Работа инжекторного двигателя – Инжекторный двигатель: устройство, принцип работы, конструкция

Содержание

Принцип работы инжектора: как работает, устройство

Инжектор — это революция в автомобилестроении. Сам по себе механизм сложный и для максимальной производительности его работа должна быть хорошо отлажена. Инжекторная система подачи топлива в двигатель работает по средствам ЭБУ (электронный блок управления), который высчитывает параметры топливной смеси перед ее подачей в цилиндры и управляет подачей напряжения на катушку зажигания для создания искры. Инжекторные агрегаты сместили с производства карбюраторные моторы.

В карбюраторных устройствах задачу подачи исполняет механический эмулятор, что не совсем удобно, потому что его система не способна сформировывать оптимальную смесь при низких температурах, оборотах и старте двигателя. Использование компьютерного блока дало возможность максимально точно осуществлять расчет параметров, и беспрепятственно на любых оборотах и температуре подавать топливо, соблюдая при этом экологические стандарты. Минус наличия ЭБУ в том, что если возникнут проблемы, например, слет прошивки, то мотор начнет работать либо с перебоями, либо вовсе откажется функционировать.

Инжекторный двигатель

Вообще, инжекторный двигатель работает по тому же принципу, что и дизельный. Отличие только в устройстве зажигания, которое придает ему мощности на 10% больше чем у карбюраторного мотора, что не так уж и много. О плюсах и минусах системы пусть спорят профессионалы, но знать устройство инжектора или хотя бы иметь представление о его строении обязан каждый водитель, планирующий ремонтировать двигатель собственноручно. Также со знаниями инжекторного узла, вас не смогут обмануть на СТО недобросовестные работники.

История возникновения инжекторной системы впрыска

Инжектор по сути, форсунка, выступающая распрыскивателем горючего в двигателях. Изготовлен первый инжекторный мотор был в 1916 году российскими конструкторами Стечкиным и Микулиным. Однако воплощена система впрыска топлива в автомобилестроении, была только

в 1951 году западногерманской компанией Bosch, которая наделила двухконтактный мотор незамысловатой механической конструкцией впрыска. Примерил на себя новинку микролитражный купе «700 Sport» компании Goliath из Бремена.

По прошествии трех лет задумку подхватил четырехконтактный мотор Mercedes-Benz 300 SL — легендарное купе «Крыло Чайки». Но, так как жестких экологических требований не было, то идея инжекторного впрыска была не востребована, а состав элементов сгорания двигателей не вызывал интереса. Главной задачей на тот момент было повысить мощность, поэтому состав смеси составлялся с расчетом избыточного содержания бензина. Таким образом, в продуктах сгорания, вообще, не было кислорода, а оставшееся несгоревшее горючие образовывало вредоносные газы посредством неполного сгорания.

Установлен инжекторный двигатель

Стремясь увеличить мощность, разработчики ставили на карбюраторы ускорительные насосы, заливавшие горючие в коллектор с каждым нажатием на педаль акселератора. Только

в конце 60 х-годов 20 века проблема загрязнения окружающей среды промышленными отходами стала ребром. Транспортные средства заняли лидирующую строчку среди загрязнителей. Было решено для нормальной жизнедеятельности кардинально перестроить конструкцию топливного аппарата. Тут-то и вспомнили за инжекторную систему, которая гораздо эффективнее обычных карбюраторов.
Так, в конце 70-го произошло массовое вытеснение карбюраторов инжекторными аналогами, превосходящими во много раз эксплуатационными характеристиками. Испытательной моделью выступил седан Rambler Rebel («Бунтарь») 1957 модельного года. После инжектор был включен в серийное производство всеми мировыми автопроизводителями.

Как работает инжектор?

Обычно он имеет в своей конструкции следующие составляющие:

  1. ЭБУ.
  2. Форсунки.
  3. Датчики
    .
  4. Бензонасос.
  5. Распределитель.
  6. Регуляторы давления.

Если описывать коротко принцип работы инжектора заключается в следующем:

  • на датчики поступают сигналы о работе системы;
  • после блок сопоставляет параметры и осуществляет управление системой;
  • затем идет подача электрического разряда на форсунки, под его натиском они открываются, впуская смесь из топливной магистрали во впускной коллектор.

    Схема инжекторного мотора

Электронный блок управления

Его задача беспрерывно анализировать поступающие параметры от датчиков и давать команды системами. Компьютер учитывает факторы внешней среды и особенности различных режимов работы двигателя, при которых происходит эксплуатация. В случае выявления несовпадений, центр подает команды исполнительным элементам для коррекции. ЭБУ также имеет систему диагностики. Когда случается сбой, она распознает возникшие неполадки, оповещая водителя индикатором «CHECK ENGINE». Вся информация о диагностических кодах и ошибках хранится в центральном блоке.

Различают 3 вида памяти:

  1. Однократное программируемое постоянное запоминающее устройство (ППЗУ). Хранит общую установку с последовательностью действий для управления системой. Располагается запоминающий чип в панели на плате блока, он легко сниматься и заменятся на новый. Информация здесь не меняется и при сбоях сети не стирается.
  2. Оперативное запоминающее устройство (ОЗУ). Выступает как временное хранилище «блокнот», где рассчитываются параметры и куда компьютер может вносить изменения. Микросхема располагается на печатной плате блока. Для ее работы постоянно нужна электрическая сеть, если питание не поступает, то все данные находящиеся во временном хранилище стираются.
  3. Электрически программируемое
    запоминающее устройство (ЭПЗУ). Временное хранилище данных и кодов-паролей противоугонной системы транспортного средства. Память не зависит от сети. Хранящиеся в ней коды нужны для сравнения с кодами иммобилайзера, если совпадения не произошло, то мотор не заведется.

    Первый тойотовский инжекторный двигатель M-E 1972 года

Расположение, классификация и маркировка форсунок

После разбора вопроса как работает инжектор, просмотрим поверхностно всю инжекторную систему. Инжекторная система, производит впрыск горючего во впускной коллектор и цилиндр мотора посредством форсунки, которая способна за секунду открываться и закрываться много раз. Система делится на два типа. Классификация зависит от расположения крепления форсунки, устройства ее работы и количества:

  1. Моновпрыск, иначе как центральный впрыск топлива Throttle body injection (TBI), работает посредством одной форсунки, подающей горючие в цилиндры мотора. Подача струи не синхронизирована ко времени открытия впускного клапана мотора. Одноточечный впрыск простой и мало содержит управляющей электроникой. Вся система TBI находится внутри впускного коллектора. Технология сегодня не популярна и почти не задействуется при производстве авто, так как не удовлетворяет нынешним требованиям.
  2. Распределительный впрыск топлива Multiport Fuel Injection (MFI) на сегодня востребован, потому что гораздо совершенен. Его суть в том, что каждая форсунка подает горючее индивидуально к каждому цилиндру. Крепится конструкция снаружи впускного коллектора. Сигналы синхронизированы с последовательностью зажигания двигателя. Этот тип впрыска сложнее по конструкции, однако, мощнее НА 7–10% и экономичнее предшественников.

