Двухтактный двигатель внутреннего сгорания: ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ • Большая российская энциклопедия

Содержание

Двухтактные двигатели внутреннего сгорания в Москве

Столкнулись с необходимостью заменить двигатель, но не можете определиться, какой выбрать, двухтактный или четырехтактный? Основные отличия, принцип работы, технические характеристики и области применения Вы можете узнать в этой статье.

Принцип работы двухтактного двигателя заключается в сжатии и расширении рабочего хода, в процессе которых осуществляется впуск и выпуск отработанных газов. Основным отличием двухтактного образца от четырехтактного является система газообмена и ее механизмы. В первом – очистка и заполнение цилиндра производятся одновременно со сжатием и расширением, когда поршень находится около крайней точки. Газораспределительный механизм у двухтактного двигателя отсутствует, что делает его значительно проще и легче. В четырехтактном — процессы очистки цилиндра происходят с помощью уникального газораспределительного механизма, который закрывает и открывает впускные и выпускные клапана в определенное время цикла.

Двухтактная модель значительно превосходит четырехтактную в литровой и удельной мощности, однако отстает по экономичности. Отработанные газы в нем вытесняются за счет воздушно-топливной смеси, при этом оставшаяся ее часть попадает в выхлопные каналы и удаляется, не принося полезного действия. Еще одним нюансом 2-тактного мотора является смазка, которая производится смешиванием специального моторного масла и бензина в пропорциях 1:25 или 1:50. Наведение этой смеси может быть двумя способами: простое перемешивание перед заливкой в бак и раздельно, когда она образуется в патрубке между карбюратором и цилиндром. Масло, используемое в двухтактных двигателях, оставляет нагар в виде золы и сажи, который время от времени необходимо чистить.

Область применения двухтактных двигателей весьма широкая за счет их высокой удельной мощности, легкости и неприхотливости в обслуживании. Эти агрегаты установлены практически на всю бензиновую технику, от газонокосилок до мотоциклов.

Orbital – Автомобили – Коммерсантъ

Orbital

Журнал «Коммерсантъ Автопилот» №3 от , стр. 29

&nbspOrbital
Engine Corporation Limited

       Как бы смешно это ни звучало, но двухтактный двигатель внутреннего сгорания (да, да — тот самый, что обычно стоит на мотоциклах, лодках и ручных газонокосилках) с технической точки зрения обладает рядом неоспоримых преимуществ перед привычным четырехтактным мотором, который размещен под капотом большинства современных автомобилей. К числу его основных достоинств относятся значительно меньшие потери на работу сжатия (2 хода поршня на рабочий цикл вместо 4) и внутреннее трение, что обеспечивает высокую удельную мощность. Есть и некоторые другие положительные качества.

Но присутствует и традиционная, причем довольно объемистая ложка дегтя: увеличенный расход топлива и превышающее все разумные показатели содержание токсичных веществ в выхлопе. До недавнего времени эти недостатки делали невозможным использование двухтактных двигателей в большом автомобилестроении. До тех пор пока за дело не взялась Orbital Engine Corporation Ltd., зарегистрированная в Австралии, где расположены ее штаб-квартира и исследовательское отделение. Производственная база (Orbital Engine Company) находится в американском городе Tecumseh.
       Компании принадлежит около 800 патентов на двигатель, использующий процесс внутреннего сгорания, который получил название OCP (Orbital Combustion Process). Инженерам компании пришлось немало поработать, чтобы найти технические решения, позволяющие устранить недостатки, присущие двухтактному двигателю. Но трудились не напрасно — вместо обычного, издающего громкий треск и изрыгающего сизый дым моторчика получился сложный современный агрегат, по большинству параметров не уступающий, а то и превосходящий привычные четырехтактные двигатели.

       Ключевым элементом двигателя OCP является т. н. прямой впрыск, т. е. подача топлива непосредственно в цилиндры. Система электронного управления точно определяет момент впрыска, что позволило в значительной степени избавиться от выноса части подаваемого топлива с продуктами сгорания предыдущего цикла и тем самым существенно сократить расход горючего. Созданный для двигателя OCP инжектор обеспечивает высокую однородность облака топливно-воздушной смеси, при этом средний размер частиц в нем составляет всего 5 мкм. Это достигается при относительно невысоком давлении воздуха и топлива (550 и 620 кПа соответственно), что позволяет использовать стандартные топливный насос и бензопровод. Совершенная система управления выпуском, характеристики топливно-воздушного облака, а также геометрия камеры сгорания обеспечивают более чем 10-кратное снижение содержания углеводородов и окислов азота в выхлопе. В число других усовершенствований входит каталитический нейтрализатор, в котором используется платина и палладий, но удалось обойтись без дорогостоящего родия.
Разработана также электронная система управления смазкой двигателя, снижающая потребление масла.
       Отдельный разговор о мощности. Несмотря на то что ее удельное значение у двухтактного двигателя намного выше, чем у четырехтактного, полностью использовать мощность такого двигателя на нормальном городском автомобиле весьма непросто. Дело в том, что при больших оборотах, соответствующих максимальной мощности, двигателю требуется так много воздуха, что обычными методами не удается обеспечить приготовление гомогенной топливно-воздушной смеси. Кроме того, мощность обычного двухтактного двигателя пришлось бы дополнительно искусственно ограничивать, чтобы снизить потребление топлива и содержание токсичных веществ в выхлопе при небольших нагрузках, свойственных городскому циклу.
       Технические решения, примененные инженерами Orbital Engine Corporation в двигателях OCP, в первую очередь, прямой впрыск топлива, позволили обойти указанные ограничения и сохранить удельную мощность на уровне более 50 кВт/литр, что значительно выше, чем у обычных четырехтактных двигателей с 4 клапанами на цилиндр. Разработан и вариант двигателя с турбонаддувом низкого давления и удельной мощностью 67 кВт/литр. Экологические параметры выдерживаются не за счет ограничения мощности двигателя, а благодаря чисто инженерным решениям. Установленный в выпускном коллекторе клапан с электронным управлением позволил полностью избавиться от такой неприятной для городского автомобиля особенности двухтактного двигателя, как острая характеристика крутящего момента.
       Использование OCP технологии в двухтактном двигателе позволяет снизить его внешний объем на 70%, вес на 50% и стоимость на 20% по сравнению с обычным четырехтактным мотором той же мощности. Непосредственное и косвенное (за счет уменьшения веса автомобиля и улучшения его аэродинамики) снижение потребления топлива в сумме может достигать 30% в зависимости от требований к чистоте выхлопа.
       К настоящему времени собственные разработки Orbital Engine Corporation включают в себя четыре автомобильных двигателя: 2-цилиндровый с рабочим объемом 0,8 л, два 3-цилиндровых объемом 1,0 и 1,2 л (последний установлен на Ethos 3), и рядный 6-цилиндровый объемом 2 л и весом, не превышающим 100 кг.

       Интерес к двигателям Orbital Engine Corporation со стороны китов мирового автомобилестроения пока сдержанный. На уровне концепткаров. Но интерес есть. Эти моторы стояли на всех трех модификациях Ethos (Pininfarina), на Ultralite (General Motors), на Zag (Ford). Можно ожидать, что в дальнейшем, в том числе, по мере ужесточения экологических требований, интерес будет возрастать. Во всяком случае, General Motors уже сейчас вполне серьезно занимается двухтактным V6 объемом 3 л, да и Jaguar не побрезговал разработкой двухтактного V6 объемом 3,2 л и мощностью 350 л. с.

Комментарии Самое важное в канале Коммерсантъ в  Telegram

Устройство и принцип действия двухтактного двигателя внутреннего сгорания

    Многие из нас ездят на мотороллерах, но вот как устроен и работает двигатель внутреннего сгорания (далее ДВС), который приводит в движение Вашу двухколесную технику, знает не каждый.
А вот хорошо зная все принципы работы ДВС, Вы сможете быстро и правильно диагностировать его неполадки. Да и вообще, в ознакомительных целях знание принципов работы не помешает.
    Вообще-то существует два основных типа двигателей: двухтактные и четырехтактные. Практически на каждом мотороллере, особенно до 2000 года выпуска, установлен двухтактный двигатель. В двухтактных двигателях все рабочие циклы (процессы впуска топливной смеси, выпуска отработанных газов, продувки) происходят в течении одного оборота коленвала за два основных такта. У двигателей такого типа отсутствуют клапаны (как в четырехтактных ДВС), их роль выполняет поршень, который при своем перемещении закрывает впускные, выпускные и продувочные окна. Поэтому они более просты в конструкции.
    Мощность двухтактного двигателя при одинаковых размерах цилиндра и частоте вращения вала теоретически в два раза больше четырехтактного за счет большего числа рабочих циклов. Однако неполное использование хода поршня для расширения, худшее освобождение цилиндра от остаточных газов и затраты части вырабатываемой мощности на продувку приводят практически к увеличению мощности только на 60.
..70%.
    Итак, рассмотрим конструкцию двухтактного ДВС, показанную на рисунке 1:
    Двигатель состоит из картера, в который на подшипниках с двух сторон установлен коленчатый вал и цилиндра. Внутри цилиндра движется поршень — металлический стакан, опоясанный пружинящими кольцами (поршневые кольца), вложенными в канавки на поршне. Поршневые кольца не пропускают газов, образующихся при сгорании топлива, в промежутке между поршнем и стенками цилиндра. Поршень снабжен металлическим стержнем — пальцем, он соединяет поршень с шатуном. Шатун передаёт прямолинейное возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Далее уже, в частности на мотороллере, вращательное движение передается на вариатор, принцип работы которого описан в статье: Устройство и принцип работы вариатора.
    Смазка всех трущихся поверхностей и подшипников внутри двухтактных двигателей происходит с помощью топливной смеси, в которое подмешано необходимое количество масла. Из рисунка 1 видно, что топливная смесь (желтый цвет) попадает и в кривошипную камеру двигателя (это та полость, где закреплен и вращается коленчатый вал), и в цилиндр.  Смазки там нигде нет, а если бы и была, то смылась топливной смесью. Вот по этой причине масло и добавляют в определенной пропорции к бензину. Тип масла используется специальный, именно для двухтактных двигателей. Оно должно выдерживать высокие температуры и сгорая вместе с топливом оставлять минимум зольных отложений.
    Теперь о принципе работы. Весь рабочий цикл в двигателе осуществляется за два такта.
Такт сжатия.
    1. Такт сжатия. Поршень перемещается от нижней мертвой точки поршня (в этом положении поршень находится на рис. 2, далее это положение называем сокращенно НМТ) к верхней мертвой точке поршня (положение поршня на рис.3, далее ВМТ), перекрывая сначала продувочное 2, а затем выпускное 3 окна. После закрытия поршнем выпускного окна в цилиндре начинается сжатие ранее поступившей в него горючей смеси. Одновременно в кривошипной камере 1 вследствие ее герметичности и после того как поршень перекрывает продувочные окна 2, под поршнем создается разряжение, под действием которого из карбюратора через впускное окно и открывающийся клапан поступает горючая смесь в кривошипную камеру.
    2. Такт рабочего хода. При положении поршня около ВМТ сжатая рабочая смесь (1 на рис. 3) воспламеняется электрической искрой от свечи, в результате чего температура и давление газов резко возрастают. Под действием теплового расширения газов поршень перемещается к НМТ, при этом расширяющиеся газы совершают полезную работу. Одновременно, опускаясь вниз, поршень создает высокое давление в кривошипной камере (сжимая топливо-воздушную смесь в ней). Под действием давления клапан закрывается, не давая таким образом горючей смеси снова попасть во впускной коллектор и затем в карбюратор.
    Когда поршень дойдет до выпускного окна (1 на рис. 4), оно открывается и начнется выпуск отработавших газов в атмосферу, давление в цилиндре понижается. При дальнейшем перемещении поршень открывает продувочное окно (1 на рис. 5) и сжатая в кривошипной камере горючая смесь поступает по каналу (2 на рис. 5), заполняя цилиндр и осуществляя продувку его от остатков отработавших газов.
    Далее цикл повторяется.

    Стоит упомянуть о принципе зажигания. Так как топливной смеси нужно время для воспламенения, искра на свече появляется чуть раньше, чем поршень достигает ВМТ. В идеале, чем быстрей движения поршня, тем раньше должно быть зажигание, потому-что поршень от момента искры быстрее доходит до ВМТ.  Существуют механические и электронные устройства, меняющие угол зажигания в зависимости от оборотов двигателя. Практически у мотороллеров до 2000 г.в. таких систем не было и угол опережения зажигания был установлен в расчете на оптимальные обороты. На некоторых же скутерах, например Honda Dio ZX AF35, установлен электронный коммутатор с динамическим опережением. С ним двигатель развивает больше мощности.

    Наглядно просмотреть работу двухтактного ДВС можно на этом ролике:

Двухтактный двигатель — схема и принцип работы

Современное машиностроение готово представить различные виды двигателей и механизмов, которые, так или иначе, облегчают жизнь человека. Одним из таких силовых агрегатов считается двухтактный двигатель внутреннего сгорания. В этой статье мы рассмотрим его подробный принцип действия, устройство, достоинства и недостатки, а также применение.

Принцип работы двухтактного двигателя

Двухтактный ДВС – это поршневой мотор, в котором сгорание топливовоздушной происходит не в камере сгорания, как в четырехтактных, а непосредственно в самом рабочем цилиндре. Устройство такого двигателя мало чем отличается от конструкции четырехтактного. В своем составе он имеет все те же детали, что и обычный, поршневой ДВС – это поршень, цилиндр и кривошипно-шатунный механизм.

В блоке цилиндров устанавливается поршень, внутрь которого посредством специальной втулки вмонтирован шатун. в нижней части шатуна также располагается коленчатый вал. Коленвал подвешивается посредством двух подшипников и погружается в специальный картер. Главное особенностью такого двигателя можно называть то, что смазывающий компонент и топливо смешиваются в одну смесь и подаются наравне с воздухом в камеру сгорания.

Принято считать, что мощность двухтактного двигателя значительно выше, чем у четырехтактного, однако если учесть, какую работу двигатель совершает на такой короткий ход поршня, то можно сделать вывод о его слишком низком коэффициенте полезного действия.

Как уже понятно из названия, такой двигатель имеет всего два рабочих такта, которые будут описаны ниже.

 

  • Первый такт (сжатие). Поршень находится в нижней мертвой точке двигателя и начинает движение вверх. В процессе подъема через продувное отверстие в цилиндр попадает определенное количество топлива, которое смешано с маслом и воздухом. Как только поршень достигает отверстия, оно перекрывается и подача смеси прекращается. На этом же этапе перекрывается и выпускное отверстие. Поршень движется в верхнюю мертвую точку и сжимает смесь.
  • Второй такт (рабочего хода поршня). В верхней мертвой точке происходит сжатие и воспламенение смеси. В результате небольшого взрыва, поршень под действием высокого давления начинает движение вниз, тем самым, открывает выпускное отверстие и дает возможность освободить цилиндр от отработавших газов. Часть масла, находящаяся в смеси остается на стенках цилиндра, а другая часть попросту выходит вместе с отработавшими газами. Поршень достигается самой нижней мертвой точки, и цикл начинается сначала.

Стоит отметить, что для более удачного искрообразования искра должна возникать чуть раньше, чем поршень достигнет верхней мертвой точки. Идеальным зажиганием можно назвать то, которое с увеличением числа оборотов двигателя дает искру еще раньше. Такая система напрочь отсутствовала до 2000-х годов. В те времена искрообразование было настроено под оптимальные обороты, а потому двигатель работал малоэффективно. В настоящее же время применяются специальные электронные коммутаторы, в которых имеется динамическое опережение в момент зажигания. Оно изменяется с увеличением или уменьшением числа оборотов двигателя.

Отличия двухтактного от четырехтактного ДВС

  • Небольшие габариты силовой установки. Для такого двигателя нужно совсем мало место, что легко объясняет их применение на мотоциклах.
  • Меньшая масса, по сравнению с обычным четырехтактным двигателем.
  • Экономичный расход топлива. Это относится только к дизельному двигателю, когда расход топлива составляет всего 50% от среднего.
  • Простота и эргономичность установки. Конструкция двухтактного двигателя не представляет собой ничего сложного, а потому поддается легкому обслуживанию и ремонту.

Недостатки 2 тактных моторов

 

  • С уменьшением расхода топлива существенно увеличивается расход масла, так как заливается он наравне с топливом в бензобак двигателя. Дело в том, что конструкция подобной силовой установки не позволяет иметь специальный резервуар для хранения смазывающего вещества. В связи с чем, возникает необходимость добавления масло в  топливовоздушную смесь.
  • Так как потребление воздуха в таких двигателях серьезно возрастает, то возникает необходимость применение воздушных фильтров особой конструкции.
  • Из-за особенностей впускной и выпускной системы есть огромная вероятность непреднамеренной смеси отработанных газов со свежей смесью.
  • Выбор двухтактных двигателей на рынке серьезно ограничен. Это делает их стоимость достаточно высокую.
  • Неэффективная работа двигателя. Данная конструкция не позволяет создавать высокий коэффициент полезного действия.

Применение

 

Наибольшее применение двухтактные двигатели нашли в мототранспорте. Имея весьма небольшие размеры, такой мотор можно применять на мопедах, мотоциклах и мотороллерах. Кроме того, двигатели таких габаритов нашли широкое применение в бензиновых пилах. Дело в том, что для приведения цепи в действия совсем не нужны высокие характеристики, главное создать определенную частоту вращения, при которой бензопила будет способна справиться со своими основными обязанностями.

Помимо мотоциклетной техники, двухтактными двигателями малоактивно оснащали и автомобили. Как правило, это были небольшие малолитражки, предназначенные для поездок на небольшие расстояния по городу. Двухтактные двигатели применяются и по сей день на многих моторных лодках.

Это все, что необходимо знать о двухтактных двигателях внутреннего сгорания. При всех преимуществах и недостатках данного мотора, многие конструкторы отдают предпочтение именно четырехтактным двигателям, поэтому малообъемный мотор не нашел широкого распространения.

Двухтактные и четырехтактные двигатели мотобуров

Отличия двухтактного двигателя от четырёхтактного 

Двигатели внутреннего сгорания имеют классификацию в зависимости от количества оборотов коленчатого вала. Движок, в котором рабочий цикл происходит за два такта (один оборот коленвала), именуется двухтактным. Двигатель, с рабочим циклом состоящим из четырех тактов ( за два оборота коленного вала), относится к четырёхтактному.

Один такт двигателя внутреннего сгорания это движение поршня вверх или вниз внутри цилиндра. Рабочий цикл ДВС объединяет серию процессов, в ходе которых высвобождается определённый объем мощности, оказывающий воздействие на коленвал двигателя.

Рабочий цикл 4-х тактного двигателя внутреннего сгорания состоит из нескольких этапов:

  • Заполнение цилиндра топливной смесью.
  • Сжатия топливной жидкости.
  • Воспламенения смеси.
  • Расширение сгоревших газов и освобождения от них цилиндра.

Двух и четырёхтактные двигатели внутреннего сгорания бывают карбюраторными, то есть функционирующими на бензиновом топливе, или дизельными. Отличие этих двух видов ДВС состоит не только в количестве оборотов коленвала. Но также в конструктивных и эксплуатационных характеристиках, от чего зависит принцип работы двигателей.

 

Технология работы двухтактного бензинового двигателя

Рабочий цикл состоит из двух тактов: сжатия рабочего хода и его расширения. Впускание топливной смеси и выпускание отработанных газов осуществляется в пределах двух тактов, то есть во время расширения и сжатия. В отличие от четырёхтактного движка, в котором процесс вхождения топлива и освобождения от газов происходит в отдельных тактах.

В момент сжатия топливной смеси поршень передвигается из НМТ (нижней мёртвой точки) в ВМТ (верхнюю мёртвую точку). Затем перекрывается продувочное окно, сквозь которое проникает в цилиндр топливная смесь, а за ним и выпускное отверстие для выхода отработанных газов. После этого осуществляется сжатие воздушно-бензиновой смеси.

Параллельно с этим процессом в кривошипной камере возникает разрежение, которое получает из карбюратора очередную порцию топлива. В момент прохождения поршня ВМТ топливная жидкость воспламеняется от свечной искры, а посредством образовавшихся газов поршень толкается вниз, тем самым провоцируя вращение коленного вала, что производит полезную работу.

В камере с кривошипным механизмом при рабочем ходе увеличивается давление, которое сжимает топливную жидкость, оказавшуюся там, в предыдущем такте. Когда верхний уровень уплотнительного кольца поршня достигает выпускного окна, при его открытии отработавшие газы попадают в глушитель.

Дальнейшее движение поршня способствует открытию продувочного окна, из-за чего топливная смесь, пребывающая под давлением в кривошипной камере, попадает в цилиндр. В это время остаточные от сгорания газы, попутно выполняют продувку цилиндра и заполняют надпоршневую часть цилиндра. Когда же поршень проходит НМТ рабочий цикл возобновляется в том же порядке.

 

Технология работы четырёхтактного бензинового двигателя

Рабочий цикл включает в себя четыре такта: впуск, сжатие, рабочий ход (расширение), выпуск. На впуске происходит опускание поршня из ВМТ в НМТ, а кулачки распредвала открывают впускной клапан, через который в цилиндр попадает топливо. Когда поршень идёт обратно из нижней мёртвой точки в верхнюю, то возникает сжатие топливной смеси, которое провоцирует увеличение её температуры. После чего перед завершением процесса сжатия между электродами свечи зажигается искра, которая воспламеняет топливную жидкость.

Та в свою очередь, высвобождает горючие газы, подталкивающие поршень вниз. За счёт такой последовательности осуществляется рабочий ход, при котором происходит полезная работа. При прохождении поршнем нижней мёртвой точки происходит открытие выпускного клапана, позволяющее движущемуся по направлению вверх поршню вытеснить отработавшие газы из ёмкости цилиндра, происходит выпуск. После закрытия выпускного клапана в верхней мёртвой точке рабочий цикл возобновляется.

 

Разница конструктивных особенностей и эксплуатационных преимуществ между 2-х и 4-х тактными двигателями

Главное различие четырёхтактного двигателя от двухтактного ― это разные методы подачи подачи воздушно-топливной смеси в цилиндр и ликвидации продуктов газообмена. Газораспределительное устройство у двухтактного движка отсутствует, что существенно облегчает его массу. В то время как в четырёхтактном ДВС основные процессы происходят за счёт специального газораспределительного устройства, которое контролирует работу впускного и выпускного клапанов. Сравнительный анализ основополагающих параметров 2-х тактных и 4-х тактных двигателей выявляет их сильные и слабые стороны.

Преимущества четырёхтактных ДВС:

  • Высокий крутящий момент при более низких оборотах коленвала.
  • Экономичность более высокая у четырёхтактных движков, топливный расход у них почти на 30% меньше, чем у двухтактных двигателей внутреннего сгорания.
  • Качественная система смазки у четырёхтактных ДВС обеспечивает продолжительное использование масла. Для двухтактных движков масло разбавляется в бензине либо поступает из масляного бака во впускной коллектор и сжигается одновременно с топливом в поршневой камере.
  • Шумность работы ниже у двухтактников.
  • Рабочий ресурс выше у 4-х тактных устройств, преобразования энергии в механическую работу, по причине меньшей частоты вращения коленного вала и более усовершенствованной смазочной системы.
  • С точки зрения безопасности окружающей экологической среды четырёхтактные движки лучше, потому как выхлопные газы у двухтактных двигателей намного токсичнее.

Достоинства двухтактных двигателей:

  • Простейшее техобслуживание из-за отсутствия сложной смазочной системы и наличия газораспределительного механизма. 
  • Объемная мощность у 2-х тактных движков значительно выше , почти на 70%, чем в четырёхтактных движках.
  • Простая и легкая конструкция.
  • Скорость увеличения оборотов вращения у 2-х тактных ДВС быстрее.
  • Стоимость более доступная у двухтактного двигателя внутреннего сгорания.

 

На мотобурах используют двигатели обоих типов. Если вам нужен легкий мотобур обладающий высокой мобильностью и управляемый одним оператором, то ваш выбор это двухтактный двигатель.  Если вам необходимо бурение грунта от третей категории и выше, диаметрами от 250 мм, то вам однозначно нужен мотобур с четырехтатным двигателем.

Сухаревский В.В. Двухтактный двигатель внутреннего сгорания с магнитным преобразованием движения

Сухаревский Владимир Владимирович
Компания «Ланмотор»
г. Москва, кандидат физико-математических наук, ведущий научный сотрудник

Sukharevsky Vladimir Vladimirovich
Lanmotor company
Moscow, PhD in Physics, leading researcher

Библиографическая ссылка на статью:
Сухаревский В.В. Двухтактный двигатель внутреннего сгорания с магнитным преобразованием движения // Современные научные исследования и инновации. 2016. № 11 [Электронный ресурс]. URL: https://web.snauka.ru/issues/2016/11/74548 (дата обращения: 21.05.2021).

Новый тип двигателей внутреннего сгорания с магнитным бесконтактным преобразованием движения –перспективное направление развития ДВС. Автором предлагается трехцилиндровый двухтактный двигатель с двумя магнитными преобразователями возвратно-поступательного движения во вращательное движение.

Известен двухтактный двухцилиндровый двигатель внутреннего сгорания с магнитным преобразованием движения, имеющий пару магнитных преобразователей возвратно-поступательного движения во вращательное движение [1]. Каждый преобразователь в [1] содержит вращающийся ротор и два штока, двигающихся возвратно-поступательно в противофазе.

Использование бесконтактного магнитного преобразователя возвратно-поступательного движения во вращательное движение позволяет, как показано в [2], использовать в двигателе на его основе высокие степени сжатия без негативных последствий для узлов и механизмов двигателя.

Однако, в конструкции [1] двигателя с магнитным преобразованием движения имеются следующие недостатки:

— штанги, соединяющие штоки, двигающиеся синхронно, из-за несовпадения осей цилиндров, создают изгибающую силу, действующую на штоки, которая приводит к повышенному трению и возможному заклиниванию штоков,

— магнитная сила, притягивающая магнит штока к магниту ротора в радиальном направлении, не скомпенсирована и передается на направляющие штоков,

— при изменениях температуры двигателя в процессе работы может нарушаться параллельность цилиндров, что также ведет к повышенному трению и возможному заклиниванию штоков и/или поршней.

Фиг. 1 Простейший преобразователь по [3] с роторами 4 с магнитами роторов 1, полюса магнитов роторов 7, обращенные к штоку 3 расположены вдоль линии 5, имеющей один минимум и один максимум в направлении осей штоков 3. Показаны линии 5 по верхнему краю магнитных полюсов 7, с минимумом и максимумом по оси Z, параллельной осям штоков 3 и роторов 4. Магнит штока 2 расположен в средней части штока 3, полюса магнитов штока 6 обращены к полюсам магнитов ротора 7.

Известен магнитный бесконтактный преобразователь возвратно-поступательного движения во вращательное движение [3], который содержит:

— пару роторов, вращающихся в противоположных направлениях вокруг одной оси, и не имеющих возможности перемещаться вдоль этой оси, с закрепленными на указанных роторах магнитами ротора,

— шток, движущийся возвратно-поступательно вдоль оси вращения ротора, с закрепленным на указанном штоке магнитом штока, с полюсами, обращенными к полюсам магнитов роторов,

— одноименные полюса магнитов роторов, обращенные к штокам, расположены вдоль замкнутых линий, имеющих в направлении оси вращения ротора локальный максимум и локальный минимум,

— форма и размеры указанных замкнутых линий таковы, что при достижении штоком верхней мертвой точки все полюса магнитов штока достигают максимумов указанных линий полюсов магнитов обоих роторов, а при достижении штоком нижней мертвой точки, все полюса магнитов штока достигают минимумов указанных линий полюсов магнитов обоих роторов.

Фиг.2 Вариант изготовления магнитов ротора 1, набираемых из магнитных пластин, с полюсами 7 направленными к оси ротора 4.

Симметрия замкнутых линий полюсов магнитов роторов и полюсов штока относительно оси ротора приводит к компенсации вращающих моментов, вектор которых перпендикулярен оси ротора, и соответственно, приводит к уменьшению трения. Также, компенсируются силы магнитного натяжения в направлениях, перпендикулярных оси ротора, что также уменьшает трение в направляющих штока.


Фиг.3 Вариант изготовления ротора 4 с наборным магнитом ротора 1.


Фиг.4 Вариант изготовления штока 3 с магнитами 2 с полюсами 6.


Фиг.5 Схема работы магнитной системы преобразователя, шток 3 с магнитами 2 движется возвратно-поступательно, магниты 1 различных роторов вращаются в противоположных направлениях.

Раскрытие изобретения

Технический результат изобретения заключается в создании двухтактного двигателя внутреннего сгорания с магнитным преобразованием движения.

Двухтактный двигатель внутреннего сгорания с магнитным преобразованием движения, имеющий пару магнитных преобразователей возвратно-поступательного движения во вращательное движение, каждый из которых имеет:

— пару роторов, вращающихся в противоположных направлениях вокруг одной оси, и не имеющих возможности перемещаться вдоль этой оси, с закрепленными на указанных роторах магнитами ротора,

— шток, движущийся возвратно-поступательно вдоль оси вращения ротора, с закрепленным на указанном штоке магнитом штока, с полюсами, обращенными к полюсам магнитов роторов,

— одноименные полюса магнитов роторов, обращенные к штокам, расположены вдоль замкнутых линий, имеющих в направлении оси вращения ротора локальный максимум и локальный минимум,

— форма и размеры указанных замкнутых линий таковы, что при достижении штоком верхней мертвой точки все полюса магнитов штока достигают максимумов указанных линий полюсов магнитов обоих роторов, а при достижении штоком нижней мертвой точки, все полюса магнитов штока достигают минимумов указанных линий полюсов магнитов обоих роторов,

— все поршни и штоки, движущиеся синхронно, жестко соединены,

— по крайней мере, два ротора различных указанных преобразователей синхронизированы между собой,

отличающийся тем, что:

— имеет три цилиндра, на одной оси со штоками и роторами указанных преобразователей,

— такт сжатия в центральном цилиндре соответствует такту расширения в крайних цилиндрах.

Фиг. 6 Схема двигателя по Модификации 1. Двигатель включает два преобразователя 8 возвратно-поступательного движения во вращательное, поршни 9, центральный цилиндр 10, крайние цилиндры 11 с клапанами 12. Продувка осуществляется через продувочные окна 13 или клапана 12, выпуск – через выпускные окна 14. Роторы 4 каждого преобразователя 10 вращаются в противоположные стороны. Два ротора 4, вращающихся в одну сторону, ремённой передачей 15 соединены с выходным валом 16.

Расположение всех цилиндров на одной оси с роторами и штоками устраняет изгибающие силы в двигателе.

Синхронизация по крайней мере двух роторов различных преобразователей дает синхронизацию встречно-движущихся поршней, что необходимо для нормальной работы двигателя.

Синхронизация вращения роторов в одном направлении может обеспечиваться, например, ремённой или шестеренчатой или цепной передачей с роторов на общий вал.

Раскрытое выше изобретение может быть изготовлено в различных модификациях.

Модификация 1. Раскрытый выше двигатель, у которого:

— в центральном цилиндре прямоточная бесклапанная продувка и два встречно-движущихся поршня соединены каждый со штоком разных указанных преобразователей,

— в крайних цилиндрах по одному поршню, каждый из которых соединен со штоком разных указанных преобразователей, клапанно-щелевая либо бесклапанная петлевая продувка.

Модификация 2. Раскрытый выше двигатель, у которого:

— во всех цилиндрах по два встречно-движущихся поршня и бесклапанная прямоточная продувка,

— штоки преобразователей соединены каждый с одним поршнем крайнего цилиндра и с помощью штанг с движущимися с ними синхронно поршнями центрального цилиндра.

В двигателе по Модификации 1 роль клапанов в крайних цилиндрах может играть гильзовый газораспределительный механизм.

Топливовоздушная смесь в цилиндрах может самовоспламеняться, либо поджигаться искрой. Например, в двигателе по Модификации 1 в центральном цилиндре – самовоспламенение, в крайних цилиндрах – воспламенение искрой.

В двигателе по Модификации 2 центральный цилиндр преимущественно имеет вдвое большую площадь сечения, нежели крайние цилиндры, а в двигателе по Модификации 1 площади сечения всех цилиндров преимущественно одинаковы. Вращающий момент выходного вала в таком случае более равномерный.

Боковая поверхность поршня или весь поршень может быть изготовлен из графита, а цилиндры изготовлены из сплава с заданным коэффициентом температурного расширения, равным коэффициенту температурного расширения графита поршня в радиальном направлении, т.е. в направлении от оси цилиндра к стенкам цилиндра.

Указанный двигатель используется в транспортном средстве, и/или генераторной установке, которая в свою очередь используется в транспортном средстве или для выработки электроэнергии на электростанции.

Генераторная установка, использующая предложенный двигатель, может использовать в качестве электрогенератора, например, синхронную электрическую машину.

Транспортное средство, использующее двигатель с преобразователями по настоящему изобретению или генераторную установку, использующую двигатель по настоящему изобретению, может быть воздушным, водным, сухопутным.

В автомобиле двигатель с предложенным преобразователем благодаря его вытянутой форме можно устанавливать в центральном тоннеле кузова и использовать, например, в составе генераторной установки.

Двигатель, генераторная установка и электростанция, по настоящему изобретению, может использовать различное жидкое или газообразное топливо, преимущественно углеводородное.


Фиг.7 Внутренняя часть варианта изготовления трехцилиндрового двигателя с противоположным движением поршней 9 по Модификации 2. Движущиеся синхронно штоки 3 с поршнями 9 жестко соединены штангами 17. Показана магнитная система преобразователей 8, с замыкающими магнитопроводами ротора 18.

ФИГ.8 Один из возможных вариантов изготовления трехцилиндрового двигателя, с корпусом в виде полого каркаса 19 соединенного с впускными коллекторами 20. Корпуса 21 подшипников роторов соединены с коллекторами 20. На цилиндрах 10, 11 установлены выпускные коллекторы 22. Вспомогательные системы двигателя, такие как стартер, продувочный компрессор, форсунки, система управления впрыском, не показаны.

Осуществление изобретения.

На Фиг. 6 представлена схема предложенного двигателя по Модификации 1.

Для пуска двигателя желательно придать валу отбора мощности 16 начальное вращение в необходимом направлении, на тот случай, если штоки 3 находятся в мертвых точках и направление движения роторов 4 при начале их движения не определено. Пуск можно осуществлять подачей сжатого воздуха компрессором попеременно в центральный цилиндр 10 и крайние цилиндры 11, либо путем вращения выходного вала 16 стартером (на фиг.6-8 стартер и компрессор не показаны)

Во время хода поршней 9 роторы 4 под действием магнитной силы взаимодействия магнитов штоков 2 и магнитов роторов 1 вращаются. Корпус, топливная система, продувочный компрессор на Фиг.6 не показаны.

Изображенный на Фиг.6 вариант двигателя (Модификация 1) наглядно демонстрирует принцип работы предлагаемого двигателя, имеет высокую эффективность, но использует петлевую или клапанно-щелевую продувку. Наличие клапанов 12 предполагает наличие системы газораспределения (на Фиг.6 не показана), например, электронной, что существенно удорожает конструкцию. При петлевой продувке клапана 12 отсутствуют, а часть выпускных окон 14 в крайних цилиндрах используются как продувочные.

На Фиг.7 показана внутренняя часть трехцилиндрового двигателя с противоположным движением поршней 9 и бесклапанной продувкой всех цилиндров (Модификация 2). Синхронизация движения поршней 9 осуществляется жестко соединенными с поршнями 9 штангами 17. Направляющими штоков 3 являются стенки цилиндров 10, 11 (цилиндры на Фиг.7 не показаны).

Поршни 9 крайних цилиндров 11 жестко соединены с штоками 3 преобразователей 8, состоящих из наборных магнитов 1 роторов 4 (роторы не показаны на Фиг.7), замыкающих магнитопроводов 18, штоков 3 и магнитов 2 штоков. Магнитопроводы 18 повышают эффективность магнитной системы и устраняют помехи для электронных устройств.

При работе по двухтактному циклу необходимо, чтобы в крайних цилиндрах 11 такт расширения происходил одновременно, при этом в центральном цилиндре 10 будет происходить сжатие воздуха или топливовоздушной смеси.

На Фиг. 8 показан трехцилиндровый двухтактный двигатель внутреннего сгорания с двумя преобразователями с противоположно вращающимися роторами 4, синхронизированными передачами 15 с двумя валами 16. На цилиндрах 10, 11 установлены выпускные коллекторы 22, впускные коллекторы 20. Впускные коллекторы крайних цилиндров соединены с корпусами 21 подшипников роторов и полым корпусом двигателя 19. Полость корпуса 19 используется в качестве продувочного ресивера, продувка от компрессора (на Фиг. 8 не показан)

Регулировка мощности производится регулировкой количества топлива, подаваемого в цилиндры 10,11 через форсунки (на Фиг.8 не показаны), путем изменения как продолжительности впрыска, так и количеством задействованных форсунок.

Удары поршней 9 друг о друга исключаются благодаря плоской форме поршней 9 и наличию тормозящей прослойки между ними из топливо-воздушной смеси или воздуха.

Цилиндры двигателя 10, 11 разгружены от боковых усилий, поэтому нет необходимости в жидкой смазке. При этом боковая поверхность поршня 9 или весь поршень 9 для снижения трения может быть изготовлен, например, из графита.

При использовании графитовых поршней 9 и цилиндров 10, 11 из сплава с заданным коэффициентом температурного расширения, равным коэффициенту температурного расширения графита поршня в радиальном направлении, можно отказаться от поршневых колец. Зазор между поршнями 9 и стенками цилиндров 10, 11 будет минимально возможным и постоянным, и при высоких частотах колебаний поршня 9 практически исключит утечки.

Охлаждение цилиндров 10, 11 может быть воздушным или жидкостным.

Высокая эффективность двигателя достигается благодаря отсутствию боковой нагрузки поршней 9 на стенки цилиндров 10, 11, возможности отказаться от жидкой смазки и поршневых колец, а также использованию высоких степеней сжатия.

Наилучший вариант выполнения изобретения

Наилучшим вариантом предлагаемого двигателя, является Модификация 1, изображенная схематично на Фиг. 6, т.к. в ней можно максимально облегчить движущиеся возвратно-поступательно массы за счет переноса растягивающих сил с соединительных штанг 17 на корпус двигателя 19 (корпус на фиг. 6 не показан). Таким образом, можно повысить частоту колебаний поршня 9 и соответственно увеличить удельную мощность двигателя.

Промышленная применимость

В работе [2] построена математическая модель двигателя, аналогичного по рабочему процессу с предлагаемым двигателем. Расчет показал, что двигатель работоспособен и обладает высоким КПД.


Библиографический список
  1. Заявка PCT/RU2014/000825 от 29.10.14, публикация WO/2016/068744 от 06.05.16
  2. Сухаревский В.В. Кинематика и динамика двигателя внутреннего сгорания с магнитным преобразователем возвратно-поступательного движения во вращательное // Современные научные исследования и инновации. 2016 №2 [Электронный ресурс]. URL: http://web.snauka.ru/issues/2016/02/64331 (дата обращения: 25.05.2016)
  3. Патент Франции FR2580362 от 10. 04.85


Количество просмотров публикации: Please wait

Все статьи автора «Сухаревский Владимир Владимирович»

2ух тактные двигатели внутреннего сгорания

 

Поршневые моторы заняли ведущие позиции в хозяйственной деятельности человека. Попытка заставить 4ех тактный двигатель работать более эффективно, приводило к разработке всевозможных вероятных и невероятных конструкторских схем двигателя и процесса их работы. Одна из этого разнообразия поршневых схем с измененным процессом работы оказалась жизнеспособной и широко внедрилась в технику.

В зависимости от количества тактов рабочего цикла ДВС делятся на две основные группы: двухтактные и четырехтактные двигатели. В двухтактных моторах их есть только два: такт сжатия и такт расширения или рабочий ход. В четырехтактных их четыре: впуск, сжатие, расширение или рабочий ход и выпуск. На первый взгляд может показаться, что первый вариант более выигрышный, ведь рабочий цикл повторяется при каждом обороте коленчатого вала и энергия вырабатывается в два раза интенсивнее, но на самом деле это не совсем так, о чем напрямую свидетельствует ограниченное применение двухтактных двигателей особенно в крупных машинах, установках и агрегатах с высоким уровнем потребления топлива. Чтобы понять причины потери энергии во время рабочего цикла, нужно рассмотреть работу двигателя.

Процесс работы двигателя

Рабочий цикл 2-хтактного двигателя включает в себя следующую последовательность действий:
— на такте сжатия поршень в цилиндре перемещается из нижней мертвой точки (НМТ) к верхней (ВМТ). Через продувочное окно топливный заряд попадает в надпоршневое пространство – камеру сгорания, после чего поршень перекрывает собой это окно. Поднимаясь выше, он постепенно перекрывает и выпускное окно, через которое удаляются продукты сгорания. При этом в пространстве под поршнем (кривошипной камере) образуется разрежение, и оно заполняется новой порцией топлива. При достижении поршнем ВМТ сжатый топливный заряд воспламеняется;
— на такте расширения газы, образовавшиеся при сгорании топлива, давят на поршень, он опускается вниз, открывая сначала выпускное окно, а затем продувочное. Через первое окно расширенные газы попадают в глушитель и выводятся наружу. Одновременно при движении поршня вниз в кривошипной камере, заполненной топливом, повышается давление. Топливо выталкивается вверх в цилиндр, заполняя надпоршневое пространство и выталкивая остатки отработанных газов. После чего цикл повторяется.

Такой принцип работы позволяет двухтактным двигателям обойтись без газораспределительной системы, характерной для четырехтактных моторов, которая управляет впускным и выпускным клапанами. С одной стороны это упрощает конструкцию и уменьшает вес, но с другой газообмен в камере сгорания далеко не идеальный. При двухтактном режиме работы при продувке цилиндра вместе с отработанными газами в глушитель попадает и определенное количество несгоревшего топлива, что влечет за собой его перерасход и повышает токсичность выхлопных газов.

Виды газораспределительной системы

Так как продувочные окна в цилиндре порой располагаются на одном уровне, то газообмен внутри цилиндра затруднен, не весь объем цилиндра продувается свежей порцией воздушной смеси, и часть отработанных газов остается в цилиндре. Для того, чтобы сменить отработанные газы на свежую порцию воздуха более эффективно и быстро, существует конструктивные особенности поршня и расположения продувочных окон в цилиндре.  Различают несколько вариантов осуществления продувки цилиндров:

Контурная продувка

Контурная продувка в свою очередь делится на возвратно-петлевую, дефлекторную и высотную. Во всех этих видах есть один существенный недостаток: перерасход топлива из-за удаления несгоревшего топливного заряда во время продувки.

 

П- или Л-образная продувка

П- или Л-образная продувка более эффективная в плане экономии топлива, но при этом температура около выпускного окна значительно повышается. Конструктивная особенность в том, что для ее осуществления необходимы двухцилиндровое исполнение мотора. Одна пара цилиндр — поршень выступает в роли впускающих газы, а другая пара в роли выпускающая газы.

Клапанная или клапанно-щелевая продувка

Клапанная или клапанно-щелевая продувка в отличие от других видов требует наличия ГРМ, который управляется клапанами. Клапан может использоваться и для подачи заряда, и для удаления продуктов сгорания. При клапанно-щелевой продувке через клапан в головке цилиндра удаляются отработанные газы, а через окна (щели) поступает свежий заряд. Это уменьшает расход топлива и снижает токсичность отработанных газов, но усложняет конструкцию двигателя и может нарушить нормальный режим сгорания заряда из-за повышенной температуры.

Прямоточная продувка

Прямоточная продувка используется в двигателях с двумя поршнями, расположенными напротив друг друга в горизонтальном положении. В этом случае каждый поршень по ходу своего движения открывает и закрывает «свой» клапан: один поршень отвечает за впуск заряда, а второй – за удаление газов. Камерой сгорания в этом случае является пространство между поршнями. Этот вариант предусматривает наличие более сложного КШМ, а высокая температура внутри цилиндров требует дополнительного охлаждения и более прочных элементов. В то же время, это наиболее эффективный способ продувки, который обеспечивает полное удаление отработанных газов с минимальными потерями топливного заряда.

Особенности двухтактных двигателей

Особенность двухтактных двигателей – отсутствие системы смазки. Масло для смазки рабочих поверхностей трущихся деталей доставляется к ним прямо с топливной смесью. Есть два варианта получения такой смеси: изначально заливать в бак заранее приготовленный «коктейль» из топлива и моторного масла или же смешивать их во впускном патрубке, куда они поступают раздельно. Соотношение топлива и масла находится в пределах от 1:25 до 1:50. Моторное масло, как и топливо, сгорает во время рабочего такта, а продукты его сгорания выводятся вместе с отработанными газами.

Что касается мощности, двухтактные двигатели действительно мощнее своих четырехтактных конкурентов. В идеале их мощность при одинаковом литраже должна составлять 2:1 соответственно, но на деле из-за некачественного газообмена в цилиндрах это соотношение составляет 1,5:1. Удельная мощность или соотношение мощности и массы двигателя тоже выше у двухтактных моторов, ведь их вес намного легче, да и конструкция проще.

А вот расход топлива в двухтактных двигателях выше, чем у четырехтактных. Из-за несовершенной системы продувки цилиндров часть топливной смеси в прямом смысле слова вылетает в трубу. По этой причине такие двигатели практически не используются в автомобилях, тяжелой технике или мощных силовых установках, потребляемых большое количество топлива.

Еще один момент, отличающий двухтактный двигатель от четырехтактного – процесс сжигания топлива. Поскольку выпускное окно открывается практически сразу после воспламенения заряда, необходимо обеспечить достаточное время для его полного сгорания. В четырехтактном двигателе на процесс сгорания отводится целый рабочий цикл, а здесь – всего доли секунды. Чтобы добиться максимальной эффективности, в бензиновых моторах нужно точно определять углы опережения зажигания, а в дизельных – контролировать время подачи топлива. В современных моделях это достигается путем использования электроники.

Двухтактные двигатели могут быть как бензиновыми (карбюраторными или инжекторными), так и дизельными. Разница в принципе их работы заключается в том, что в первом случае в цилиндры сразу подается топливный заряд (смесь воздуха с топливом), а во втором – сначала воздух, а в конце первого такта – топливо, которое воспламеняется при контакте с горячим воздухом. Бензиновые двигатели широко используются в мотоциклах, малолитражных автомобилях, а также в газонокосилках, бензопилах и других агрегатах с ДВС. Дизельные моторы нашли применение в судостроении, раньше они также использовались на тепловозах, танках и с успехом применялись в авиации на бомбардировщиках Юнкерс. Сейчас же судостроение – чуть ли не единственная сфера их применения, где пришлась кстати их тихоходность и мощность, не превышающая 100 тыс. л.с. В отличие от четырехтактных двухтактные дизели не имеют разделенных камер сгорания, что дополнительно усложнило бы их конструкцию, так что дизельное топливо подается и смешивается с воздухом прямо в камере сгорания.

Итак, двухтактные двигатели имеют ряд преимуществ:
— простую конструкцию;
— небольшой вес;
— меньшие нагрузки на элементы конструкции;
— отсутствие системы смазки и ГРМ;
— большую литровую мощность в сравнение с четырехтактными.

В то же время, у двухтактных моторов есть и недостатки:
— повышенный расход топлива;
— токсичность выхлопных газов;
— меньший ресурс в сравнение с четырехтактным;
— шум во время работы;
— необходимость приготовления топливо-масляной смеси, что не только усложняет систему подачи топлива, но и повышает расход масла.

Выводы

Из вышесказанного можно сделать вывод, что двухтактные двигатели можно использовать в тех случаях, когда расход топлива не имеет значения, а важны такие характеристики, как небольшая масса и простота конструкции. Это идеальные варианты для переносных агрегатов, небольших автомобилей, а также мотоциклов и мопедов. Компактные размеры двухтактных двигателей позволило им основательно занять место в сфере, казалось бы совершенно далекой от той сферы, для которой были созданы ДВСы — в моделировании.

В последнее время двухтактные двигатели становятся все более популярными за счет использования в их конструкции электронных систем. Это позволяет снизить токсичность выхлопных газов, регулировать процессы подачи и сгорания топлива, что делает моторы более экологичными. Так что в скором будущем их сфера применения может значительно расшириться. Еще в начале 20 века начались разработка дизельных двухтактных двигателей. Одну из наиболее удачных схем разработал Хуго Юнкерс, а в 60-ых годах 20 века и советские моторостроители выдали образец инженерного чуда — оппозитный 2ух тактный дизельный мотор 5ТДФ с мощностью 700 л. с.

Дизель Хуго Юнкерса

Танковый дизель 5ТДФ

В конструкции двухтактных двигателей заложены огромные резервы по мощности и экономичности. Но из-за конструктивных особенностей их не удавалось реализовать в механическом виде. Вполне возможно электронные системы помогут «двухтактникам» занять лидирующую позицию среди двигателей внутреннего сгорания в ближайшее время.

Двухтактный двигатель внутреннего сгорания с бессмесной продувкой; регулируемое входное и выходное устройство; силовая передача с двумя горизонтально расположенными цилиндрами. Zweitaktbrennkraftmaschine mit gemischfreier Spuelung, regelbarer Ein- und Auslassvorrichtung, hubwellenfreier Kraftuebertragung, in liegender Zweizylinderbauweise (патент)

@misc {etde_6962724,
title = {Двухтактный двигатель внутреннего сгорания с бессмесительной продувкой; регулируемое входное и выходное устройство; силовая передача с двумя горизонтально расположенными цилиндрами. Zweitaktbrennkraftmaschine mit gemischfreier Spuelung, regelbarer Ein- und Auslassvorrichtung, hubwellenfreier Kraftuebertragung, in liegender Zweizylinderbauweise}
author = {Bohne, W}
abstractNote = {В настоящее время у двухтактных двигателей нет будущего в качестве силовых агрегатов в двигателях внутреннего сгорания. Это связано с их недостатками по сравнению с сегодняшними четырехтактными двигателями. Несмотря на то, что «двухтактный» может работать лучше, чем «четырехтактный», ряд недостатков все же остается.Это потери на продувку, и, как следствие, высокий расход топлива и значительное количество несгоревших углеводородов в смазке выхлопной газовой смеси — еще один недостаток. В этом изобретении предлагается измененная система двухтактной конструкции с целью устранения этих недостатков. Бесчастная продувка может быть достигнута с помощью многоступенчатого поршня. Таким образом, образование внешней смеси становится сопоставимым с образованием внутренней смеси четырехтактного двигателя. Контролируемое охлаждение на входе и выходе зависит от r.вечера. и позволяет благоприятно влиять на вход и выход без использования клапанов. Поскольку смазка Mixture заменяется отдельной системой смазки, для удаления вредных веществ можно использовать каталитический нейтрализатор. Известная система передачи мощности способствует сбалансированной плавной работе двухтактного двигателя. Количество ходов будет увеличено в соответствии с проектом.}
место = {Германия}
год = {1991}
month = {Jan}
}

Джозеф Дэй и двухтактный двигатель внутреннего сгорания на JSTOR

Abstract

Жизнь Джозефа Дэя (1855-1946) демонстрирует сложность проблем, лежащих в основе многих «неудавшихся инноваций».Его «изобретение» 1891 года, усовершенствованное Коком в 1892 году, значительно упростило двигатель внутреннего сгорания. С его появлением были большие надежды, что он добьется успеха на английском рынке двигателей, который только что был либерализован из-за прекращения действия всеобъемлющего патента на четырехтактный двигатель Otto. Но английские акционеры не были заинтересованы в разработке этой новой технологии против гегемонии парового двигателя, и в любом случае ее долгожданный рынок в Англии в качестве легкого генератора электроэнергии не реализовался.Эти рыночные проблемы безнадежно осложнялись многочисленными судебными процессами, в которых участвовал Дэй как директор компании. Это привело к банкротству Дэя в 1893 году. Успех пришел только тогда, когда патентная защита «бесклапанного» двигателя была близка к утрате. К тому времени двигатель превратился в идеальную силовую установку для моторных лодок, так как он был легко реверсивным и имел идеальные характеристики мощности для воды. Двигатель Day начали продавать сначала по лицензии. Затем Дэй попытался найти нефть в сланцах в Англии.Эта рискованная спекуляция оказалась злополучной затеей и сначала вынудила Дэя отказаться от инженерии, а затем и от него отказалась история.

Информация о журнале

Социальные исследования науки — ведущий международный журнал, посвященный важнейшим вопросам взаимоотношений между наукой и обществом.

Информация об издателе

Сара Миллер МакКьюн основала SAGE Publishing в 1965 году для поддержки распространения полезных знаний и просвещения мирового сообщества.SAGE — ведущий международный поставщик инновационного высококачественного контента, публикующий более 900 журналов и более 800 новых книг каждый год, охватывающий широкий спектр предметных областей. Растущий выбор библиотечных продуктов включает архивы, данные, тематические исследования и видео. Контрольный пакет акций SAGE по-прежнему принадлежит нашему основателю, и после ее жизни она перейдет в собственность благотворительного фонда, который обеспечит дальнейшую независимость компании. Основные офисы расположены в Лос-Анджелесе, Лондоне, Нью-Дели, Сингапуре, Вашингтоне и Мельбурне.www.sagepublishing.com

2-тактный / 4-тактный — мотоцикл

В чем разница между 2-тактными и 4-тактными двигателями?

Топливо для двухтактного двигателя содержит небольшое количество масла. Это называется «2-тактным», потому что всего одно движение поршня вверх и вниз — 2 хода — выполняет полный цикл впуска, сжатия, сгорания и выпуска. Впускные или выпускные клапаны не используются, а вместо этого используются небольшие отверстия, называемые продувочными портами в стенке цилиндра, для втягивания воздуха и удаления выхлопных газов.Поскольку сгорание происходит при каждом обороте коленчатого вала в 2-тактном двигателе, этот формат обеспечивает большую мощность, чем 4-тактный двигатель, и мощность имеет более мгновенную подачу. Это некоторые причины, по которым двухтактные двигатели давно используются на многих различных типах мотоциклов.
Однако озабоченность по поводу более экологичных характеристик возросла, и теперь 4-тактные двигатели стали нормой, потому что они по своей природе имеют лучшую экономию топлива и меньше дыма выхлопных газов. По состоянию на 2019 год только двухтактные мотоциклы Yamaha выпускаются для соревнований по закрытому маршруту, а некоторые модели предназначены для экспорта. Тем не менее, двухтактные продукты Yamaha имеют простую, легкую конструкцию и сравнительно легкие в обслуживании, а их высокая надежность делает их популярными во многих регионах. Сегодня двухтактные снегоходы Yamaha используются для передвижения по ледяной и холодной окружающей среде России, а наши двухтактные подвесные моторы широко используются в Африке для рыбной ловли. И многие любители мотоциклов продолжают любить двухтактные двигатели за их резкое, захватывающее чувство ускорения.
Что касается 4-тактных двигателей, они работают на бензине без подмешивания масла, а поршень поднимается и опускается два раза за каждый цикл сгорания, поэтому он называется «4-тактный».Однако для 4-тактных двигателей требуются клапаны для впуска и выпуска, которые должны работать с высокой точностью, что делает этот тип двигателя более сложным, тяжелым и имеет другие недостатки. Но они обеспечивают стабильную подачу мощности, хорошую топливную эффективность, более чистые выбросы и многое другое. Вот почему почти все двухколесные автомобили, от больших мотоциклов до маленьких скутеров, используют четырехтактные двигатели.

Двухтактный двигатель — Двигатели внутреннего сгорания (IC)

Согласно общепринятому мнению, наши надежные двигатели внутреннего сгорания (IC) идут по пути багги.Литий-ионный аккумулятор уже в продаже, стандарты выбросов ужесточаются, а оборудование, которое преобразует углеводороды в лошадиные силы, не будет иметь никакого значения в будущем, говорят некоторые эксперты.

Эта точка зрения предполагает, что двигатель внутреннего сгорания 148-летней давности вышел из строя и не имеет потенциала для улучшения. Фактически, обычные двигатели и автомобили, которыми они управляют, ежедневно демонстрируют заметный прирост эффективности и чистоты. Подъем двухтактных двигателей из их почти мертвого состояния — последнее свидетельство того, что лучшие дни внутреннего сгорания еще впереди.

Четырехтактный двигатель, которым оснащаются все современные легковые и грузовые автомобили (кроме Tesla Roadster), был гениальным изобретением немца Николаса Отто, который мудро осознал, что сжатие топливно-воздушной смеси перед зажиганием — лучший способ. Эта идея пришла к нему в 1861 году; три года спустя он и его сторонники строили и продавали четырехтактные двигатели, которые значительно превосходили — в основном, более экономичны — чем альтернативные конструкции без такта сжатия.

Естественно, были конкуренты с альтернативным дизайном и надежды обойти патенты Отто, выданные только в 1877 году.К 1870 году у Карла Бенца и других успешно работали двухтактные двигатели, которые давали один импульс мощности на один оборот коленчатого вала по сравнению с двумя оборотами, необходимыми для четырехтактных двигателей.

Наиболее распространенная форма двухтактного двигателя не требует клапанного механизма, что приводит к значительной экономии средств, веса и сложности. Таким образом, у поршня остается целый список обязанностей: подача воздуха и топлива в камеру сгорания, дозирование смазочного масла, сжатие смеси, подача мощности на коленчатый вал и вывод отработавших газов из цилиндра.Все это происходит каждые 360 градусов поворота коленчатого вала. Неизбежным результатом является то, что часть необработанного топлива и вся смазка выметаются из выхлопной трубы.

В то время как синий дым за Saab 60-х годов, последними двухтактными автомобилями в Америке, был приемлем в то время, вредные выбросы больше не являются социально приемлемыми.

Тем не менее, неотразимые преимущества, присущие двухтактным двигателям, поддерживали их жизнь все эти годы. Двухтактные Трабанты, произведенные в бывшей Восточной Германии, просуществовали до 1991 года.А благодаря внедрению эффективных систем дозирования масла, улучшенной конструкции поршней и портов, а также прямому впрыску топлива с электронным управлением, двухтактные двигатели по-прежнему используются во многих морских подвесных двигателях, внедорожных мотоциклах и снегоходах. Простые версии являются предпочтительным двигателем для бензопил, триммеров для сорняков, некоторых газонокосилок и почти всех радиоуправляемых моделей.

Глобальные поиски серебряной пули для наших потребностей в энергии и двигателе побудили многих инженеров отряхнуть старые учебники и исследовать умирающие идеи в поисках вдохновения.Недавно их внимание привлек двухтактный двигатель.

В августе 2008 года британский консорциум — Lotus Engineering, Jaguar Cars и Королевский университет в Белфасте — объявил о планах исследования необычного двухтактного двигателя в надежде, что он сможет эффективно работать на различном бензине и спиртовом топливе. Этот двигатель, получивший название «Omnivore» по понятным причинам, имеет прямой впрыск топлива и возможность работы со степенью сжатия от 8: 1 до 40: 1 с помощью подвижной «шайбы», расположенной над поршнем, которая изменяет зазор в камере сгорания.Также обсуждалась работа с самовоспламенением (HCCI). Этот двухтактный двигатель, спроектированный Lotus, имеет моноблочную конструкцию с головкой, встроенной в блок цилиндров.

Вторая примечательная разработка двухтактных двигателей находится в Чепмене, штат Канзас, где более года назад амбициозная команда из 16 ученых, инженеров и инвесторов приступила к разработке двигателя, который они называют Граалем, как «Святой Грааль». Самая необычная особенность этой конструкции — впускной клапан, расположенный в головке поршня, который пропускает свежий заряд воздуха.Кроме того, есть один выпускной клапан, одна топливная форсунка и три свечи зажигания, расположенные в верхней части камеры сгорания. Цели — 100+ миль на галлон, более 100 лошадиных сил и чистый выхлоп от одноцилиндрового 1,0-литрового двигателя.

«Всеядному» и «Граалю» придется поторопиться, чтобы не отставать от проекта двухтактных двигателей, реализуемого EcoMotors недалеко от Детройта. Этот двигатель представляет собой OPOC — оппозитный поршень, оппозитный цилиндр — конструкция, которая имеет минимальное сходство с любым двигателем — двух- или четырехтактным — сегодня на дорогах.

Питер Хофбауэр, основатель и председатель EcoMotors, является мозгом этого бизнеса. Он окончил технический университет в Вене, Австрия, в 1966 году, после учебы у известного гения Auto-Union и разработчика ракет V1 / V2 Эберана фон Эберхорста. Затем Хофбауэр проработал два десятилетия в VW, поднявшись до руководства разработкой всех двигателей VW и Audi, руководя штатом из более чем 1000 сотрудников. Дизельные двигатели VW первого поколения и комплексная технология VR inline-V, которая до сих пор используется в Bugatti Veyron, стали идеями Хофбауэра.

Работая над двигателем Wasser Boxer или двигателем Beetle с водяным охлаждением для VW Vanagon, Хофбауэр решил, что было бы разумно заменить головки блока цилиндров в двигателе с оппозитными поршнями (OP) на … дополнительные поршни. Эта концепция имеет достоинства прежде всего потому, что она удобно удваивает площадь, с которой силы сгорания воздействуют на каждый ход коленчатого вала. Предыдущие применения с оппозитными поршнями включают шестицилиндровые / 12-поршневые авиационные двигатели Junkers Jumo времен Второй мировой войны, различные двигатели танков и кораблей, а также в качестве источника энергии для воздушных компрессоров и т.п.Британская фирма Comer использовала их для питания автобусов. Единственное заметное использование в автомобилях оппозитных поршней было французским производителем Gobron-Brillie с 1900 по 1922 год.

В большинстве этих двигателей OP использовались два соединенных вместе коленчатых вала. Чтобы избежать этого осложнения, Хофбауэр разработал натяжные стержни, соединяющие внешние поршни непосредственно с одним коленчатым валом. Это отличный подход — также используемый Gobron-Brillie — потому что тяговые нагрузки от внешних поршней почти равны, но противоположны толкающим нагрузкам, прикладываемым к кривошипу внутренними поршнями.Такой баланс способствует плавности хода и упрощает использование более легкой конструкции картера.

Хофбауэр так и не смог реализовать свою идею OPOC в Германии. После работы в VW он перешел в Klockner-Humboldt-Deutz, кельнскую фирму, имеющую прямые корни с компанией-производителем двигателей Николаса Отто. В 1997 году, проработав там около десяти лет, Хофбауэр вышел на пенсию и переехал в Америку.

Когда вывод на пенсию оказался неудовлетворительным, Хофбауэр возродил свою концепцию двигателя. Вместе с партнерами по разработке FEV и AVL он запустил первые демонстрационные двигатели в 2003 году и привлек инвестиционные средства от DARPA.Пара опытных образцов была доставлена ​​группе исследований и разработок танков и автомобилей армии США.
Зеленый венчурный капиталист Винод Хосла на сегодняшний день внес основную часть инвестиций в размере 60 миллионов долларов.

Двигатель EcoMotors OPOC прославился тем, что удвоил удельную мощность (на фунт и на кубический дюйм внешнего объема) сегодняшних бензиновых двигателей. Поскольку требуется менее половины запчастей, EcoMotors рассчитывает на экономию по крайней мере на 20 процентов. Прогнозируемая экономия топлива до 50 процентов лучше, чем у нынешних бензиновых и дизельных двигателей.

Как и все двухтактные, двигатель EcoMotors OPOC выдает один импульс мощности на цилиндр за один оборот коленчатого вала. В интересах эффективности и чистоты выхлопных газов в входящем воздушном потоке нет топлива. Вместо этого он подается двумя форсунками, расположенными по бокам стенки цилиндра. Двигатель OPOC первого поколения работает на дизельном топливе, но в будущем планируется разработать и бензиновые версии. Для воспламенения бензина требуются специальные плазменные запальники.

Хофбауэр называет односторонний поток воздуха через двигатель «Циклом прямого газообмена».»Это означает, что сжатый воздух поступает в цилиндр, когда отверстия открываются наружными поршнями, достигающими конца своего хода от коленчатого вала. После зажигания, поскольку оба поршня движутся в противоположных направлениях давлением сгорания, мощность передается на коленчатый вал. Когда внутренний поршень приближается к нижней части своего хода, выпускные отверстия открываются. Движение поршня рассчитано по времени, и отверстия расположены таким образом, что выпускной канал открывается перед впуском. Чтобы избежать потери свежего воздуха из цилиндра, выпускные отверстия также закрываются раньше. входные отверстия закрываются.

Эта однопоточная компоновка имеет решающее значение для чистого выхлопа и максимально эффективного использования каждого приращения топлива. Это также означает, что двигателю OPOC для запуска и работы необходим источник сжатого воздуха. Хофбауэр придумал хитроумное средство для удовлетворения этого требования: турбокомпрессор с электроприводом. Во время запуска двигатель раскручивает компрессор для подачи всасываемого воздуха. После того, как двигатель начинает работать и энергия выхлопных газов возрастает, турбинное колесо берет на себя задачу приведения в действие компрессора, позволяя двигателю стать электрическим генератором.

Управление электрическим турбонаддувом с помощью компьютерного модуля дает двигателю OPOC эквивалент системы изменения фаз газораспределения согласно Хофбауэру. Вырабатываемая электрическая энергия используется для подзарядки аккумуляторной батареи.

Хотя двигатель OPOC еще не готов к продаже, был достигнут значительный прогресс. Расход масла и выбросы выхлопных газов на норме Хофбауэр надеется, что большие дозы рециркуляции отработавших газов означают, что впрыск мочевины не потребуется для удовлетворения требований к выбросам.Продолжаются разработки, чтобы доказать долговечность двигателя, решить любые возникающие проблемы и добавить бензиновую версию в меню продукта.

Повышение экономии топлива на 15% в этом двигателе в основном связано с его меньшим весом и значительно меньшим отводом тепла в систему охлаждения (поскольку головка блока цилиндров отсутствует). Использование двух двигателей OPOC с управляемым компьютером сцеплением для отключения одного, когда его вклад не требуется, удваивает преимущество перед обычными двигателями до 30 процентов.Добавьте еще пять процентов для снижения веса автомобиля, связанного с этим двигателем, и 15 процентов для того, что EcoMotors называет своей конструкцией Tribrid (две модели двигателей OPOC в сочетании с электродвигателем), и чистая прибыль составит 50 процентов по сравнению с современными автомобилями.

Хофбауэр и его команда из 25 инженеров владеют 114 патентами, еще сотня заявок находится в стадии разработки. Дон Ранкл, опытный руководитель с долгой карьерой в GM и Delphi, недавно присоединился к штату EcoMotors в качестве генерального директора, чтобы помочь привлечь 200 миллионов долларов в виде федеральных грантов, необходимых для перехода на следующие этапы развития к производству.

EcoMotors стремится поставлять двигатели для различных областей применения, от микрокаров для развивающихся стран до грузовиков с полуприцепами в США. Приложения для вспомогательных энергоблоков и генераторных установок также находятся в списке. Runkle сообщает о большом интересе со стороны производителей морского, грузового и сельскохозяйственного оборудования.

Согласно Runkle, EcoMotors готова сотрудничать с любым клиентом, заинтересованным в приобретении лицензионного соглашения. Вторая возможность — совместные проектные предприятия.Наиболее вероятным первым шагом будет поставка двухтактных двигателей OPOC производителям, у которых нет возможности разрабатывать и производить свои собственные двигатели.

Ранкл отмечает: «То, что мы имеем, — это сотовый телефон двигателей. Зачем любому новому производителю беспокоиться о изобретении стандартного четырехцилиндрового двигателя, двигателя V-6 или V-8, если они могут получить источник питания OPOC от EcoMotors, который значительно превосходит с точки зрения затрат, эффективности и воздействия на окружающую среду? »

Если EcoMotors преуспеет в соответствии с планом, Ранкл надеется вернуть закрытый завод двигателей GM в Ливонии, штат Мичиган, для создания инновационных двигателей.Его цель — вернуть мотор в город Мотор-сити, тем самым возродив репутацию Детройта как мирового центра передового опыта в автомобилестроении.

В то время как появление электрических силовых установок, несомненно, поможет поднять репутацию автомобиля как потребителя ресурсов и генератора загрязнения окружающей среды, впереди ждут серьезные препятствия. Усовершенствованные аккумуляторные батареи и новая электрическая генерирующая инфраструктура ужасно дороги. Это оставляет широкие возможности для нового поколения двигателей внутреннего сгорания, таких как двухтактный OPOC, с чистой и рентабельной силовой установкой.По всей видимости, тепловые двигатели будут играть решающую роль в глобальной системе личного транспорта в ближайшие десятилетия.

Оптимизация двухтактного термодинамического цикла генератора с одноцилиндровым свободнопоршневым двигателем

Генератор со свободнопоршневым двигателем (FPEG) — это новый тип преобразователя энергии, в котором отсутствует коленчатый вал и шатунный механизм. Для достижения эффективного преобразования энергии в данной статье исследуется оптимизация термодинамических характеристик двухтактного генератора с одноцилиндровым двигателем со свободным поршнем.Во-первых, подробно представлены компоненты, четырехтактный термодинамический цикл, двухтактный термодинамический цикл и прототип системы FPEG. Одномерная имитационная модель потока FPEG создается на основе уравнения газовой динамики, функции горения Вебера и функции теплопередачи, а затем модель подтверждается данными, протестированными на прототипе системы. Согласно результатам экспериментов с четырехтактным двигателем FPEG, эффективная мощность 4,75 кВт и пиковое давление 21.Получено 02 бар. Затем двухтактный термодинамический цикл моделируется и сравнивается при различных управляющих параметрах давления всасываемого воздуха, времени впрыска, момента зажигания и фаз газораспределения с помощью имитационной модели. Оптимизированные результаты показывают, что указанный тепловой КПД 27,6%, указанная мощность 6,7 кВт и максимальная рабочая частота 25 Гц могут быть достигнуты системой-прототипом при использовании двухтактного термодинамического цикла.

1. Введение

Заботы об экономии энергии и сокращении выбросов привели к изменениям в конструкции двигателя внутреннего сгорания (ДВС), одним из способов решения этой проблемы является использование двигателя со свободным поршнем [1–3].Генератор со свободнопоршневым двигателем (FPEG) — это новый тип силовой установки, который привлек внимание исследователей во всем мире благодаря своим особым преимуществам с точки зрения высокой эффективности и низкого уровня выбросов.

По сравнению с традиционной системой генератора, это новое устройство преобразования энергии демонстрирует такие преимущества, как простота конструкции, низкая стоимость производства и высокая мощность. Самая большая разница в конструкции — отсутствие коленчатого вала и маховика двигателя, а поршень и движитель линейного генератора соединены напрямую.Таким образом, свободный поршень может колебаться между двумя своими конечными точками и подвергаться влиянию всех сил, действующих на него. Без ограничения механизма шатуна трение движения поршня значительно снизилось, и конструкция FPEG стала более компактной [4, 5]. Генератор со свободнопоршневым двигателем может работать с несколькими видами топлива за счет простого регулирования степени сжатия, а указанная мощность и эффективность системы могут быть улучшены за счет оптимизации термодинамического цикла.

Исследования показали, что большинство двухтактных свободнопоршневых двигателей имеют схожий принцип работы.На основе теоретического анализа двухтактный двигатель достиг высокой удельной мощности и теплового КПД. В последние десятилетия Кларк и другие исследователи из Университета Западной Вирджинии провели большую исследовательскую работу по генератору двигателя со свободным поршнем. Они разработали первый прототип системы генератора со свободнопоршневым двигателем в 1998 году, который представляет собой двухпоршневую конструкцию с искровым зажиганием с внутренним диаметром цилиндра 36,5 мм и максимальным ходом поршня 50 мм [6, 7]. Напомним, что опытный образец работал на частоте 23.1 Гц, максимальная выходная электрическая мощность составляет 316 Вт, а эффективность преобразования энергии составляет 11%. Однако выходная мощность и эффективность преобразования энергии значительно ниже результатов моделирования 50%.

Суат Саридемир и Фуат Кара из Университета Дюздже разработали модель искусственной нейронной сети (ИНС) для прогнозирования крутящего момента и мощности бета-версии. типа двигатель Стирлинга. После сравнения предсказанных клапанов модели с экспериментальными результатами, валидность созданной модели ИНС подтверждается.Они также использовали метод множественной регрессии для оценки предсказательной способности модели, и результаты показали, что ИНС является надежной моделью для предсказания крутящего момента и мощности двигателя Стирлинга бета-типа [8, 9].

Исследователи из Toyota Central R&D Labs Inc также разработали линейный генератор с однопоршневым двигателем со свободным поршнем (FPEG), который состоял из интегрированной камеры сгорания, камеры с газовой пружиной и линейного генератора. FPEG принял двухтактный рабочий режим, и он мог работать непрерывно в течение многих часов.После проведения эксперимента по выработке электроэнергии на прототипе системы FPEG результаты показали, что она может обеспечивать надежную и стабильную работу во всех режимах пуска, движения и стрельбы [10].

В [11, 12], Xu et al. в Нанкинском университете науки и технологий в 2010 году разработали новый одноцилиндровый четырехтактный прототип FPEG. В качестве линейного генератора внутреннего сгорания прототип системы обеспечивает непрерывную и стабильную работу четырехтактного рабочего цикла. Он оснащен электромагнитным клапаном для завершения процесса продувки. Кроме того, был получен максимальный крутящий момент 58 Нм при максимальной выходной мощности 10 кВт.На основе этого Сюй предложил улучшенный метод, который оптимизировал двухтактный термодинамический цикл FPEG для достижения термодинамических характеристик высокой эффективности и экономии энергии.

В этой статье, чтобы достичь характеристики более высокой мощности и оптимизировать термодинамические характеристики двухтактного двигателя, создана экспериментальная система FPEG и внесены соответствующие изменения. В следующих разделах представлены компоненты и принцип работы FPEG с возвратной средней пружиной.В разделе 3 построена одномерная модель потока FPEG, которая проверена с помощью четырехтактного эксперимента. Затем моделируется двухтактный термодинамический цикл FPEG при различных влияющих факторах, а результаты моделирования сравниваются и подробно анализируются. Оптимизированные результаты помогут нам понять, как двухтактный термодинамический цикл FPEG влияет на указанную мощность и эффективность системы.

2. Структура и принцип работы FPEG
2.1. Базовая структура FPEG

Элементарная структура генератора со свободнопоршневым двигателем показана на рисунке 1. Основными частями FPEG являются бензиновый двигатель, обратная пружина и линейный электрогенератор. Система имеет только одну камеру сгорания, отбойное устройство и возвратно-поступательный движущийся компонент. Камера сгорания представляет собой одноцилиндровый свободнопоршневой двигатель, оборудованный электромагнитными клапанами, форсункой и свечой зажигания. Между камерой сгорания и линейным электрогенератором установлена ​​обратная пружина.Одиночный поршень и подвижная катушка линейного генератора соединены в один компактный компонент, как единый движитель FPEG. Свободный поршень будет свободно перемещаться между верхней мертвой точкой (ВМТ) и нижней мертвой точкой (НМТ), а его возвратно-поступательное движение определяется дисбалансом всех сил, действующих на движитель [11, 13].


Свободнопоршневой двигатель будет работать с захваченной топливной смесью и зажиганием свечи зажигания. Поскольку эффективность генерации линейного электрического генератора значительно снижается в условиях низкой скорости, задняя пружина толкает поршень вверх для обеспечения непрерывной работы.Суперконденсатор используется для включения выработки электроэнергии генератором. Преобразователь мощности используется для согласования линейного генератора и накопления электроэнергии [14, 15]. Электронный блок управления (ЭБУ) может управлять системой для регулировки характеристик двигателя после получения сигналов давления в цилиндре, смещения поршня, тока якоря и других. Кроме того, продувка осуществляется электромагнитными клапанами, которые закреплены на головке блока цилиндров. В полном рабочем цикле линейный генератор работает в моторном режиме только на такте впуска, тогда как остальные такты работают в генераторном режиме.

В системе FPEG существует большая свобода в определении движения поршня. Рабочий цикл FPEG можно переключать, изменяя закон движения поршня. Таким образом, четырехтактный термодинамический цикл и двухтактный термодинамический цикл можно использовать для разных рабочих циклов ГПЭГ.

2.2. Термодинамический цикл FPEG

Четырехтактные двигатели со свободным поршнем имеют относительно большую экономию энергии и более высокий КПД, чем двухтактные двигатели со свободным поршнем, но двухтактные имеют преимущества удельной мощности.При той же рабочей частоте число двухтактных рабочих циклов в два раза больше, чем у четырехтактных, а время газообмена короче, чем у четырехтактных [16]. Четырехтактные и двухтактные термодинамические циклы FPEG представлены для оптимизации термодинамических характеристик.

Как видно из рисунка 2, замечательными характеристиками четырехтактного термодинамического цикла являются короткие такты впуска и сжатия, которые дополняются сжатым всасываемым воздухом [17].Во время такта впуска линейный генератор работает как электрическая машина, заставляя поршневой узел двигаться вниз от точки к точке для поглощения топливной смеси. Он может регулировать давление на входе или температуру воздуха, чтобы увеличить поток смеси и улучшить процесс сгорания. Когда поршень движется в ВМТ и приближается к этой точке, топливная смесь сжимается в такте сжатия. Во время такта расширения зажигание свечи зажигания является начальной точкой процесса сгорания, и в этой точке он заканчивается.После этого поршень движется снизу вверх и достигает точки, в которой вытесняется сгоревший газ. Таким образом, такты расширения и выпуска длиннее, чем такты впуска и сжатия, и можно достичь полного сгорания для увеличения удельной мощности.


Как показано на рисунке 3, двухтактный термодинамический цикл характеризуется коротким ходом сжатия и расширения, который дополняется регулировкой угла опережения искры для реализации более полного сгорания. Более длинное перекрытие клапанов может увеличить продолжительность открытия клапана на тактах впуска и выпуска.Прежде чем поршень достигнет точки, свеча зажигания воспламеняет топливную смесь, и поршень движется вверх, чтобы совершить такт сжатия. Во время такта выпуска поршень перемещается от точки к точке. Затем поршень перемещается от точки к точке на такте впуска. Когда поршень перемещается из точки в точку, перекрытие клапанов обеспечивает одновременное открытие впускного и выпускного клапанов для поглощения топливной смеси и удаления остаточного газа. Это может увеличить объемный КПД и улучшить процесс газообмена.Кроме того, опережающее зажигание может обеспечить достаточное сгорание для высвобождения большего количества энергии.


2.3. Прототип и экспериментальная система

Структура прототипа FPEG показана на рисунке 4. Прототип представляет собой однопоршневой четырехтактный бензиновый двигатель, который оснащен четырьмя электромагнитными клапанами. В нем используется метод охлаждения с водяным охлаждением, управление впрыском топлива с обратной связью и система искрового зажигания с электронным управлением. По сравнению с конструктивными требованиями FPEG характеристики прототипа очень согласованы и облегчают переоборудование.В таблице 1 перечислены основные параметры конструкции прототипа.


901 электромагнитная конструкция клапана в целом показана на рисунке 4. Трубчатая конструкция состоит из железного сердечника, каркаса катушки, катушки, слоя постоянного магнита и внешней стенки привода. В системе электромагнитных клапанов катушка и клапан жестко соединены, а задняя пружина собрана между каркасом катушки и головкой блока цилиндров.Электромагнитный клапан используется для подачи продувочного воздуха и осуществления эффективного управления процессом газообмена. Под управлением электронного блока управления (ЭБУ) он может изменять высоту подъема клапана, время открытия клапана и продолжительность открытия клапана, чтобы обеспечить гибкое управление механизмом клапана.

На рис. 5 показаны трехмерные структуры линейного генератора с трубчатой ​​подвижной катушкой (MCLG). MCLG — это однофазный генератор постоянного магнита с подвижной катушкой, также называемый двигателем звуковой катушки (VCM).Линейный генератор состоит из постоянного магнита (ПМ), сердечника, подвижной катушки и торцевой крышки. Воздушный зазор между внешним и внутренним сердечниками. Чтобы получить высокую плотность потока в воздушном зазоре, PM принимает радиальное намагничивание, а направление намагничивания PM-A и PM-B противоположно. Каркас немагнитной катушки намотан двумя катушками, которые и являются движителем MCLG. Кроме того, ток катушки не является коммутируемым током, что может повысить эффективность системы MCLG. Структура имеет преимущества меньшей подвижной массы, быстрого отклика и низкой индуктивности катушки [18, 19].


На основе компонентов прототипа, электромагнитного клапана, линейного генератора с подвижной катушкой и датчиков создана экспериментальная система FPEG. Как показано на рисунке 6, экспериментальная система используется для тестирования и подтверждения термодинамических характеристик FPEG. Система также включает в себя контроллер двигателя и преобразователь мощности, который оснащен датчиком давления в цилиндре, датчиком перемещения и датчиком тока. Датчики могут собирать информацию о системе в рабочем состоянии и передавать информацию контроллеру, который рассчитывает результаты тестирования.


3. Моделирование FPEG

Термодинамический цикл FPEG зависит от различных факторов, таких как газовая динамика, процесс тепловыделения и потери тепла. В этом разделе имитационная модель FPEG создается на основе одномерного уравнения газовой динамики, функции горения Вебера и функции теплопередачи.

3.1. Одномерная газовая динамика

Для описания одномерной газовой динамики в трубе свободнопоршневого двигателя предполагаются следующие моменты: (1) состояние рабочего тела в камере сгорания — идеальный однородный газ.(2) Температура, давление и объем соответствуют уравнению состояния идеального газа. (3) Масса газа в баллоне постоянна, и утечка потока в процессе газообмена не учитывается. Таким образом, одномерная модель динамики в трубе описывается тремя уравнениями.

Уравнение энергии:

Уравнение сохранения количества движения:

Уравнение неразрывности рабочего тела: где представляет собой содержание энергии идеального газа, представляет скорость потока, представляет статическое давление, представляет собой крест площадь сечения трубы, представляет тепловой поток стенки, представляет единицу объема, представляет плотность рабочей среды, представляет удельную теплоемкость в объеме содержимого и представляет силу трения между жидкостью и стенкой трубы.

3.2. Давление газа в цилиндре

В соответствии с вышеизложенными предположениями, мы также предположили, что давление газа в цилиндре равно давлению на впуске, равно как и такт выпуска. Когда объем камеры сгорания равен нулю, положение поршня устанавливается как начало смещения. Используя первый закон термодинамики и уравнение состояния идеального газа, давление газа в цилиндре можно записать в виде следующего уравнения: где представляет давление газа в цилиндре, представляет объем цилиндра, представляет отношение удельной теплоемкости рабочее тело, и представляет собой скорость тепловыделения топлива.

3.3. Горение в цилиндре

Экзотермическая характеристика свободнопоршневого двигателя определяется скоростью распространения пламени и формой камеры сгорания. В этой статье имитационная модель использует модель сгорания с одной зоной с нулевой размерностью, которая определяет всю камеру сгорания как замкнутое пространство и игнорирует утечку потока. Функцию Вебера можно использовать для представления фактического процесса горения и выражения тепловыделения. Тепло, выделяемое в процессе сгорания, выглядит следующим образом: где Q представляет скорость тепловыделения топлива, представляет более низкую теплотворную способность топлива, представляет массу впрыскиваемого топлива за цикл, представляет эффективность сгорания, представляет качество сгорания. индекс, представляет продолжительность горения и представляет переменную времени, представляет время начала горения.

3.4. Теплопередача от цилиндра

При расчете потерь теплопередачи нельзя пренебречь необратимостью теплопередачи при возвратно-поступательном тепловом цикле. Предполагается, что потери произошли только в тактах сгорания и расширения, а передача тепла из камеры сгорания наружу незначительна. От газов в цилиндре до стенок цилиндра расчетное уравнение теплопередачи: где представляет скорость тепловыделения топлива, представляет коэффициент теплопередачи, представляет диаметр цилиндра, представляет положение поршня, представляет температуру стенок цилиндра, и представляет собой температуру газа в цилиндрах.

Здесь расчетное уравнение принимает функцию теплопередачи Вошни 1978 года. Эта функция подходит для цикла высокого давления, а коэффициент теплопередачи — это где — диаметр цилиндра, давление газа в цилиндре, давление на входе. температура газа в цилиндре, представляет собой круговую скорость и представляет собой среднюю скорость поршня.

3.5. Имитационная модель

В процессе создания модели FPEG одномерная имитационная модель в основном делится на две части.Первая часть включала размерные параметры двигателя, такие как диаметр цилиндра, длину впускного и выпускного патрубков. Другая часть содержала термодинамическую модель, модель горения и модель теплопередачи.

Шаги моделирования FPEG следующие области [20]: (1) изучение основных параметров измерения двигателя и сбор данных и информации о конструкции. (2) Разделить фактический двигатель со свободным поршнем на несколько простых в эксплуатации подсистем и использовать субмодули AVL BOOST для создания соответствующих физических субмоделей.(3) В соответствии с теоретическими знаниями динамики, теплопередачи, термодинамики, горения была построена простая физическая модель, которая содержит собранные данные и входную информацию для субмодуля двигателя. (4) Используйте установленную модель, чтобы выполнить элементарное моделирование и найти физические параметры имитационной модели, чтобы изменить ошибку.

На основе теоретического анализа и математической модели, приведенной выше, в программном обеспечении AVL BOOST создается одномерная имитационная модель FPEG для моделирования четырехтактного термодинамического цикла и двухтактного термодинамического цикла.Как мы все знаем, полная имитационная модель системы FPEG должна включать систему впуска, систему сгорания и систему выпуска. В соответствии с параметрами конструкции, указанными выше, и системой экспериментов в предыдущем разделе, имитационная модель одномерного потока создается, как показано на рисунке 7.


3.6. Параметры моделирования

Перед запуском модели моделирования ключевым этапом является выбор параметров управления. Начальное значение граничных условий включает давление, температуру и соотношение воздух-топливо.При этом параметры цилиндра содержат диаметр цилиндра, ход поршня, длину шатуна и степень сжатия. Также необходимо определить параметры управления теплопередачей и спецификацию клапана. В таблице 2 перечислены конкретные параметры каждого компонента.


Параметры Ед.
Объем см³ 695
Диаметр седла клапана мм 36
Минимальная верхняя мертвая точка мм 18
максимальная
Максимальный рабочий объем двигателя куб.см / об 182
Степень сжатия 9.3
Эффективность генерации MCLG% 95,2
Максимальная сила тяги генератора N 3200

9014 Длина шатуна

Компоненты Параметры Значение

Воздухоочиститель Общий объем 3.1 л
Дроссельная заслонка Угол дроссельной заслонки 18,5 °
Цилиндр Диаметр цилиндра 102 мм
Ход 12614
Степень сжатия 9,3
Впускной клапан Открытие клапана 48,5 мс
Закрытие клапана 50,2 мс
19 Выпускной клапан Открытие клапана.1 мс
Клапан закрыт 23,4 мс
Catalyst Объем монолита 0,3 л
Граница системы 1 Давление 1,1 бар ° C
Граница системы 2 Давление 1,0 бар
Температура газа 126,85 ° C

4.Проверка модели

Моделируется траектория свободного поршня FPEG во время четырехтактного рабочего цикла. Как показано на рисунке 8, рабочий период четырехтактного двигателя со свободным поршнем составляет около 100 мс. Понятно, что перемещение поршня асимметрично, такты впуска и сжатия короче тактов расширения и выпуска. Степень расширения больше, чем степень сжатия, и более длительное расширение и выхлоп полезны для достижения полного расширения и уменьшения остаточного газа.Следовательно, характеристики FPEG отличаются от характеристик обычного двигателя, и он имеет большое преимущество с точки зрения топливной экономичности и образования выбросов.


Проведен четырехтактный эксперимент в системе FPEG для проверки имитационной модели. Как видно из рисунка 9, он сравнивает давление в цилиндре по данным испытаний с результатами моделирования во время четырехтактного рабочего цикла, которые получают датчиком давления в цилиндре. По сравнению с экспериментальными результатами, кривые давления в цилиндре испытания и моделирования совпадают; максимальное отклонение изменения давления в цилиндре — 5.2%, а среднее отклонение — 1,5%. В таблице 3 приведены результаты сравнения производительности FPEG. Таким образом, результаты моделирования соответствуют требованиям точности, и мы полагаем, что имитационная модель является точной моделью FPEG. Кроме того, в системе FPEG время начала сгорания составляет -3,1 мс, а продолжительность сгорания составляет 6,4 мс, что определяется результатами экспериментов с четырехтактным двигателем.


Эффективная мощность75

Название Агрегат Тест Моделирование

9014
4,82
Пиковое давление бар 21,02 21,40
Содержание остаточного газа 0,0809 0,0769
−3,1
Продолжительность горения мс 6,4 6,4

5.Оптимизация двухтактного термодинамического цикла

Смоделированная кривая движения свободного поршня во время двухтактного рабочего цикла показана на рисунке 10. Как видно, рабочий период двухтактного двигателя со свободным поршнем составляет около 43 мс. . На основе перекрытия клапанов и опережающего зажигания получается длинный такт впуска и выпуска при коротком такте сжатия и расширения. Эта характеристика показывает, что двухтактный термодинамический цикл ГПЭГ может быть оптимизирован путем изменения параметров управления газообменом и горением.


В этом разделе проверенный режим используется для моделирования двухтактного термодинамического цикла FPEG. При неизменных других параметрах управления модель моделируется при различных давлениях всасываемого воздуха, времени впрыска, времени зажигания, времени впускных клапанов и выпускных клапанов. Затем анализируется влияние термодинамического цикла и оптимизируются термодинамические характеристики FPEG.

5.1. Влияние повышения давления на впуске

Исследования показывают, что улучшение давления воздуха на впуске может обеспечить хорошее состояние сгорания.Модель FPEG моделируется при разном давлении всасываемого воздуха, а кривые изменения выглядят следующим образом. Указанная мощность, коэффициент остаточного газа, указанный удельный расход топлива (ISFC) и расход на всасывании являются основными оценочными показателями, и их можно найти в результатах моделирования. В соответствии с диапазоном давления реального турбонагнетателя диапазон давления на впуске составляет от 1,0 бар до 1,4 бара.

На рис. 11 показано, что указанная мощность и расход на всасывании постепенно увеличиваются, коэффициент остаточного газа постепенно снижается в диапазоне давления на впуске, а четыре оценочных индекса изменяются более явно в диапазоне 1.0 бар ~ 1,1 бар. Результаты показывают, что двухтактный двигатель со свободным поршнем не может обеспечить достаточный поток всасываемого воздуха для завершения рабочего цикла при нормальном давлении всасываемого воздуха. Это связано с тем, что при повышении давления всасываемого воздуха в цилиндр может поступать больше топливной смеси. Кроме того, более высокое давление всасываемого воздуха обеспечивало большое давление сжатия. Следовательно, увеличение давления всасываемого воздуха приводит к улучшению указанной мощности и экономии топлива.

5.2. Влияние времени впрыска

В системе сгорания одномерной имитационной модели параметры времени впрыска могут быть изменены, чтобы имитировать его влияние на производительность FPEG.Как видно, на рисунке 12 показано влияние разного времени впрыска. Среднее эффективное давление (MEP) — это эффективная мощность, генерируемая рабочим объемом на единицу цилиндра, и это важный показатель для оценки энергетических характеристик.

Диапазон времени впрыска разделен на три части: 0 мс ~ 7,2 мс, 7,2 мс ~ 14,4 мс и 14,4 ~ 21,6 мс. Во-первых, указанная мощность и MEP поддерживаются на низком уровне колебаний, а коэффициент остаточного газа остается неизменным на более высоком уровне.Поскольку процесс впрыска топлива завершился до открытия впускного клапана, большая часть топливной смеси не попала в камеру сгорания. Во-вторых, время впрыска и процесс всасывания согласованы, а термодинамические характеристики FPEG значительно улучшились, что позволило улучшить указанную мощность и эффективность вентиляции. Наконец, по сравнению с первой частью, все значения производительности аналогичны в диапазоне от 14,4 мс до 21,6 мс. Это связано с тем, что время впрыска оставляет позади процесс впуска, и часть топливной смеси не может быть использована в процессе сгорания.Как видно, оптимальные характеристики двигателя достигаются в момент 14,4 мс.

5.3. Влияние момента зажигания

Эффект опережающего зажигания заключается в том, чтобы начать горение перед тем, как поршень переместится в ВМТ. Когда поршень движется в ВМТ и входит в такт расширения, смесь рабочего тела полностью сгорает и выделяет больше энергии. Следовательно, диапазон времени зажигания составляет от -5,4 мс до 0 мс, а результаты моделирования показаны на рисунке 13.

В диапазоне от -3 мс до -5.4 мс, указанная мощность и MEP постепенно уменьшаются, а ISCF постепенно увеличивается. Это происходит из-за преждевременного воспламенения смеси и расширения горящего газа. Часть энергии мешает поршню двигаться вверх до ВМТ. Затем указанная мощность и MEP постепенно уменьшались с разным временем зажигания, а ISFC постепенно увеличивалась в диапазоне от -3 мс до 0 мс. Из-за задержки времени воспламенения поршень движется вниз до того, как смесь начнет гореть. Это приводит к увеличению объема цилиндра и снижению давления сгорания, а термодинамические характеристики FPEG находятся в состоянии высокого расхода топлива и низкой выходной мощности.Кроме того, оптимальные характеристики двигателя достигаются при −3 мс.

5.4. Влияние времени впускного клапана

При условии сохранения неизменными высоты подъема клапана и продолжительности открытия клапана, модель FPEG моделируется при разном времени открытия впускного клапана. Как показано на рисунке 14, при времени открытия впуска от 4,8 мс до 16,8 мс, указанная мощность и расход на всасывании показывают общую тенденцию сначала к увеличению, затем к падению и получают максимальное значение на уровне 10,8 мс. Между тем характеристики коэффициента остаточного газа и ISFC противоречат закону изменения всасываемого потока.

Когда время открытия впуска находится в диапазоне от 4,8 до 10,8 мс, впускной и выпускной клапаны открываются одновременно. Он создает продувочный поток в цилиндре, что делает процесс газообмена более полным и снижает количество остаточного газа. После этого время открытия впускного клапана опаздывает, и часть топливной смеси не попадает в цилиндр, поэтому процесс сгорания оказывается недостаточным, а термодинамические характеристики значительно ухудшаются. Из-за фиксированного времени работы клапана оптимальный период открытия впускного клапана от 10.От 8 мс до 24,5 мс.

5.5. Влияние времени работы выпускного клапана

Как показано на Рисунке 15, при изменении времени открытия выпускного клапана с 1,2 мс до 10,8 мс указанная мощность и расход выхлопных газов показывают общую тенденцию сначала к увеличению, а затем к снижению. Поток выхлопных газов увеличивается в диапазоне от 1,2 мс до 3,6 мс, а затем постепенно уменьшается, и он получает значение максимальной скоростью 3,6 мс. Указанная мощность, коэффициент остаточного газа и ISCF улучшились с увеличением потока выхлопных газов.

Результаты показывают, что преждевременное открытие выпускного клапана приводит к недостаточному процессу сгорания и снижению мощности и экономии топлива FPEG.При задержке открытия выпускного клапана остаточный газ в цилиндре не может быть удален полностью, и это повлияет на следующий цикл сгорания. Следовательно, правильное время открытия выпускного клапана значительно улучшает характеристики FPEG, а оптимальный период открытия выпускного клапана составляет от 3,6 мс до 23,1 мс.

5.6. Оптимизированная производительность FPEG

В соответствии с приведенными выше результатами моделирования мы внесли корректировки в управляющие параметры модели FPEG.Настраиваемые параметры включают время зажигания, время впрыска и время открытия клапана. Уточненная модель моделировалась на рабочей частоте 25 Гц, а именно, 25 возвратно-поступательных циклов в секунду. Оптимизированные результаты показывают, что указанный тепловой КПД составляет около 27,6%, указанная мощность составляет 6,7 кВт, а ISFC составляет 481,6 г / кВтч. Конкретные результаты термодинамических характеристик FPEG для двухтактного термодинамического цикла показаны в Таблице 4.

901 Мощность

Элементы Единица Значение

кВт 6.7
Номинальный тепловой КПД% 27,6
Указанный удельный расход топлива (ISCF) г / кВтч 481,6
Остаточное содержание газа 14 0,24 Среднее эффективное давление бар 2,6
Масса на всасывании за цикл г 0,671

6.Выводы

В работе представлена ​​оптимизация термодинамических характеристик двухтактного одноцилиндрового FPEG. Создана комплексная одномерная модель потока FPEG, и точность модели подтверждена экспериментальными результатами, протестированными на прототипе FPEG. Результаты экспериментов с четырехтактным двигателем показали эффективную мощность 4,75 кВт и максимальное давление 21,02 бар. На этой основе был смоделирован и оптимизирован двухтактный термодинамический цикл.Результаты моделирования показывают, что указанный тепловой КПД ППЭГ составляет около 27,6%, а указанная мощность 6,7 кВт может быть достигнута на рабочей частоте 25 Гц. Из этих результатов мы заключаем, что термодинамические характеристики высокого КПД и энергосбережения для системы FPEG могут быть значительно улучшены за счет оптимизации двухтактного термодинамического цикла.

В будущем будет проведено экспериментальное испытание для проверки результатов моделирования двухтактной термодинамической оптимизации цикла в этой статье.Кроме того, двухтактный генератор с свободнопоршневым двигателем будет исследован с помощью многоцелевой интеллектуальной оптимизации для получения более высокой выходной мощности и эффективного КПД.

Доступность данных

Данные, использованные для подтверждения результатов этого исследования, можно получить у соответствующего автора по запросу.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов в отношении публикации этой статьи.

Благодарности

Авторы выражают признательность Национальному фонду естественных наук Китая (грант №51875290).

Анимированные двигатели — двухтактный

Двухтактный двигатель

В двухтактном двигателе используются как картер, так и цилиндр для достижения всех элементов цикла Отто всего за два хода поршня.

Впуск

Топливо-воздушная смесь сначала всасывается в картер за счет вакуума. который создается во время движения поршня вверх. Иллюстрированный двигатель оснащен тарельчатым впускным клапаном; однако многие двигатели используют поворотная величина, встроенная в коленчатый вал.

Компрессия картера

Во время хода вниз тарельчатый клапан принудительно закрывается повышенное давление в картере. Затем топливная смесь сжимается в картер в течение оставшейся части хода.

передача / выхлоп

Ближе к концу хода поршень открывает впускное отверстие, выход сжатой топливно-воздушной смеси из картера вокруг поршня в главный цилиндр. Это вытесняет выхлопные газы. выхлопное отверстие, обычно расположенное на противоположной стороне цилиндр.К сожалению, часть свежей топливной смеси обычно тоже исключен.

Сжатие

Затем поршень поднимается под действием импульса маховика и сжимает топливная смесь. (В то же время происходит еще один такт впуска под поршнем).

Мощность

В верхней части такта свеча зажигания воспламеняет топливную смесь. В горящее топливо расширяется, перемещая поршень вниз, чтобы завершить цикл. (При этом еще один ход сжатия картера составляет происходит под поршнем.)


Поскольку двухтактный двигатель срабатывает при каждом обороте коленчатого вала, двухтактный двигатель обычно более мощный, чем четырехтактный. эквивалентного размера. Это в сочетании с их более легкими, простыми конструкция, делает двухтактный двигатель популярным в бензопилах, линейных триммеры, подвесные моторы, снегоходы, водные мотоциклы, легкие мотоциклы и модели самолетов.

К сожалению, большинство двухтактных двигателей неэффективны и ужасны. загрязнителей из-за количества неизрасходованного топлива, которое выходит через выхлопное отверстие.

Высокоэффективный двухтактный двигатель внутреннего сгорания

Долговременное хранение электроэнергии, произведенной из переменных возобновляемых источников энергии, может быть достигнуто путем преобразования электричества в химическую энергию горючего топлива. Процесс конверсии обычно включает электролиз воды для получения водорода, который может храниться непосредственно в виде газа под высоким давлением или преобразовываться в более энергоемкое топливо, такое как аммиак. В любом случае топливо можно хранить в течение нескольких дней, недель или даже месяцев, а затем, когда потребуется его энергия, его можно сжечь в тепловом двигателе.Тепловой двигатель может использоваться для приведения в действие электрического генератора, тем самым регенерируя часть электроэнергии, первоначально потребляемой в процессе электролиза.

Непрерывным результатом этих процессов электролиза / хранения / реконверсии (ESR) является эффективное хранение электроэнергии в течение длительных периодов времени, даже от сезона к сезону, что требуется для электроэнергии, вырабатываемой из солнечного ресурса. За последнее десятилетие эффективность технологий электролиза повысилась до такой степени, что электроэнергия, произведенная из возобновляемых источников и сохраненная с помощью процессов ESR, является конкурентоспособной по стоимости в некоторых отдаленных районах с электричеством, произведенным из ископаемого топлива.Однако неэффективность, связанная с доступными тепловыми двигателями, серьезно ограничила диапазон энергетических рынков, которые можно обслуживать с экономической точки зрения.

В этой статье обсуждается конструкция высокоэффективного двухтактного двигателя внутреннего сгорания, который может значительно повысить сквозную эффективность циклов ESR, тем самым значительно расширив диапазон и разнообразие энергетических рынков, которые могут обслуживаться переменными энергоресурсами. . Двигатель достигает высоких уровней производительности за счет использования инновационно синхронизированной последовательности впрыска и воспламенения топлива и окислителя.Рабочий цикл двигателя не имеет процесса сжатия.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *