Двигателе – Двигатель — Википедия

Содержание

8 самых известных типов двигателей в мире! Вот чем они отличаются

После прочтения нашего обзора вы будете понимать, как работают восемь типов двигателей в мире. 

 

Двигатель – это агрегат, который может преобразовать одну энергию в механическую. В эту категорию входит множество видов двигателей, начиная от паровых (двигатели внешнего сгорания) и электрических и заканчивая двигателями внутреннего сгорания (бензиновые, дизельные моторы и т. д.). Мы покажем вам восемь самых известных в мире двигателей, а также просто и интуитивно понятно расскажем вам, как они работают, описав принципы их работы. 

 

1. Оппозитный двигатель

 

В горизонтально противоположном двигателе (оппозитном) поршни двигаются по обеим сторонам коленчатого вала влево и вправо в горизонтальном направлении. В этом случае высота двигателя уменьшена. За счет использования оппозитного двигателя уменьшается центр тяжести транспортного средства – автомобиль движется более плавно. Крутящий момент, создаваемый поршнями с обеих сторон, компенсирует друг друга, значительно уменьшая вибрацию транспортного средства во время движения.

 

Также подобная конструкция позволяет сделать двигатели высокооборотистыми. Но, несмотря на высокие обороты, оппозитные моторы имеют меньше шума, чем обычные ДВС. 

Двигатели с горизонтальным ходом поршней использует компания Porsche почти во всех моделях. Но, например, в Porsche Cayenne и Panamera оппозитные двигатели не применяются. 

 

2. Рядный двигатель

 

В рядном двигателе все его цилиндры расположены рядом друг с другом в одной плоскости. Конструкция цилиндров и коленвала довольно-таки проста. Головка блока цилиндров имеет небольшую стоимость при изготовлении. Также рядные двигатели отличаются высокой стабильностью, характеристиками крутящего момента на низких оборотах, низким расходом топлива и компактным размером. Рядные двигатели обычно обозначаются латинской буквой «L-n», где n – количество цилиндров рядного двигателя. Современные автомобили в основном имеют двигатели с обозначением L3, L4, L5, L6.

 

3. Двигатель V-типа (V-образный силовой агрегат)

 

V-образный двигатель разделяет все цилиндры на две группы друг напротив друга под определенным углом. В итоге мотор образует плоскость под углом. Если посмотреть на этот тип двигателя со стороны, то он будет иметь V-образную форму. V-образные двигатели имеют небольшую высоту и длину. Этот тип моторов удобнее размещать в автомобиле по сравнению с обычными рядными моторами, которые по своим размерам гораздо больше. 

 

В настоящее время во многих автомобилях среднего и люкс-класса используются V-образные двигатели. Чаще всего это 6-цилиндровые силовые агрегаты. Например, такие двигатели стоят на Volkswagen Passat, Audi A6 и Mercedes E-класса AMG. 

 

4. Квазитурбинный двигатель

 

Квазидвигатель представляет собой модифицированный двигатель, основанный на роторном силовом агрегате. Если в обычном роторном двигателе задействованы три лопасти, то квазидвигатель использует цепной ротор, состоящий из четырех частей. Это беспоршневой роторный мотор с ромбовидным ротором. Преимущество двигателя: это новый тип двигателя небольшого размера, с высокой мощностью, высоким крутящим моментом, который может работать на множестве источников энергии. 

 

 

В настоящий момент квазидвигатель не используется ни на одном автомобиле, поэтому невозможно проверить, подходит ли он для замены обычных поршневых двигателей внутреннего сгорания или в качестве лучшей альтернативы обычным роторным моторам. Квазидвигатель все еще находится в стадии создания прототипа. 

 

5. Роторный двигатель

 

Внутреннее пространство корпуса роторного двигателя всегда разделено на три рабочие камеры. Во время движения ротора объем трех рабочих камер постоянно изменяется. Двигатель также имеет четыре такта: впуск, сжатие, сгорание и выпуск последовательно завершаются в циклоидальном цилиндре.

 

Роторный двигатель сильно отличается от обычных поршневых двигателей внутреннего сгорания. Себестоимость производства роторных моторов существенно больше, также как и их последующее обслуживание и ремонт. Кроме того поршневой двигатель по сравнению с роторным эффективней с точки зрения мощности, веса, выбросов и энергопотребления.

 

В сочетании с этим, а также в связи со странности технологий роторного двигателя, крупные автомобильные компании пришли к выводу, что использование роторных силовых агрегатов в автопромышленности бессмысленно. Так как роторные моторы не показали своих преимуществ перед обычными, у автомобильных компаний не появилось энтузиазма по их дальнейшей разработке. Только компания Mazda до сих пор тратит огромные деньги на разработку новых поколений роторных моторов. 

 

6. Двигатель Green Steam

 

Green Steam – эффективный, экономичный и простой двигатель, разработанный изобретателем Робертом Грином из Лагуна Вудс, Калифорния, США. Этот мотор преобразует избыточное тепло в водяной пар, который и приводит в движение силовой агрегат. Легкий и компактный двигатель Green Steam преобразует возвратно-поступательное движение во вращательное. Его основной характеристикой является гибкий вал, который передает возвратно-поступательное движение от поршней к кривошипу «Z», таким образом, совершая вращательное движение, не используя запястья, шатуны или коленчатые валы.

 

Этот мотор может использоваться для воздушных насосов, генераторов, водяных насосов, воздуходувок горячего воздуха, аппаратов дистилляции воды, тепловых насосов, кондиционеров, модельных самолетов и т. д. 

 

 

 

Одним из наиболее уникальных преимуществ двигателя является его способность генерировать энергию из тепла двигателей. По существу, отработанное тепло выхлопных газов от двигателя транспортного средства может быть преобразовано в энергию, используемую для некоторых систем охлаждения и насосов транспортного средства. Этот двигатель повысит уровень эффективности любого транспортного средства или системы машины, на которой он установлен.

 

7. Двигатель Стирлинга

 

Двигатель Стирлинга относится к типам силовых агрегатов внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменении давления. Принцип работы двигателя Стирлинга заключается в постоянном сжатии рабочего цилиндра, в результате чего происходит нагревание его внутренней части, а затем охлаждение. Из-за перепада давления из цилиндра извлекается энергия, образуемая при изменении давления. Обычно в качестве рабочего тела используется водород или гелий. Но чаще в таких моторах используется воздух. 

 

Двигатели Стирлинга отлично подходят для преобразования тепла в электроэнергию. Например, многие специалисты считают, что эти моторы подходят для солнечных электрических установок. 

То есть это идеальные силовые агрегаты для преобразования солнечной энергии в электричество. 

 

8. Радиальный двигатель (звездообразный)

 

Звездообразный двигатель представляет собой поршневой двигатель внутреннего сгорания, в котором цилиндры расположены вокруг коленчатого вала. Один поршень соединен с коленвалом через главный шатун. Остальные поршни прикреплены через шатуны к кольцам главного ведущего шатуна. 

 

Двигатель преимущественно создан для использования в самолетах. До появления реактивных двигателей в большинстве поршневых авиационных двигателей использовались подобные звездообразные конструкции силовых агрегатов. Эти моторы, как правило, устанавливались на самолеты небольшой дальности. Остальные самолетные моторы имели V-образную форму. 

 

Некоторые современные легкие самолеты до сих пор оснащаются радиальными моторами.

Ряд компаний продолжает строить радиальные системы сегодня. Например, вот современный авиационный радиальный 9-цилиндровый двигатель Веденеев мощностью 360–450 л. с., который в настоящий момент используется на самолетах Яковлева и Сухого.

www.1gai.ru

Виды автомобильных двигателей: описание, характеристики

Мало кто знает, что двигатель внутреннего сгорания был изобретён ещё 5 веков назад, легендарным инженером и конструктором Леонардо да Винчи. Но, после первого чертежа потребовалось ещё 300 лет, чтобы были созданы первые прототипы, которые могли полноценно работать.

Виды двигателей

Первый полноценный прототип двигателя внутреннего сгорания был сконструирован в далёком 1806 году, который принадлежал братьям Ньепсье. После этого важного исторического факта было недолгое затишье.

Но, в конце 19 века три легендарным немца положили старт автомобилестроению — Николас Отто, Готлиб Даймлер и Вильгельм Майбах. После этого двигатели внутреннего сгорания получили много модификаций и вариантов, которые используются по сегодняшний день.

Рассмотрим, какие существуют виды автомобильных ДВС, а также укажем типы двигателей:

  • Паровая машина
  • Бензиновый двигатель
  • Карбюраторная система впрыска
  • Инжектор
  • Дизельные двигатели
  • Газовый двигатель
  • Электрические моторы
  • Роторно-поршневые ДВС

Паровая машина

Первым представителем полноценного двигателя внутреннего сгорания следует считать паровую машину, которая устанавливалась на все транспортные средства 19 века, до момента изобретения остальных видов моторов.

На то время паровыми движками оснащались паровозы, автомобили и даже примитивные трёхколёсные самоходные машины (напоминающие мотоциклы). Изобретение такого класса завоевало весь мир, но к концу 19 — начало 20 века стало неэффективное, поскольку транспортные средства на пару не могли развивать достаточно большую скорость.

Бензиновый двигатель

Бензиновый двигатель — это ДВС средством питания, которого является бензин. Горючее подаётся с топливного бака при помощи насоса (механического или электрического) на систему впрыска. Итак, рассмотрим, какие бывают типы бензиновых моторов:

  • С карбюратором.
  • Инжекторного типа.

Современный мир привык, что большинство автомобилей имеет электронную систему впрыска топлива (инжектор).

Карбюраторная система впрыска

Карбюратор — это тип впрыскового устройства горючего во впускной коллектор с дальнейшим распределением по цилиндрам. Первый примитивный карбюратор был разработан в Германии ещё в конце 19 века и имеет почти 100 летнюю историю развития.

Карбюраторы бывают — одно-, двух-, четырех- и шестикамерные. Кроме этого существует достаточно много прототипов.

Принцип работы карбюратора достаточно простой: бензонасос подаёт топливо в поплавковую камеру, где бензин проходит сквозь жиклёры механическим путём (количество впрыскиваемого топлива регулирует водитель при помощи педали акселератора), и подаётся во впускной коллектор. Недостатком карбюратора стало то, что он чувствительный к регулировкам, а также не соответствует экологическим международным нормам.

Инжектор

Инжекторный двигатель — это тип впрыскового устройства горючего в цилиндры двигателя. Инжекторный впрыск бывает моно и разделённым Данная система на сегодняшний день все больше совершенствуется, чтобы уменьшит выбросы СО2 в атмосферу. Для впрыска используются форсунки, которые ещё ранее начали использоваться на дизельных двигателях.

С переходом на данную систему транспортные средства стали оснащать электронными блоками управления двигателем, чтобы корректировать состав воздушно-топливной смеси, а также сигнализировать о неисправностях внутри системы.

Дизельные двигатели

Дизельный мотор — это вид двигателя, который расходует как горючее дизельное топливо. Основные системы и элементы движка идентичны бензиновому брату, различие состоит в системе впрыска и воспламенении смеси. В дизельном моторе отсутствуют свечи зажигания, поскольку воспламенение смеси от искры не нужно.

На моторах такого типа устанавливаются свечи накала, которые разогревают воздух в камере сгорания, который превышает температуру воспламенения. После этого через форсунки подаётся распылённое топливо, которое сгорает, чем создаёт достаточное давление для привода в движения поршня, который раскручивает коленчатый вал.

Дизель с турбонаддувом

Одним из подвидов дизельного ДВС считается турбодизель. На этом моторе установлена турбина, которая имеет вид улитки. При помощи турбины в мотор подаётся больше количество сжатого воздуха, который даёт больше детонационный эффект, за счёт чего движок можно быстрее разогнать.

Газовый двигатель

Газовые двигатели на сегодняшний день в автоиндустрии в чистом виде почти не используются, поскольку частые поломки моторов, стали причиной полного отказа от них. Вместо этого, газовые установки зачастую можно встретить на бензиновых автомобилях, что значительно экономит расход денег на горючее.

Газ с баллона подаётся на редуктор, который распределяет топливо по цилиндрам, а затем горючее попадает непосредственно в камеры сгорания. После этого с помощью свечей зажигания газ воспламеняется. Единственным недостатком использования газовой установки считается то, что мотор теряет 20% своего потенциального ресурса.

Электрические моторы

Николас Тесла впервые предложил использовать для автомобилей электроэнергию. Электрические моторы на сегодняшний день не распространены, поскольку заряда батареи хватает только до 200 км пути, а заправочных станций, которые могут предоставить услугу зарядки автомобиля — практически нет.

Известная мировая компания, производитель электрических автомобилей «Тесла» продолжает совершенствовать электродвигатели, и каждый год дарит потребителям новинки, которые имеют больший запас хода без дозарядки.

Гибриды

Наверное, самые желаемые двигатели на сегодняшний день. Это смесь бензинового двигателя внутреннего сгорания и электромотора. Существует несколько вариантов работы такого движка.

  1. Мотор может работать на попеременном питании. Сначала движение производится на бензине, пока генератор заряжает батарею, а затем водитель может переключиться на электропитание.
  2. Двигатель и электромотор работают одновременно, что помогает сэкономить расход горючего на одно, и тоже расстояние с другими типами ДВС.

Роторно-поршневые ДВС

Роторно-поршневой силовой агрегат в автомобилестроении не нашёл широкого распространения, хотя можно встретить модели автомобилей, которые используют такой тип ДВС. Предложил создание такого мотора — конструктор Ванкель.

Движение осуществляется за счёт вращения трёхзубчатого ротора, который позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Данный мотор активно использовался в 80-е годы 20 ст.

Водородный мотор

НОУ-ХАУ современного мира считается водородный двигатель. В автомобиль устанавливается установка водородного типа. Отличие от бензиновых моторов заключается в подаче топлива. Если у бензина топливо подаётся вовремя возврата поршня в ВТМ, то у водородного силового агрегата в момент, когда поршень возвращается к НТМ.

В будущем планируется создать водородный двигатель закрытого типа, когда не будет требоваться выброс отработанных газов, а также на 500 км автолюбитель сможет забить о заправке автомобиле.

Стоит понимать, что автомобили с таким мотором будут стоить весьма не дёшево, пока они полностью не вытеснят бензинового брата.

Вывод

Двигатели внутреннего сгорания имеют достаточно большое количество видов и типов, на любой вкус. Так, самыми популярными, по мировой статистике, считают бензиновые, дизельные и гибридные силовые агрегата. Но, все движется к тому, что человек хочет отойти от использования бензина и его аналогов и перейти полностью на электрику.

avtodvigateli.com

Типы автомобильных двигателей

Двигатель – это сердце автомобиля, он является движущей силой машины. Он служит для преобразования энергии топлива в механическую энергию, которая используется для выполнения полезной работы.

Классификация двигателей по типу

Принцип работы силового агрегата основывается на преобразования тепловой энергии в механическую. Повторяющиеся процессы в моторе являют собой рабочий цикл двигателя. Зависимо от того, сколько поршень делает ходов, двигатели делятся на четырехтактные и двухтактные. Двигатели внутреннего сгорания, которые применяются в машинах, работают по 4-тактному циклу. Сюда входит впуск топлива, рабочий ход (туда-назад) и выпуск отработанных газов.

В двухтактном моторе за один цикл происходит всего 2 хода поршня: рабочий ход и сжатие. Наполнение цилиндров и очистка происходит во время этих 2-х тактов. У двигателей этого типа есть существенные недостатки, например высокий уровень выброса выхлопных газов. Главный минус – это высокий расход топлива, из-за чего двухтактные двигатели не используются в современных автомобилях.

Инжекторный тип двигателя

Ижекторный двигатель работает немного иначе: топливо подается в воздушную среду способом мелкого впрыска. Под давлением через форсунку распыляется горючая жидкость, что значительно снижает расход топлива, потому как количество дозируют специальные устройства. По этой причине

инжекторные двигатели более экономичные, а оптимальная пропорция горючей смеси позволяет увеличить чистоту выхлопа и повысить КПД силового агрегата.

Инжекторные двигатели делятся на механические и электронные. В механическом двигателе устанавливается дозировка топлива с помощью рычагов, а в электронном силовом агрегате применяется специальная система управления дозировкой топлива. При использовании таких систем более тщательно перегорает топливо и снижаются вредные выбросы.

Тип двигателя карбюраторный

Бензин, который проходит через топливную систему, попадает в карбюратор или впускной коллектор. В него же поступает воздух, который в дальнейшем смешивается с топливом и получается готовая смесь. Она подается в цилиндры и там поджигается искрой, которую дают свечи зажигания.

Автомобили с карбюраторным типом двигателем на данный момент считаются устаревшими. Сейчас широко используются двигатели инжекторного типа. Распыление топлива производится форсунками или через впускной коллектор.

Дизельный тип двигателя

Отдельного внимания достойны дизельные двигатели. Их принцип работы основывается на воспламенении рабочей смеси при сжатии. Когда втягивается воздух, процесс происходит под высоким давлением, в результате чего смесь самовоспламеняется. После воспламенения происходит рабочий ход поршня, который потом вытесняет отработавшие газы.

Данный тип двигателя имеет более низкий расход топлива и небольшое количество вредных веществ в выбросах. КПД этого силового агрегата тоже намного выше. Дизельные двигатели сейчас продолжают совершенствоваться и даже заморозки уже не помеха к запуску мотора.

Разные виды двигателей, работающих на дизельном топливе, отличаются характеристиками, которые зависят от времени года. Эти силовые агрегаты не имеют системы зажигания, потому как топливо загорается из-за высокого давления, что дает движение поршня.

Видео типы двигателей

Еще можно почитать

mitsu-motors.ru

ДВИГАТЕЛЬ — это… Что такое ДВИГАТЕЛЬ?

  • двигатель — мотор, движок; движущая сила; болиндер, ветряк, пружина, рычаг, сердце, нефтянка Словарь русских синонимов. двигатель 1. мотор 2. см. рычаг Словарь синонимов русского языка. Практический справочник. М.: Русский язык …   Словарь синонимов

  • ДВИГАТЕЛЬ — устройство, преобразующее один вид энергии в др. вид или механическую работу; (1) Д. внутреннего сгорания тепловой двигатель, внутри которого происходит сжигание топлива и часть выделившейся при этом теплоты преобразуется в механическую работу.… …   Большая политехническая энциклопедия

  • ДВИГАТЕЛЬ — ДВИГАТЕЛЬ, двигателя, муж. 1. Машина, приводящая что нибудь в движение; механизм, преобразующий какой нибудь вид энергии в механическую работу (тех.). Двигатель внутреннего сгорания. Электрический двигатель. 2. Сила, способствующая прогрессу в… …   Толковый словарь Ушакова

  • ДВИГАТЕЛЬ — энергосиловая машина, преобразующая какую либо энергию в механическую работу. Подразделяют на первичные и вторичные. Первичные (гидротурбины, двигатель внутреннего сгорания и др.) непосредственно преобразуют энергию природных ресурсов (воды,… …   Большой Энциклопедический словарь

  • Двигатель — энергосиловая машина, преобразующая какую либо энергию в механическую работу. Двигатели подразделяются на первичные и вторичные. Первичные (гидротурбины, двигатель внутреннего сгорания и др.) непосредственно преобразуют энергию природных ресурсов …   Официальная терминология

  • ДВИГАТЕЛЬ — ДВИГАТЕЛЬ, машина, преобразующая различные виды энергии в механическую работу. Работа может быть получена от вращающегося ротора, возвратно поступательно движущегося поршня или от реактивного аппарата. Различают первичные и вторичные двигатели.… …   Современная энциклопедия

  • ДВИГАТЕЛЬ — ДВИГАТЕЛЬ, я, муж. 1. Машина, преобразующая какой н. вид энергии в механическую работу. Д. внутреннего сгорания. Ракетный д. 2. перен., чего. О силе, содействующей росту, развитию в какой н. области (высок.) Труд д. прогресса. Толковый словарь… …   Толковый словарь Ожегова

  • ДВИГАТЕЛЬ — (Engine) машина, работающая по прямому замкнутому циклу и превращающая какой нибудь вид энергии в механическую работу. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 …   Морской словарь

  • двигатель — – машина, преобразующая энергию сгорания горючки в механическую энергию – сердце любого авто. EdwART. Словарь автомобильного жаргона, 2009 …   Автомобильный словарь

  • двигатель — Машина, преобразующая какой либо вид энергии в механическую работу [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Синонимы мотор EN enginemotor DE Motor FR moteur …   Справочник технического переводчика

  • dic.academic.ru

    Двигатель внутреннего сгорания — это… Что такое Двигатель внутреннего сгорания?

    Дви́гатель вну́треннего сгора́ния (сокращённо ДВС) — это тип двигателя, тепловой машины, в которой химическая энергия топлива (обычно применяется жидкое или газообразное углеводородное топливо), сгорающего в рабочей зоне, преобразуется в механическую энергию.

    Несмотря на то, что двигатель внутреннего сгорания относится к относительно несовершенному типу тепловых машин (громоздкость, сильный шум, токсичные выбросы и необходимость системы их отвода, относительно небольшой ресурс, необходимость охлаждения и смазки, высокая сложность в проектировании, изготовлении и обслуживании, сложная система зажигания, большое количество изнашиваемых частей, высокое потребление горючего и так далее), благодаря своей автономности (используемое топливо содержит гораздо больше энергии, чем лучшие электрические аккумуляторы), ДВС очень широко распространены, — например, на транспорте.

    История создания

    В 1799 году французский инженер Филипп Лебон открыл светильный газ. В 1799 году он получил патент на использование и способ получения светильного газа путём сухой перегонки древесины или угля, однако светильный газ годился не только для освещения.

    В 1801 году Лебон взял патент на конструкцию газового двигателя. Принцип действия этой машины основывался на известном свойстве открытого им газа: его смесь с воздухом взрывалась при воспламенении с выделением большого количества теплоты. Продукты горения, стремительно расширяясь, оказывали сильное давление на окружающую среду — таким образом, оставалось только найти способ использования выделившейся энергии. В двигателе Лебона были предусмотрены два компрессора и камера смешивания. Один компрессор должен был накачивать в камеру сжатый воздух, а другой — сжатый светильный газ из газогенератора. Затем газовоздушная смесь поступала в рабочий цилиндр, где воспламенялась. Двигатель был двойного действия, то есть попеременно действовавшие рабочие камеры находились по обе стороны поршня. По существу, Лебон вынашивал мысль о двигателе внутреннего сгорания, однако в 1804 году он погиб, так и не успев воплотить в жизнь своё изобретение.

    В последующие годы изобретатели из разных стран пытались создать работоспособный двигатель на светильном газе. Однако все эти попытки не привели к появлению на рынке двигателей, которые могли бы успешно конкурировать с паровой машиной.

    Честь создания коммерчески успешного двигателя внутреннего сгорания принадлежит бельгийскому механику Жану Этьену Ленуару. Работая на гальваническом заводе, Ленуар пришёл к мысли, что топливовоздушную смесь в газовом двигателе можно воспламенять с помощью электрической искры, и решил построить двигатель на основе этой идеи. Решив возникшие по ходу проблемы (тугой ход и перегрев поршня, ведущий к заклиниванию) продумав систему охлаждения и смазки двигателя, Ленуар создал работоспособный двигатель внутреннего сгорания. В 1864 году было выпущено более трёхсот таких двигателей разной мощности. Разбогатев, Ленуар перестал работать над дальнейшим усовершенствованием своей машины, и это предопределило её судьбу — она была вытеснена с рынка более совершенным двигателем, созданным немецким изобретателем Августом Отто и получившим патент на изобретение своей модели газового двигателя в 1864 году.

    В 1864 году немецкий изобретатель Августо Отто заключил договор с богатым инженером Лангеном для реализации своего изобретения — была создана фирма «Отто и Компания». Ни Отто, ни Ланген не владели достаточными знаниями в области электротехники и отказались от электрического зажигания. Воспламенение они осуществляли открытым пламенем через трубку. Цилиндр двигателя Отто, в отличие от двигателя Ленуара, был вертикальным. Вращаемый вал помещался над цилиндром сбоку. Принцип действия: вращающийся вал поднимал поршень на 1/10 высоты цилиндра, в результате чего под поршнем образовывалось разреженное пространство и происходило всасывание смеси воздуха и газа. Затем смесь воспламенялась. При взрыве давление под поршнем возрастало примерно до 4 атм. Под действием этого давления поршень поднимался, объём газа увеличивался и давление падало. Поршень сначала под давлением газа, а потом по инерции поднимался до тех пор, пока под ним не создавалось разрежение. Таким образом, энергия сгоревшего топлива использовалась в двигателе с максимальной полнотой. В этом заключалась главная оригинальная находка Отто. Рабочий ход поршня вниз начинался под действием атмосферного давления, и после того, как давление в цилиндре достигало атмосферного, открывался выпускной вентиль, и поршень своей массой вытеснял отработанные газы. Из-за более полного расширения продуктов сгорания КПД этого двигателя был значительно выше, чем КПД двигателя Ленуара и достигал 15 %, то есть превосходил КПД самых лучших паровых машин того времени. Кроме того, двигатели Отто были почти в пять раз экономичнее двигателей Ленуара, они сразу стали пользоваться большим спросом. В последующие годы их было выпущено около пяти тысяч штук. Несмотря на это, Отто упорно работал над усовершенствованием их конструкции. Вскоре была применена кривошипно-шатунная передача. Однако самое существенное из его изобретений было сделано в 1877 году, когда Отто получил патент на новый двигатель с четырёхтактным циклом. Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей.

    Типы двигателей внутреннего сгорания

    Поршневой ДВС Роторный ДВС Газотурбинный ДВС

    ДВС классифицируют:

    а) По назначению — делятся на транспортные, стационарные и специальные.

    б) По роду применяемого топлива — легкие жидкие (бензин, газ), тяжелые жидкие (дизельное топливо, судовые мазуты).

    в) По способу образования горючей смеси — внешнее (карбюратор, инжектор) и внутреннее (в цилиндре ДВС).

    г) По способу воспламенения (с принудительным зажиганием, с воспламенением от сжатия, калоризаторные).

    д) По расположению цилиндров разделяют рядные, вертикальные, оппозитные с одним и с двумя коленвалами, V-образные с верхним и нижним расположением коленвала, VR-образные и W-образные, однорядные и двухрядные звездообразные, Н-образные, двухрядные с параллельными коленвалами, «двойной веер», ромбовидные, трехлучевые и некоторые другие.

    Бензиновые

    Бензиновые карбюраторные

    Смесь топлива с воздухом готовится в карбюраторе, далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи. Основная характерная особенность топливо-воздушной смеси в этом случае — гомогенность.

    Бензиновые инжекторные

    Также, существует способ смесеобразования путём впрыска бензина во впускной коллектор или непосредственно в цилиндр при помощи распыляющих форсунок (инжектор). Существуют системы одноточечного и распределённого впрыска различных механических и электронных систем. В механических системах впрыска дозация топлива осуществляется плунжерно — рычажным механизмом с возможностью электронной корректировки состава смеси. В электронных системах смесеобразование осуществляется под управлением электронного блока управления (ЭБУ), управляющим электрическими бензиновыми вентилями.

    Дизельные, с воспламенением от сжатия

    Дизельный двигатель характеризуется воспламенением топлива без использования свечи зажигания. В разогретый от сжатия воздух (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива. В процессе впрыскивания топлива происходит его распыливание, а затем вокруг отдельных капель топлива возникают очаги сгорания. Т. к. дизельные двигатели не подвержены явлению детонации, характерному для двигателей с принудительным воспламенением, в них допустимо использование более высоких степеней сжатия (до 26), что благотворно сказывается на КПД данного типа двигателей, который может превышать 50% в случае с крупными судовыми двигателями.

    Дизельные двигатели являются менее быстроходными и характеризуются большим крутящим моментом на валу. Дизельное топливо является более дешевым, нежели бензин. Также некоторые крупные дизельные двигатели приспособлены для работы на тяжелых топливах, например, мазутах. Запуск крупных дизельных двигателей осуществляется, как правило, за счет пневматической схемы с запасом сжатого воздуха, либо в случае с инверторными генераторными установками, от присоединенной электромашины, которая при обычной эксплуатации выполняет роль генератора.

    Вопреки расхожему мнению, современные двигатели, традиционно называемые дизельными, работают не по циклу Дизеля, а по циклу Тринклера-Сабатэ со смешанным подводом теплоты.

    Недостатки дизельных двигателей обусловлены особенностями рабочего цикла — более высокой механической напряженностью, требующей повышенной прочности конструкции и, как следствие, увеличения её габаритов, веса и увеличения стоимости за счёт усложнённой конструкции и использования более дорогих материалов. Также дизельные двигатели за счет гетерогенного сгорания характеризуются неизбежными выбросами сажи и повышенным содержанием оксидов азота в выхлопных газах.

    Газовые

    Двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях:

    • смеси сжиженных газов — хранятся в баллоне под давлением насыщенных паров (до 16 атм). Испарённая в испарителе жидкая фаза или паровая фаза смеси ступенчато теряет давление в газовом редукторе до близкого атмосферному, и всасывается двигателем во впускной коллектор через воздушно-газовый смеситель или впрыскивается во впускной коллектор посредством электрических форсунок. Зажигание осуществляется при помощи искры, проскакивающей между электродами свечи.
    • сжатые природные газы — хранятся в баллоне под давлением 150—200 атм. Устройство систем питания аналогично системам питания сжиженным газом, отличие — отсутствие испарителя.
    • генераторный газ — газ, полученный превращением твёрдого топлива в газообразное. В качестве твёрдого топлива используются:

    Газодизельные

    Основная порция топлива приготавливается, как в одной из разновидностей газовых двигателей, но зажигается не электрической свечой, а запальной порцией дизтоплива, впрыскиваемого в цилиндр аналогично дизельному двигателю.

    Роторно-поршневой

    Предложен изобретателем Ванкелем в начале ХХ века. Основа двигателя — треугольный ротор (поршень), вращающийся в камере особой 8-образной формы, исполняющий функции поршня, коленвала и газораспределителя. Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. За один оборот двигатель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя. Строился серийно фирмой НСУ в Германии (автомобиль RO-80), ВАЗом в СССР (ВАЗ-21018 «Жигули», ВАЗ-416, ВАЗ-426, ВАЗ-526), в настоящее время строится только Маздой (Mazda RX-8). При своей принципиальной простоте имеет ряд существенных конструктивных сложностей, делающих его широкое внедрение весьма затруднительным. Основные трудности связаны с созданием долговечных работоспособных уплотнений между ротором и камерой и с построением системы смазки.

    В Германии в конце 70х годов ХХ века существовал анекдот: «Продам НСУ, дам в придачу два колеса, фару и 18 запасных моторов в хорошем состоянии».

    • RCV — двигатель внутреннего сгорания, система газораспределения которого реализована за счёт движения поршня, который совершает возвратно-поступательные движения, попеременно проходя впускной и выпускной патрубок.

    Комбинированный двигатель внутреннего сгорания

    •  — двигатель внутреннего сгорания, представляющий собой комбинацию из поршневой и лопаточной машин (турбина, компрессор), в котором обе машины в соотносимой мере участвуют в осуществлении рабочего процесса. Примером комбинированного ДВС служит поршневой двигатель с газотурбинным наддувом (турбонаддув). Большой вклад в теорию комбинированных двигателей внес советский инженер, профессор А. Н. Шелест.

    Циклы работы поршневых ДВС

    Двухтактный цикл Схема работы четырёхтактного двигателя, цикл Отто
    1. впуск
    2. сжатие
    3. рабочий ход
    4. выпуск

    Поршневые двигатели внутреннего сгорания классифицируются по количеству тактов в рабочем цикле на двухтактные и четырёхтактные.

    Рабочий цикл четырёхтактных двигателей внутреннего сгорания занимает два полных оборота кривошипа, состоящий из четырёх отдельных тактов:

    1. впуска,
    2. сжатия заряда,
    3. рабочего хода и
    4. выпуска (выхлопа).

    Изменение рабочих тактов обеспечивается специальным газораспределительным механизмом, чаще всего он представлен одним или двумя распределительными валами, системой толкателей и клапанами, непосредственно обеспечивающими смену фазы. Некоторые двигатели внутреннего сгорания использовали для этой цели золотниковые гильзы (Рикардо), имеющие впускные и/или выхлопные окна. Сообщение полости цилиндра с коллекторами в этом случае обеспечивалось радиальным и вращательным движениями золотниковой гильзы, окнами открывающей нужный канал. Ввиду особенностей газодинамики — инерционности газов, времени возникновения газового ветра такты впуска, рабочего хода и выпуска в реальном четырёхтактном цикле перекрываются, это называется перекрытием фаз газораспределения. Чем выше рабочие обороты двигателя, тем больше перекрытие фаз и чем оно больше, тем меньше крутящий момент двигателя внутреннего сгорания на низких оборотах. Поэтому в современных двигателях внутреннего сгорания всё шире используются устройства, позволяющие изменять фазы газораспределения в процессе работы. Особенно пригодны для этой цели двигатели с электромагнитным управлением клапанами (BMW, Mazda). Имеются также двигатели с переменной степенью сжатия (СААБ), обладающие большей гибкостью характеристики.

    Двухтактные двигатели имеют множество вариантов компоновки и большое разнообразие конструктивных систем. Основной принцип любого двухтактного двигателя — исполнение поршнем функций элемента газораспределения. Рабочий цикл складывается, строго говоря, из трёх тактов: рабочего хода, длящегося от верхней мёртвой точки (ВМТ) до 20—30 градусов до нижней мёртвой точки (НМТ), продувки, фактически совмещающей впуск и выхлоп, и сжатия, длящегося от 20—30 градусов после НМТ до ВМТ. Продувка, с точки зрения газодинамики, слабое звено двухтактного цикла. С одной стороны, невозможно обеспечить полное разделение свежего заряда и выхлопных газов, поэтому неизбежны либо потери свежей смеси, буквально вылетающей в выхлопную трубу (если двигатель внутреннего сгорания — дизель, речь идёт о потере воздуха), с другой стороны, рабочий ход длится не половину оборота, а меньше, что само по себе снижает КПД. В то же время длительность чрезвычайно важного процесса газообмена, в четырёхтактном двигателе занимающего половину рабочего цикла, не может быть увеличена. Двухтактные двигатели могут вообще не иметь системы газораспределения. Однако, если речь не идёт об упрощённых дешёвых двигателях, двухтактный двигатель сложнее и дороже за счёт обязательного применения воздуходувки или системы наддува, повышенная теплонапряжённость ЦПГ требует более дорогих материалов для поршней, колец, втулок цилиндров. Исполнение поршнем функций элемента газораспределения обязывает иметь его высоту не менее ход поршня + высота продувочных окон, что некритично в мопеде, но существенно утяжеляет поршень уже при относительно небольших мощностях. Когда же мощность измеряется сотнями лошадиных сил, увеличение массы поршня становится очень серьёзным фактором. Введение распределительных гильз с вертикальным ходом в двигателях Рикардо было попыткой сделать возможным уменьшение габаритов и массы поршня. Система оказалась сложной и дорогой в исполнении, кроме авиации, такие двигатели нигде больше не использовались. Выхлопные клапаны (при прямоточной клапанной продувке) имеют вдвое большую теплонапряжённость в сравнении с выхлопными клапанами четырёхтактных двигателей и худшие условия для теплоотвода, а их сёдла имеют более длительный прямой контакт с выхлопными газами.

    Самой простой с точки зрения порядка работы и самой сложной с точки зрения конструкции является система Фербенкс — Морзе, представленная в СССР и в России, в основном, тепловозными дизелями серий Д100. Такой двигатель представляет собой симметричную двухвальную систему с расходящимися поршнями, каждый из которых связан со своим коленвалом. Таким образом, этот двигатель имеет два коленвала, механически синхронизированные; тот, который связан с выхлопными поршнями, опережает впускной на 20—30 градусов. За счёт этого опережения улучшается качество продувки, которая в этом случае является прямоточной, и улучшается наполнение цилиндра, так как в конце продувки выхлопные окна уже закрыты. В 30х — 40х годах ХХ века были предложены схемы с парами расходящихся поршней — ромбовидная, треугольная; существовали авиационные дизели с тремя звездообразно расходящимися поршнями, из которых два были впускными и один — выхлопным. В 20-х годах Юнкерс предложил одновальную систему с длинными шатунами, связанными с пальцами верхних поршней специальными коромыслами; верхний поршень передавал усилия на коленвал парой длинных шатунов, и на один цилиндр приходилось три колена вала. На коромыслах стояли также квадратные поршни продувочных полостей. Двухтактные двигатели с расходящимися поршнями любой системы имеют, в основном, два недостатка: во-первых, они весьма сложны и габаритны, во-вторых, выхлопные поршни и гильзы в зоне выхлопных окон имеют значительную температурную напряжённость и склонность к перегреву. Кольца выхлопных поршней также являются термически нагруженными, склонны к закоксовыванию и потере упругости. Эти особенности делают конструктивное исполнение таких двигателей нетривиальной задачей.

    Двигатели с прямоточной клапанной продувкой оснащены распределительным валом и выхлопными клапанами. Это значительно снижает требования к материалам и исполнению ЦПГ. Впуск осуществляется через окна в гильзе цилиндра, открываемые поршнем. Именно так компонуется большинство современных двухтактных дизелей. Зона окон и гильза в нижней части во многих случаях охлаждаются наддувочным воздухом.

    В случаях, когда одним из основных требований к двигателю является его удешевление, используются разные виды кривошипно-камерной контурной оконно-оконной продувки — петлевая, возвратно-петлевая (дефлекторная) в разнообразных модификациях. Для улучшения параметров двигателя применяются разнообразные конструктивные приёмы — изменяемая длина впускного и выхлопного каналов, может варьироваться количество и расположение перепускных каналов, используются золотники, вращающиеся отсекатели газов, гильзы и шторки, изменяющие высоту окон (и, соответственно, моменты начала впуска и выхлопа). Большинство таких двигателей имеет воздушное пассивное охлаждение. Их недостатки — относительно невысокое качество газообмена и потери горючей смеси при продувке, при наличии нескольких цилиндров секции кривошипных камер приходится разделять и герметизировать, усложняется и удорожается конструкция коленвала.

    Дополнительные агрегаты, требующиеся для ДВС

    Недостатком двигателя внутреннего сгорания является то, что он развивает наивысшую мощность только в узком диапазоне оборотов. Поэтому неотъемлемым атрибутом двигателя внутреннего сгорания является трансмиссия. Лишь в отдельных случаях (например, в самолётах) можно обойтись без сложной трансмиссии. Постепенно завоёвывает мир идея гибридного автомобиля, в котором мотор всегда работает в оптимальном режиме.

    Кроме того, двигателю внутреннего сгорания необходимы система питания (для подачи топлива и воздуха — приготовления топливо-воздушной смеси), выхлопная система (для отвода выхлопных газов), также не обойтись без системы смазки(предназначена для уменьшения сил трения в механизмах двигателя, защиты деталей двигателя от коррозии, а также совместно с системой охлаждения для поддержания оптимального теплового режима), системы охлаждения(для поддержания оптимального теплового режима двигателя), система запуска (применяются способы запуска: электростартерный, с помощью вспомогательного пускового двигателя, пневматический, с помощью мускульной силы человека), система зажигания (для воспламениня топливо-воздушной смеси, применяется у двигателей с принудительным воспламенением).

    См. также

    Примечания

    Ссылки

    dic.academic.ru

    Как работает двигатель?

    Двигатель автомобиля может выглядеть как большая запутанная мешанина металлических частей, трубок и проводов для непосвященных. В то же время двигатель — это «сердце» почти любого автомобиля — 95% всех машин работают на двигателе внутреннего сгорания.

    В этой статье мы обсудим работу двигателя внутреннего сгорания: его общий принцип, изучим конкретные элементы и фазы работы двигателя, узнаем, как именно потенциальная топлива преобразуется во вращательную силу, и постараемся ответить на следующие вопросы: как работает двигатель внутреннего сгорания, какие бывают двигатели и их типы и что означают те или иные параметры и характеристики двигателя? И, как всегда, всё это просто и доступно, как дважды два.

    Главная цель бензинового двигателя автомобиля заключается в преобразовании бензина в движение, чтобы Ваш автомобиль мог двигаться. В настоящее время самый простой способ создать движение от бензина — это попросту сжечь его внутри двигателя. Таким образом, автомобильный «движок» является двигателем внутреннего сгорания — т.е. сгорание бензина происходит внутри него.

    Существуют различные виды двигателей внутреннего сгорания. Дизельные двигатели являются одной из форм, а газотурбинные — совсем другой. Каждый из них имеет свои преимущества и недостатки.

    Ну, как Вы заметите, раз существует двигатель внутреннего сгорания, то должен существовать и двигатель внешнего сгорания. Паровой двигатель в старомодных поездах и пароходах как раз таки и является лучшим примером двигателя внешнего сгорания. Топливо (уголь, дерево, масло, любое другое) в паровой машине горит вне двигателя для создания пара, и пар создаёт движение внутри двигателя. Разумеется, двигатель внутреннего сгорания является намного более эффективным (как минимум потребляет гораздо меньше топлива на километр пути автомобиля), чем внешнего сгорания, кроме того, двигатель внутреннего сгорания намного меньше по размерам, чем эквивалентный по мощности двигатель внешнего сгорания. Это объясняет, почему мы не видим ни одного автомобиля, похожего на паровоз.

    А теперь давайте посмотрим более подробно, как же работает двигатель внутреннего сгорания.

    Как работает двигатель?

    Давайте рассмотрим принцип, лежащий в любом возвратно-поступательном движении двигателя внутреннего сгорания: если Вы поместите небольшое количество высокоэнергичного топлива (например, бензина) в небольшое закрытое пространство и зажжёте его (это топливо), то выделится невероятное количество энергии в виде расширяющегося газа. Вы можете использовать эту энергию, к примеру, для приведения в движение картофелины. В этом случае энергия преобразуется в движение этой картофелины. Например, если Вы в трубу, у которой один конец плотно закрыт, а другой — открыт, нальёте немного бензина, а затем засунете картофелину и подожжёте бензин, то его взрыв спровоцирует приведение в движение этой картофелины за счёт выдавливания её взрывающимся бензином, таким образом, картофелина подлетит высоко в небо, если Вы направите трубу вверх. Это мы кратко описали принцип действия старинной пушки. Но Вы также можете использовать такую энергию бензина в более интересных целях. Например, если Вы можете создать цикл взрывов бензина в сотни раз в минуту, и если Вы сможете использовать эту энергию в полезных целях, то знайте, что у Вас уже есть ядро ​​для двигателя автомобиля!

    Почти все автомобили в настоящее время используют то, что называется четырёхтактным циклом сгорания для преобразования бензина в движение. Четырёхтактный цикл также известен как цикл Отто — в честь Николая Отто, который изобрел его в 1867 году. Итак, вот они, эти 4 такта работы двигателя:

    1. Такт впуска топлива
    2. Такт сжатия топлива
    3. Такт сгорания топлива
    4. Такт выпуска отработавших газов

    Вроде бы уже всё понятно из этого, не так ли? Вы можете посмотреть ниже на рисунке, что элемент, который называется поршень, заменяет картошку в описанной нами ранее «картофельной пушке». Поршень соединен с коленчатым валом с помощью шатуна. Только не пугайтесь новых терминов — их, на самом деле не так много в принципе работы двигателя!

    На рисунке буквами обозначены следующие элементы двигателя:

    A — Распределительный вал
    B — Крышка клапанов
    C — Выпускной клапан
    D — Выхлопное отверстие
    E — Головка цилиндра
    F — Полость для охлаждающей жидкости
    G — Блок двигателя
    H — Маслосборник
    I — Поддон двигателя
    J — Свеча зажигания
    K — Впускной клапан
    L — Впускное отверстие
    M — Поршень
    N — Шатун
    O — Подшипник шатуна
    P — Коленчатый вал

    Вот что происходит, когда двигатель проходит свой ​​полный четырёхтактный цикл:

    1. Начальное положение поршня — в самом верху, в этот момент открывается впускной клапан, и поршень движется вниз, таким образом, засасывая в цилиндр приготовленную смесь бензина и воздуха. Это такт впуска. Всего лишь крошечная капля бензина должна смешаться с воздухом, чтобы всё это работало.
    2. Когда поршень достигает своей нижней точки, то впускной клапан закрывается, а поршень начинает перемещаться обратно вверх (бензин оказывается в «западне»), сжимая эту смесь из топлива и воздуха. Сжатие впоследствии сделает взрыв мощнее.
    3. Когда поршень достигает верхней точки своего хода, свеча зажигания испускает искру, порождённую напряжением более десятка тысяч Вольт, чтобы зажечь бензин. Происходит детонация, и бензин в цилиндре взрывается, с невероятной силой толкая поршень вниз.
    4. После того, как поршень снова достигает дна своего хода, настаёт очередь открываться выпускному клапану. Затем поршень движется вверх (это происходит уже по инерции) и отработавшая смесь бензина и воздуха выходит через выхлопное отверстие из цилиндра, чтобы отправиться в своё путешествие до выхлопной трубы и далее в верхние слои атмосферы.

    Теперь, когда клапан снова в самом верху, двигатель готов к следующему циклу, так что он всасывает следующую порцию смеси воздуха и бензина, чтобы ещё сильнее раскрутить коленчатый вал, который, собственно и передаёт своё кручение далее через трансмиссию к колёсам. Теперь посмотрите ниже, как работает двигатель во всех своих четырёх тактах.

    Более наглядно работу двигателя внутреннего сгорания Вы можете увидеть на двух анимациях ниже:

    Как работает двигатель — анимация

    Обратите внимание, что движение, которое создаётся работой двигателя внутреннего сгорания, является вращением, в то время как движение, создаваемое «картофельной пушкой», является линейным (прямым). В двигателе линейное движение поршней преобразуется во вращательное движение коленчатого вала. Вращательное движение нам нужно, потому что мы планируем повернуть наши колёса автомобиля.

    Теперь давайте посмотрим на все части, которые работают вместе в дружной команде, чтобы это произошло, начиная с цилиндров!

    Ядром двигателя является цилиндр с поршнем, который двигается вверх и вниз внутри цилиндра. Двигатель, описанный выше, имеет один цилиндр. Казалось бы, что ещё нужно для автомобиля?! А вот и нет, автомобилю для комфортной езды на нём нужны по меньшей мере ещё 3 таких цилиндра с поршнями и всеми необходимыми этой парочке атрибутами (клапанами, шатунами и так далее), а вот один цилиндр подойдёт разве что для большинства газонокосилок. Посмотрите — ниже на анимации Вы увидите работу 4-хцилиндрового двигателя:

    Типы двигателей

    Автомобили чаще всего имеют четыре, шесть, восемь и даже десять, двенадцать и шестнадцать цилиндров (последние три варианта устанавливают, в основном на спортивные автомобили и болиды). В многоцилиндровом двигателе все цилиндры, как правило, расположены одним из трёх способов:

    • Рядный
    • V-образный
    • Оппозитный

    Вот они — все три типа расположения цилиндров в двигателе:

    Рядное расположение 4-х цилиндров

    Оппозитное расположение 4-х цилиндров

    V-образное расположение 6 цилиндров

    Различные конфигурации имеют разные преимущества и недостатки с точки зрения вибрации, стоимости производства и характеристик формы. Эти преимущества и недостатки делают их более подходящими для использования некоторых конкретных транспортных средств. Так, 4-хцилиндровые двигатели редко имеет смысл делать V-образными, таким образом, они обычно рядные; а 8-цилиндровые двигатели делают чаще с V-образным расположением цилиндров.

    Теперь давайте наглядно посмотрим, как работает система впрыска топлива, масло и другие узлы в двигателе:

    Давайте рассмотрим некоторые ключевые детали двигателя более подробно:

    • Свеча зажигания обеспечивает искру, которая зажигает воздушно-топливную смесь, так, чтобы происходило сгорание. Искра должна произойти в нужное время, чтобы двигатель работал должным образом.
    • Клапаны — впускные и выпускные — также должны открываться в строго нужное время, чтобы впустить воздух и топливо и выпустить отработавшие газы. Обратите внимание, что оба клапана закрыты во время сжатия и сгорания так, что воздушно-топливная смесь плотно «замурована» в цилиндре.
    • Поршень представляет собой цилиндрический кусок металла, который движется вверх и вниз внутри цилиндра.
    • Поршневые кольца. Мы их пока ещё не видели на рисунках, но это довольно часто употребляемая вещь, так как от их износа зависит многое в работе двигателя. Поршневые кольца огибают поршень и упираются во внутреннюю поверхность цилиндра, двигаются вверх/вниз вместе с поршнем и обеспечивают уплотнение между наружным краем поршня и внутренней кромкой цилиндра. Кольца служат двум целям: предотвращают утечку топлива в масляный отстойник во время сжатия и горения и удерживают масло в картере от утечки в область горения, где оно может сгореть из-за невероятно высокой температуры. Большинство автомобилей с такими симптомами как повышенный расход топлива и масла, чёрный дым из глушителя, и с пробегом более 100 тысяч километров, попросту имеют изношенные кольца, которые больше не «запечатывают» поршень должным образом.
    • Шатун соединяет поршень с коленчатым валом. Он может поворачиваться на обоих концах так, что его угол может меняться в то время как поршень движется и когда коленчатый вал поворачивается.
    • Коленчатый вал крутится за счёт движения поршня.
    • Картер окружает коленчатый вал. Он содержит некоторое количество машинного масла, которое собирает на дне отстойника.

    А теперь внимание! На основе всего прочитанного посмотрим на полный цикл работы двигателя со всеми его элементами:

    Полный цикл работы двигателя

    Далее мы узнаем, что может помешать работе двигателя.

    Почему двигатель не работает?

    Допустим, Вы выходите утром к машине и начинаете её заводить, но она не заводится. Что может быть не так? Теперь, когда Вы знаете, как работает двигатель, можно понять основные вещи, которые могут помешать двигателю завестись. Три фундаментальные вещи могут случиться:

    • Плохая топливная смесь
    • Отсутствие сжатия
    • Отсутствие искры

    Да, есть ещё тысячи незначительных вещей, которые могут создать проблемы, но указанная «большая тройка» является чаще всего следствием или причиной одной из них. На основе простого представления о работе двигателя мы можем составить краткий список того, как эти проблемы влияют на двигатель.

    Плохая топливная смесь может быть следствием одной из причин:

    • У Вас попросту закончился в баке бензин, и двигатель пытается завестись от воздуха.
    • Воздухозаборник может быть забит, поэтому в двигатель поступает топливо, но ему не хватает воздуха, чтобы сдетонировать.
    • Топливная система может поставлять слишком много или слишком мало топлива в смесь, а это означает, что горение не происходит должным образом.
    • В топливе могут быть примеси (а для российского качества бензина это особенно актуально), которые мешают топливу полноценно гореть.

    Отсутствие сжатия — если заряд воздуха и топлива не могут быть сжаты должным образом, процесс сгорания не будет работать как следует. Отсутствие сжатия может происходить по следующим причинам:

    • Поршневые кольца изношены (позволяя воздуху и топливу течь мимо поршня при сжатии)
    • Впускные или выпускные клапаны не герметизируются должным образом, снова открывая течь во время сжатия
    • Появилось отверстие в цилиндре.

    Отсутствие искры может быть по ряду причин:

    • Если свечи зажигания или провод, идущий к ним, изношены, искра будет слабой.
    • Если провод повредился или попросту отсутствует или если система, которая посылает искру по проводу, не работает должным образом.
    • Если искра происходит либо слишком рано или слишком поздно в цикле, топливо не будет зажжено в нужное время, и это может вызвать всевозможные проблемы.

    И вот ещё ряд причин, по которым двигатель может не работать, и здесь мы затронем некоторые детали за пределами двигателя:

    • Если аккумулятор мёртв, Вы не сможете прокрутить двигатель, чтобы запустить его.
    • Если подшипники, которые позволяют коленчатому валу свободно вращаться, изношены, коленчатый вал не сможет провернуться, поэтому двигатель не сможет работать.
    • Если клапаны не открываются и не закрываются в нужное время или не работают вообще, воздух не сможет войти, а выхлопы — выйти, поэтому двигатель опять-таки не сможет работать.
    • Если кто-то из хулиганских побуждений засунул картошку в выхлопную трубу, выпускные газы не смогут выйти из цилиндра, и двигатель снова не будет работать.
    • Если в двигателе недостаточно масла, то поршень не сможет двигаться вверх и вниз свободно в цилиндре, что затруднит или сделает невозможным нормальную работу двигателя.

    В правильно работающем двигателе все эти факторы находятся в пределах допуска. Как Вы можете видеть, двигатель имеет ряд систем, которые помогают ему сделать свою работу преобразования топлива в движение безупречной. Мы же рассмотрим различные подсистемы, используемые в двигателях, в следующих разделах.

    Большинство подсистем двигателя может быть реализована с использованием различных технологий, и лучшие технологии могут значительно повысить производительность двигателя. Вот почему развитие автомобилестроения продолжается высочайшими темпами, ведь конкуренция среди автоконцернов достаточно велика, чтобы вкладывать большие деньги в каждую дополнительно выжатую лошадиную силу из двигателя при том же объёме. Давайте посмотрим на различные подсистемы, используемые в современных двигателях, начиная с работы клапанов в двигателе.

    Как работают клапаны?

    Система клапанов состоит из, собственно, клапанов и механизма, который открывает и закрывает их. Система открытия и закрытия их называется распределительным валом. Распределительный вал имеет специальные детали на своей оси, которые движут клапаны вверх и вниз, как показано на рисунке ниже.

    Большинство современных двигателей имеют то, что называют накладными кулачками. Это означает, что вал расположен над клапанами, как Вы видите на рисунке. Старые двигатели используют распределительный вал, расположенный в картере возле коленчатого вала. Распределительный вал, крутясь, двигает кулачок выступом вниз таким образом, чтобы он продавливал клапан вниз, создавая зазор для прохода топлива или выпуска отработавших газов. Ремень ГРМ или цепной привод приводится в движение коленчатым валом и передаёт кручение от него к распределительному валу так, что клапаны находятся в синхронизации с поршнями. Распределительный вал всегда крутится в один-два раза медленнее коленчатого вала. Многие высокопроизводительные двигатели имеют четыре клапана на цилиндр (два для приёма топлива внутрь и два для вытяжки отработавшей смеси).

    Как работает система зажигания?

    Система зажигания производит заряд высокого напряжения и передаёт его к свечам зажигания с помощью проводов зажигания. Заряд сначала проходит к катушке зажигания (эдакому дистрибьютору, который распределяет подачу искры по цилиндрам в определённое время), которую Вы можете легко найти под капотом большинства автомобилей. Катушка зажигания имеет один провод, идущий в центре и четыре, шесть, восемь проводов или больше в зависимости от количества цилиндров, которые выходят из него. Эти провода зажигания отправляют заряд к каждой свече зажигания. Двигатель получает такую искру по времени таким образом, что только один цилиндр получает искру от распределителя в один момент времени. Такой подход обеспечивает максимальную гладкость работы двигателя.

    Как работает охлаждение?

    Система охлаждения в большинстве автомобилей состоит из радиатора и водяного насоса. Вода циркулирует через проходы (каналы) вокруг цилиндров, а затем проходит через радиатор, чтобы тот её максимально охладил. Однако, существуют такие модели автомобилей (в первую очередь Volkswagen Beetle (Жук)), а также большинство мотоциклов и газонокосилок, которые имеют двигатель с воздушным охлаждением. Вы вероятно, видел такие двигатели с воздушным охлаждением, сбоку которых расположены эдакие плавники — ребристая поверхность, украшающие снаружи каждый цилиндр, чтобы помочь рассеять тепло.

    Воздушное охлаждение делает двигатель легче, но горячее, и как правило, уменьшается срок службы двигателя и общая производительность. Так что теперь Вы знаете, как и почему Ваш двигатель остаётся не перегретым.

    Как работает пусковая система?

    Повышение производительности Вашего двигателя является большим делом, но важнее то, что именно происходит, когда Вы поворачиваете ключ, чтобы запустить его! Пусковая система состоит из стартера с электродвигателем. Когда Вы поворачиваете ключ зажигания, стартер крутит двигатель на несколько оборотов, чтобы процесс горения начал свою работу, и остановить его смог только поворот ключа в обратную сторону, когда перестаёт подаваться искра в цилиндры, и двигатель, таким образом, глохнет.

    Стартер же имеет мощный электродвигатель, который вращает холодный двигатель внутреннего сгорания. Стартер — это всегда довольно мощный и, следовательно, «кушающий» ресурсы аккумулятора двигатель, ведь должен преодолеть:

    • Всё внутреннее трение, вызванное поршневыми кольцами и усугубляющееся холодным непрогретым маслом.
    • Давление сжатия любого цилиндра (цилиндров), которое происходит в процессе такта сжатия.
    • Сопротивление, оказываемое открытием и закрытием клапанов распределительным валом.
    • Все иные процессы, непосредственно связанные с двигателем, в том числе сопротивление водяного насоса, масляного насоса, генератора и т.д.

    Мы видим, что стартеру необходимо очень много энергии. Автомобиль чаще всего использует 12-вольтовую электрическую систему, и сотни ампер электричества должны поступать в стартер.

    Как работает впрыск и смазочная система?

    Когда дело доходит ежедневного обслуживания автомобиля, Ваша первая забота, вероятно, состоит в проверке количества бензина в Вашем автомобиле. А как бензин попадает из топливного бака в цилиндры? Топливная система двигателя высасывает бензин из бака с помощью топливного насоса, который находится в баке, и смешивает его с воздухом так, чтобы надлежащая смесь воздуха и топлива могла протекать в цилиндры. Топливо поставляется в одном из трёх распространённых способов: карбюратор, впрыск топлива и система непосредственного впрыска топлива.

    Карбюраторы на сегодняшний день сильно устарели, и их не помещают в новые модели автомобилей. В инжекторном двигателе нужное количество топлива впрыскивается индивидуально в каждый цилиндр либо прямо в впускной клапан (впрыск топлива) или непосредственно в цилиндр (непосредственный впрыск топлива).

    Масло также играет важную роль. Идеально и правильно смазанная система гарантирует, что каждая подвижная часть в двигателе получает масло так, что она может легко перемещаться. Две главные части, нуждающиеся в масле — это поршень (а, точнее, его кольца) и любые подшипники, которые позволяют таким элементам, как коленчатый и другие валы, свободно вращаться. В большинстве автомобилей масло всасывается из масляного поддона масляным насосом, проходит через масляный фильтр для удаления частиц грязи, а затем брызгается под высоким давлением на подшипники и стенки цилиндра. Затем масло стекает в отстойник, где снова собирается, и цикл повторяется.

    Система выпуска отработавших газов

    Теперь, когда мы знаем о ряде вещей, которые мы положили (налили) в свой ​​автомобиль, давайте посмотрим на другие вещи, которые выходят из него. Система выпуска включает в себя выхлопную трубу и глушитель. Без глушителя Вы бы услышали звук тысяч маленьких взрывов из своей ​​выхлопной трубы. Глушитель гасит звук. Выхлопная система также включает в себя каталитический нейтрализатор, который использует катализатор и кислород, чтобы сжечь всё неиспользованное топливо и некоторые другие химические веществ в выхлопных газах. Таким образом, Ваш автомобиль соответствует определённым евростандартам по уровню загрязнения воздуха.

    Что ещё есть, кроме всего вышеперечисленного в автомобиле? Электрическая система состоит из аккумулятора и генератора. Генератор подключен к двигателю ремнём и вырабатывает электроэнергию для зарядки аккумулятора. Аккумулятор выдаёт 12-вольтовый заряд электрической энергии, доступной ко всему в машине, нуждающемуся в электроэнергии (системе зажигания, магнитоле, фарам, стеклоочистителям, электрическим стеклоподъемникам, приводу сидений, бортовому компьютеру и ещё множеству устройств) посредством проводки автомобиля.

    Теперь можно сказать, что Вы знаете всё об основах главных подсистем двигателей!

    howcarworks.ru

    Как работает двигатель автомобиля – «сердечные» дела вашей машины

    Прежде, чем рассматривать вопрос, как работает двигатель автомобиля, необходимо хотя бы в общих чертах разбираться в его устройстве. В любом автомобиле установлен двигатель внутреннего сгорания, работа которого основана на преобразовании тепловой энергии в механическую. Заглянем глубже в этот механизм.

    Как устроен двигатель автомобиля – изучаем схему устройства

    Классическое устройство двигателя включает в себя цилиндр и картер, закрытый в нижней части поддоном. Внутри цилиндра находится поршень с различными кольцами, который перемещается в определенной последовательности. Он имеет форму стакана, в его верхней части располагается днище. Чтобы окончательно понять, как устроен двигатель автомобиля, необходимо знать, что поршень с помощью поршневого пальца и шатуна связывается с коленчатым валом.

    Для плавного и мягкого вращения используются коренные и шатунные вкладыши, играющие роль подшипников. В состав коленчатого вала входят щеки, а также коренные и шатунные шейки. Все эти детали, собранные вместе, называются кривошипно-шатунным механизмом, который преобразует возвратно-поступательное перемещение поршня в круговое вращение коленчатого вала.

    Верхняя часть цилиндра закрывается головкой, где расположены впускной и выпускной клапаны. Они открываются и закрываются в соответствии с перемещением поршня и движением коленчатого вала. Чтобы точно представить, как работает двигатель автомобиля, видео в нашей библиотеке следует изучить также подробно, как и статью. А пока мы попытаемся выразить его действие на словах.

    Как работает двигатель автомобиля – кратко о сложных процессах

    Итак, граница перемещения поршня имеет два крайних положения – верхнюю и нижнюю мертвые точки. В первом случае поршень находится на максимальном удалении от коленчатого вала, а второй вариант представляет собой наименьшее расстояние между поршнем и коленчатым валом. Для того чтобы обеспечить прохождение поршня через мертвые точки без остановок используется маховик, изготовленный в форме диска.

    Важным параметром у двигателей внутреннего сгорания является степень сжатия, напрямую влияющая на его мощность и экономичность.

    Чтобы правильно понять принцип работы двигателя автомобиля, необходимо знать, что в его основе лежит использование работы газов, расширенных в процессе нагревания, в результате чего и обеспечивается перемещение поршня между верхней и нижней мертвыми точками. При верхнем положении поршня происходит сгорание топлива, поступившего в цилиндр и смешанного с воздухом. В результате температура газов и их давление значительно возрастает.

    Газы совершают полезную работу, благодаря которой поршень перемещается вниз. Далее через кривошипно-шатунный механизм действие передается на трансмиссию, а затем на автомобильные колеса. Отработанные продукты удаляются из цилиндра через систему выхлопа, а на их место поступает новая порция топлива. Весь процесс, от подачи топлива до вывода отработанных газов, называется рабочим циклом двигателя.

    Принцип работы двигателя автомобиля – различия в моделях

    Существует несколько основных видов двигателей внутреннего сгорания. Наиболее простым является двигатель с рядным расположением цилиндров. Расположенные в один ряд, они составляют в целом определенный рабочий объем. Но постепенно некоторые производители отошли от такой технологии изготовления к более компактному варианту.

    Много моделей используют конструкцию V-образного двигателя. При таком варианте цилиндры расположены под углом друг к другу (в пределах 180-ти градусов). Во многих конструкциях количество цилиндров составляет от 6 до 12 и более. Это позволяет значительно сократить линейный размер двигателя и уменьшить его длину.

    Таким образом, разнообразие двигателей позволяет успешно их использовать в автомобилях самого разного назначения. Это могут быть стандартные легковые и грузовые машины, а также спортивные авто и внедорожники. В зависимости от типа двигателя вытекают и определенные технические характеристики всей машины.

    carnovato.ru

    Автор: alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *