси.
  • Расход увеличился на 20-30%. Из-за слишком обогащенной топливно-воздушной смеси наблюдается темный выхлоп с характерным запахом несгоревшего в катализаторе бензина. На свечах появляется налет черного цвета.
  • При ускорении автомобиль дергается.
  • На панели управления сигнализирует Check Engine. Теоретически ошибку можно сбросить, но от этого катализатор исправным не станет.

Причины неисправности:

  • Топливо низкого качества. Чрезмерное количество примесей приводит к тому, что их несгоревшие остатки оседают на поверхности лямбда-датчика, нарушают токопроводимость его контактов.
  • Превышен срок эксплуатации. В идеальных условиях устройство может корректно работать при пробеге 150 000 км и даже больше. В наших реалиях, как правило, не больше 80 000 км. Но это касается оригинального датчика. Ресурс некачественного лицензионного устройства предсказать практически невозможно.
  • Неисправность электрической проводки, которая может повредиться по причине перегрева коллектора.

Что делать, если механизм вышел из строя

Прежде всего, нужно убедиться в неисправности лямбда-датчика. В этом плане проще и надежнее всего обратиться на станцию техобслуживания. Если есть желание и возможность, можно сделать визуальную проверку самостоятельно. Начать нужно с осмотра разъемов, проверки надежности их фиксации. Затем следует осмотреть кислородный датчик:

  • сажа на корпусе – показатель сгорания обогащенной смеси или чрезмерного перегрева зонда;
  • блестящие отложения создает топливо с избытком свинца;
  • белый и серый налет возникает вследствие использования масляных и топливных присадок.


Что делать? Если на лямбда-датчике появился свинцовый налет, устройство подлежит замене, поскольку свинец повреждает не только зонд, но и катализатор. То же касается и налета от присадок. Если говорить о саже, то ее можно попробовать почистить своими руками с использованием ортофосфорной кислоты.

Какие драгоценные материалы содержатся в зонде

Керамический твердый электролит гальванического элемента изготовлен из диоксида циркония, легированного оксидом иттрия. Токопроводящие электроды имеют платиновое напыление.

Количество ценных драгметаллов ничтожно мало, и пытаться извлечь их в домашних условиях не имеет смысла. Негодный кислородный датчик может сослужить своему владельцу последнюю службу, если сдать катализатор в утиль. Компания «Лом-АКБ» принимает по выгодным ценам вышедшие из строя автомобильные детали от частных лиц и организаций.

Лямбда-зонд: Работа и обслуживание

Лямбда-зонд: Работа и обслуживание | FlexFuel® Великобритания

Что это?

Лямбда-зонд, также называемый кислородным датчиком или датчиком O2, впервые появился в 1970-х годах, но не был принят в Европе до 1993 года, особенно для автомобилей с бензиновым двигателем. Это позволяет соответствовать стандарту EURO 1 (стандарт выбросов загрязняющих атмосферу газов).

Лямбда-зонд, расположенный перед катализатором, постоянно измеряет количество кислорода, присутствующего в выхлопных газах, для изменения топливовоздушной смеси.После катализатора можно найти второй. Таким образом, он позволяет проверять правильность функционирования.

Как это работает?

Существует два типа лямбда-зондов:

  • Зонд нагревается выхлопными газами, его рабочий порог находится в диапазоне от 300°C до 600°C.
  • Нагрев зонда , в свою очередь, позволяет быстрее достичь рабочей температуры.

После того, как двигатель прогреется, датчик измеряет количество кислорода в выхлопных газах, а затем отправляет эту информацию на компьютер, который отвечает за максимально оптимальную адаптацию топливно-воздушной смеси.

Какие проблемы возникают из-за лямбда-зонда?

Жизненный цикл лямбда-зонда составляет около 150 000 км. Однако по мере старения он отправляет информацию на компьютер все медленнее и медленнее, что в конечном итоге приводит к ухудшению состояния. Затем он обогащает топливно-воздушную смесь, вызывая засорение датчика и каталитического нейтрализатора.

Каковы симптомы засорения лямбда-зонда?

  • Горят фары двигателя
  • Перерасход бензина
  • Нестабильный холостой ход
  • Потеря мощности
  • Отказ при проверке пригодности к эксплуатации

Как обслуживается лямбда-зонд?

Продлите срок службы лямбда-зонда благодаря удалению накипи с помощью впрыска водорода FlexFuel Energy Development®.Регулярная чистка двигателя позволяет, по сути, замедлить процесс старения лямбда-зонда.

back to top

Этот сайт использует файлы cookie, чтобы запоминать ваши предпочтения и оптимизировать ваше путешествие.
Нажимая «ПРИНЯТЬ», вы соглашаетесь на установку этих различных файлов cookie.
Чтобы узнать больше, посетите нашу страницу Политики конфиденциальности.

Политика конфиденциальности и файлов cookie

Лямбда-зонд и его важный вход в ЭБУ

В более ранней статье мы обсуждали работу ЭБУ, где уже стало понятно, что лямбда-зонд предоставляет ЭБУ жизненно важную информацию.Было бы слишком далеко вдаваться во все подробности, чтобы обсудить, как эта часть работает и как она взаимодействует с ECU. В этой статье мы объясним точное взаимодействие двух компонентов!

Какой датчик?

Правильно, лямбда-зонд. Среди автомобильных техников эту деталь иногда называют лямбда-зондом, датчиком кислорода или датчиком кислорода. Это название подразумевает функцию этой части. Короче говоря, этот датчик измеряет количество кислорода в выхлопе. У голландской организации сектора мобильности BOVAG есть очень красивое и краткое описание для этой части:

.

«Лямбда-зонд — это датчик в выхлопе вашего автомобиля, который измеряет количество кислорода в выхлопных газах.Если значение содержания кислорода меняется, система управления двигателем регулирует его автоматически. Таким образом, каталитический нейтрализатор работает оптимально, а выхлопные газы менее вредны для окружающей среды».

Сказав это, хорошо знать, что большинство современных автомобилей имеют два кислородных датчика. Один датчик измеряет газы, выходящие из двигателя, а второй датчик расположен за каталитическим нейтрализатором. Поскольку лямбда-зонд представляет собой полый керамический цилиндр, через него может проходить кислород.Датчик измеряет наличие кислорода и генерирует сигнал напряжения. Провода на датчике могут нагревать лямбда-зонд и передавать данные на ЭБУ. На основе этих данных блок управления двигателем определяет, насколько обедненной (мало выхлопных газов и много кислорода) или богатой (много выхлопных газов и мало кислорода) топливно-воздушной смеси. Нагрев датчика кислорода также имеет важное значение: это позволяет датчику быстро реагировать на холодный двигатель, что приводит к лучшему и более экономичному сгоранию!
Теперь, когда мы это знаем, профессионалу может быть интересно узнать краткую историю этой детали:

.

История лямбда-зонда

Чтобы немного рассказать об истории лямбда-зонда, мы хотим перенести вас в прошлое.Чтобы быть точным, для этого нам нужно отправиться в 1976 год. Небольшое исследование показывает, что это был особенный год. 1976 год — это год, когда Queen выпустили «Богемскую рапсодию», родилась «Панненка пенальти», был основан бренд Apple и вошел в обиход легендарный Concorde. Взглянув на книги по истории, можно увидеть, что 1976 год был особенным для Швеции. Шведская группа ABBA выпустила Dancing Queen в том же году (мы приносим свои извинения за то, что песня застряла у вас в голове прямо сейчас…), Бьорн Борг пробился к победе в Уимблдоне, и, в довершение всего, Швеция представила лямбда-зонд. .Настоящий забавный факт для именинников!

Ну, вернемся к датчику О2. В результате более строгих норм по охране окружающей среды и выбросов, введенных в Соединенных Штатах, Volvo стала первой маркой, которая в 1976 году оснастила этой новой технологией модели 240 и 260. Volvo так гордилась этим нововведением, что даже Эмблема «Лямбда Зонд» на решетке радиатора нескольких автомобилей.

После успешного внедрения Volvo установила еще более тесное партнерство с Bosch, которая взяла на себя ответственность за производство цилиндрической детали.Вскоре в 1982 году последовали лямбда-зонды второго поколения. Большим преимуществом этого второго поколения было то, что этот датчик нагревался. За сорок лет, последовавших за появлением лямбда-зонда, компания Bosch произвела более 1 миллиарда таких деталей.

Что ЭБУ делает с информацией лямбда-зонда?

После этого экскурса в учебники истории пора вернуться к работе лямбда-зонда. Приведенное ранее определение этого датчика содержит очень важный элемент, заслуживающий более подробного объяснения.Это относится к следующему предложению: «Если значение содержания кислорода меняется, система управления двигателем регулирует это автоматически».

Главный вопрос, конечно, что и как настраивает система управления двигателем, или ЭБУ, исходя из содержания кислорода в выхлопных газах. Это основано на так называемом значении лямбда. ЭБУ постоянно сравнивает количество воздуха, которое измеряет кислородный датчик, с количеством впрыскиваемого топлива. Когда это значение падает ниже 1, в топливной смеси не хватает воздуха (богатая смесь).Если это значение выше 1, имеется избыток воздуха (бедная смесь). На основании этих данных блок управления двигателем принимает собственное решение. Самое очевидное решение для ЭБУ — это начать регулировать топливно-воздушную смесь так, чтобы пропорции совпадали. Этого можно добиться, например, регулировкой времени открытия форсунок. Однако, если значение отклоняется слишком сильно или значение продолжает отклоняться после регулировки, загорится сигнальная лампа двигателя, и двигатель может перейти в аварийный режим.

Неисправный лямбда-зонд сильно влияет на ЭБУ

Теперь, когда было объяснено взаимодействие обоих компонентов, становится понятно, какое влияние эта деталь оказывает на функционирование ЭБУ. Поэтому неисправный лямбда-зонд необходимо быстро заменить. Продолжительное вождение с неисправным датчиком также может привести к повреждению каталитического нейтрализатора. Поскольку индикатор управления двигателем (индикатор MIR) часто загорается при неисправности лямбда-зонда, важно продолжить диагностику и выполнить различные тесты.

Проверка и измерение неисправных лямбда-зондов

Первый тест, который вы можете сделать, это увеличить обороты двигателя примерно до 1500-2000 об/мин. Важно как можно меньше двигать педалью акселератора. Если обороты нестабильны, у вас может быть первое указание на то, что лямбда-зонд может быть неисправен.

После того, как вы убедились в стабильных оборотах двигателя, вам необходимо взять омметр и измерить сопротивление нагревателя. Иногда для этого нужно снять тепловой экран с выпускного коллектора.Проведите это измерение при нормальной температуре двигателя (от 85 до 95°C) и используйте электрическую схему. Верно ли значение? Затем приступайте к измерению сигнала. Правильно функционирующий кислородный датчик дает значение от 0,1 до 0,9 Вольт. Если это не так, можно сделать вывод, что лямбда-зонд стал причиной включения лампочки управления двигателем! Вам нужно почистить лямбда-зонд, или вы можете заменить датчик.

Опыт учит, что лучше заменить лямбда-зонд на оригинал, а не выбирать неоригинальный датчик.Как только вы начнете искать «послепродажный лямбда-зонд» на различных автомобильных форумах, станет ясно, что мы подразумеваем под этим. Есть масса случаев, когда проблема не решается, а лампочка продолжает гореть.

Лямбда-зонд котла на биомассе — FKK Corporation


Скачать каталог в формате PDF

Читать каталог онлайн

Обратите внимание, что этот продукт недоступен для продажи в странах Европы.

Горелка на биомассе (древесные гранулы, щепа, бревна и т. д.) Датчик кислорода

Представляем датчик кислорода OSx, предназначенный для горелок, работающих на биомассе, — передовую технологию, позволяющую максимально увеличить производительность горелки и эффективность использования твердого топлива при одновременном снижении вредных выбросов.

Датчик кислорода OSx был разработан корпорацией DENSO в сотрудничестве с корпорацией FKK для измерения доли несгоревшего кислорода в выхлопных газах биомассы, особенно в системах сжигания древесных гранул.

Этот кислородный датчик со встроенным циркониевым нагревателем обеспечивает выходной сигнал в диапазоне лямбда и позволяет использовать его в качестве универсального лямбда-датчика во всех устройствах для сжигания биомассы.

Какую роль играют лямбда-зонды?

В целях сокращения выбросов современные котлы на биомассе спроектированы таким образом, чтобы тщательно контролировать количество сжигаемого ими твердого топлива.

Лямбда-зонд (или кислородный датчик) является критическим компонентом в этом процессе, его цель состоит в том, чтобы работать вместе со шнеком котла, впускным и вытяжным вентилятором и электронным блоком управления (ЭБУ) для достижения минимально возможного выхода вредных для окружающей среды выхлопных газов. выбросы и потребление топлива из биомассы независимо от качества топлива.

Лямбда-зонд делает это, отслеживая процентное содержание несгоревшего кислорода в выхлопных газах горелки. Эти данные передаются в ЭБУ котла, который регулирует смесь A/F (воздух/твердое топливо).Правильная смесь воздуха и твердого топлива обеспечивает эффективную работу горелки, снижая расход твердого топлива и выбросы CO2, NOX, HC.

Системы

  • Печь на пеллетах
  • Котел на древесных гранулах
  • Горелка на древесных гранулах
  • Котел на щепе
  • Котел на дровах
  • Другая горелка на биомассе и специальное применение
  • Может также использоваться для лямбда-регулирования газовой горелки с предварительным смешиванием

Преимущества сенсорной технологии Denso O2
  • Может резать твердое топливо (например,грамм. пеллеты) годовое потребление и выбросы на 20%
  • Обнаруживает широкий диапазон соотношения воздух-топливо до 21%
  • Долговечный (нестареющий)
  • Встроенный нагреватель для работы при любой температуре выхлопных газов
  • Простота установки и модернизации
  • Невосприимчив к окислению и коррозии
  • Превосходная водонепроницаемость и воздухонепроницаемость
  • Соответствует RoHS, регламенту REACH по опасным веществам
  • 100% проверка перед отправкой
  • Сделано в Японии компанией Toyota № автомобиля.1 поставщик

Свяжитесь с нами для получения дополнительной информации.

Почему использование универсальных лямбда-зондов — плохая идея

Среди поставщиков лямбда-зондов на рынке нередко встречаются так называемые универсальные лямбда-зонды. Есть много причин, по которым использование датчика универсального типа не является хорошей идеей.
 

Лямбда-зонды Triscan предназначены исключительно для конкретных автомобилей и имеют качество оригинальных комплектующих (Triscan # 8845 11100 — BMW 116i)
 

Очевидная причина в краткосрочной перспективе заключается в том, что при выборе универсального лямбда-зонда необходимо учитывать множество факторов, большинство из которых может быть источником ошибок и отказов: 


Разъем
Некоторые механики предпочитают повторно использовать разъем, другие — нет.В зависимости от вашего выбора вам необходимо учитывать следующее:

  • Если вы собираетесь повторно использовать соединитель:  Вы должны убедиться, что он находится в состоянии для повторного использования? Подвергался ли он воздействию тепла, коррозии или другим воздействиям окружающей среды, которые могут повлиять на его способность обеспечивать 100% неповрежденное соединение?
     
  • Если вы не собираетесь повторно использовать разъем:  Если вы отрежете оба разъема от жгута проводов, будет довольно сложно вернуться к использованию лямбда-зонда plug & play для конкретного автомобиля.


Пайка
Соединение до 5 проводов с помощью пайки оставляет слабое место по многим причинам:

1) Провода могут быть ошибочно подключены неправильно, так как цвета проводов универсального лямбда-зонда очень часто не совпадают с цветами жгута проводов автомобиля.

Пример разной окраски проводов жгута автомобиля и универсального лямбда-зонда

2) Существует риск «холодной» пайки.
                      

Пример холодной пайки

Пример правильной пайки
 

Изоляция
Каждая из 5 точек пайки должна быть надлежащим образом и долговечно изолирована.

Инкапсуляция
До 5 спаянных и изолированных проводов должны быть надлежащим образом и долговечно инкапсулированы, чтобы противостоять холоду, теплу, влаге, маслу, соли и грязи.

Рабочее время
Сколько стоит ваша рабочая сила? Покрывает ли разница в цене между универсальным лямбда-зондом и лямбда-зондом plug & play затраты на рабочую силу? Стоит ли рисковать не правильно выполнить пайку, изоляцию и герметизацию?

Количество рекламаций
Из-за вышеупомянутых источников ошибок, очевидно, что количество претензий по универсальным датчикам обычно очень велико. Является ли то, что на первый взгляд может сэкономить немного денег, лучше, чем обеспечить оптовику, мастерской и, не в последнюю очередь, владельцам автомобилей безаварийный ремонт с длительным сроком службы?

Помимо очевидных причин, упомянутых выше, есть много других веских причин, которые объясняют, почему выбор лямбда-зондов Triscan для конкретных автомобилей в первую очередь и в долгосрочной перспективе является хорошей идеей и почему существует разница в цене.

•    Датчики Triscan разрабатываются специально для каждого применения – это не относится к универсальным датчикам. Это означает, что лямбда-зонд plug & play для конкретного автомобиля изготавливается в соответствии с конкретными требованиями к защите, конструкции корпуса и мощности обогревателя. Различия также существуют во внутренних схемах заземления самого датчика, жгута проводов, разъемов и прокладок, где это необходимо.
•    Спецификации используемых материалов соответствуют и превосходят стандарты производителей транспортных средств, включая корпус датчика, пластмассу, используемую в блоке разъема, и даже сами контакты разъема.
•    Лямбда-зонд — сложный и трудоемкий в изготовлении элемент. Формование чувствительного элемента является сложным процессом, как и процесс нанесения покрытия, при котором необходимо наносить правильные металлы в точном количестве.
•    Все аспекты функции датчика будут правильными, включая глубину введения и конструкцию защитной трубки, как указано выше, а также номинальную мощность нагревателя.
Дешевые универсальные датчики не включают некоторые из этих процессов тонкой обработки, чтобы сократить время производства и, таким образом, снизить затраты.В результате датчик может работать в течение короткого времени, но чаще всего вызывает проблемы уже через несколько месяцев.

Проверка лямбда-зонда кислорода в выхлопных газах (EGO)

Тест 5 — лямбда-зонд

Лямбда-зонд, также известный как датчик кислорода в выхлопных газах (EGO), обычно устанавливается в выпускном коллекторе. Можно установить более одного датчика. Его целью является обнаружение присутствия кислорода в выхлопных газах, что указывает на то, что двигатель работает на обедненной смеси.

Лямбда-зонд используется в замкнутом контуре в качестве датчика обратной связи, помогающего ЭБУ точно регулировать соотношение воздух-топливо для достижения стехиометрии — идеальное соотношение воздух-топливо примерно 14,7:1 в бензиновых двигателях.

Датчик EGO имеет встроенный нагреватель для быстрого прогрева, так как он не работает при низких температурах. Пока датчик прогревается, автомобиль работает в менее эффективном режиме разомкнутой цепи, в котором ЭБУ использует предварительно установленные значения соотношения воздух-топливо.

  • Программное обеспечение: PicoScope 6 — управляемый тест AT022 и AT023
  • Цель испытания — лямбда-зонд (кислород EGO)
  • Требуемый уровень навыков — очень простой

Большинство датчиков выдают высокие и низкие уровни с частотой около 1 Гц, когда смесь определяется как богатая или обедненная.Если вы видите эти импульсы, автомобиль находится в режиме обратной связи и датчик работает правильно.

Connect : Найдите датчик с помощью технических данных вашего автомобиля. Мы рекомендуем использовать для соединения либо щупы с обратным штифтом, либо отводные выводы.

Используйте технические данные, чтобы определить провод выходного сигнала от разъема жгута лямбда-зонда.

Запуск : Двигатель должен иметь нормальную рабочую температуру, чтобы выдавать достоверный сигнал.Запустите PicoScope, когда будете готовы захватить сигнал.

Чтение : В зависимости от типа лямбда-зонда будет видно, что сигнал последовательно чередуется с высоким и низким уровнем с изогнутыми краями. Эти датчики обычно переключаются на высокий и низкий уровень один раз в секунду. У Pico есть пошаговые тесты для измерения различных типов лямбда-зондов, поэтому, пожалуйста, ознакомьтесь с ними для получения дополнительной информации — выберите датчики, а затем лямбда.


Анализ сигналов

Сигнал показывает, как ECU регулирует смесь между обогащенной и обедненной смесью.Если датчик обнаруживает богатую смесь, впрыск топлива немного уменьшается. Примерно через секунду датчик EGO обнаруживает бедную смесь, и количество впрыскиваемого топлива немного увеличивается. Эти циклы продолжаются, пока ЭБУ пытается поддерживать идеальное соотношение воздух-топливо.

Лямбда — анимация теста на содержание кислорода в выхлопных газах

Комментарий к видео

Видео начинается с прогрева двигателя. Лямбда-зонды находятся в выпускном коллекторе, а также в каталитическом нейтрализаторе.Датчик температуры показывает, что для выполнения этого теста двигатель должен быть прогрет до нормальной рабочей температуры.

Показано, что сигнальные импульсы от датчиков EGO поступают в ЭБУ.

Подключить : Используйте контактный щуп для подключения к выходу ECU и заземлите тестовый провод.

Запуск : Двигатель должен иметь нормальную рабочую температуру, чтобы выдавать достоверный сигнал. Запустите PicoScope, когда будете готовы захватить сигнал.

Чтение : В зависимости от типа лямбда-зонда будет видно, что сигнал последовательно чередуется с высоким и низким уровнем с изогнутыми краями. Эти датчики обычно переключаются на высокий и низкий уровень один раз в секунду.

Нажмите «Далее» для шестого теста — «Тест датчика ABS».

КИСЛОРОДНЫЕ ДАТЧИКИ /ЛЯМБДА-ДАТЧИК/: ДЕТАЛИ, ТИПЫ, РАБОЧИЕ

ЧТО ТАКОЕ КИСЛОРОДНЫЙ ДАТЧИК?

Кислородный датчик (обычно называемый «датчик O2», так как O2 — это химическая формула кислорода) устанавливается в выхлопном коллекторе автомобиля для контроля количества несгоревшего кислорода в выхлопных газах, когда выхлопные газы выходят из двигателя. .

ЧТО ДЕЛАЕТ КИСЛОРОДНЫЙ ДАТЧИК?

Датчики кислорода

работают, вырабатывая собственное напряжение, когда они нагреваются (примерно 600°F). На наконечнике кислородного датчика, который подключается к выпускному коллектору, находится керамическая колба из циркония. Внутри и снаружи колба покрыта пористым слоем платины, которые служат электродами. Внутренняя часть колбы вентилируется внутри через корпус датчика во внешнюю атмосферу. Когда внешняя часть колбы подвергается воздействию горячих газов выхлопных газов, разница в уровнях кислорода между колбой и внешней атмосферой внутри датчика вызывает протекание напряжения через колбу.Если соотношение топлива обеднено (недостаточно топлива в смеси), напряжение относительно низкое — примерно 0,1 вольта. Если соотношение топлива богатое (слишком много топлива в смеси), напряжение относительно высокое — примерно 0,9 вольта. Когда воздушно-топливная смесь находится в стехиометрическом соотношении (14,7 частей воздуха на 1 часть топлива), кислородный датчик выдает 0,45 вольта.

ГДЕ РАСПОЛОЖЕНЫ КИСЛОРОДНЫЕ ДАТЧИКИ?

Изменилось количество кислородных датчиков в автомобиле. Каждый автомобиль, выпущенный после 1996 года, должен иметь кислородный датчик перед и после каждого каталитического нейтрализатора.Таким образом, в то время как большинство автомобилей имеют два кислородных датчика, двигатели V6 и V8, оснащенные двойным выхлопом, имеют четыре кислородных датчика — по одному перед каталитическим нейтрализатором и после каталитического нейтрализатора на каждом ряду двигателя.

1. Верхний кислородный датчик (кислородный датчик 1)

Лямбда-зонд 1 — это верхний лямбда-зонд по отношению к каталитическому нейтрализатору. Он измеряет соотношение воздух-топливо в выхлопных газах, выходящих из выпускного коллектора, и отправляет сигналы высокого и низкого напряжения в модуль управления трансмиссией для регулирования воздушно-топливной смеси.Когда модуль управления силовым агрегатом получает сигнал низкого напряжения (обеднение), он компенсирует это за счет увеличения количества топлива в смеси. Когда модуль управления силовым агрегатом получает сигнал высокого напряжения (обогащение), он обедняет смесь, уменьшая количество добавляемого в смесь топлива. Использование модулем управления силовым агрегатом входного сигнала датчика кислорода для регулирования состава топливной смеси известно как замкнутый контур управления с обратной связью. Эта работа с обратной связью приводит к постоянному переключению между обогащением и обеднением, что позволяет каталитическому нейтрализатору минимизировать выбросы за счет поддержания общего среднего соотношения топливной смеси в надлежащем балансе.Однако при запуске холодного двигателя или выходе из строя лямбда-зонда модуль управления силовым агрегатом переходит в режим разомкнутого контура. В режиме разомкнутого контура модуль управления силовым агрегатом не получает сигнал от лямбда-зонда и заказывает фиксированную богатую топливную смесь. Работа без обратной связи приводит к повышенному расходу топлива и выбросам. Многие новые кислородные датчики содержат нагревательные элементы, которые помогают им быстро достичь рабочей температуры, чтобы минимизировать время, затрачиваемое на работу в разомкнутом контуре.

2. Нижний кислородный датчик (кислородный датчик 2)

Лямбда-зонд 2 — это нижний лямбда-зонд по отношению к каталитическому нейтрализатору. Он измеряет соотношение воздух-топливо, выходящее из каталитического нейтрализатора, чтобы убедиться, что каталитический нейтрализатор работает правильно. Каталитический нейтрализатор поддерживает стехиометрическое соотношение воздух-топливо 14,7:1, в то время как модуль управления трансмиссией постоянно переключается между обогащенной и бедной воздушно-топливной смесью из-за входного сигнала от верхнего кислородного датчика (датчик 1).Следовательно, нижний кислородный датчик (датчик 2) должен выдавать постоянное напряжение примерно 0,45 В.

КАК РАБОТАЮТ КИСЛОРОДНЫЕ ДАТЧИКИ

Пошаговое руководство по работе автомобильного датчика кислорода. Эта статья относится к большинству автомобилей.

Шаг 1. Кислородный датчик представляет собой электронный компонент, разработанный для измерения уровня кислорода в выхлопной системе автомобильного двигателя.

Шаг 2. Как правило, кислородный датчик крепится к трубе выхлопной системы или сбоку от каталитического нейтрализатора, при этом часть датчика находится внутри трубы.Это измеряет кислородную смесь, генерируя небольшое количество электричества из-за разницы в атмосфере, кислороде и углекислом газе. Компьютер PCM отслеживает это напряжение и соответствующим образом регулирует подачу топлива. Кислородные датчики обычно можно найти в выхлопной трубе рядом с двигателем (первичный датчик), хотя иногда они устанавливаются в самом выпускном коллекторе, где соединяется выхлопная труба. Датчики, расположенные после или на каталитическом нейтрализаторе, являются вторичным блоком.

Шаг 3. Работа датчика заключается в измерении количества кислорода, необходимого для сжигания любого топлива, оставшегося в потоке выхлопных газов, и передаче этой информации обратно в компьютер PCM (модуль управления трансмиссией), где она сравнивается с другой оперативной информацией, чтобы можно было внести коррективы. быть сделано, чтобы максимизировать топливную экономичность и мощность за счет правильного топливовоздушной смеси и угла опережения зажигания в двигателе.Датчики кислорода делают это за счет химической реакции внутри самого датчика; в этой статье мы объясним эволюцию и применение этой очень важной части головоломки впрыска топлива. Датчики кислорода работают через химическую реакцию. Сердечник или элемент датчика представляет собой циркониевую керамику с тонким слоем платины. Поскольку эти материалы являются реакционноспособными и наносятся в виде слоев, они со временем изнашиваются, что снижает их эффективность.

Шаг 4. Затем напряжение, создаваемое датчиком, передается на компьютер, где он сравнивает его с другой оперативной информацией, чтобы внести необходимые корректировки смеси и времени.Кислородный датчик находится в постоянной связи с блоком управления двигателем, передавая ему информацию, необходимую для регулировки подачи топлива для оптимального сгорания.

Шаг 5. Когда двигатель холодный, кислородный датчик считывает показания медленно, для устранения этой проблемы был установлен нагревательный элемент, который помогает датчику работать правильно, пока двигатель не достигнет рабочей температуры. Когда эти нагреватели выходят из строя, загорается контрольная лампа двигателя. Количество вторичных датчиков будет зависеть от количества каталитических нейтрализаторов в автомобиле.Кислородные датчики используют чередование богатых и обедненных смесей для достижения баланса, близкого к стехиометрической смеси (идеально подходит для внутреннего сгорания).

ЗОНД

Чувствительный элемент представляет собой керамический цилиндр, покрытый изнутри и снаружи пористыми платиновыми электродами; вся сборка защищена металлической сеткой. Он работает путем измерения разницы содержания кислорода между выхлопными газами и наружным воздухом и генерирует напряжение или изменяет свое сопротивление в зависимости от разницы между ними.

Датчики работают эффективно только при нагреве примерно до 316 °C (600 °F), поэтому большинство новых лямбда-зондов имеют нагревательные элементы, заключенные в керамику, которые быстро нагревают керамический наконечник до температуры. Старые датчики без нагревательных элементов в конечном итоге будут нагреваться выхлопными газами, но существует временная задержка между запуском двигателя и моментом, когда компоненты выхлопной системы приходят к тепловому равновесию. Время, необходимое для того, чтобы выхлопные газы довели датчик до температуры, зависит от температуры окружающего воздуха и геометрии выхлопной системы.Без нагревателя процесс может занять несколько минут. Существуют проблемы с загрязнением, связанные с этим медленным процессом запуска, в том числе аналогичная проблема с рабочей температурой каталитического нейтрализатора.

Обычно к зонду подключаются четыре провода:
1. два для выхода лямбда и
2. два для питания нагревателя,

, хотя некоторые автопроизводители используют металл в качестве заземления для сигнала сенсорного элемента, в результате чего получается три провода. Раньше датчики без электрического обогрева имели один или два провода.

ТИПЫ КИСЛОРОДНЫХ ДАТЧИКОВ

1. Циркониевый датчик

Двуокись циркония или циркониевый лямбда-датчик основан на твердотельном электрохимическом топливном элементе, называемом ячейкой Нернста. Два его электрода обеспечивают выходное напряжение, соответствующее количеству кислорода в выхлопных газах по отношению к количеству кислорода в атмосфере.

Выходное напряжение 0,2 В (200 мВ) постоянного тока представляет собой «обедненную смесь» топлива и кислорода, где количество кислорода, поступающего в цилиндр, достаточно для полного окисления угарного газа (СО), образующегося при сжигании воздуха и топлива. , в углекислый газ (CO2).Выходное напряжение 0,8 В (800 мВ) постоянного тока представляет собой «богатую смесь» с высоким содержанием несгоревшего топлива и низким содержанием остаточного кислорода. Идеальная уставка составляет примерно 0,45 В (450 мВ) постоянного тока. Именно здесь количества воздуха и топлива находятся в оптимальном соотношении, которое составляет ~ 0,5% обедненной смеси от стехиометрической точки, так что выхлопные газы содержат минимальное количество угарного газа.

Напряжение, создаваемое датчиком, нелинейно по отношению к концентрации кислорода. Датчик наиболее чувствителен вблизи стехиометрической точки (где λ = 1) и менее чувствителен, когда он либо очень бедный, либо очень богатый.
ЭБУ представляет собой систему управления, которая использует обратную связь от датчика для регулировки топливно-воздушной смеси. Как и во всех системах управления, важна постоянная времени датчика; способность ECU контролировать соотношение топлива и воздуха зависит от времени отклика датчика. Стареющий или загрязненный датчик обычно имеет более медленное время отклика, что может снизить производительность системы. Чем короче период времени, тем выше так называемый «перекрестный счет» и тем более отзывчива система.

Датчик имеет прочную конструкцию из нержавеющей стали внутри и снаружи.Благодаря этому датчик обладает высокой коррозионной стойкостью, что позволяет эффективно использовать его в агрессивных средах с высокой температурой/давлением.
Циркониевый датчик относится к «узкополосному» типу, относящемуся к узкому диапазону соотношений топливо/воздух, на который он реагирует.

2. Широкополосный циркониевый датчик

Разновидность циркониевого датчика, называемая «широкополосным» датчиком, была представлена ​​NTK в 1992 году и широко использовалась в системах управления двигателем автомобиля, чтобы удовлетворить постоянно растущие требования к экономии топлива, снижению выбросов и повышению качества работы двигателя. производительность одновременно.Он основан на плоском элементе из диоксида циркония, но также включает в себя электрохимический газовый насос. Электронная схема, содержащая контур обратной связи, регулирует ток газового насоса, чтобы поддерживать постоянный выходной сигнал гальванического элемента, так что ток насоса напрямую указывает на содержание кислорода в выхлопных газах. Этот датчик устраняет цикличность обеднения и обогащения, присущую узкополосным датчикам, позволяя блоку управления гораздо быстрее регулировать подачу топлива и угол опережения зажигания двигателя. В автомобильной промышленности этот датчик также называют датчиком UEGO (универсальный датчик кислорода в отработавших газах).Датчики UEGO также широко используются для вторичной настройки динамометрического стенда и высокопроизводительного оборудования для индикации состояния воздуха и топлива для водителя. Широкополосный циркониевый датчик используется в системах послойного впрыска топлива, а теперь его также можно использовать в дизельных двигателях, чтобы соответствовать будущим ограничениям выбросов EURO и ULEV.

Широкополосные датчики состоят из трех элементов:
1. ионно-кислородный насос,
2. узкополосный циркониевый датчик,
3. нагревательный элемент.

Схема подключения широкополосного датчика обычно имеет шесть проводов:
1.резистивный нагревательный элемент,
2. резистивный нагревательный элемент,
3. датчик,
4. насос,
5. калибровочный резистор,
6. общий.

3. Датчик титана

Менее распространенный тип узкополосного лямбда-зонда имеет керамический элемент из титана (двуокиси титана). Этот тип не генерирует собственное напряжение, но изменяет свое электрическое сопротивление в зависимости от концентрации кислорода. Сопротивление Titania зависит от парциального давления кислорода и температуры.Поэтому некоторые датчики используются с датчиком температуры газа, чтобы компенсировать изменение сопротивления из-за температуры. Значение сопротивления при любой температуре составляет около 1/1000 изменения концентрации кислорода. К счастью, при λ = 1 происходит большое изменение кислорода, поэтому изменение сопротивления обычно составляет 1000 раз между богатым и обедненным, в зависимости от температуры.

Поскольку титан является полупроводником N-типа со структурой TiO2-x, дефекты x в кристаллической решетке проводят заряд.Таким образом, для богатого топливом выхлопа (более низкая концентрация кислорода) сопротивление низкое, а для обедненного топливом выхлопа (более высокая концентрация кислорода) сопротивление высокое. Блок управления питает датчик небольшим электрическим током и измеряет результирующее падение напряжения на датчике, которое варьируется от почти 0 вольт до примерно 5 вольт. Как и циркониевый датчик, этот тип является нелинейным, поэтому его иногда упрощенно описывают как бинарный индикатор, показывающий либо «обогащенный», либо «скудный». Датчики из титана дороже, чем датчики из циркония, но они также быстрее реагируют.

В автомобильных приложениях сенсору из титана, в отличие от сенсора из диоксида циркония, для правильной работы не требуется эталонный образец атмосферного воздуха. Это упрощает проектирование узла датчика для защиты от загрязнения водой. В то время как большинство автомобильных датчиков являются погружными, для датчиков на основе диоксида циркония требуется очень небольшая подача эталонного воздуха из атмосферы. Теоретически жгут проводов датчика и разъем герметичны. Предполагается, что воздух, который просачивается через жгут проводов к датчику, поступает из открытой точки жгута проводов — обычно это блок управления двигателем, который находится в замкнутом пространстве, например, в багажнике или салоне автомобиля.

Неисправность кислородного датчика и советы по его замене

Кислородный датчик, также известный как кислородный датчик, делает то, что следует из его названия — он измеряет количество кислорода в выхлопных газах. Хотя это может показаться довольно скромной задачей, датчик O2 на самом деле является одним из самых важных датчиков на любом транспортном средстве, отвечающим за поддержание правильного баланса между воздухом и топливом для оптимальных выбросов. Из-за этого вам захочется узнать, что он делает, почему он выходит из строя и, что важно, как заменить его, когда он выходит из строя.

Как работает датчик кислорода?

Большинство автомобилей имеют как минимум два кислородных датчика, расположенных по всей выхлопной системе; по крайней мере один перед каталитическим нейтрализатором и один или несколько после каталитического нейтрализатора. «Предварительный датчик» регулирует подачу топлива, а нижний датчик измеряет эффективность каталитического нейтрализатора.

Датчики O2

обычно можно разделить на узкополосные или широкополосные. Чувствительный элемент находится внутри датчика, заключенного в стальной корпус.Молекулы кислорода из выхлопных газов проходят через крошечные прорези или отверстия в стальной оболочке датчика и достигают чувствительного элемента или ячейки Нернста. С другой стороны внутренней камеры кислород из воздуха за пределами выхлопа проходит вниз по датчику O2 и контактирует с ним. Разница в количестве кислорода между тем, что присутствует в наружном воздухе, и тем, что присутствует в выхлопных газах, способствует потоку ионов кислорода и создает напряжение.

Если смесь выхлопных газов слишком богата и в выхлопных газах слишком мало кислорода, на электронный блок управления двигателем (ECU) отправляется сигнал для уменьшения количества топлива, подаваемого в цилиндр.Если смесь выхлопных газов слишком бедная, то подается сигнал увеличить количество используемого топлива в двигателе. Слишком много топлива производит углеводороды и угарный газ. Слишком малое количество топлива производит загрязняющие вещества оксида азота. Сигнал датчика помогает поддерживать правильный состав смеси. Широкополосные датчики O2 имеют дополнительную ячейку накачки O2 для регулирования количества кислорода, присутствующего в чувствительном элементе. Это позволяет измерять гораздо более широкое соотношение воздух/топливо.

Почему датчики O2 выходят из строя?

Поскольку датчик кислорода находится в потоке выхлопных газов, он может загрязниться.Распространенными источниками загрязнения являются чрезмерно обогащенная топливная смесь или просачивание масла в старом двигателе, а также сгорание охлаждающей жидкости двигателя в камере сгорания в результате утечки через прокладку двигателя. Он также подвергается воздействию чрезвычайно высоких температур и, как и любой другой компонент, со временем изнашивается. Все это может повлиять на характеристики отклика датчика кислорода, что приведет к увеличению времени отклика или сдвигу кривой напряжения датчика и, в долгосрочной перспективе, к снижению производительности датчика.

На что обратить внимание при неисправности кислородного датчика:

Когда датчик кислорода выходит из строя, компьютер больше не может определять соотношение воздух/топливо, поэтому он в конечном итоге угадывает.По этой причине есть несколько контрольных признаков, на которые стоит обратить внимание:

  • Индикатор «Проверьте двигатель»: хотя индикатор «Проверить двигатель» может загораться по многим причинам, обычно это связано с проблемами, связанными с выбросами.
  • Плохая экономия топлива: неисправный кислородный датчик нарушит воздушно-топливную смесь, что приведет к увеличению расхода топлива.
  • Неравномерный холостой ход двигателя или пропуски зажигания: поскольку выходной сигнал кислородного датчика помогает контролировать синхронизацию двигателя, интервалы сгорания и соотношение воздуха и топлива, неисправный датчик может привести к неровной работе автомобиля.
  • Вялая работа двигателя.

Поиск и устранение неисправностей датчика O2

Чтобы определить источник неисправности датчика O2, выполните следующие действия:

  • Считайте все коды неисправностей с помощью диагностического прибора. Обратите внимание, что при возникновении проблем с датчиками O2 часто возникает несколько кодов неисправностей.
  • Лямбда-зонды
  • имеют внутренний нагреватель, поэтому проверьте сопротивление нагревателя — обычно оно довольно низкое.
  • Проверьте подачу питания на обогреватель — часто эти провода одного цвета.
  • Осмотрите электрический разъем на наличие повреждений или загрязнений.
  • Осмотрите выпускной коллектор и топливные форсунки на наличие утечек, а также состояние компонентов зажигания — это может повлиять на работу датчика.
  • Проверьте правильность показаний датчика O2, подтвердив значение O2 с помощью анализатора выброса четырех или пяти газов.
  • С помощью осциллографа проверьте сигнал как на холостом ходу, так и прибл. обороты двигателя 2500 об/мин.
  • Используйте оперативные данные для проверки наличия сигнала, если доступ к проводке датчика затруднен.
  • Проверьте состояние защитной трубки элемента зонда на наличие признаков повреждения и загрязнения.

Общие коды неисправности датчика кислорода:

  • P0135: Лямбда-зонд перед каталитическим нейтрализатором 1, контур обогрева/обрыв
  • P0175: система слишком богатая (ряд 2)
  • P0713: неисправность корректировки топливоподачи (ряд 2)
  • P0171: слишком бедная система (ряд 1)
  • P0162: Неисправность цепи датчика О2 (ряд 2, датчик 3)

Как заменить датчик кислорода:

Перед заменой датчика необходимо диагностировать проблему.Подключите диагностический прибор, например, Delphi DS, выберите правильный автомобиль и считайте код(ы) неисправности. Подтвердите код неисправности, выбрав оперативные данные и сравнив значение подозреваемого неисправного датчика со значением заведомо работающего датчика. При необходимости обратитесь к данным производителя автомобиля, чтобы найти правильное значение для сравнения. Могут потребоваться другие инструменты или оборудование, чтобы определить, является ли причиной проблемы фактический датчик, а не проводка.

  • Поскольку многие автомобили последних моделей оснащены несколькими кислородными датчиками, убедитесь, что вы правильно определили неисправный датчик, чтобы по ошибке не заменить неправильный датчик.Производители транспортных средств идентифицируют положения «bank1» и «bank2» и «front/back» и «pre/post» несколько по-разному, поэтому следует позаботиться о том, чтобы убедиться, что вы определили правильный (проблемный) датчик. Лучший способ сделать это — просмотреть данные в реальном времени с помощью диагностического инструмента.
  • Затем отсоедините проводное соединение.
  • Затем с помощью гаечного ключа или специального торцевого ключа O2 отвинтите датчик от гнезда. После отвинчивания выбросите старый датчик и замените его новым.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.