    Сравнение карбюратора и инжектора

Есть несколько классификаций распределительного впрыска:

  • одновременный – работа всех форсунок синхронна, то есть впрыск идет сразу во все цилиндры;
  • попарно-параллельный – когда одна открывается перед впуском, а другая перед выпуском;
  • фазированный или двухстадийный режим – инжектор открывается только перед впуском. Дает возможность на малых оборотах, при резком нажатии на педаль акселератора увеличить момент двигателя. Впрыск проходит в два этапа.
  • непосредственный (впрыск на такте впуска) GDI (Gasoline Direct Injection) – струя идет сразу в камеру сгорания. Для моторов с таким впрыском требуется и более качественное топливо, где незначительное количество серы и других химических элементов. Мотор GDI способен исправно служить в режиме сгорания сверхобедненной топливовоздушной смеси. Меньшее содержание воздуха делает состав менее воспламеняемым. Горючее внутри цилиндра прибывает как облако, пребывающее рядом со свечей зажигания. Смесь схожа с стехиометрическим составом, который легко воспламеняется.

Инжекторные форсунки имеют разный способ подачи струи:

  1. Электрогидравлический. Работает посредством разницы давления дизеля на поршень и форсунку. Когда клапан обесточен, иглу форсунки жидкостью придавливает к седлу. А если клапан открывается, то открывается и дроссель, после чего осуществляется заполнение дизелем топливной магистрали. Во время этого давление на поршень снижается, а на игле ничего не происходит, что ее и поднимает в момент впрыска.

    Устройство инжектора

  2. Электромагнитный. На обмотку клапана поступает электрический разряд, контролируемый ЭБУ. В итоге возникает электромагнитное поле наравне со сдавливанием пружины. Поле притягивает иглу и освобождает сопло для подачи струи. Пружина возвращается в прежнее положение после рассеивания электромагнитного поля, отправляя иглу на свое место.
  3. Пьезоэлектрический. Самый продвинутый тип, применяется в дизельных агрегатах. Скорость его действий превышает предыдущие типы в четыре раза, помимо этого, количество впрыскиваемого топливо максимально выверено. Действия инжектора основаны на принципе гидравлики, работа осуществляется из-за разницы давления. Сначала игла находится на седле, потом ток растягивает пьезоэлемент, который начинает воздействовать на толкатель, чем открывает клапан для движения топлива в магистраль. Затем давление спадает, и игла подымается, вверх осуществляя впрыск.

Нейтрализатор/катализатор

Для сокращения выброса окисей углерода и азота, в инжектор был добавлен каталитический нейтрализатор. Он преобразует выделенные из газов углеводороды. Применяется на инжекторах лишь с обратной связью. Перед катализатором имеется датчик содержания кислорода в выхлопных газах, по-другому его называют как лямбда-зонд. Контроллер, получая информацию от датчика, вытягивает подачу топливной смеси до нормы. В нейтрализаторе есть керамические составляющие с микроканалами, где содержатся катализаторы:

  • два окислительных из платины и палладия;
  • один восстановительный из родия.

    Инжекторная топливная система

Нельзя чтобы мотор с нейтрализатором работал на этилированном бензине. Это выведет из строя не только нейтрализаторы, но и датчики концентрации кислорода.

Так как простых каталитических нейтрализаторов недостаточно, то используется рециркуляция отработавших газов. Она существенно убирает образовавшиеся оксиды азота. Помимо этого, для этих целей устанавливается дополнительный NO-катализатор, так как система EGR не способна создать полное удаление NOx. Есть два типа катализаторов для понижения выбросов NOx:

  1. Селективные. Не привередливы к качеству топлива.
  2. Накопительного типа. Гораздо эффективнее, но очень чувствительны к высокосернистым горючим, что нельзя сказать о селективных. Поэтому они обширно применяются на авто для стран с малым количеством серы в топливе.

Основные датчики

  1. Датчик положения коленчатого вала (Датчик Холла). Дает блоку знать, расположение поршней в цилиндрах. Суть работы в том, что находящееся на валу мотора зубчатое колесо двигается около магнита. Его зубья искажают магнитное поле, создавая импульсы в катушке. ЭБУ считывает эти импульсы и определяет положение коленвала. Если этот датчик вышел из строя, то до СТО доехать на своей машине не получится.
  2. Датчик расхода воздуха (ДРВ). Существует два вида таких датчиков, один измеряет массу другой объем вбираемого воздуха. ДМРВ производит замер и посылает в ЭБУ. В потоке есть нагревательный элемент, температура которого автоматически держится на нужном показателе. Чем тяжелее воздух, тем больший ток должен проходить через него, для поддержания оптимальной температуры. Потому ЭБУ по силе тока определяет массу всасываемого воздуха. Что касается датчика объёма (ДОРВ), то он устроен так. В потоке, где проходит забор воздуха, установлена перегородка, открывающаяся под натиском воздуха. ЭБУ определяет положение заслонки при помощи потенциометра. Во время неполадки параметры датчика не учитываются, а расчет происходит по показателям аварийной таблицы.

    ЭБУ инжектора

  3. Датчик положения дроссельной заслонки. Контролирует положение дроссельной заслонки, из-за чего ЭБУ может правильно сокращать или увеличивать расход горючего.
  4. Датчики кислорода (лямбда-зонд). Вычисляет количество кислорода в выхлопных газах. На его показаниях ЭБУ выявляет бедную смесь и вносит поправки.
  5. Датчик температуры охлаждающей жидкости. Дает понять компьютеру, когда мотор достиг нужной рабочей температуры. В момент аварии, параметры датчика игнорируеются, температура, берется из таблицы опираясь на время работы двигателя.
  6. Коллекторный датчик абсолютного давления (ДАД) Анализирует воздух и его количество во впускном коллекторе, этот показатель нужен для устанавливания количества проводимой энергии.
  7. Датчик напряжения. Смотрит за напряжением бортовой сети машины. По его показаниям контроллер может набавлять или, наоборот, уменьшать холостые обороты мотора.
  8. Датчик детонации. Представляет собой высокочастотный микрофон, улавливающий недопустимые звуковые вибрации в моторе. Получая аномальные звуки, контроллер производит автоматическое корректирование угла опережения.

Система подачи топлива

Узел включает в себя:

  • топливный насос;
  • топливный фильтр;
  • топливопроводы;
  • рампу;
  • форсунки;
  • регулятор давления топлива.

    Система подачи топлива

Рассмотрим, как работает бензонасос на инжекторе. Насос находится в топливном баке и подает бензин на рампу под давлением 3,3–3,5 Мпа, что обеспечивает качественный распыл горючего по цилиндрам. Если обороты мотора увеличиваются, заметно возрастает и аппетит, то есть для сохранения давления, в рампу нужно поставлять больше бензина. Поэтому бензонасос по оповещению контроллера начинает ускорять вращения. Вовремя, прохода бензина к топливной рампе, лишнее убирается регулятором давления и спускается назад в бензобак, поддерживая тем самым постоянное давление в рампе.

Топливный фильтр находится под капотом кузова за топливным баком, он вмонтирован между электробензонасосом и топливной рампой в подающую магистраль. Его конструкция не разбирается, она являет собой металлический корпус с бумажной фильтрующей установкой.
Есть прямой и обратный топливопровод. Первый нужен для топлива, идущего из модуля насоса в рампу. Второй возвращает излишки горючего после регулятора назад в бензобак. Рампа – полая планка, соединённая с форсунками, регулятором давления и штуцером контроля давления в системе. Установленный на ней регулятор контролирует давление внутри ее и во впускной трубе. Его конструкция содержит мембранный клапан с диафрагмой и пружину, поджатую к седлу.

Интересное по теме:

загрузка…

Facebook

Twitter

Вконтакте

Одноклассники

Google+

ktonaavto.ru

принцип работы, плюсы и минусы

Современный автомобильный мир ушел на несколько шагов вперед. И это не удивительно, ведь только так можно оставаться на плаву и получать хорошую прибыль. Особенно это касается силовых установок, которые устанавливаются на автомобили. Вы наверняка слышали такое словосочетание, как инжекторный двигатель. По сути, это всем известный карбюратор, только немного видоизмененный.

В нем также происходит процесс сгорания топлива и выделение мощности. Единственное отличие инжектора заключается в новой инжекторной системе подачи топливовоздушной смеси.

История

Многие знают, что первая система по образованию топливовоздушной смеси называлась карбюратор.

Она позволяет подавать топливо непосредственно в каждый цилиндр автомобиля и приводить его в движение. Что касается расположения, то изначально карбюратор устанавливался перед впускным коллектором и готовил качественную смесь.

С некоторым временем потребности современных водителей и конструкторов возросли в несколько раз. Из-за этого система не могла выдавать того желаемого результата, который хотели видеть все. Особенно это касается кораблестроения и самолетостроения. Дело в том, что в этих отраслях нужна огромная мощность и высокий КПД.

В результате этого конструкторы придумали совершенно новую систему, которая немного походила на дизельный двигатель, но имела стандартные свечи зажигания. Все это произошло в начале 40-х годов, именно в это время были сконструированы первые инжекторные двигатели.

Данный скачок позволил получить желаемый результат по мощности, но немного не подходил под экологическую безопасность. В результате, разработки пришлось на время прекратить до начала 70-х годов. Именно в это время американские конструкторы решили возродить подачу топлива непосредственно в цилиндры двигателя и сделать более усовершенствованную систему.

Устройство

В современных инжекторных двигателях топливо подается не самотеком, а при помощи небольшой системы, под названием форсунка.

Ее работа основана на считывании всевозможных датчиков, которые располагаются в двигателе. Благодаря этому топливовоздушная смесь дозируется небольшими порциями и подается именно в тот момент, когда это необходимо.

Что касается самого управления, то все держится на простом блоке управления, так называемом компьютере. Именно он и раздает небольшие команды каждой форсунке.

Инжекторная система имеет следующие компоненты:

  1. Топливная форсунка;
  2. Топливная рампа;
  3. Насос;
  4. Сам блок управления;
  5. И небольшая система датчиков.

Подробнее о каждом компоненте:

  • Топливная форсунка является основным компонентом, который и называют инжектором. Она позволяет своевременно подавать топливо и распылять его непосредственно в каждый цилиндр. В основе форсунки лежит простой корпус и электромагнитный клапан, который и осуществляет процесс открытия и закрытия форсунки. Что касается самого распыления, то оно происходит через специальное отверстие, управляемое клапаном.
  • Топливную рампу можно найти в любом современном инжекторном двигателе. Ее главное предназначение состоит в подводе топлива ко всем форсункам. Если говорить просто, то она соединяет все форсунки в единое целое.
  • Что касается топливного насоса, то он просто подает топливовоздушную смесь под давлением, сравнимую с давлением в несколько атмосфер. Без него бы топливо подавалось просто самотеком, как и в карбюраторном двигателе.
  • Мозгом системы является блок управления, который и отдает команды всем форсункам. По сути, это небольшой микроконтроллер, соединенный с большим количеством датчиков, форсунками, топливным насосом, системой зажигания, регулятором холостого хода и другими системами. Его главная задача состоит в сборе всей информации по состоянию двигателя и распределении топлива.
  • Датчики отвечают за измерение основных параметров силовой установки в реальном времени. В основном это расход воздуха, расположение коленвала, образование детонации в цилиндрах, температура, скорость транспортного средства и другое. Также можно встретить датчики, которые определяют включен ли кондиционер, ровная ли дорога и как располагается распределительный вал.

Принцип работы

  1. В силовом агрегате топливная смесь подготавливается вне камеры сгорания при помощи специального устройства. В результате движения поршня вниз определенное количество топлива всасывается в камеру сгорания.
  2. Далее идет основной процесс, так называемый рабочий ход. В это время происходит сжимание топлива и поджигание при помощи искры.
  3. В итоге все топливо сгорает и выделяется огромное количество тепла, которое идет на мощность инжекторного двигателя.
  4. В конце такта поршень движется вверх и открывается выпускной клапан, который и выводит отработавшие газы. Далее приоткрывается впускной клапан, и новая порция топлива поступает в цилиндр.

Данный процесс происходит в течение долгого времени, пока двигатель работает. Специалисты называют такой газообмен четырехтактным. То есть все это происходит за четыре такта:

  1. Впуск;
  2. Сжатие;
  3. Сгорание;
  4. Выпуск.

Чтобы совершить один такой цикл требуется два оборота коленвала. Чтобы потери мощности были минимальны, конструкторы придумали многоцилиндровые системы. Они позволяют выдавать огромное количество тепла и мощности.

В современном мире большую популярность получил четырехтактный инжекторный двигатель, что неудивительно. Дело в том, что он отличается не только техническими характеристиками, но и самими габаритами. В основе данной системы лежит порядок работы цилиндров.

Режимы работы

Сейчас можно встретить восемь режимов работы силового агрегата:

  1. При холодном пуске топливная смесь очень сильно обедняется. Это случается из-за того, что топливо очень плохо смешивается с воздухом. В результате не происходит того испарения, которое нужно. Такой способ работы двигателя очень сильно вредит деталям. То есть большое количество топлива оседает на стенках цилиндра и выпускных труб;
  2. Если вы заводите авто при низкой температуре, то на начальном этапе требуется очень обогащенная смесь. Для этого нужно подавать большее количество топлива, пока температура в камере сгорания не повысится до нужного значения;
  3. После пуска идет процесс прогрева инжекторного двигателя. Вы знаете, что во время пуска в мороз смесь очень бедная, образуется некая топливная пленка в выпускной трубе. Она исчезает только после достижения очень высокой температуры. В связи с этим топливную смесь нужно очень сильно обогащать;
  4. При частичной нагрузке необходимо поддерживать определенный состав топливовоздушной смеси. Если двигатель инжекторный не оснащен нейтрализатором, то обогащенность должна быть в пределах 1,05 – 1,2;
  5. При полной нагрузке дроссельная заслонка полностью открыта. Поступает большое количество воздуха, что очень хорошо. В этом режиме достигается максимальная мощность и крутящий момент;
  6. Во время ускорения заслона то открывается, то закрывается. В результате этого смесь кратковременно обедняется и происходит ограничение подачи топлива. Для предотвращения такого явления обогащение должно быть меньше 1;
  7. В холостом режиме происходит замедление, автомобиль двигается по инерции. В этом случае подача топлива полностью перекрывается;
  8. Если происходит увеличение высоты, то плотность воздуха уменьшается. Из этого следует, что двигаться в горах очень сложно, топливная смесь будет очень обогащена. Это может привести к трудному пуску силового агрегата и увеличению расхода топлива.

Преимущества и недостатки

Инжектор получил огромную популярность в современном мире. Это обусловлено следующими плюсами:

  1. Режим работы меняется автоматически, без использования человеческого фактора;
  2. Полностью отсутствует необходимость в ручной настройке;
  3. Двигатель очень экономичный;
  4. Полностью соответствует всем экологическим нормам;
  5. Очень легко запускать в любую погоду, нет потери мощности.

Кончено, без недостатков никуда. О них тоже стоит рассказать:

  1. Довольно высокая стоимость и обслуживание;
  2. Многие детали непригодны к ремонту. То есть их придется полностью выкидывать и менять на новые;
  3. Производить ремонт и обслуживание в домашних условиях практически невозможно. Для этого требуется специальное оборудование и опыт;
  4. Двигатель очень зависим от напряжения сети.

Типы инжекторной системы

Сейчас можно встретить три типа:

  1. Одноточечный впрыск;
  2. Многоточечный впрыск;
  3. Непосредственный впрыск.

Первый является самым простым и очень распространённым. Он не очень сильно начинен электроникой, что приводит к меньшему эффекту. Большим недостатком такой системы является то, что некая часть топлива теряется во время впрыска. То есть топливная смесь подается через форсунку во впускной коллектор, где происходит распределение по цилиндрам.

Следом идет многоточечный впрыск, который позволяет подавать топливо индивидуально в каждый цилиндр. Благодаря этому у вас не будет возникать вопрос: нужно ли прогревать инжекторный двигатель. Что касается самого распределения, то он мощнее и экономичнее. По многочисленным тестам можно увидеть, что мощность увеличивается на 7 процентов. К основным преимуществам можно отнести автоматическую настройку подачи топлива и впрыскивание вблизи клапана.

Непосредственный впрыск используется во многих современных автомобилях. Его особенность состоит в том, что подача топлива происходит непосредственно в каждый цилиндр. Ни одной капли смеси не будет расходоваться впустую. Если у вас возникает вопрос надо ли прогревать двигатель, то ответ очень простой. Это зависит от самого производителя и его рекомендаций. Некоторые рекомендуют прогревать силовой агрегат не очень долго, чтобы не навредить всем деталям. Каждый должен сам ответить на вопрос, надо ли ему прогревать двигатель, изучив рекомендации к своему авто.

dvigatels.ru

Устройство инжектора и принцип работы инжектора на автомобилях

На сегодняшний день инжекторный (или, говоря по-научному, впрысковый) двигатель практически полностью заменил устаревшие карбюраторные двигатели. Инжекторный двигатель существенно улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива).

Содержание статьи:

Инжекторные системы подачи топлива имеют перед карбюраторными следующие основные преимущества:

  • Точное дозирование топлива и, следовательно, более экономный его расход;
  • Снижение токсичности выхлопных газов. Достигается за счет оптимальности топливно-воздушной смеси и применения датчиков параметров выхлопных газов;
  • Увеличение мощности двигателя примерно на 7-10% за счет улучшения наполнения цилиндров, оптимальной установки угла опережения зажигания, соответствующего рабочему режиму двигателя;
  • Улучшение динамических свойств автомобиля. Система впрыска незамедлительно реагирует на любые изменения нагрузки, корректируя параметры топливно-воздушной смеси;
  • Легкость пуска независимо от погодных условий.

Виды инжекторных систем

Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электрические элементы, способствовавшие лучшей работе мотора.

Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.

Всего существует 3 типа инжекторных систем, различающихся по типу подачи топлива:

  1. Центральная;
  2. Распределенная;
  3. Непосредственная.

Центральная (моновпрыск) инжекторная система

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

Распределенная (мультивпрыск) инжекторная система

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У этого инжектора топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

Система непосредственного впрыска

Система непосредственного впрыска – разновидность распределенной и на данный момент самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она очень сложная по конструкции и очень требовательна к качеству бензина.

Виды электронных форсунок

Существует классификация электронных форсунок, основывающихся на способе впрыска топлива. Выделяют такие три разновидности:

  • Электромагнитная. Зачастую характерна для бензиновых ДВС (и с прямым впрыском тоже). Конструкцию нельзя назвать очень сложной, а основными составляющими её частями выступают клапан с иголкой (электромагнитный), сопло. Контроль за работой указанной форсунки выполняется с помощью ЭБУ, обеспечивающего на обмотке клапана напряжение в наиболее подходящий для этого момент.
  • Электрогидравлическая. По большей части используют на дизельных движках. Являет собой электромагнитный клапан, дополненный камерой управления, а также сливным и впускным дросселями. Рабочий принцип этой разновидности форсунок основывается на участии давления самой топливной смеси в любой момент работы. За деятельностью электрогидравлической форсунки следит ЭБУ, именно он отправляет рабочие сигналы электромагнитному клапану.
  • Пьезоэлектрическая. Считается наиболее удачным устройством среди всех представленных, но может работать только на дизельных агрегатах с системой впрыска Common Rail. Основное преимущество этого типа — быстрота реакции, что гарантирует многократную подачу топлива за один полный цикл. В основе работы пьезоэлемента — гидравлический принцип действия (как и в предыдущем варианте), предусматривающий срабатывание поршня толкателя за счёт увеличения длины пъезоэлемента под воздействием электрического сигнала ЭБУ. Количество подаваемого за один раз топлива определяется продолжительностью такого воздействия и давлением топливной смеси в топливной рампе.

Принцип работы инжектора

Принцип работы инжектора на автомобилях можно условно поделить на 2 части — механическую составляющую и электронную.

К механической части инжектора относится:
  • топливный бак;
  • электрический бензонасос;
  • фильтр очистки бензина;
  • топливопроводы высокого давления;
  • топливная рампа;
  • форсунки;
  • дроссельный узел;
  • воздушный фильтр.

Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.

Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.

Далее в систему установлен топливный фильтр, обеспечивающий очистку бензина от сторонних примесей. Поскольку бензин находится под давлением, то передвигается он по топливопроводу высокого давления.

Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенную со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.

Современная форсунка – электромагнитная, в ее основе лежит соленоид. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.

С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.

Основным элементом электронной части является электронный блок, состоящий из контроллера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.

Для своей работы ЭБУ использует показания датчиков:

  • Лямбда-зонд, устанавливается в выпускной системе авто, определяет остатки несгоревшего воздуха в выхлопных газах;
  • Датчик массового расхода воздуха (ДМРВ), расположен в корпусе воздушного фильтрующего элемента, определяет количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами;
  • Датчик положения дроссельной заслонки (ДПДЗ), установлен в дроссельном узле, подает сигнал о положении педали акселератора;
  • Датчик температуры силовой установки, располагается возле термостата, регулирует состав смеси в зависимости от температуры мотора;
  • Датчик положения коленчатого вала (ДПКВ), установлен возле шкива коленчатого вала;
  • Датчик детонации, расположен на блоке цилиндров;
  • Датчик скорости, установлен на коробке передач;
  • Датчик фаз,предназначен для определения углового положения распредвала, установлен в головке блока.

Элекробензонасос заполняет всю систему топливом. Контролер получает показания от всех датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания двигателя так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.

На основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.

При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.

Преимущества инжектора и его недостатки

Если бы в этой системе не было преимуществ, инжекторы не получили бы столь широкое распространение. Надежность инжектора многие могут оспорить, ведь автомобилисты нередко сталкиваются с проблемами и неизлечимыми болезнями системы. Тем не менее, в технологии намного больше плюсов, которые привлекают покупателей и дарят определенные выгоды в поездке.

+ Преимущества— Недостатки
реальное понижение расхода топлива — инжектор может экономить, благодаря интеллектуальному управлению подачей топлива;чистка форсунок — если вы заливаете не слишком качественный бензин или не меняете вовремя фильтры топлива, форсунки будут забиваться и перестанут распылять бензин;
полное сгорание бензина — при правильных настройках инжектор обеспечивает полное сгорание топлива и определенную интенсивность поездки;прошивка «мозгов» в нужных режимах — на старых машинах иногда получается достичь невероятных результатов от перепрошивки, ведь технологии движутся вперед;
более выразительная динамика двигателя — водителю не приходится долгое время ожидать реакции при нажатии педали газа;замена бортового компьютера на более функциональный вариант ЭБУ для вашей модели автомобиля с подходящими настройками;
возможность смены прошивки — с помощью простой процедуры чип-тюнинга можно полностью изменить параметры авто;регулярная смена фильтров, как воздушного, так и топливного, с целью обеспечения нормальной работы инжектора;
технологичность и современность — машина с инжектором зачастую выбрасывает в атмосферу значительно меньше вредных веществ;использование качественного топлива в соответствии с предписанными производителем нормами и подходящим октановым числом;
устойчивая работа в любых условиях — для хорошей работы инжектора не требуется ручное управление заслонкой воздуха, двигатель хорошо заводится в мороз.регулярный сервис, своевременное обращение внимания на определенные недостатки работы автомобиля.

Несмотря на то, что инжектор дороже в обслуживании и более прихотлив к качеству бензина, его надежность и возможность широкой настройки параметров опережает на сотни шагов вперед карбюратор. В конце концов, за определенный пробег два типа мотора могут выйти одинаково в цене, только карбюратору нужно будет чаще уделять внимание, а инжектор сделать один раз и надолго.

И напоследок представляем вашему вниманию видео для более полного понимания принципа работы инжектора.

wikers.ru

Как работает инжекторный двигатель, принцип работы и преимущества

Вместо недавно повсеместно распространенных карбюраторных двигателей сейчас в основном используются инжекторные или впрысковые двигатели. Принцип их работы относительно прост и чрезвычайно экономичен. Однако, чтобы оценить преимущество инжектора, нужно сначала разобраться, почему они пришли на смену карбюраторам.

Карбюратор служит для подачи топлива во впускной коллектор, где оно уже смешивается с воздухом, а оттуда распределяется в камеры сгорания поршней. На подачу и смешивание топлива с воздухом израсходуются силы двигателя — до десяти процентов. Бензин всасывается в коллектор благодаря разнице в давлении в атмосфере и коллекторе, а чтобы поддерживать нужный уровень давления, как раз и расходуются ресурсы двигателя.

Кроме этого у карбюратора есть и масса других недостатков, например, когда через карбюратор проходит слишком много топлива, он просто физически не успевает направить его через узкую горловину в коллектор, в результате чего карбюратор начинает коптить. Если же топливо ниже определенного уровня, то двигатель попросту не тянет и глохнет — знакомая многим ситуация.

Принцип работы инжектора

Инжектор, в принципе, исполняет в двигателе ту же работу, что и карбюратор — подает топливо в камеры сгорания поршней. Однако происходит это не из-за всасывания бензина в коллектор, а методом впрыска топлива через форсунки непосредственно в камеры сгорания или в коллектор, и здесь же происходит смешивание топлива с воздухом.

Мощность инжекторных двигателей в среднем на 10 процентов выше, чем карбюраторных.

Инжекторы делятся на два основных вида:

  • моновпрыск — топливо подается через форсунки в коллекторе, а затем распределяется непосредственно в камеры сгорания;
  • распределенный впрыск — в головке цилиндров имеется форсунка для каждого поршня и смесь топлива с воздухом происходит в камере сгорания.

Инжекторные двигатели с распределенным впрыском являются самыми экономичными и мощными. Подача бензина происходит в момент открытия впускного клапана.

Преимущества инжектора

Система впрыска незамедлительно реагирует на любые изменения нагрузки на двигатель, как только увеличиваются обороты, впрыск производится чаще.

Автомобили с впрысковой системой легче заводятся, увеличивается динамический момент двигателя. Инжектор меньше реагирует на погодные условия, ему не требуется длительное прогревание при минусовых температурах воздуха.

Инжекторы более «дружелюбны» к экологии, уровень выбросов вредных веществ на 50-70 процентов ниже, чем у карбюратора.

Также они более экономны, поскольку топлива расходуется ровно столько, сколько нужно для бесперебойной работы двигателя в данный момент.

Недостатки впрысковых систем

К недостаткам можно отнести тот факт, что для нормальной работы двигателя требуется слаженная работа нескольких электронных датчиков, которые контролируют разные параметры и передают их на главный процессор бортового компьютера.

Высокие требования к чистоте топлива — узкие горлышки форсунок очень быстро будут забиваться, если пользоваться некачественным бензином.

Ремонт обходится очень дорого, а некоторые элементы вообще не подлежат восстановлению.

Как видим, ни одна система не лишена недостатков, однако преимуществ у инжектора значительно больше и именно из-за этого инжекторные двигатели пришли на замену карбюраторным.

Очень наглядное видео, в 3D, о принципе работы инжекоторного двигателя.

В данном видео вы узнаете о принципе работы системы питания инжекторного двигателя.

Загрузка…

Поделиться в социальных сетях

vodi.su

Инжекторный двигатель: устройство и принцип работы

Инжекторный двигатель представляет собой сложное устройство, обеспечивающее максимальную производительность автомобиля. В отличие от карбюраторных моделей, инжектор более экономичен и прост в обслуживании. Такие двигатели снабжены системой впрыскивания топлива, благодаря чему повышается мощность авто, а расходы топлива, наоборот, снижаются. Принцип работы инжекторного двигателя рассмотрен в нашей статье.

Принцип работы инжектора

Использование устройств с подобным алгоритмом действия поначалу коснулся авиастроительного производства. Ужесточение экологических норм привело к тому, что многие производители автомобилей отказались от применения карбюраторных двигателей, дальнейшее усовершенствование которых не приводило к желаемому результату.

Управление системой впрыскивания топлива проводится автоматизированной системой или бортовым компьютером. Проводится проверка состояния воздушно-топливной смеси и при ее соответствии происходит последовательный впуск топлива непосредственно во впускной клапан. Так обеспечивается более точный расход, а также быстрое сгорание топлива.

Устройство инжекторного двигателя можно охарактеризовать выполнением следующей последовательности:

  1. Нажатие на педаль газа открывает дроссельную заслонку. Это обеспечивает поступление воздуха в двигатель.
  2. Компьютер анализирует объем поступающего воздуха (в зависимости от усилия нажатия педали), после чего дает команду для подачи оптимального объема топлива.
  3. Специальный датчик контролирует количество поступающего в двигатель кислорода и его соответствие объему топлива.
  4. Топливный нанос перекачивает необходимый объем, после чего происходит его впрыск под давлением. В результате образуется мелкодисперсный туман, который быстро сгорает, приводя в движение механизмы вращения движущихся частей мотора.

Даже упрощенная схема показывает, насколько сложным является процесс движения автомобиля. Работа двигателя инжектора представляет собой замкнутую систему, в которой значение имеет каждая деталь. При выходе из строя любой составляющей, сигнал об этом поступает на электронную систему, после чего компьютер сам принимает решение о возможность дальнейшего движения. Это одновременно является достоинством и недостатком такого механизма, ведь при измененных условиях труда раскачать «вручную» систему не получиться, придется обращаться за квалифицированной помощью.

В чём особенности устройства?

Как показывает приведенная информация, главным отличием от более старых карбюраторных моделей является автоматическая подача топлива. Это ключевой момент, определяющий преимущества использования инжекторного устройства. Кроме того, существует еще несколько пунктов, которые выгодно отличают разницу между инжектором и карбюратором.

Ключевые отличия:

  • За счет того, что в карбюраторном двигателе создается определенный уровень давления, позволяющий засасывать воздушно-топливную смесь, а в инжекторе она подается автоматически, экономится мощность отдачи. Это позволяет в целом увеличить производительность авто на 10%. Показатель небольшой, но при длительной эксплуатации это существенная экономия топлива.
  • Быстрое реагирование на изменение условий движения. В инжекторе практически моментально происходит увеличение или уменьшение подачи топлива. Это позволяет маневрировать на дороге гораздо быстрей.
  • Система впрыскивания топлива обеспечивают легкий запуск двигателя.
  • Инжекторное устройство менее чувствительно к измененным погодным условиям. Расход топлива будет экономиться за счет того, что не требуется длительный прогрев двигателя.
  • Также такие устройства соответствуют более строгим современным экологическим стандартам. Уровень вредных выбросов, как правило, ниже на 50-70%, что в современном мире просто необходимо.

Среди главных недостатков — полная зависимость системы от исправности всех элементов. Инжектор снабжен несколькими датчиками, которые анализируют параметры топлива и условия эксплуатации. При выходе электроники из строя может понадобиться дорогостоящий ремонт.

Также при эксплуатации авто с инжекторным двигателем необходимо тщательней следить за состоянием используемого топлива. Форсунки, обеспечивающие подачу и распыление воздушно-топливной смеси, часто забиваются при использовании некачественного бензина. Вместе с тем, этот критерий очень сложно контролировать, особенно при длительной поездке, когда приходится заправляться на непроверенных точках. К недостаткам также можно отнести дорогостоящий ремонт в случае поломок. Самостоятельная починка электронной части на практике оказывается неудачным решением и может привести к необходимости восстановления системы, а это стоит немало.

ЭБУ

Главным центром управления инжектора является ЭБУ — электронный блок управления. В его задачи входит непосредственный контроль над работой всех систем, расходом и подачей топлива, а также сигнализирование о возможных неполадках в работе автомобиля. Отчеты о возможных сбоях в системе и алгоритм правильной работы храниться в специальных ячейках памяти,

В зависимости от модели, обычно есть три типа памяти устройства:

  1. ППЗУ требует однократного программирования, после чего сохраняются все алгоритмы действия для управления системой. Чип хранится на плате блока, при необходимости подлежит замене. Информация не подлежит удалению при сбоях сети, корректированию не поддается.
  2. ОЗУ — оперативное запоминающее устройство. Относится к временному хранилищу файлов. Также служит местом для расчета и анализа полученной информации. Располагается ОЗУ на печатной плате блока, при сбоях в сети информация стирается.
  3. ЭПЗУ представляет собой электрически программируемое запоминающее устройство. В основном используется для хранения информации для противоугонной системы (коды и пароли владельца). При нарушении ввода данных, двигатель не заведется. Такое хранилище не зависит от данных сети, информация сохраниться при любых ситуациях.

Форсунки

Заслонка, позволяющая контролировать впрыск топлива в систему, называется форсункой. Используется два типа системы подачи топлива. Моновпрыск сейчас практически не используется. При таком расположении форсунки топливо подается вне зависимости от открытия впускного клапана двигателя. К тому же, такое управление мало контролируется электроникой. Второй вид — распределительный впрыск представлен более совершенной системой. Благодаря нескольким форсункам, расположенным непосредственно вблизи каждого цилиндра, происходит направленный доступ горючего. Такая система четко регламентирует подачу топлива, а также увеличивает производительность двигателя. Тип управления инжектором также определяется ЭБУ и может быть точечным и последовательным.

Каталитический нейтрализатор

Этот элемент системы инжекторного двигателя предназначен для контроля выхлопов авто. Для его работы необходим датчик содержания кислорода в выхлопных газах (лямбда-зонд). При превышении допустимых значений проводится корректировка впрыска топлива, а также проводится процесс рециркуляции отработанных газов. Кроме того, в системе предусмотрены специальные катализаторы, уменьшающие содержание вредных примесей после сжигания топлива.

Датчики

Сложная система электронного управления подразумевает проверку и регулировку нескольких датчиков. При выходе из строя хотя бы одного элемента, ЭБУ выдает ошибку.

Основные датчики инжекторного двигателя:

  • ДМРВ (датчик массового расхода воздуха). Обеспечивает информацию о массе воздуха, поступающего в двигатель.
  • Лямбда-зонд (датчик кислорода). Определяет содержание кислорода в воздушно-топливной смеси. При помощи такой информации ЭБУ может выявить изменения топливной смеси и откорректировать ее значения.
  • Датчик дроссельной заслонки. Контролирует положение дроссельной заслонки, согласно которому блок управления может реагировать, увеличивая или сокращая подачу топлива по мере необходимости.
  • Датчик напряжения. Контролирует напряжение бортовой сети машины. Показания датчика при необходимости заставляют блок управления увеличить число оборотов холостого хода, если напряжение понижено (чаще всего при высоких электрических нагрузках).
  • Датчик контроля температуры охлаждающей жидкости. Дает сигнал о прогреве двигателя, после чего ЭБУ запускает работу других систем.
  • Датчик абсолютного давления. Следит за показателем давления во впускном коллекторе. От количества воздуха, которое поступает в двигатель, меняется потребление топливной смеси. Также этот показатель используется при определении производительности авто.
  • Датчик вращения коленвала. Скорость вращения коленчатого вала – один из определяющих факторов, которые влияют на расчет необходимой длительности импульса.

Преимущества инжектора уже оценили многие автолюбители. Снижается расход топлива, повышается производительность автомобиля, а также облегчается процесс его управления. Работа инжекторного двигателя обеспечивается непосредственным впрыском топлива в систему, на основании проанализированных данных о параметрах топливной смеси и режиме эксплуатации двигателя. Как работает инжекторный двигатель, его преимущества и недостатки по сравнению с карбюраторным устройством рассмотрены в нашей статье.

rulikoleso.ru

принцип работы и устройство инжекторных систем

Инжектор – это самый популярный электронно-механический узел в автомобилестроении. Устройство и принцип работы инжектора одновременно просты и сложны. Конечно, рядовому автовладельцу необязательно вникать в детали конструкции инжекторных систем и их программного обеспечения, но основные моменты знать не помешает.

Ниже мы расскажем о том, что такое инжектор, каков принцип его работы, и какие типы инжекторных форсунок чаще всего применяются на современных двигателях.

Рекомендуем посмотреть видео внизу страницы, на котором хорошо показано, как работает инжектор.

Такие вещи своими силами не ремонтируются, однако разбираться в устройстве инжектора стоит, хотя бы для того, чтобы не попасть впросак при оплате счета в автосервисе.

Что такое инжектор

Инжектор (англ. — Injector) — это специальная форсунка, установленная на двигатель внутреннего сгорания, либо являющаяся частью целой инжекторной системы. Она выполняет функцию распылителя топлива (жидкого или газообразного).

Впервые данную разработку внедрили в производство специалисты компании Bosch, когда оснастили ею купе Goliath 700 Sport с двухтактным двигателем. Произошло это в 1951 году, а всего через 3 года это же сделал Mercedes (Mercedes-Benz 300 SL). Однако поначалу такие комплектующие были довольно дороги, так что широкое применение инжекторов началось только в 70-х годах. Инжекторная система быстро вытеснила карбюраторы (особенно в Европе, Америке и Японии) и на сегодняшний день большинство моделей автомобилей оснащаются именно этим устройством.

Инжекторная система впрыска топлива (Fuel Injection System) отличается тем, что она осуществляет прямой впрыск непосредственно в цилиндры или же во впускной коллектор. Делается это при помощи все той же форсунки, которые, в свою очередь, делятся на 2 категории, отличающиеся местом монтажа инжектора, а также принципом его работы:

  1. Моновпрыск – его еще называют центральным впрыском топлива. В данном случае инжектор представляет собой только одну форсунку, которая подает топливо во все цилиндры двигателя. При таком подходе сам инжектор крепится прямо на впускном коллекторе. Стоит заметить, что на сегодняшний день данная схема работы устарела и практически не используется автопроизводителями.
  2. Распределенный впрыск – это значит, что для каждого отдельного цилиндра подведена своя форсунка.

Помимо этого, существует несколько типов распределенного впрыска:

  • прямой (непосредственный) – при нем топливо впрыскивается сразу в камеру сгорания мотора;
  • одновременный – в этом случае все форсунки инжектора работают синхронно, в один момент подавая топливо во все цилиндры;
  • попарно-параллельный – осуществляется открытие форсунок парной схемой. Т. е. первая открывается перед впуском, а вторая – перед выпуском. Однако такой подход имеет место только в случае запуска мотора, тогда как в движении реализуется фазированная схема;
  • фазированный впрыск – это означает, что каждая отдельная форсунка инжектора открывается именно перед впуском.

Типы инжекторных форсунок

Инжекторные форсунки различаются по способам впрыска:

  1. Электромагнитная;
  2. Электрогидравлическая;
  3. Пьезоэлектрическая.

Электромагнитная форсунка – довольно проста и ставится на бензиновые моторы (в большинстве случаев). Ею оснащают и двигатели с непосредственным впрыском. Ее главными составными частями являются оснащенный иглой электромагнитный клапан, а также сопло. В процессе функционирования на обмотку клапана подается электрический разряд. Частотой его подачи ведает специальный электронный блок управления. В ходе процесса происходит образование электромагнитного поля. Оно втягивает иглу, освобождает сопло и происходит впрыск, причем делается это одновременно со сжиманием пружины, которая разжимается после исчезновения электромагнитного поля и возвращает иглу в исходное положение.

Электрогидравлическая форсунка – применяется на дизельных моторах (в том числе с системой Common Rail). Основные элементы данной форсунки – это камера управления, дроссели (впускной и сливной) и электромагнитный клапан. Работают они благодаря разнице в давлении солярки на форсунку и поршень: иглу форсунки топливо прижимает к седлу, тогда как электромагнитный клапан закрыт (обесточен).

Когда блок управления открывает клапан, открывается и дроссель (сливной). Далее происходит заполнение топливной магистрали соляркой, вытекающей через дроссель. При этом начинает уменьшаться давление дизтоплива на поршень, тогда как на игле оно остается прежним. Из-за этого игла приподнимается и осуществляется впрыск.

Пьезоэлектрическая форсунка – это наиболее совершенный (в техническом отношении) вариант. Как правило, ею оснащают дизельные движки. У нее немало достоинств, среди которых скорость работы (по сравнению электромагнитным устройством она быстрее в 4 раза), а также предельно точная и выверенная дозировка. В данном случае применяется пьезокристалл, который изменяет свою длину под напряжением. Это устройство состоит из толкателя, пьезоэлемента, клапана и иглы.

Принцип работы схож с электрогидравлической форсункой. Здесь также применена схема с разницей в давлении топлива. Электрический ток удлиняет пьезоэлемент, который давит на толкатель. В результате переключающий клапан открывается, и топливо вливается в магистраль. Давление на иглу уменьшается, и она отходит вверх, производя впрыск.

unit-car.com

Принцип работы инжектора на автомобилях :: SYL.ru

Принцип работы инжектора заключается в том, чтобы подать своевременно в камеры сгорания топливовоздушную смесь. Это необходимо для нормального функционирования двигателя. Системой управления корректируется момент подачи напряжения на электроды свечей, чтобы воспламенить эту смесь. Причем эти параметры контролируются системой датчиков, установленных на двигателе.

Электронный блок управления

Для работы любого инжекторного мотора необходим блок управления микроконтроллерного типа. К нему подключаются:

  1. Исполнительные механизмы при помощи электромагнитных реле.
  2. Датчики через согласующие устройства.

Питание осуществляется от бортовой сети. Принцип работы инжектора ВАЗ такой же, как и на любом другом автомобиле. Электронный блок состоит из:

  1. Постоянной памяти – она необходима для хранения информации, записи алгоритмов работы.
  2. Оперативной памяти – в нее записывается текущая информация, все данные при выключении зажигания стираются из нее.
  3. Микроконтроллера – он позволяет обрабатывать поступающие сигналы и регулировать работу всех исполнительных механизмов.

В памяти устройства записан алгоритм работы, зависит он от поступающих сигналов с датчиков. Называется этот алгоритм «прошивкой» или «топливной картой».

Система датчиков

На инжекторных двигателях устанавливается множество датчиков, они позволяют считывать максимальное количество информации о работе. Следующие датчики можно встретить на отечественных и импортных автомобилях:

  1. Расхода воздуха.
  2. Температуры антифриза.
  3. Положения коленчатого вала.
  4. Положения распределительного вала.
  5. Давления во впускном коллекторе.
  6. Скорости автомобиля.
  7. Уровня бензина в баке.
  8. Положения дроссельной заслонки.
  9. Концентрации кислорода в выхлопных газах.

Все эти датчики управляют исполнительными механизмами, которые участвуют в образовании смеси и корректировке угла опережения зажигания.

Датчик массового расхода воздуха

Это устройство, в основе которого находится нить из драгметалла – платины. Стоимость таких датчиков очень высокая, поэтому лучше следить за его состоянием и не допускать поломок. Обязательно нужно знать, какой у датчика принцип работы. На ВАЗ всех моделей с инжекторными моторами такие приборы устанавливаются.

Работает он так:

  1. Нить из платины прогревается до 600 градусов.
  2. Через фильтр в трубку с нитью поступает поток воздуха под действием разрежения во впускном коллекторе.
  3. В блоке управления имеются данные о температуре нити и размерах трубки датчика.
  4. Поток воздуха охлаждает нить на несколько градусов.
  5. По разнице температур ЭБУ высчитывает количество воздуха, которое проходит через трубку за определенный момент времени.

Эти данные необходимы для того, чтобы составить топливную смесь в правильной пропорции.

Датчик температуры антифриза

Этот прибор позволяет электронному блоку управления понять, что двигатель прогрет до рабочей температуры. При запуске холодного двигателя в топливной смеси нужно уменьшать количество воздуха, для этого используется регулятор холостого хода. При помощи этого мотор работает максимально эффективно, быстро выводится в устоявшийся режим. Принцип работы ГБО 2 поколения на инжекторе такой же, как и на карбюраторе. Вот только при помощи сигнала с датчика температуры можно реализовать запуск двигателя на бензине и после прогрева автоматический переход на газовое топливо. Располагается датчик температуры в блоке двигателя или в корпусе термостата.

Датчики положения валов

Устанавливаются эти приборы на коленчатом и распределительном валах. Стоит отметить, что на распредвалах не всегда используются датчики – часто обходятся без них. Но их использование позволяет добиться максимальной мощности от двигателя, улучшить качество смесеобразования, правильно скорректировать момент подачи искры на электроды свечей.

Работают приборы на эффекте Холла – при прохождении металлического предмета возле активной части датчика происходит генерация импульса. Он подается на электронный блок управления и сравнивается с остальными параметрами работы мотора. Намного лучше сможет работать двигатель в режиме холостого хода. Принцип работы инжекторной системы основывается на сравнении сигналов, поступающих от датчиков.

Датчик давления во впускном коллекторе

Его еще называют МАР-сенсор. Он может использоваться как совместно с датчиком расхода воздуха, так и полностью замещать его. Поэтому, если на двигателе имеется МАР-сенсор, поломка ДМРВ почти не страшна. Его функции перейдут к этому прибору. В основе элемента находится чувствительная пластина, которая под действием давления меняет сопротивление. Соединение с электронным блоком управления производится при помощи согласующего устройства.

Датчик положения дроссельной заслонки

Устанавливается на корпусе дросселя, датчик может быть аналоговым или бесконтактным. Первые работают по принципу переменного резистора – при вращении оси заслонки происходит перемещение бегунка на обмотке. При этом меняется сопротивление элемента, уменьшается или увеличивается уровень сигнала, поступающего на электронный блок управления. Существуют приборы бесконтактного типа, они работают так же, как энкодеры. Отличаются высокой надежностью, но с аналоговыми приборами не взаимозаменяемы.

Прибор позволяет оценить положение заслонки, чтобы выдать информацию об этом блоку управления. Последний, исходя из этого значения, подаст в топливную рампу именно столько бензина, сколько необходимо для нормального смесеобразования.

Лямбда-зонд

Это прибор, который позволяет оценить содержание кислорода в выхлопной системе. Изготавливается датчик из керамики, обычно из диоксида циркония. Особенность этого материала в том, что он становится проницаемым для ионов кислорода при условии, что произойдет нагрев до температуры 300 градусов и выше. Замер уровня кислорода происходит как внутри выхлопной системы, так и снаружи.

Ведь блок управления не измеряет точное количество кислорода, он только оценивает разницу в проводимости керамического элемента внутри и снаружи системы. Именно такой используется принцип работы. Инжекторы на автомобилях функционируют нормально только лишь при условии, что система работает стабильно. Датчик снаружи вырабатывает определенный сигнал, который считается электронным блоком как эталон. Именно с ним происходит сравнение сигнала, поступающего от внутреннего лямбда-зонда.

Датчик уровня бензина

Применяются механизмы поплавкового типа, очень похожи по принципу действия на резистивные датчики положения заслонки дросселя. При изменении уровня топлива в баке поплавок будет подниматься или опускаться. При этом изменяется сопротивление датчика в цепи. Используется прибор для того, чтобы оповещать водителя об уровне бензина. Может применяться и для автоматического перехода с газа на бензин и обратно, если установлено ГБО.

Датчик скорости

Предназначен для контроля скорости автомобиля. Может устанавливаться как в тросиковом спидометре, так и в электронном. В первом случае прибор позволяет только выдавать сигнал для работы системы впрыска. Во втором случае он включен в цепь электронного спидометра. При наличии электроусилителя рулевого управления, иммобилайзера или иных охранных систем, этот датчик подключается к ним. Дело в том, что усилитель руля работает только при движении с малой скоростью. Как только скорость увеличивается, необходимость в усилителе отпадает. Многие охранные системы соединяются с датчиком скорости, чтобы обеспечить максимальную безопасность.

Исполнительные механизмы

Для нормального функционирования инжекторной системы используются исполнительные механизмы. Принцип работы механического инжектора «Ауди» немного отличается от электронного. Суть процессов примерно аналогичная.

В системе используются такие исполнительные устройства:

  1. Электрический топливный насос.
  2. Регулятор холостого хода.
  3. Топливные форсунки.
  4. Дроссельный узел.
  5. Модуль зажигания.

При помощи всех этих устройств производится управление двигателем внутреннего сгорания. Именно с помощью них можно поддержать на нормальном уровне холостой ход. Принцип работы инжектора в этом режиме такой же, как и в любом другом.

Типы впрыска топлива

Центральный впрыск во многом похож на карбюраторную систему, только вместо сложной совокупности каналов и жиклеров используется одна электромагнитная форсунка. Она устанавливается на впускной коллектор, и через нее подается топливная смесь в камеры сгорания. Недостаток один – при выходе из строя форсунки автомобиль не сможет продолжать движение.

Намного лучше в работе окажутся системы с парным или фазированным впрыском. Особенно эффективны последние – смесь поступает в камеры сгорания каждого цилиндра, в зависимости от того, в каком конкретно цикле на данный момент находится мотор. Устанавливается по одной форсунке на цилиндр и столько же катушек зажигания. Но может применяться и модуль.

Питание двигателя газом

Инжекторные двигатели можно без особых проблем перевести на питание газом (пропаном или метаном). Вот только если решите установить ГБО второго поколения, необходимо использовать меры защиты. Проблема в том, что при работе газобаллонного оборудования могут происходить хлопки. Для карбюратора это не очень страшно, а вот в инжекторных моторах может выйти из строя датчик расхода воздуха. Принцип работы ГБО 2 поколения на инжекторе заключается в том, чтобы обезопасить от хлопков систему впрыска. Для этого производится установка специальных устройств.

Но намного лучше использовать ГБО 4 поколения – такие устройства предназначены для установки на инжекторные моторы. В комплекте имеется несколько датчиков, которые дополняют стандартную конструкцию, а также электронный блок управления. Он соединяется со штатным и берет данные о работе двигателя именно от него. Пятое поколение газобаллонного оборудования используют крайне редко – стоимость его очень высокая.

При переходе с бензина на газ необходимо выполнить такие условия:

  1. В системе охлаждения жидкость должна быть теплой – свыше 50 градусов. Только в этом случае газ сможет нормально испаряться в редукторе.
  2. Обязательно необходимо отключить бензиновые форсунки.
  3. Сразу же происходит включение газовых форсунок.
  4. Время их открывания должно немного отличаться от аналогичного параметра бензиновых. Коэффициент вычисляется при калибровке.
  5. Происходит корректировка угла опережения зажигания, так как октановое число газа более 100.

Инжектор «Вентури» и автомобильный

Отличий у них множество, но есть и схожие черты. Принцип работы инжектора «Вентури» заключается в том, чтобы по трубе определенного диаметра пропустить жидкость или газ. На этой трубе имеется форсунка определенного диаметра, через нее вещество выходит под действием давления. При помощи такого инжектора получается реализовать системы орошения полей, подачу жидкости в емкости на производстве. В большинстве случаев такими инжекторами производится замер количества жидкости, проходящей за единицу времени.

www.syl.ru

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *