В чем измеряется крутящий момент двигателя: В чем измеряется крутящий момент двигателя

Содержание

Мощность и крутящий момент | Тюнинг ателье VC-TUNING

Мощность и крутящий момент…  Эти термины часто вводят в ступор многих посетителей автомобильных форумов. Энцо Феррари однажды сказал: «Лошадиные силы продают автомобиль, крутящий момент выигрывает гонки».

 

Мы не собираемся представлять здесь все уравнения и формулы, позволяющие рассчитать мощность и крутящий момент: объяснить многие вещи в одной статье достаточно трудно. Да это вам и не понадобится, если, конечно, вы не планируете стать крупным специалистам в данной области. Но мы постараемся доступным языком объяснить, как мощность и крутящий момент соотносятся друг с другом и как они влияют на производительность автомобиля.

 

Лошадиная сила

Термин «лошадиная сила» был впервые использован Джеймсом Уаттом, британским изобретателем, чье имя неразрывно связано с созданием парового двигателя. Строго говоря, лошадиная сила – это скорость, с которой может быть выполнена работа. Уатт использовал этот термин для сравнения мощности парового двигателя с мощью рабочей лошадки. Наравне с лошадиными силами сегодня используется и системная единица измерения мощности – ватт (Вт).

1 л.с. = 746 Вт

Эффективная мощность двигателя измеряется на коленчатом валу с помощью динамометра. Производители автомобилей, как правило, используют для ее обозначения термин «пиковая мощность» (максимальная мощность при определенном числе оборотов в минуту).

 

Мощность рассчитывается путем умножения крутящего момента двигателя на число оборотов и последующего деления на 5252. Откуда взялась последняя цифра? Если вы не хотите скучных и путаных объяснений, просто поверьте на слово и запомните эту константу.

                         крутящий момент * угловая скорость (RPM)

мощность =      —————————————————

                                                    5252

Здесь не мешало бы упомянуть о динамометрических роликовых стендах, но из-за большого разнообразия стендовых динамометров, мы опишем основные из них в другой статье. Следует отметить, что существует немало причин, по которым цифры, наблюдаемые при езде по дороге, оказываются ниже полученных на стенде. Автомобиль на стенде неподвижен, а на открытой дороге свой вклад вносят давление воздуха, перепады температуры и многие другие факторы, которые сложно учесть при испытаниях, хотя многие пытаются компенсировать их отсутствие с помощью вентиляторов и т.д.

 

  

Крутящий момент

Крутящий момент – вращательное усилие, которое будет применено к ведущим колесам автомобиля. Крутящий момент можно рассматривать в качестве меры способности двигателя выполнить работу. Единицы измерения крутящего момента – фунт*фут и Ньютон*метр (Нм). Один фунт*фут крутящего момента представляет собой усилие, необходимое для поворота 1-футовой оси, на конце которой прикреплен груз весом 1 фунт. Если на конце 1-футовой оси находится груз весом 200 фунтов, крутящий момент будет составлять 200 фунтов*фут. Очевидно, что чем больше это число, тем больше вращательное усилие на колесах.

1 фунт*фут = 1.36 Н*м

 

 

Однако важно понимать, что по мере увеличения крутящего момента вашего двигателя возрастает вероятность самопроизвольного поворота колес. Это довольно частое явление у мощных переднеприводных (FWD) автомобилей с большим крутящим моментом. Поскольку в данном случае передние колеса задействованы также и в управлении автомобилем, вы можете столкнуться с эффектом, называемым паразитным силовым подруливанием. В принципе проблема «непослушания» приводных колес свойственна не только переднеприводным машинам, а любым мощным автомобилям с большим крутящим моментом. Однако, разделив крутящий момент на все четыре колеса (в случае полноприводных (4WD) автомобилей), вы можете уменьшить этот эффект и больше мощности передать дороге.  Хотя есть еще много факторов (например, размер и структура шин, настройка подвески и ходовой части, передаточные числа), которые могут помочь переднеприводным (FWD) или заднеприводным (RWD) автомобилям эффективно использовать свою мощность.

 

Сравнение мощности и крутящего момента

(Как мощность и крутящий момент влияют на производительность)

Причина недопонимания ряда вопросов автолюбителями кроется в том, что в качестве характеристики двигателя автомобиля производители, как правило, приводят пиковые показатели мощности. Это ведет к путанице, люди пытаются сравнивать производительность автомобиля с его мощностью. «Моя машина имеет большее количество лошадиных сил, поэтому она будет быстрее вашей» – некорректное, но достаточно распространенное сравнение.

Есть много факторов, влияющих на производительность автомобиля, и крутящий момент, безусловно, один из них. Кроме того, и мощность, и крутящий момент будут зависеть от передаточных чисел. И, конечно же, большую роль играет то, как и для чего используется автомобиль.

Если вы когда-либо управляли машиной с высоким крутящим моментом (например, автомобилем с большим объемом двигателя или турбодизелем), вы, вероятно, заметили, что способны с легкостью ускоряться на большинстве передач. Это является результатом того, что имеется достаточно мощности в виде крутящего момента, чтобы автомобиль двигался при более широком диапазоне оборотов. Ускорение прямо пропорционально крутящему моменту, т.е. машина, будет ускоряться в соответствии с кривой крутящего момента.

Однако, если вы используете численно более высокое передаточное отношение для увеличения крутящего момента, вы на самом деле уменьшаете максимальную скорость вращения привода. Это может привести к тому, что автомобиль с высоким крутящим моментом (допустим, 680 НМ) достигнет своего предела уже при 30 км/ч.

При всем этом разговоры о крутящем моменте не просто игра слов. Следует понять, что лошадиная сила – просто другой способ измерения мощности (вспомните приведенное выше уравнение: лошадиная сила – это крутящий момент, умноженный на угловую скорость и деленный на 5252). Однако двигатель может быть рассчитан на более высокие обороты и более высокую мощность и, таким образом, на создание большего крутящего момента.

Из всего вышесказанного следует, что лошадиные силы и крутящий момент связаны друг с другом, однако это не одно и то же. Автомобиль с большим крутящим моментом будет ускоряться иначе, чем автомобиль с большим числом лошадей под капотом, с разными точками переключения передач и диапазонами оборотов в минуту. Автомобили с меньшим крутящим моментом (большим числом лошадиных сил), как правило, набирают больше оборотов, но максимальная мощность достигается только на больших оборотах. Машины с большим крутящим моментом (меньшим числом лошадиных сил) имеют меньшую мощность, но сравнительно более широкий диапазон оборотов. Все очень запутано: вроде бы крутящий момент и лошадиные силы – это одно и то же, но разгоняют машину по-разному. Хорошим автомобилем можно считать тот, что имеет оптимальное соотношение крутящего момента и лошадиных сил и возможность повышения обоих параметров.

Что еще влияет на ускорение

  • Вес автомобиля. Многие ошибочно полагают, что чем больше весит машина, тем больше нужно энергии, чтобы сдвинуть ее с места.
  • Аэродинамика. Снова требуется много энергии, чтобы машина могла преодолевать сопротивление встречным потокам воздуха.
  • Сопротивление качению. Шины и привод (шестерни, приводные валы, оси и т.д.) требуют энергии, чтобы они могли вращаться с контактирующими поверхностями.
  • Шестерни/передачи. Чтобы автомобиль мог разгоняться и ускорятся, он оборудован коробкой передач. Шестеренки в коробке влияют на крутящий момент, передаваемый на ведущие колеса, но они не могут изменить количество лошадиных сил в машине. В коробке передач все начинается с шестерни, которая запускает крутящий момент. Он позволяет ускоряться в относительно умеренном темпе, но избежать быстрых оборотов двигателя. Каждая последующая передача помогает развить скорость. Вот почему автомобиль, например, может разогнаться от 0 до 96 км/час за 5 секунд, но от 0 до 160 км/час разгон уже займет 13 секунд, поскольку ему нужно еще 8 секунд, чтобы набрать добавочную скорость в 64 км/час. При этом важно учитывать кинетическую энергию и аэродинамику (сопротивление ветру).

Динамометр фиксирует хороший крутящий момент не только на низких оборотах, но и во всем диапазоне оборотов. В сочетании с равномерно возрастающей кривой лошадиных сил, такой двигатель дает возможность машине разгоняться и выжимать педаль газа до упора. Хотя, все зависит от привода и комплектации самой машины. Но в целом, он имеет хорошую мощность и динамику.

Хочется надеяться, что после прочтения статьи о лошадиных силах и крутящем моменте вы не будете путать эти два понятия. Главное – запомнить, что машина с очень хорошим разгоном – это та, у которой двигатель может выдавать постоянно высокую мощность, даже на самых больших оборотах. Например, система газораспределительного механизма VVT-i эффективна для небольших двигателей, она помогает оптимизировать мощность на переменных оборотах. На самом деле не столь важно, с большим количеством лошадей ли машина или с высоким крутящим моментом, потому, что есть много других факторов, влияющих на ее характеристики.

Ускорение
И снова не будем вас утомлять скучными техническими терминами, а просто подсчитаем кое-что. Крутящий момент двигателя зависит от шестерней в коробке передач. Он нарастает по мере того, как вы переключаетесь на другую скорость. На автомобиле с низким крутящим моментом, его можно увеличить путем изменения передаточного числа. В результате этого трансмиссия или коэффициент привода изменяют диапазон оборотов двигателя, а также то, как используется крутящий момент (не оценивайте это в процессе). A V8 и Vtec производят крутящий момент разными способами посредством зубчатой передачи. Эти способы зависят от конструкции двигателя.

При всем этом интересно, как уже упоминалось ранее, что, хорошо набирающая скорость машина, имеет хорошую динамику крутящего момента, которая распространяется в самом широком диапазоне оборотов (высокий диапазон оборотов помогает поддерживать максимальный крутящий момент). Чтобы добиться максимума от машины, нужно знать, как выглядит динамика мощности и какие обороты у двигателя на каждой из передач. Также необходимо знать, как меняются обороты двигателя, когда переключается скорость: повышается или понижается передача. Это поможет вам узнать, что такое динамика крутящего момента на каждой отдельной передаче. Автомобиль разгоняется сильнее всего на пике крутящего момента, но стоит вам переключиться, как падают обороты, и ослабевает крутящий момент. Вся фишка в том, чтобы найти на каких оборотах будет хороший крутящий момент на следующей передаче, без потери динамики на текущей. Конечно, многое зависит от авто и его водителя, но есть наиболее общие рекомендации. Итак, если ваша машина производит максимальный крутящий момент на 4000 оборотах, и вы не хотите переключаться на следующую скорость с этой отметки, поскольку думаете, что потеряете сейчас эти ценные обороты и не сможете сохранить такой же крутящий момент на следующей передаче, а соответственно и скорость движения. Общая рекомендация в этом случае – для максимального ускорения переключаться тогда, когда стрелка тахометра ляжет на красную отметку (у некоторых легковых и гоночных авто есть специальные индикаторы).

Обозначение мощности авто в лошадиных силах
Американские машины

Лошадиные силы (HP Gross)
До 1972 года в Америке мощность двигателя автомобиля измерялась в лошадиных силах следующим образом: на стенде испытывался двигатель, который не оснащен воздушным фильтром, системой выхлопа или системой контроля над выбросами, но иногда оснащенный коллектором. В результате показатели максимальной мощности и крутящего момента отражали только теоретические значения, но не демонстрировали реальную мощность двигателя. Таким образом, измерялась общая мощность двигателя.

Лошадиные силы (HP net)
После 1972 года в Америке стали измерять полезную мощность двигателя. У полностью укомплектованного и установленного двигателя измерялась мощность на маховике, но при этом не учитывались потери при переключении передачи.

Запомните, что американские автомобили оснащены большими двигателями CU, которые выдают высокий крутящий момент и обеспечивают высокую производительность машины.

Лошадиные силы (bhp)
Мощность измеряется в лошадиных силах при помощи динамометра. Замер происходит на испытательном стенде в месте выхода вала из двигателя (коленчатый вал, который соединяется с маховиком). Окончательная цифра получается из крутящего момента, который используется для вычисления мощности в лошадиных силах (bhp).
Обратите внимание, что показатель мощности в лошадиных силах PS, принятый в Германии, отличается от обозначения bhp. Многие производители используют значение PS для лошадиных сил BHP.
Значения приблизительные:

  • 1 Bhp = 1.005 Hp (net) – (разница не существенная)
  • 1 Bhp = 1.0187 PS
  • 1 PS = 0.986 Hp
  • 1 Hp = 1.01387 PS

Иногда происходит путаница потому, что одни говорят о мощности в лошадиных силах, измеренной динамометром, другие об измерении с учетом потерь, а третьи о способе измерения по колесам WHP.


 

Крутящий момент и мощность двигателя

Вне зависимости от производителя и модели автомобиля, в его технических характеристиках производители, как правило, указывают целый ряд показателей.

Большая часть из них понятны даже начинающему водителю – объём двигателя, мощность, разгон до «сотни», расход топлива и т. д.

Из этой статьи вы узнаете:


Но рядом с мощностью нередко присутствует и ещё один параметр, суть которого понятна далеко не всем. Этот параметр – крутящий момент. Что это за характеристика и каким образом она влияет на поведение автомобиля на дороге?

Что такое крутящий момент

Грубо говоря, крутящий момент – это некая величина, которая демонстрирует тяговые возможности двигателя, «силу», с которой двигатель может вращать коленвал.

В школьном курсе физики этот показатель определяется как произведение силы на «рычаг», к которому эта самая сила приложена. Сила измеряется в Ньютонах, величина «рычага» — в метрах, получается единица измерения крутящего момента – Ньютон/метр.

Эта «сила» непостоянна, она зависит от оборотов двигателя. Максимальный крутящий момент может быть достигнут только при определённых оборотах (как правило, возле цифры в Нм в скобках пишут, при каких оборотах этот показатель достигается).

Разумеется, величина момента связана мощностью двигателя, но зависимость эта не прямолинейна, поскольку момент зависит так же и от качества наполнения цилиндров двигателя топливной смесью. Поэтому для каждого двигателя производитель всегда даёт две характеристики – мощность при определённых оборотах, а так же крутящий момент при определённых оборотах.

Что такое мощность двигателя

Что касается мощности двигателя, измеряемой в известных всем лошадиных силах (хотя для официальных документов используются другие единицы измерения — киловатты (кВт)), то она показывает количество работы, выполняемой двигателем в единицу времени, в то время как крутящий момент показывает «силу», с которой эта самая работа выполняется.

Один известный американец сказал: «Продажу автомобилей обеспечивает мощность, а гонки выигрывает крутящий момент», тем самым объясняя, что большие цифры мощности двигателя ещё не гарантируют того, что автомобиль может ездить быстрее других, зато гарантируют интерес со стороны покупателей.

В качестве простого примера можно взять два двигателя одного из мировых брендов Volkswagen: двухлитровый дизель 2.0 TDI, развивающий 140 сил и 320 Нм момента (уже при 1700 об/мин) и такой же двухлитровый, но бензиновый 2.0 FSI, мощностью 150 л.с., но имеющий момент 200 Нм (при 3200 об/мин).

Несмотря на одинаковый объём и большую мощность бензинового мотора, дизельный двигатель (TDI) способен ехать заметно быстрее, потому что имеет гораздо больший крутящий момент при меньших оборотах, что сказывается при разгоне.

Данный пример характеризует в целом тот факт, что дизельные двигатели – гораздо более «тяговитые», обладают более высоким крутящим моментом, который достигается при более низких оборотах, благодаря чему они уже давно нашли применение на грузовиках и в последнее время всё больше находят применение на легковых автомобилях.

Однако у дизеля есть и «оборотная сторона медали» — для него необходимо более «грязное» топливо, имеющее больше вредных выбросов, а так же специализированное обслуживание, которое может стоить дороже, чем у бензинового. Кроме того, дизель всегда считался утилитарным «тракторным» двигателем, и он никогда не сможет подарить тот самый бензиновый «драйв», который так ценят любители спортивных машин.

Как увеличить крутящий момент двигателя? Советы на Джип Клаб

Что значит крутящий момент двигателя? Сила вращения коленчатого вала автомобиля – качественный показатель работы двигателя. Характеристика получила термин «крутящий момент». КМ отличается от силы вращения, происходящей снаружи, внутренним воздействием на вал. От него зависит возможность увеличения скорости авто и тяговые характеристики мотора. Как увеличить крутящий момент двигателя – разберем подробнее.

Зависимость крутящего момента

Чтобы проще объяснить, что означает крутящий момент двигателя автомобиля, представим вращающийся выходной вал. Чтобы придать ему движение, требуется сила, способная провернуть вал с грузом. Величина КМ – непостоянная и напрямую зависит от возможности мотора. Кроме того, простого сгорания топлива недостаточно для организации движения. В процессе участвует коробка передач, трансмиссия, раздатка, ШРУСы, редуктор. Имеет значение и тип привода авто – задний или передний.

Два термина – крутящий момент и мощность двигателя – неразрывны и вытекают один из другого. Формуладля расчета каждого такова:

  • M=P/N, где N – обороты двигателя.

Н*М – ньютон-метры – величина, в которой измеряется крутящий момент двигателя. Формуламощности:

  • P=M×N. В официальных документах величина обозначена в киловаттах, разговорная единица – лошадиные силы.

Три фактора, на что влияет крутящий момент двигателя – это давление газов на поршень, объем цилиндров и сила сжатия газовоздушной смеси. Увеличение или уменьшение каждого из параметров, влечет за собой возрастание или падение скорости автомобиля.

Номинальное и максимальное значение крутящего момента

Водитель в процессе езды изменяет силу вращения вала ввиду увеличения темпа движения (добавление газа) или торможения. Однако, предел развития скорости все же существует – понятие о максимальном и номинальном КМ описывается в механике:

  • Номинальный КМ– работа двигателя в нормальном режиме без дополнительной нагрузки. В этом случае, автомобиль развивает скорость, на которую способна марка и зависимость мощности активно не проявляется.
  • Максимальное значение КМ – это наибольший показатель двигателя. Он растет пропорционально оборотам мотора. Однако, наступает момент, когда количество воздуха в цилиндрах оказывает сильнейшее сопротивление газовоздушной смеси и она недостаточно поступает в камеру сгорания. Как следствие – обороты вала снижаются и скорость падает. Возрастает мощность и тяговые возможности автомобиля. При такой работе, железный конь легко преодолевает подъемы, препятствия, тянет прицеп или аварийную машину. Несмотря на нагрузку, низкие обороты при высоком крутящем моменте помогают экономить топливо.

Кроме нагрузки, на уменьшение показателя максимального крутящего момента влияют механические потери (износ деталей), трение, сопротивление материалов, из которых изготовлены элементы двигателя и трансмиссии и прочее.

Отличие крутящего момента дизельного двигателя авто от бензинового

КМ бензинового и дизельного двигателя существенно различен. От чего зависит характеристика момента – подробнее:

  • Характеристика ДТ серьезно превышает АИ, так как сжатие газовоздушной смеси в цилиндре дизельного авто, а, следовательно, и энергия в два раза больше, чем у традиционного мотора.
  • Максимальные обороты дизельного агрегата – до 5000. Однако, КМ может быть выше и используется даже на холостом ходу. Отсюда высокая экономия топлива.
  • Испытания двигателей с одинаковой мощностью, показывают преимущество дизельного агрегата с выгодой до 30% н*мот номинального параметра–то, в чем измеряется крутящий момент двигателя.

Из перечисленного следует, что не только мощность имеет главное значение при выборе типа двигателя. Для высоких динамических характеристик важен крутящий момент.

Читайте также:

Увеличение КМ

Для чего и как повысить крутящий момент двигателя? На первую часть вопроса ответить легко.

Обычно недовольство КМвозникает у владельцев малолитражек – ходовые характеристики машины снижаются по любому поводу, будь то включенный кондиционер или гидроусилитель руля. С увеличением характеристики растут и возможности автомобиля. Это разгон и тяговые качества.

Логично предположить, что вторая часть вопроса – как поднять КМ – решается заменой или доработкой комплектующих двигателя. Некоторые способы выполняются самостоятельно, другие требуют профессионального вмешательства. Подробно:

  1. Замена распредвала, выпускных клапанов и фильтров на детали с большим КПД. Например, возможно использовать вал с коленами большего размера или откорректировать крутящий момент на колесе автомобиля. В последнем случае в коробку передач устанавливаются особые шестерни с высоким передаточным числом. Любители, возможно, не справятся с работой – установку комплектующих лучше отдать на откуп специалистам по автомобильному тюнингу.
  2. Увеличение объема поршневой системы. Это предполагает расточку цилиндров и замену диаметра поршня на больший. Результат увеличения значения крутящего момента гарантирован из-за возросшей мощности двигателя – закономерного эффекта. Минус способа – увеличение расхода топлива.
  3. Повышение степени сжатия газовоздушной смеси. Для этого требуется уменьшить объем камеры сгорания, чтобы получить избыток давления. Высокий показатель, естественно увеличит силу поршня, но при этом порог детонирования существенно снижается. Как итог – износ поршневой группы и опасность преждевременного возгорания топлива.
  4. Увеличение диаметра впускных клапанов. Принцип прост: чем больше топлива, тем выше образование выделяющегося тепла. Это то,что дает крутящий момент двигателя – возрастание энергии. Чтобы установить новые клапана большего диаметра снова требуется расточка деталей. Без опыта, смысла проводить работу, нет – можно легко повредить систему. А новые оригинальные комплектующие – дороги.
  5. Турбирование. Заключается в доработке головки блока цилиндра. Что дает крутящий момент двигателя в этом случае? После модификации увеличивается объем газовоздушной смеси, следовательно, после детонации мощность кратно возрастает. Соответственно увеличивается КМ. Недостаток способа – дорогостоящая работа, что не всегда оправдано для автомобилей бюджетных классов.
  6. Электронная настройка, прошивка блока или чип-тюнинг. Заключается в перепрограммировании контролера двигателя. Как узнать о коррекции КМ? Изменения времени открытия впускных клапанов делаются в большую сторону, следовательно, расход топлива увеличится. Кроме временного промежутка, меняется множество других параметров –система охлаждения, вентиляции, воздухозаборников и прочего. Достоинства способа в безопасности – всегда можно вернуть настройки по умолчанию.
  7. Замена тяжелых поршней на облегченные. Усилий на работу потребуется меньше, динамика двигателя возрастет, повысится скорость автомобиля. Минус – способ годится для бензиновых авто, где степень сжатия меньше и порог детонирования выше. Иначе быстрого износа легких деталей не избежать.

Итак, крутящий момент асинхронного двигателя и мощность – связанные понятия. Вся работа по изменению значения одного параметра влечет за собой коррекцию другого.

КРУТЯЩИЙ МОМЕНТ или МОЩНОСТЬ двигателя

…лошадиные силы помогают заработать миллионы, а ньютонометры — выигрывают гонки!

Вот уже более 100 лет двигатели внутреннего сгорания используются практически во всех областях транспорта. Они являются «сердцем» автомобиля, трактора, тепловоза, корабля, самолёта и за последние тридцать-сорок лет стали представлять собой своеобразный симбиоз последних достижений науки и техники. Для нас уже привычными стали такие термины, как МОЩНОСТЬ и КРУТЯЩИЙ МОМЕНТ, которые являются необходимым критерием оценки силовых возможностей двигателя. Но возникает вопрос — на сколько правильно каждый из нас сможет оценить потенциал двигателя, имея перед глазами лишь цифры с техническими данными автомобиля?

Уверены, что Вы не станете целиком полагаться на заверения продавца в автосалоне, что мотор приобретаемого Вами авто достаточно мощный и полностью Вас удовлетворит. Поэтому Вы приняли решение модернизировать свой двигатель и стоите перед дилеммой – провести оптимизацию для увеличения мощности или увеличить крутящий момент? Для того, чтобы потом не пожалеть о не правильном приобретении и выборе, рекомендуем ознакомиться со всем изложенным ниже.

С давних времён для строительства, перемещения грузов, а так же транспортировки людей человечество использовало всевозможные механизмы и устройства. С изобретением более чем 5 тыс. лет назад ЕГО ВЕЛИЧЕСТВА КОЛЕСА, теория механики претерпела серьёзные изменения. Изначально, роль колеса сводилась только к банальному уменьшению сопротивления (силы трения) и переводу силы трения в качение. Конечно, катить круглое гораздо приятней, чем тащить квадратное!

Но качественное изменение способа применения колеса произошло намного позднее благодаря появлению другого гениального изобретения ― ДВИГАТЕЛЯ! Отцом парового локомотива, чаще называют Джорджа Стивенсона, который построил в 1829 году свой знаменитый паровоз «Ракета». Но ещё в 1808 году англичанин Ричард Тревитик демонстрирует одно из самых революционных изобретений в истории – первый паровоз. Но к нашей всеобщей радости Тревитик сначала построил паровой автомобиль для уличного движения, а затем уж только пришел к мысли o паровозе. Таким образом, автомобиль является в некотором роде прародителем паровоза. К сожалению, судьба первооткрывателя Ричард Тревитика, как впрочем, многих инженеров, но не коммерсантов, сложилась печально. Он разорился, долго жил на чужбине, и умер в нищете. Но не будем о грустном…

Наша задача ― понять, что такое крутящий момент и мощность двигателя, и она значительно упростится, если вспомнить устройство паровоза. Кроме пассивного преобразователя трения из одного вида в другой, колесо стало выполнять еще одну задачу — создавать движущую (тяговую) силу, то есть, отталкиваясь от дороги, приводить в движение экипаж. Давление пара действует на поршень, тот, в свою очередь, давит на шатун, последний проворачивает колесо, создавая КРУТЯЩИЙ МОМЕНТ. Вращение колеса под действием крутящего момента вызывает появление пары сил. Одна из них — сила трения между рельсом и колесом — как бы отталкивается от рельса назад, а вторая — та самая искомая нами СИЛА ТЯГИ через ось колеса передается на детали рамы паровоза. На примере паровоза заметно, что чем больше давление пара, действующее на поршень, а через него — на шатун, тем большая сила тяги будет толкать его вперед. Очевидно, изменяя давление пара, диаметр колеса и положение точки крепления шатуна относительно центра колеса, можно менять силу и скорость паровоза. То же самое происходит в автомобиле.

Разница в том, что все преобразования сил осуществляются непосредственно в самом двигателе. На выходе из него мы имеем просто вращающийся вал, то есть, вместо силы, толкающей паровоз вперёд, здесь мы получаем круговое движение вала с определенным усилием ― КРУТЯЩИМ МОМЕНТОМ. А МОЩНОСТЬ, развиваемая двигателем, ― это всего лишь его способность вращаться как можно быстрее, одновременно создавая при этом на валу крутящий момент. Затем вступает в действие силовая передача автомобиля (трансмиссия), которая этот крутящий момент изменяет так, как нам нужно, и подводит к ведущим колесам. И только в контакте между колесом и дорожным покрытием крутящий момент снова «выпрямляется» и становится тяговой силой.

Очевидно, что тяговую силу предпочтительно иметь наибольшую. Это обеспечит нужную интенсивность разгона, способность преодолевать подъемы и перевозить больше людей и груза. В технической характеристике автомобиля есть такие параметры, как число оборотов двигателя при максимальной мощности и максимальном крутящем моменте и величина этой мощности и момента. Как правило, они измеряются соответственно в оборотах в минуту (мин־¹), киловаттах (кВт) и ньютонометрах (Нм). Необходимо уметь правильно понимать внешнюю скоростную характеристику двигателя. Это графическое изображение зависимости мощности и крутящего момента от оборотов коленчатого вала. Наиболее показательной является форма кривой крутящего момента, а не его величина. Чем раньше достигается максимум и чем более полого кривая падает по мере увеличения оборотов (то есть мотор имеет неизменную тягу), тем правильнее спроектирован и работает двигатель. Однако получить двигатель, обладающий достаточным запасом мощности, высокими оборотами, да еще и стабильным КРУТЯЩИМ МОМЕНТОМ в широком диапазоне оборотов, непросто. Именно на это направлены применение наддува различных систем, электронного регулирования впрыска топлива, переменные фазы газораспределения, настройка выпускной системы и ряд других мероприяти

Давайте рассмотрим пример. Вам предстоит преодолеть подъем, а увеличить скорость движения (разогнать автомобиль перед подъемом) нельзя из-за дорожной обстановки. Для сохранения темпа движения потребуется увеличить силу тяги. Тут часто возникает ситуация, которая выглядит так, добавление газа не даёт прироста силы тяги. Это вызывает снижение скорости, а значит, и оборотов двигателя, сопровождающееся дальнейшим уменьшением силы тяги на ведущих колесах.

Так что же делать? Как поддержать большую тяговую силу при малой скорости движения, если двигатель «не тянет», то есть, не обеспечивает достаточный КРУТЯЩИЙ МОМЕНТ? Вступает в действие трансмиссия. Вы вручную, или автоматическая коробка передач самостоятельно, измените передаточное число так, чтобы сила тяги и скорость движения находились в оптимальном соотношении. Но это дополнительные неудобства в управлении автомобилем. Напрашивается вывод: было бы лучше, если бы двигатель сам приспосабливался к работе в таких ситуациях. Например, вы въезжаете на подъем. Сила сопротивления движению автомобиля возрастает, скорость падает, но силу тяги можно добавить, просто сильнее нажав на педаль газа. Автомобильные инженера для оценки этого параметра используют термин «ЭЛАСТИЧНОСТЬ ДВИГАТЕЛЯ».

Под эластичностью двигателя понимается соотношение между числом оборотов максимальной мощности и оборотов максимального крутящего момента (об/мин Pmax/об/мин Mmax). Оно должно быть таковым, чтобы по отношению к оборотам максимальной мощности обороты максимального крутящего момента были как можно ниже. Это позволит снижать и увеличивать скорость только за счет работы педалью газа, не прибегая к переключению передач, а также ехать на повышенных передачах с малой скоростью. Практически оценить эластичность мотора можно путем проверки способности автомобиля разгоняться от 60 до 100 км/ч на четвёртой передаче. Чем меньше времени займет этот разгон, тем эластичнее двигатель.

В подтверждение вышеизложенного, обратимся к результатам тестов автомобилей, проведенных в Европе:
— Audi А6 (двигатель 2,0 / 170 лс при 4300 об/мин / 280 Нм при 1800 об/мин)
— BMW 523i (двигатель 2,5 / 177 лс при 5800 об/мин / 230 Нм при 3500 об/мин)
— Mercedes E200 Kompressor Classic (двигатель 1,8 / 163 лс при 5500 об/мин / 240 Нм при 3000 об/мин)

Главным образом, рассмотрим характеристики Audi и BMW. Двигатель Audi, гораздо меньшего объёма и почти такой же мощности, практически не уступает баварцу в разгоне с места, но зато в замерах на эластичность и экономичность кладёт конкурента на обе лопатки. Почему это происходит? Потому что коэффициент эластичности мотора Audi 2,39 (4300/1800) против 1,66 (5800/3500) у BMW, а поскольку вес автомобилей приблизительно равный, жеребец из Мюнхена позволяет дать завидную фору своему соотечественнику. Причём эти впечатляющие результаты достигаются на топливе АИ-95.

Итак, подведём итог!
Из двух двигателей одинакового объема и мощности, предпочтителен тот, у которого выше эластичность. При прочих равных условиях такой мотор будет меньше изнашиваться, работать с меньшим шумом и меньше расходовать топливо, а также упростит манипуляции с рычагом коробки передач. Под все эти условия попадают современные бензиновые и дизельные двигатели с наддувом. Эксплуатируя автомобиль с таким мотором, Вы получите массу приятных впечатлений!

Измерение крутящего момента и мощности

Кроме того, динамометры общего назначения применяются для измерения крутящих моментов и мощности, передаваемых валом двигателя или какой-либо иной передачей на валы рабочих механизмов (станков, сельскохозяйственных машин и т. п.) эти динамометры часто называют ротационными.  [c.161]

Измерение крутящего момента и мощности  [c.321]

Рис. 10.95. Балансирная динамомашина со статором, качающимся на подшипниках. При измерении мощности объекта определяется момент статора, приближенно равный моменту ротора. Уравновешивая статор, например, весом гирь Р иа чашке весов с плечом /, можно определить крутящий момент и мощность объекта.

Величина полезной мощности определяется величиной крутящего момента и скоростью вращения шпинделя или другого рабочего органа. Испытания проводятся при нагружении станка на 0,5 0,75 1 1,25 номинальной мощности двигателя станка. Измерение потребляемой мощности производится с помощью ваттметров (с учётом к. п. д. двигателя) или применением для привода мотор-весов, позволяющих измерить крутящий момент на приводном валу.  [c.668]

Измерение мощности. Точность и одновременность измерения момента на валу и частоты вращения оказывает существенное влияние на величину погрешности в определении характеристик при испытании турбинных ступеней. В большинстве экспериментальных установок для исследования турбинных ступеней измерение крутящего момента производится с помощью качающегося гидротормоза. Рычаг гидротормоза нагружает измеритель силы, в качестве которого обычно используется головка рычажных весов. Регистрация показаний счетчика числа оборотов и показаний весов осуществляется визуально.  [c.127]

Д е й ч М. Е. и др. Прибор для измерения крутящего момента, числа оборотов -и мощности на высокооборотных турбинах, Энергомашиностроение , 1960, № 5.  [c.205]

Для определения мощности, развиваемой двигателем, соединенным с гидротормозом, измеряется крутящий момент и число оборотов вала. Задача измерения момента в конечном счете сводится к уравновешиванию его силой известной величины, приложенной на определенном плече. Эта уравновешивающая сила создается чаще всего  [c.545]

Описанный способ определения силы резания позволяет найти лишь ее главную составляющую Р либо крутящий момент и непригоден для измерения остальных величин. Это тоже его недостаток. Поэтому метод определения силы резания по затрачиваемой мощности можно рекомендовать только для очень приблизительных подсчетов.  [c.11]

Эффективную мош,ность на валу двигателя можно определить, зная крутящий момент. Для измерения крутящего момента применяют тормозы механические для измерения мощности до 60 л. с., гидравлические — до 1000 л. с. и выше, электрические — до 500 л. с., воздушные — до 300 л. с., балансирные станки до 1000 л. с. н другие.  [c.320]

При разработке новых типов двигателей и для научно-исследовательских работ исследования сгорания и детонации, измерения мощности,механические и термические исследования проводятся на экспериментальных одноцилиндровых двигателях (фиг. 61), в которых чаще всего имеется возможность менять степень сжатия. На фиг. 62 показан общий вид установки с балансирным электрическим тормозом и весами для измерения крутящего момента.  [c.248]


Мощности, реализуемые приводами конвейеров, определялись измерением электрической мощности при помощи специальных шлейфов, а также измерением крутящих моментов на валах приводных барабанов и оборотов барабанов.  [c.394]

Электрические тормозы. Электрический тормоз является динамомашиной большей частью постоянного тока для непосредственного измерения крутящего момента корпус посажен на подшипники, давая возможность машине качаться вокруг горизонтальной оси. При вращении динамо корпус ее благодаря действию магнитных сил между якорем и статором будет стремиться повернуться с моментом, равным моменту, приложенному к валу якоря. Этот момент равен моменту, развиваемому авиамотором, так что, имея на плече корпуса динамо те или иные весы, можно определить величину момента, а следовательно и мощность. На фиг. 9 представлен общий вид такой машины, где 7— рычажная передача, 2—динамометр, 3—привод к тахометру, 4 — ограничитель поворота  [c.198]

Автоматы с электромеханическим приводом часто относятся к числу наиболее быстроходных. В конструкции многих типов автоматов применяются один или несколько распределительных валов, запись крутящего момента на которых с помощью съемных датчиков (рис. 31, а, б), позволяет получить информацию о правильности взаимодействия и дефектах подавляющего числа механизмов автомата. Одновременно могут записываться угловые скорости этих валов с целью контроля равномерности вращения и диагностирования муфт. При необходимости контроля технологического процесса, выполняемого на автомате, регистрируется мощность, расходуемая основным электродвигателем, или усилия (с помощью съемных датчиков, специального режущего инструмента или оснастки, приспособленных для измерения усилий). Так, например,  [c.128]

Для определения вязкостных характеристик резиновых смесей наибольшее распространение получил метод капиллярной вискозиметрии. На практике используется также метод валковой переработки с измерением энергосиловых параметров — распорного усилия, крутящего момента на валках или потребляемой мощности. Каждый из них обладает своими преимуществами и недостатками.  [c.84]

Измерение силы и направленности светового потока Измерение количества топлива, колесной мощности автомобиля, крутящего момента двигателя Измерение тормозной силы на колесах, усилия на тормозной педали, замедления автомобиля  [c.124]

Измерению (во времени) подлежат мгновенные значения числа оборотов, крутящий момент на фланце отбора мощности ТЗА, давление газа, максимальное давление в двигателе, положения мертвых точек поршней, число циклов и перемещение маневровых клапанов. ………………… ….  [c.155]

Компенсация отклонения размера Лд путем внесения поправки в размер статической настройки. Измерение Лд осуществляется косвенным путем через измерение физической величины (обозначим ее х), находящейся в функциональной зависимости с Л д. В качестве величины (г могут выступать упругие перемещения (г/ ) звеньев системы СПИД, сила резания (Р) или ее составляющие (Р,), крутящий момент (М р), мощность (Л ), ток (/) и др. Во время обработки непрерывно измеряемая величина р, поступает в виде соответствующего сигнала в вычислительное устройство адаптивной системы, где на основе заложенной в вычислительном устройстве зависимости Лд = / ( х) определяется величина Лд, которая затем сравнивается с заданным значением Лд и при наличии отклонения АЛд система управления вносит поправку АЛс в размер статической настройки, равную АЛд и противоположную ей по знаку.  [c.225]

Для того чтобы получить правильное заключение о мощности автомобиля по результатам его диагностики на силовых стендах, необходимо знать режимы (скорость и нагрузку) измерения мощностных показателей и их допустимые величины. Режимами измерения являются скорости и нагрузки двигателя, соответствующие его максимальной мощности или максимальному крутящему моменту. В первом случае допустимая величина мощности ведущих колесах автомобиля  [c.205]

Главной составляющей силы резания при фрезеровании является окружная сила, ибо именно она определяет крутящий момент на шпинделе и основную затрату мощности. В процессе фрезерования стол станка непрерывно перемещается относительно вращающегося шпинделя. Поэтому для измерения окружной силы, или, точнее, крутящего момента, предпочитают пользоваться однокомпонентными приборами (динамометрическими головками), установленными на шпинделе.  [c.85]


Наружный неподвижный корпус 3 несет два ряда катушек 4 на обращенных концами внутрь подковообразных сердечниках таким образом, что воздушные зазоры между полюсными наконечниками и выступами проходят под катушками. Сердечники при этом шунтируют магнитный зазор, и проходящий через катушки магнитный поток зависит от величины зазора, а соответственно и от передаваемого момента. Перемены направления потока в соответствии с числом оборотов возбуждают в катушках напряжение, пропорциональное передаваемой мощности. При отсутствии крутящего момента, т. е. когда передаваемая мощность равна нулю, напряжения в обоих рядах катушек взаимно уравновешиваются, и напряжение на выходе равно нулю. Закручивание валика 1 нарушает равновесие, и возникающая разность напряжений может быть использована для измерения или регистрации передаваемой мощности.  [c.238]

Мощность воспринимается балансирными генераторами 1 к 3 (соответственно на первой и третьей паре барабанов) на второй паре барабанов имеются дополнительные механические тормоза 2. Всеми барабанами можно пользоваться раздельно, а при надобности они связываются между собой с помощью механической передачи. Электрические тормоза третьей пары барабанов встроены внутрь и могут поворачиваться вместе с барабанами, соответственно углу поворота управляемых колес, до 45° в обе стороны. Барабаны можно передвигать в поперечном направлении, в результате чего можно регулировать расстояние между осями от 900 до 2000 мм-, наименьшее расстояние а между второй и третьей парой барабанов равно диаметру барабана. Для измерения горизонтальных сил, действуюш,их между колесами и дорогой, служат три динамометра, установленные с предварительным натягом и измеряющие усилия в направлении движения и перпендикулярно к нему. На фиг. 74 показан общий вид этого стенда. На заднем плане видны установленные слева и справа циферблатные весы, показывающие крутящий момент на двух балансирных электрических тормозах первой пары барабанов. По середине заднего плана виден динамометр, служащий для измерения тягового усилия. Слева помещается пульт управления со щитами включения отдельных машин и нагрузочных сопротивлений.  [c.253]

Измерение мощности. При электрическом приводе тягодутьевых машин измеряют мощность электрического тока или расход электроэнергии (см. 13.6), а при паровом приводе — расход и параметры пара перед и за турбиной, ее КПД. Под мощностью на валу вентилятора (дымососа) понимается мощность, затраченная двигателем на привод вентилятора. Эту мощность в большинстве случаев определяют на стендах изменением крутящего момента на валу машины. При испытаниях в эксплуатационных условиях мощность на валу вентилятора (дымососа) обычно не измеряют, так как это сопряжено со значительными трудностями. Мощность на валу вен-  [c.390]

Аппаратура, необходимая для испытаний. Приборы для измерения мощности. Т. к. мощность непосредственно не измеряется, а измеряется крутящий момент, то дело сводится к применению обычных весов, причем точка приложения силы к этим весам расположена на известном заранее плече. Весы м. б. десятичного типа, рычажного и др. Чтобы во время измерений не нужно было подходить к станку, можно применить гидравлич. весы, работающие на прин-  [c.196]

Д. тормозные. Так называются приборы, употребляемые для определения эффективной мощности двигателя. Назначением их является 1) создание на валу испытываемого двигателя противодействующего тормозного момента и 2) измерение величины этого момента при различных режимах работы двигателя, начиная от максимальной мощности до мощности холостого хода и от максимальных оборотов до минимальных. В зависимости от способа поглощения тормозом энергии двигателя и способа создания крутящего момента Д. делятся 1) на механические, в которых тормозной момент создается трением твердых тел 2) гидравлические, момент к-рых  [c.379]

Измерение мощности. Мощность определяют путем одновременного измерения частоты вращения и крутящего момента по формуле  [c.35]

Одним из основных параметров многих теплотехнических объектов, преобразующих энергию рабочего тела во вращательное движение (или с помощью вращения передающих энергию рабочему телу), является мощность, которая определяется лишь косвенным путем, по измерению крутящего момента и угловой скорости вращения ротора. Электродвигатели, турбинные двигатели, турбостартеры, газовые и гидравлические турбины являются источниками мощности, а такие объекты, как компрессоры, насосы, генераторы — поглощают мощность. В связи с этим и измерение крутящего момента на валу может быть осуществлено двумя методами с поглощением и без поглощения мощности. При измерении крутящего момента с поглощением мощности используются тормозные устройства со свободно подвешенным статором реактивный момент на статоре тормоза равен приложенному к ротору крутящему моменту. Измерения без поглощения мощности осуществляются по балансирному моменту на статоре электродвигателя, редуктора или же с помощью торсиометров и других специальных измерителей.  [c.321]

Временные параметры обычно оцениваются по осциллограммам кинематических параметров, энергетические параметры — в основном по электрической мощности привода, но в ряде случаев целесообразно определять мощность на входных и выходных звеньях кинематических цепей. При этом измерение мощност1[ сводится к измерению крутящих моментов или сил и скоростей движения, т. е. используются параметры первой и второй групп. Измерение температурных параметров проводится сравнительно редко ввиду сложной связи температуры узлов трения с кинематическими и точностными характеристиками ПР. Чаще этот параметр используется как диагностический. Особенность его измерения во многих случаях — необходимость применять бесконтактные методы измерений температуры в отдельных точках и температурных нолей из-за сложности встраивания термодатчиков в узлы механизмов ПР. Вибрационные параметры представ-  [c.163]


Для измерения крутящих моментов по деформации участка вала, передающего мощность, также могут быть использованы теизоэле-менты. Такие приборы получили название тензометрических торсиометров. В простейшем случае тензоэлементы наклеиваются на внешнюю поверхность вала (см. рис. 80). При скручивании круглого стержня главные нормальные напряжения равны, обратны по знаку и направлены под углом 45° к его оси. Тензодатчики, наклеенные на 20 л. л. Бошняк 305  [c.305]

Измерение крутящего момента на работающих приводах. На рис. 143,0 показан привод леиточного транспортера. Крутящий момент регистрировался иа выходном валу привода с помощью проволочных датчиков, включенных по мостовой схеме. Привод осуществлялся от асинхронного двигателя I через муфту 2, редуктор 3 и барабан 4. В точке 5 измеряли крутящий момент. Параметры привода мощность 316 кВт, передаточное отношение 1485  [c.138]

При проведении экспериментальных исследований непрерывнозаготовочного стана 850/610/550 были записаны моменты сил упругости на валах во всех клетях стана температура блума перед клетями и заготовки после клетей сечение заготовки после выхода ее из каждой клети стана ток якорной цепи и ток цепи возбуждения индивидуальных приводов валков и мощности, потребляемой при прокатке групповым приводом группы 610 давление металла на валки во всех клетях стана одновременно. Для измерения крутящих моментов использовали крутильные динамометры, конструкция которых приведена в работе [115], и мосты из тензодатчиков, наклеенных непосредственно на валы. Тензодатчики тарировались на специально изготовленном устройстве, воспроизводящем деформацию кручения.  [c.271]

Последние обороты считаем номинальными для данного мотора. После достижения их работают 2 часа на мощности, равной 0,9 от номинальной, и последний час или полчаса иа максимальной мощности. Конечно в связи с целым рядом условий как общее время приработки, так и продолжительность отдельных этапов могут меняться. При проведении обкатки требуется особо следить за темп-рным состоянием как всего мотора, так и отдельных деталей, ибо всегда возможны местные перегревы деталей и их разрушение вследствие недосмотра. После проведения приработки необходима разборка мотора и его тщательный осмотр. Указанная приработка является горячей, но можно производить и холодную приработку (правда, менее эффективную), проворачивая мотор от постороннего источника энергии в большинстве случаев эти источником является электромотор, желательно постоянного тока и балан-сирного типа, для возможности плавного изменения оборотов и измерения крутящего момента, поглощаемого обкатываемым мотором.  [c.192]

При И. д. в. с. применяются следующие приборы и методы измерений. Определение эффективной мощности 1) по непосредственному измерению крутящего момента на валу двигателя при помощи специальных тормозных устройств Прони, Фруда, Хинан-Фелла и др.  [c.203]

Снятие внешней характеристики и замер расхода топлива производят на испытательном стенде, который и.меет тормозную установку для поглощения и измерения мощности, развиваемой двигателем. Наиболее распространенным видом такой установки является балансирная дннамомашина. Корпус такой динамо-машины установлен на шарикоподшипниках и под действием воспринимаемой на ротор мощности двигателя стремится повернуться вокруг своей оси с усилием, соответствующим крутящему моменту двигателя.  [c.621]

Системы мониторинга получили применение при диагностировании и балансировке роторных систем газовых и паровых турбин, насосов атомных электростанций, двигателей, генераторов, компрессоров, их валов и подшипников. Системы диагностирования фирмы Бентли включают измерение скоростей, крутящих моментов, перемещений валов, наружных колец и корпусов подшипников, вибраций в различных точках, температуры подшипников, золотников, ускорений корпуса, угловьЕХ положений, числа оборотов валов. Агрегатный метод построения электронной части системы позволяет компоновать большое число вариантов, а при модернизации заменять отдельные блоки на более совершенные, не меняя встроенных в конструкцию машины датчиков, так как это требует трудоемкой доработки деталей машины. Диагностируются дисбалансы, усталостные повреждения валов и подшипников. Надежность повышается за счет своевременного обнаружения дефектов, обеспечивается безопасность работы энергетических систем большой мощности и их ремонт по фактической потребности.  [c.204]

Метод торможения сводится к измерению крутяш,его момента на враш ающемся валу (шпинделе) и потому может быть применен только для определения главной составляющей силы резания. Измерение момента производят в два приема. Сначала производят само резание, регистрируя при этом с помощью электрического прибора величину мощности или тока, потребляемых из сети двигателем станка. Затем на шпинделе вместо обрабатьгеаемой детали закрепляется тормоз с силоизмерительным устройством. Не меняя скорости вращения шпинделя, тормоз нагружают до тех пор, пока амперметр (ваттметр), включенный в цепь питания двигателя, не станет показывать то же, что он показывал при резании. После этого по отсчету силоизмерителя вычисляют крутящий момент при торможении и, приравнивая его к действующему моменту в процессе резания, находят величину силы резания.  [c.9]

Мощность определяется косвенным методом одновременное измерение частоты вращения и крутящего момента на валу гидромашины и расчет по формуле N = ТЛпМкр, или одновременное измерение давления и расхода жидкости и расчет по формуле N — PQ. Для измерения мощности приводных двигателей применяются измерительные комплекты К505 и К506, ваттметры и трансформаторы тока.  [c.355]

Учитывая недостаточную точность штатных приборов измерения теплотехнических параметров (особенно расходов технологического и топливного газа), оптимальным решением является установка измерителя крутящего момента на валу ГТУ. Точное значение Ne позволяет определить расход технологического газа (по известной зависимости Qnp= f (Nenp / Упр)), снижение к.п.д. ГТУ (по известному коэффициенту влияния мощности на к.п.д. ГТУ), а также оптимизировать загрузку всех ГПА компрессорного цеха с учетом их фактического технического состояния.  [c.26]


Новый метод измерения мощности двигателя


Навстречу новому методу измерения мощности двигателя по всем продуктовым линейкам.

Являясь крупнейшим производителем двигателей в мире, компания Honda решила применять постоянный метод измерения мощности двигателя по всем продуктовым линейкам —  автомобили, мотоциклы и силовая техника, используя понятие «чистая» мощность вместо «гросс». Мы хотели бы сообщить Вам, что Honda становится первым производителем двигателей, измеряющим мощность всех двигателей общего назначения в «чистых» кВт (л.с.) в соответствии с тестом J1349 Общества автомобильных инженеров (SAE). Также мы меняем способ указания значения крутящего момента (измеряется «чистая» установка), расхода топлива (переход от г/кВт.ч.на в л/ч) и емкости топливного бака.

Начиная с 2007 года, технические мощностные характеристики двигателей общего назначения Honda будут рассчитываться в соответствии с SAE J1349  по «чистой»  мощности. В этих расчетах изменен способ измерения мощности двигателя, что приведет к смене опубликованных в 2006 году значений мощностей двигателей. «Чистая» мощность двигателя рассчитывается с установленным воздушным фильтром и глушителем. «Гросс» мощность расчитывается без них. Необходимо заметить, что наши двигатели и их мощность не изменится.

Honda вводит подсчеты мощности по SAE для удобства многих конечных пользователей, которые покупают продукт «Powered by Honda». Благодаря мировой стандартизации мощности двигателей в соответствии с SAE J1349, каждый покупатель сможет выбрать приемлемое значение необходимой ему мощности двигателя, независимо от страны производства или сбыта. Использование этого стандарта позволит облегчить нашим клиентам определение пригодности двигателя для конкретного применения.

С 2007 года компания Honda начинает перевод всей документации по двигателям общего назначения (каталоги, веб-сайты, руководства пользователя и т.д.) на новые, «чистые», значения, чтобы соответствовать стандарту SAE J1349 не только по мощности, но и связанным с ней параметрам (например, крутящий момент).
 

Honda всегда стремимся предоставить нашим деловым партнерам и покупателям высококачественные, надежные и эффективные двигатели общего назначения. Поскольку для достижения стандарта SAE J1349 мы не производили никаких механических доработок, Вы и Ваши клиенты могут рассчитывать на идентичную выходную мощность, качество, долговечность и производительность, ожидаемую от наших двигателей.

Ниже приведена таблица мощности (кВт/л.с.) в соответствии с SAEJ1349

Номинальная мощность двигателя, указанная в этой таблице — это «чистая» выходная мощность, протестированная на производстве двигателей для каждой модели в соответствии с SAE J1349 при указанных оборотах. Мощность двигателей серийного производства может немного отличаться от этого значения. Фактическая мощность двигателя, установленного на конечное изделие, будет варьироваться в зависимости от многих факторов, таких как число оборотов двигателя, условия окружающей среды, техническое обслуживание и др.
 

 

 

Измерение момента и угла затяжки поможет свести к минимуму возможные ошибки

Изъяны и возможные ошибки на линии сборки можно избежать, контролируя качество во время процесса затяжки, тем самым незамедлительно обнаруживая сбои.

Существует несколько способов крепления деталей и компонентов друг к другу, например склеивание, заклепочное соединение, сварка и пайка. Тем не менее, наиболее распространенным методом соединения компонентов является использование винта для зажима соединительных элементов гайкой или непосредственной установки в резьбовое отверстие в одном из компонентов. Преимуществами этого метода являются простота проектирования и сборки, легкая разборка, производительность и, в конечном счете, СТОИМОСТЬ!

Как рассчитать момент затяжки?

Крутящий момент затяжки по практическим соображениям обычно используется для определения предварительного напряжения в винте. Крутящий момент затяжки или момент силы можно измерять либо динамически, когда винт затягивается, либо статически, проверяя крутящий момент с помощью динамометрического ключа после затягивания.

Крутящий момент затяжки = УСИЛИЕ x ДЛИНА

Характеристики крутящего момента затяжки значительно различаются в зависимости от требований к качеству соединения. Например, ошибки в критически важном для безопасности соединения в подвеске колеса мотоцикла не допустимы и, следовательно, затяжка должна соответствовать очень строгим нормам и допускам.

Более высокий уровень контроля качества достигается путем добавления угла затяжки к измеренным параметрам. В эластичной области винта он может быть применен для проверки наличия всех элементов соединения, например прокладки или шайбы. Кроме того, качество винта можно проверить, измерив угол затяжки до измерения уровня и окончательного момента затяжки.

В сложных процессах затяжки угол может также использоваться для определения динамического напряжения сдвига и обеспечения затягивания в пластиковую область винта.

Как измерить момент затяжки?

Измерения момента затяжки выполняются в соответствии с одним из двух принципов:

  1. Статическое измерение, когда момент проверяется после завершения процесса затяжки
  2. Динамическое измерение, когда крутящий момент непрерывно измеряется во время полного цикла затяжки.
В заключение необходимо отметить, что качество контроля традиционно связано с измерением крутящего момента, который создает зажимное усилие. Однако на результаты затягивания влияют также изменения трения или компоненты. Поэтому необходимо также проводить второе измерение, чаще всего угла поворота. Контроль и мониторинг крутящего момента затяжки и угла обнаруживают неполадки, такие как недостающие прокладки, перекосы, проблемы с материалами и ошибки оператора.
Обеспечивая качество процесса затяжки, вы минимизируете дорогостоящее изъятие продукции, переделку и претензии по гарантиям, а также оставляете свою ценную репутацию незапятнанной.

Полную информацию можно найти, загрузив нашу электронную книгу ниже!

We also provide you with Atlas Copco’s unique tightening consulting solution that optimizes your tightening strategy from design (R&D) to mass production with our tightening laboratory and experts. 

Подробнее

Что такое крутящий момент? Все о крутящем моменте: определение, уравнения и единицы измерения

Крутящий момент — это слово, которое свободно обсуждают производители автомобилей, рекламодатели и обозреватели, и оно не менее важно, чем другие цифры в заголовках, с которыми вы столкнетесь, например, лошадиные силы. Однако реклама крутящего момента не всегда была данностью — посмотрите на рекламу автомобилей 1980-х годов, и вы обнаружите, что о ней почти не упоминалось.

Это в основном из-за лишнего веса новых автомобилей. Современные двигатели настолько загружены технологиями, комфортом и безопасностью, что весят гораздо больше, чем их аналоги десятилетней давности.Это означает, что этим автомобилям требуется больше силы или крутящего момента, чтобы заставить их двигаться.

Крутящий момент определяется как сила вращения двигателя. Вы можете заметить, что крутящий момент — как и мощность — всегда выражается при определенной частоте вращения двигателя. Например, Ford Fiesta Ecoboost развивает максимальный крутящий момент в диапазоне от 1400 до 4000 об / мин. Вообще говоря, автомобиль будет чувствовать себя более отзывчивым, когда максимальный крутящий момент будет развиваться на низком уровне в диапазоне оборотов, но многим людям нравятся высоконагруженные двигатели, которые необходимо резко увеличить, прежде чем они разовьют максимальный крутящий момент.

Крутящий момент становится более важным по мере того, как автомобили становятся больше и тяжелее. Крошечный городской автомобиль может легко путешествовать с очень небольшим крутящим моментом, в то время как большой внедорожник или фургон требует много усилий, чтобы заставить его двигаться. Вот почему более крупные автомобили, как правило, оснащаются дизельными двигателями — дизели обеспечивают больший крутящий момент на более низких оборотах, чем бензиновые двигатели.

Что такое крутящий момент?

Проще говоря, крутящий момент — это сила вращения двигателя. Он отличается от лошадиных сил, поскольку относится к количеству работы, которую может выполнить двигатель, в то время как лошадиные силы определяют, насколько быстро эта работа может быть выполнена.Вот почему крутящий момент в простонародье часто называют «тяговое усилие», «сила» или «ворчание».

Крутящий момент обычно измеряется в Ньютон-метрах (Нм) или фунт-фут (фунт-фут) — последнее не следует путать с фут-фунтом (фут-фунт), поскольку один фут-фунт относится не к крутящей силе, а до количества энергии, необходимого для поднятия 1 фунта веса на расстояние 1 фут.

В частности, крутящий момент фактически измеряет величину силы, необходимой для поворота объекта (например, при затягивании крышки бутылки с газированной водой, гайки колеса или болта головки блока цилиндров).Или, в случае двигателя, он измеряет, сколько крутящего усилия доступно на коленчатом валу при любых заданных оборотах двигателя (RPM).

• Автомобили Cat D и Cat C: объяснение списания страховых сумм

В автомобиле мощность — это мера того, насколько быстро двигатель может развивать тот же крутящий момент с течением времени, поэтому чем больше (обоих) у вас есть, тем быстрее ты сможешь ускориться. Одна лошадиная сила (л.с.) — это абсолютно произвольная единица, придуманная инженером Джеймсом Ваттом. Это эквивалентно тому, что одна лошадь поднимает вес 33 000 фунтов на высоту 12 дюймов за одну минуту — или 33 000 фут-фунтов в минуту.Метрический эквивалент (PS) равен 4500 кгм в минуту или 0,97 л.с.

Мощность в лошадиных силах (л.

Основные уравнения крутящего момента

Допустим, мы используем гаечный ключ длиной 0,5 м для затяжки колесной гайки, и нам нужно опереться на дальний конец гаечного ключа с силой 50 Ньютонов, чтобы затянуть гайку. Простое умножение двух чисел дает нам необходимое значение крутящего момента в Ньютон-метрах:

50 (Н) x 0.5 (м) x = 25 Нм крутящего момента.

Если вы хотите сохранить старую школу, вы можете измерять расстояние в футах и ​​силу в фунтах. На этот раз наш гаечный ключ может быть 18 дюймов (1½ фута), и мы прикладываем усилие в 20 фунтов на дальнем конце:

20 (фунт) x 1½ (фут) = 30 фунт-фут крутящего момента

Итак, что значит двигатель крутящий момент похож?

Если двигатель развивает крутящий момент 500 Нм, мы можем использовать аналогичную визуализацию в обратном направлении, чтобы помочь понять задействованные силы. Чтобы такой двигатель не вращался, потребуется гаечный ключ длиной один метр, прикрепленный к коленчатому валу, с приложением силы 500 Ньютон на другом конце.Поскольку один килограмм создает силу притяжения Земли примерно в 9,8 Ньютона, это означает, что вам понадобится 50-килограммовый жокей, чтобы стоять на конце. Или Аллан Макниш.

• Автосинхронизация: разрешена ли корректировка пробега?

Если это не кажется большим усилием, чтобы остановить двигатель, развивающий тяжелые 500 Нм, не забывайте, что крутящий момент на колесах значительно увеличивается за счет снижения оборотов двигателя. Значит, жокей мог заглушить двигатель, но не мог остановить машину!

Что лучше: крутящий момент или мощность?

Крутящий момент и мощность очень тесно связаны, потому что в двигателе внутреннего сгорания одно без другого не может быть.Снова дело в математике, поскольку л.с. рассчитывается следующим образом:

л.с. = крутящий момент x об / мин ÷ 5252

Это означает, что если вы сравните два двигателя с разным выходным крутящим моментом, двигатель с более высоким крутящим моментом всегда будет вырабатывать больше лошадиных сил на любом данном двигателе. скорость.

Однако многие двигатели с высоким крутящим моментом не рассчитаны на такие высокие обороты (подумайте о мощном дизеле), поэтому показатели максимальной мощности часто оказываются под сомнением. Напротив, спортивный бензиновый автомобиль с высокими оборотами может быть спроектирован так, чтобы иметь более низкий крутящий момент, но его исключительная мощность на высоких оборотах двигателя позволяет ему двигаться быстрее.

• Как сдать экзамен по теории вождения

Вот почему для повседневного вождения мощность и гибкость двигателя с высоким крутящим моментом часто более полезны — и это жизненно важно, когда вам нужен автомобиль для буксировки больших прицепов или перевозки тяжелых грузов.

При обычном вождении крутящий момент часто более важен, чем мощность, поэтому мы уделяем ему так много внимания в наших обзорах автомобилей.

Можете ли вы объяснить крутящий момент не более 25 слов? Заходите в раздел комментариев ниже…

Как производители автомобилей используют динамометр для измерения мощности в лошадиных силах

  • Крутящий момент и лошадиные силы — это оба способа понять силу, где крутящий момент измеряет способность силы поворачивать объект, а мощность измеряет эту способность с течением времени.
  • Динамометры — это инструменты для измерения крутящего момента. Как только крутящий момент получен, вам просто нужно применить его к формуле для получения лошадиных сил.
  • Чтобы подробнее узнать о крутящем моменте и лошадиных силах, а также о том, как производители автомобилей измеряют их, посмотрите видео ниже.
  • Посетите домашнюю страницу Business Insider, чтобы узнать больше.

Ниже приводится стенограмма видео.

Рассказчик: Этот автомобиль вращается со скоростью 8 200 оборотов в минуту. При 8200 об / мин кричит. Это Ford Mustang GT350, и хотя его колеса крутятся с такой скоростью, которая должна довести автомобиль до 140 миль в час, он, очевидно, никуда не движется. Но то, что вы видите, — это важный тест, который помогает нам понять, на что способен автомобиль, и, в этом случае, может даже помочь Ford решить, за какую цену они могут его продать.

Невозможно смотреть рекламу автомобиля, не увидев значений крутящего момента и мощности.

Коммерческий: Создан для обеспечения 412 лошадиных сил и 390 Нм крутящего момента.

Диктор: Производители автомобилей хотят, чтобы вы поверили, что более высокая мощность и крутящий момент переводятся как «быстрее» и «сильнее». Это не совсем так. Точнее, эти два числа дают нам представление о том, на что способен автомобиль в различных дорожных ситуациях, без необходимости видеть его лично.

Прежде чем мы рассмотрим, как измеряются мощность и крутящий момент, давайте разберемся, что это такое.

Проще говоря, крутящий момент — это способность силы что-то крутить. Представьте себе динамометрический ключ, в котором вы прикрепляете головку ключа к болту и нажимаете на ручку. Способность гаечного ключа поворачивать болт — крутящий момент. То же самое точное скручивающее действие происходит внутри автомобильного двигателя, за исключением того, что на этот раз вместо того, чтобы ваша рука давила на ручку, внутри каждого цилиндра двигателя происходят крошечные взрывы, толкая поршень вниз, который заставляет коленчатый вал вращаться.Никаких рук не требуется! Крутящий момент!

Чем сильнее этот поршень давит на коленчатый вал, тем сильнее вращается коленчатый вал, тем больше энергии выдает двигатель автомобиля. Итак, в случае с нашим автомобилем, крутящий момент — это то, сколько силы производит двигатель. Как соотносятся лошадиные силы? Что ж, если крутящий момент — это то, сколько силы производит двигатель, то мощность в лошадиных силах — это то, как быстро он может создать эту силу.

Итак, у нас куча лошадиных сил. Что с этим делать? Если у нас есть, скажем, 5 лошадиных сил, у нас будет достаточно, чтобы переместить 2750-фунтовый автомобиль на один фут за одну секунду, учитывая, что вес и мощность являются единственными двумя факторами.Если бы у нас была более тяжелая машина, нам потребовалось бы больше лошадиных сил, чтобы сдвинуть ее на одну ногу. Итак, как именно измерить крутящий момент и мощность?

Ну, инженеры используют устройство, называемое динамометром, есть несколько типов. Этот динамометр, называемый динамометром шасси, представляет собой своего рода беговую дорожку для автомобилей. Здесь колеса автомобиля сидят на ролике, который позволяет колесам вращаться, не заставляя машину никуда ехать. С помощью ремней к автомобилю прилагается различный вес или нагрузка. Когда автомобиль прикован цепью, инженер нажимает на педаль газа, чтобы увидеть, как автомобиль взаимодействует с каждой нагрузкой на разных оборотах.Динамометр выводит диаграмму, которая выглядит следующим образом. На нем нанесены две линии: линия крутящего момента и линия мощности. Пик крутящего момента — это то место, где двигатель создает наибольшую силу. Пиковая мощность — это то место, где двигатель быстрее всего выдает наибольшую мощность. Цифры для крутящего момента и лошадиных сил, которые указываются в статистических таблицах дилерских центров и в рекламных роликах, как правило, являются числами на пике каждой из этих строк.

Хотя большие значения крутящего момента и мощности в таблице характеристик, несомненно, впечатляют, они лишь подсказывают покупателю нового автомобиля несколько аспектов личности автомобиля.Эти цифры, тем не менее, по-прежнему являются лучшими из имеющихся у нас, чтобы определить, насколько способна машина на самом деле.

ПРИМЕЧАНИЕ РЕДАКТОРА: это видео было первоначально опубликовано в ноябре 2019 года.

Крутящий момент двигателя — обзор

5 НАСТРОЙКА ИЗМЕРЕНИЯ ДВИГАТЕЛЯ И ИССЛЕДОВАННЫЕ РАБОЧИЕ ТОЧКИ была создана, включающая описанную систему бесконтактного определения крутящего момента вала.Стандартный серийный турбонагнетатель был заменен прототипом. Компрессор и турбина не претерпели изменений. Следовательно, что касается согласования двигателя и турбонагнетателя, двигатель может безопасно эксплуатироваться в полном рабочем диапазоне.

Кроме того, поскольку был доступен частично программируемый ЭБУ, определенными условиями рабочих точек можно было управлять независимо, например фаз газораспределения, которая использовалась для организации специальных вариаций параметров для детального исследования взаимодействия между двигателем внутреннего сгорания и системой наддува.

Для измерений крутящего момента вала турбины турбонагнетателя с временным разрешением использовалась частота регистрации более 100 кГц. С помощью DFT был исследован спектр измеряемого сигнала на предмет его ширины полосы и максимальной соответствующей частоты. Затем необработанные данные были соответствующим образом отфильтрованы и пересчитаны на угол поворота коленчатого вала (разрешение 0,1 ° CA). Этот рабочий процесс обеспечивает высокое качество данных с разрешением по углу поворота коленчатого вала и разумный конечный размер файла. Для показанных устойчивых рабочих точек примерно 200 последовательных циклов двигателя были записаны, обработаны, отфильтрованы и затем рассчитан средний цикл двигателя.

В таблице 1 дается обзор рабочих точек двигателя, представленных в этой статье. Все точки были зафиксированы при частоте вращения двигателя 1250 об / мин. Представлены четыре стационарных стабильных рабочих точки, в которых изменялась только фаза кулачков для впускных и выпускных клапанов для регулирования нагрузки двигателя, в то время как дроссельная заслонка оставалась в условиях WOT. Нагрузка указана в процентах от полного крутящего момента двигателя серийного производства при 1250 об / мин.

Таблица 1. Рабочие точки двигателя

CR143
No. Скорость Педаль Нагрузка Cam_int Cam_exh Лямбда
об / мин%% 9012 9012 9012 901 9012 9012 CRK 116_00 1250 WOT / 100% 63,6 110 — 110 0,99
116_01 1250 WOT / 100% 78164.5 85 — 85 1
116_02 1250 WOT / 100% 91,6 82 — 80 1.0912
1.09 100% 112,9 82 — 72 1,18

Очевидно, насколько сильно синхронизация перекрытия клапанов влияет на крутящий момент двигателя. Любое изменение нагрузки двигателя вызывается исключительно изменением фаз впускных и выпускных клапанов и, таким образом, тесно связано с так называемым механизмом «продувки», который (в дополнение к обычному турбонаддува) усиливает двигатель.Благодаря этой хорошо известной стратегии работы ([7], [8], [9]) крутящий момент двигателя может быть увеличен почти вдвое. Даже при серийном применении крутящий момент при полной нагрузке может быть превышен, что, как считается, связано с двумя основными причинами:

Сливной клапан был механически заблокирован для минимизации утечки — состояние, которое, безусловно, не может быть достигнуто в последовательном режиме. производственный двигатель в импульсном режиме горячего газа. Повышенный массовый расход через турбинное колесо приводит к увеличению мощности на валу турбины и, следовательно, мощности компрессора.

Производитель оригинального оборудования следует консервативной стратегии продувки, чтобы гарантировать долговечность двигателя, а также определенно избегать преждевременных воспламенений при любых обстоятельствах в полевых условиях.

В исследуемом случае двигатель был хорошо подготовлен и эксплуатировался под наблюдением системы контроля и управления, поэтому указанные выше ограничения могут быть превышены. Все четыре стационарные точки работали с термостойкостью и близкой к пределу детонации двигателя.

Для рабочих точек, перечисленных в таблице 1, был проведен комбинированный анализ сгорания и газообмена, например, для четвертого цилиндра, с использованием коммерчески доступного программного обеспечения Tiger [10]. Соответствующие результаты показаны на рисунке 5. Хотя — из-за сложных режимов потока — операцию очистки трудно точно проанализировать с помощью нульмерного или ограниченного одномерного кода, результаты ясно показывают долю поглощенной массы. Эффективные площади клапана показаны пунктирными черными линиями.Давления во впускном и выпускном каналах четвертого цилиндра показаны сплошными синими и красными кривыми. Соответствующие расчетные массовые потоки на впуске и выпуске показаны пунктирными синими и красными кривыми.

Рис. 5. Результаты анализа газообмена

Очевидно, смещение кривых подъема клапана вызывает два изменения: во-первых, это позволяет вообще продувку, поскольку впускные и выпускные клапаны могут открываться одновременно с определенным перекрытием. . Во-вторых, он также перемещает относительное положение импульсов давления и перекрытия клапана в желаемом направлении.Для продувки давление на входе в цилиндр (~ давление на выходе компрессора) должно быть выше давления на выходе из цилиндра (~ давление на входе в турбину).

В конце процесса продувки (близко к закрытию выпускного клапана) может наблюдаться отрицательный массовый расход. Это вызвано абсолютной длиной фаз газораспределения (выпускных), поскольку событие открытия выпускного клапана следующего цилиндра отодвигает некоторый массовый расход, в то время как выпускной клапан фактического цилиндра все еще открыт. В четырехцилиндровом двигателе укороченная и / или регулируемая длина момента выпуска может помочь избежать этого, как показано в [7], [8].Этот эффект свидетельствует о несовершенном разделении потоков выхлопных каналов, особенно в четырехцилиндровых двигателях, где время открытия выпускного клапана больше, чем расстояние между двумя тактами выпуска. Это также одна из основных движущих сил для концепций двойной спирали или двойной спирали, где разделение потока осуществляется внутри корпуса турбины. Альтернативой является событие переменного открытия выпускного клапана, реализующее это разделение потока внутри головки блока цилиндров. Однако короткая продолжительность открытия выпускного клапана может быть эффективно использована только для области нижнего конечного крутящего момента, так как для высоких скоростей и нагрузок требуется более длительная продолжительность (вместе с газодинамическими эффектами), чтобы реализовать обмен массой газа в цилиндре в очень короткие сроки. ограниченный период времени.

Что важнее для ускорения: мощность или крутящий момент?

Когда я купил свою первую настоящую машину, мне стало (впервые) умеренно любопытно ее характеристики. Я начал смотреть, как он по сравнению с моей предыдущей машиной с точки зрения производительности, и сразу же был поражен ключевым вопросом:

Что является наиболее важным атрибутом для ускорения — мощность или крутящий момент?

Мой первый подход состоял в том, чтобы сразу же спросить окружающих и позвонить друзьям, которые увлекались автомобилями и / или гонками.Результаты не были удовлетворительными. Я получил несколько приличных ответов, но никто не смог объяснить мне отношения так, как я мог понять.

Большинство людей имеют твердое мнение по этой теме, но не имеют реального представления о науке.

Все это меня смущало и заинтриговало. Одна вещь, которую я действительно выяснил, заключается в том, что никто из спорящих людей не использовал точную науку в качестве основы для своих аргументов; они ссылались на науки, но делали это очень небрежно. Что ж, этого для меня было недостаточно, поэтому я решил найти настоящие ответы.

Основы

Итак, для начала я, естественно, проконсультировался с Google. Большинство хитов в категории «крутящий момент против лошадиных сил» — отличные произведения; они очень методично разбирают математику, так что я не буду повторять здесь эту прекрасную работу. Вместо этого я просто резюмирую основы, которые все принимают как факт.

  1. Лошадиная сила : Джеймс Ватт придумал концепцию лошадиных сил, которая, что интересно, является мерой мощности .1 л.с. эквивалентен 33 000 фут / фунт-сила в минуту. Причина создания сложной единицы заключается в том, что мы учитываем три вещи с этим числом: количество задействованного веса, расстояние, на которое он перемещается, и , сколько времени потребуется, чтобы это сделать (последнее важно).
  2. Крутящий момент : Крутящий момент — это не что иное, как измерение крутящего момента или вращательной силы. Самый простой способ представить это — представить себе длинный вал, похожий на ось автомобиля, и представить, что он находится в комнате, подвешенной в воздухе.Внизу одного конца висит веревка с прикрепленным к ней грузом — очень тяжелым грузом.

А теперь представьте, что кто-то пытается руками повернуть вал, чтобы поднять груз. Думайте о них, как о том, что они, по сути, пытаются действовать как лебедка и наматывать ее.

Обратите внимание, что здесь ничего не говорится о том, насколько быстро вы скручиваете.

Величина силы, которую они могут создать при скручивании, — это крутящий момент, который они могут создать.

Одной единицей измерения этого является фут-фунт.Фут-фунт — это вращательная «сила», создаваемая подвешиванием одного фунта груза на конце 1-футовой лебедки.

Перестаньте думать о мощности и крутящем моменте как о полностью разделенных

Почему мощность и крутящий момент пересекаются при 5252 оборотах в минуту

Ошибка, которую делают большинство людей, участвуя в этих дебатах, заключается в том, что мощность и крутящий момент рассматриваются независимо друг от друга. Почти все утверждают, что это отдельные, не связанные между собой ценности, а это не так.

Мощность в лошадиных силах = (крутящий момент x число оборотов в минуту) / 5252

Это уравнение является вторым по важности параметром на этой странице, и это причина того, что любой, кто говорит вам, что мощность и крутящий момент следует рассматривать одинаково и по отдельности, значительно ошибается.Мощность в лошадиных силах — это произведение крутящего момента и другого значения (число оборотов в минуту, деленное на 5252). Это не несвязанные, отдельные или разные вещи.

На самом деле не существует ни одного прибора для измерения мощности автомобиля. Это число придумано руками человека. При проверке характеристик автомобиля его крутящий момент измеряется с помощью динамометра.

Показателем производительности двигателя является крутящий момент. Лошадиная сила — это дополнительное число, которое достигается путем умножения крутящего момента на число оборотов в минуту.

Физика разгона

Итак, теперь для самое главное на странице .То, что определяет истинное ускорение транспортного средства, не подлежит обсуждению — это силы, деленной на массу . Формула ускорения представлена ​​ниже.

 f = ma
 

Что означает…

 a = f / m
 

Путаница возникает только при определении , о какой силе мы на самом деле говорим .

Итак, мы решаем ускорение и получаем постоянную массу. Мы уже установили, что крутящий момент — это величина силы вращения, создаваемой двигателем, но нас не интересует сила, действующая на двигатель .

Нас интересует сила на колесах .

Радиус колеса тоже имеет значение.

Усилие на колесах f in f = ma .

Но помните, что трансмиссия в конечном итоге передает усилие на колеса, а не на двигатель. И вот в чем весь этот беспорядок!

Зубчатая передача — это преобразователь между двигателем и колесами.

Вот тут-то и вступает в дело передача — она ​​увеличивает ускорение, учитывая, какую мощность двигатель может выдавать.

Зубчатая передача увеличивает крутящий момент, поэтому она так важна в гонках.

Вот почему самые быстрые гоночные автомобили работают на чрезвычайно высоких оборотах.

Крутящий момент на колесах — это крутящий момент в двигателе в сочетании с увеличением крутящего момента, создаваемым трансмиссией через зубчатую передачу. Таким образом, трансмиссия видит только то, что выходит из двигателя, в то время как колеса видят результирующую комбинацию сил двигателя и трансмиссии .

Вот что такое лошадиные силы! Это комбинация преимуществ грубых возможностей двигателя в сочетании с числом оборотов в минуту.А частота вращения — это то, что позволяет нам эффективно использовать передачу, что дает нам больший крутящий момент на колесах.

И крутящий момент на колесах f f = ma .

Заключение

Итак, технический ответ на вопрос «Что делает ускорение: крутящий момент или лошадиные силы?» — это крутящий момент.

Но крутящий момент на колесах, а не на двигателе.

И поскольку ускорение — это крутящий момент на колесах, реальный ответ — это лошадиные силы, потому что лошадиная сила включает не только крутящий момент двигателя, но и общий крутящий момент , который передается на колеса.

Примечания

  1. 7 мая 2019 г. — Обновлено для удобочитаемости (типографика и форматирование), а также для ясности письма.
  2. Электрические двигатели развивают огромный крутящий момент, что делает такие автомобили, как Tesla, такими быстрыми.
  3. Если у вас возникнут какие-либо комментарии, исправления, пламя или другие типы ввода, не стесняйтесь обращаться ко мне. Я готов ко всему, что поможет мне лучше понять этот интересный предмет.
  4. Зубчатая передача чрезвычайно важна, важна, потому что она контролирует обороты (и, следовательно, мощность в лошадиных силах).
  5. Шестерни увеличивают крутящий момент — следовательно, ускорение доступно на первой передаче.
  6. Еще один способ проверить, что мощность, а не крутящий момент имеет наибольшее значение для ускорения, — это взглянуть на автомобили с наибольшим ускорением, а именно автомобили F1. И угадай что? Низкий крутящий момент, высокая мощность.
  7. Еще одно прекрасное объяснение тем на allpar.com
  8. Еще один способ понять важность переключения передач — это заметить, насколько быстро некоторые недорогие автомобили могут разгоняться на первой передаче.Сначала они чувствуют себя довольно быстрыми, потому что могут спрыгнуть с траектории, но на самом деле это просто сверхвысокая передача, которая передает большой крутящий момент на колеса. Но он быстро заканчивается.
  9. Гоночные автомобили обладают высокой мощностью из-за высоких оборотов, а не из-за высокого крутящего момента (см. Зубчатую передачу).
  10. «Ниже 5252 об / мин крутящий момент любого двигателя всегда будет выше, чем его мощность, а выше 5252 об / мин мощность любого двигателя всегда будет выше его крутящего момента. При 5252 оборотах в минуту мощность и крутящий момент будут точно такими же.»- revsearch.com
  11. « Лучше создавать крутящий момент на высоких оборотах, чем на низких оборотах, потому что вы можете воспользоваться преимуществами передачи ». — vettenet.org

Написано Дэниелом Мисслером

Дэниел Мисслер — лидер в области кибербезопасности, писатель и основатель Unsupervised Learning. Он пишет о безопасности, технологиях и обществе с 1999 года и был упомянут в New York Times, Wall Street Journal, BBC и других подобных публикациях по этим темам.


Я провожу время, читая 3–6 книг в месяц о безопасности, технологиях и обществе, и думаю о том, что может быть дальше.

Каждый понедельник утром я рассылаю список лучшего контента, который я нашел за последнюю неделю, примерно 50 000 человек.

Выберите подписку

Еженедельный информационный бюллетень (вместо двухмесячного)

Полный доступ к ленте подкастов

Показать доступ к архиву

Эксклюзивный контент только для членов

Доступ к сообществу UL Slack

Доступ к книжному клубу

Очерки, учебные пособия и подкасты

Все остальные информационные бюллетени

Подпишитесь

Понимание взаимосвязи между двумя, от EPI Inc.

ОСНОВНЫЕ ПОНЯТИЯ:


Крутящий момент измеряется; Мощность рассчитана на
ПРИМЕЧАНИЕ: Все наши продукты, конструкции и услуги ЯВЛЯЮТСЯ ОРГАНИЧЕСКИМИ, БЕЗ ГЛЮТЕНА, НЕ СОДЕРЖАТ ГМО и не нарушат чьи-либо драгоценные ЧУВСТВА

Для того, чтобы подробно обсудить силовые установки, важно понимать концепции POWER и TORQUE .

ОДНАКО, чтобы понять POWER , вы должны сначала понять ENERGY и WORK .

Если вы какое-то время не знакомились с этими концепциями, было бы полезно сделать это перед изучением этой статьи. НАЖМИТЕ ЗДЕСЬ, чтобы получить быстрый обзор Energy and Work.

Часто кажется, что люди не понимают отношения между МОЩНОСТЬЮ и МОМЕНТОМ. Например, мы слышали, как производителей двигателей , консультантов по распределительным валам и другие « технических экспертов» спрашивали клиентов:

«Вы хотите, чтобы ваш двигатель давал ЛОШАДЬ или МОМЕНТ?»

И этот вопрос обычно задают тоном, который убедительно свидетельствует о том, что эти «эксперты» верят, что мощность и крутящий момент каким-то образом исключают друг друга.

На самом деле верно обратное, и вы должны четко понимать следующие факты:

  1. МОЩНОСТЬ (скорость выполнения РАБОТ) зависит от МОМЕНТА и ОБ / МИН .
  2. МОМЕНТ и ОБ / МИН — ИЗМЕРЕНИЕ мощности двигателя.
  3. МОЩНОСТЬ ВЫЧИСЛЯЕТСЯ из крутящего момента и числа оборотов в минуту по следующему уравнению:
л.с. = крутящий момент x об / мин ÷ 5252

(Для всех, кто интересуется, внизу этой страницы показан вывод этого уравнения.)

Двигатель вырабатывает МОЩНОСТЬ за счет ВРАЩАЮЩЕГОСЯ ВАЛА, который может оказывать заданное значение МОМЕНТ на нагрузку при заданных об / мин . Величина МОМЕНТА, который может проявить двигатель, обычно зависит от числа оборотов.

МОМЕНТ

МОМЕНТ определяется как СИЛА вокруг данной точки, приложенная на РАДИУСЕ от этой точки. Обратите внимание, что единицей МОМЕНТА является один фунт-фут ( фунт-фут) (часто неверно), а единицей измерения РАБОТА является один фут-фунт .

Рисунок 1

Ссылаясь на , рисунок 1 , предположим, что ручка прикреплена к шатуну так, чтобы она была параллельна поддерживаемому валу и расположена на радиусе 12 дюймов от центра вала. В этом примере рассмотрим вал должен быть прикреплен к стене . Пусть стрелка представляет силу в 100 фунтов, приложенную в направлении, перпендикулярном как рукоятке, так и шатуну, как показано.

Поскольку вал прикреплен к стене, вал не вращается, но к валу прилагается крутящий момент , равный 100 фунт-фут (100 фунтов на 1 фут).

ПРИМЕЧАНИЕ , что ЕСЛИ шатун на эскизе был вдвое длиннее (т. Е. Рукоятка была расположена на расстоянии 24 дюймов от центра вала), то же усилие в 100 фунтов, приложенное к рукоятке, дало бы 200 фунт-фут. крутящего момента (100 фунтов умножить на 2 фута)

МОЩНОСТЬ

МОЩНОСТЬ — это мера того, сколько РАБОТ может быть выполнено за указанное ВРЕМЯ. В примере на странице «Работа и энергия» парень, толкающий машину, сделал 16 500 фут-фунтов из РАБОТА .Если бы он проделал эту работу за две минуты, он произвел бы 8250 фут-фунтов в минуту POWER (165 футов x 100 фунтов ÷ 2 минуты). Если вам неясно, что такое РАБОТА и ЭНЕРГИЯ, было бы полезно ознакомиться с этими концепциями ЗДЕСЬ.

Точно так же, как одна тонны представляет собой большой вес (по определению 2000 фунтов), одна лошадиные силы представляет собой большое количество мощности. Определение одной лошадиных сил составляет 33000 фут-фунтов в минуту . Мощность, которую парень произвел, толкая свою машину по участку (8250 футов фунтов в минуту), равна лошадиных сил (8 250 ÷ 33 000).

Хорошо, все в порядке, но как толкание машины через парковку связано с вращающимися механизмами?

Рассмотрим следующее изменение в эскизе рукоятки и кривошипа выше. Рукоятка по-прежнему находится на расстоянии 12 дюймов от центра вала, но теперь вал вместо крепления к стене проходит через стену, опираясь на подшипники качения, и прикреплен к генератору за стеной.

Предположим, как показано на рис. 2 , что постоянная сила в 100 фунтов.каким-то образом прикладывается к ручке, так что сила всегда перпендикулярна как ручке, так и шатуну, когда шатун поворачивается. Другими словами, «стрелка» вращается вместе с рукояткой и остается в том же положении относительно рукоятки и рукоятки, как показано в приведенной ниже последовательности. (Это называется «касательной силой»).

Рисунок 2

Если эта постоянная тангенциальная сила в 100 фунтов, приложенная к 12-дюймовой рукоятке (крутящий момент 100 фунт-фут), заставляет вал вращаться со скоростью 2000 об / мин, тогда мощность , которую вал передает генератору за стеной, составляет 38 HP , рассчитывается следующим образом:

100 фунт-фут крутящего момента (100 фунт-футов)x 1 фут), умноженное на 2000 об / мин, деленное на 5252, составляет 38 л.с.

Следующие примеры иллюстрируют несколько различных значений МОМЕНТА, которые производят 300 л.с.

Пример 1 : Какой МОМЕНТ требуется для производства 300 л.с. при 2700 об / мин?

, поскольку HP = МОМЕНТ x ОБ / МИН ÷ 5252
, а затем переформулируя уравнение:
МОМЕНТ = HP x 5252 ÷ ОБ / МИН

Ответ: МОМЕНТ = 300 x 5252 ÷ 2700 = 584 фунт-фут.

Пример 2: Какой МОМЕНТ требуется для производства 300 л.с. при 4600 об / мин?

Ответ: МОМЕНТ = 300 x 5252 ÷ 4600 = 343 фунт-фут.

Пример 3: Какой МОМЕНТ требуется для производства 300 л.с. при 8000 об / мин?

Ответ: МОМЕНТ = 300 x 5252 ÷ 8000 = 197 фунт-фут.

Пример 4: Какой МОМЕНТ дает секция турбины 41 000 об / мин газотурбинного двигателя мощностью 300 л.с.?

Ответ: МОМЕНТ = 300 x 5252 ÷ 41,000 = 38,4 фунт-фут.

Пример 5: Выходной вал коробки передач двигателя в Примере 4 выше вращается со скоростью 1591 об / мин.Какой МОМЕНТ доступен на этом валу?

Ответ: МОМЕНТ = 300 x 5252 ÷ 1591 = 991 фунт-фут.

(без учета потерь в коробке передач, конечно).

Из этих чисел следует сделать вывод, что определенное количество лошадиных сил может быть получено из бесконечного числа комбинаций крутящего момента и числа оборотов в минуту.

Подумайте об этом по-другому: в автомобилях равного веса 2-литровый двигатель с двумя распредвалами, развивающий 300 л.с. при 8000 об / мин (197 фунт-фут) и 400 л.с. при 10000 об / мин (210 фунт-фут), поможет вам. угла так же, как 5-литровый двигатель, который развивает 300 л.с. при 4000 об / мин (394 фунт-фут) и 400 л.с. при 5000 об / мин (420 фунт-фут).Фактически, в автомобилях равного веса меньший двигатель, вероятно, будет гоняться ЛУЧШЕ, потому что он намного легче и, следовательно, снижает нагрузку на переднюю часть. И, на самом деле, автомобиль с более легким 2-литровым двигателем, вероятно, будет весить меньше, чем большой автомобиль с двигателем V8, поэтому он будет лучшим гоночным автомобилем по нескольким причинам.

Измерение мощности

Динамометр определяет МОЩНОСТЬ , которую производит двигатель, прикладывая нагрузку к выходному валу двигателя с помощью водяного тормоза, генератора, поглотителя вихревых токов или любого другого управляемого устройства, способного поглощать мощность.Система управления динамометром заставляет поглотитель точно соответствовать величине МОМЕНТ , которую двигатель производит в этот момент, затем измеряет , что МОМЕНТ и об / мин вала двигателя, и на основе этих двух измерений он вычисляет наблюдается мощность. Затем он применяет различные факторы (температура воздуха, барометрическое давление, относительная влажность), чтобы скорректировать наблюдаемую мощность до значения, которое было бы, если бы оно было измерено при стандартных атмосферных условиях , называемое скорректированной мощностью . .

Мощность для привода насоса

В ходе работы с множеством различных проектов двигателей мы часто слышим предположение, что мощность двигателя может быть увеличена за счет использования «лучшего» масляного насоса. В этом предположении подразумевается вера в то, что «лучший» масляный насос имеет более высокую эффективность перекачивания и, следовательно, может обеспечивать требуемый поток при требуемом давлении, потребляя при этом меньше энергии от коленчатого вала. Хотя это технически верно, величина улучшения на удивление мала.

Сколько мощности требуется, чтобы привести в действие насос с известным потоком при известном давлении? Мы уже показали, что мощность — это работа в единицу времени, и пока мы будем придерживаться старых добрых американских единиц (фут-фунт в минуту и ​​дюйм-фунт в минуту). И мы знаем, что поток умножить на давление равно МОЩНОСТЬ , как показано:

Расход (кубические дюймы / мин) умноженный на давление (фунты / квадратный дюйм) = МОЩНОСТЬ (дюйм-фунты / мин)

Далее достаточно просто умножить на соответствующие константы, чтобы получить уравнение, которое вычисляет HP по давлению, умноженному на расход.Поскольку расход чаще указывается в галлонах в минуту, и поскольку хорошо известно, что в галлоне содержится 231 кубический дюйм, то:

Расход (галлонов в минуту) x 231 (кубический дюйм / галлон) = расход (кубический дюйм в минуту).

Поскольку, как объяснено выше, 1 л.с. — это 33 000 фут-фунтов работы в минуту, умножение этого числа на 12 дает количество дюйм-фунтов работы в минуту в одном HP (396 000). Разделив 396 000 на 231, мы получим коэффициент преобразования единиц 1714,3. Следовательно, простое уравнение:

Насос HP = расход (галлонов в минуту) x давление (PSI) / 1714.

Это уравнение представляет мощность, потребляемую насосом со 100% КПД. Когда в уравнение включается КПД насоса, оно становится:

.

Насос HP = (расход {GPM} x давление {PSI} / (1714 x эффективность)

Обычные шестеренчатые насосы обычно работают с КПД от 75 до 80%. Итак, предположим, что вашему полностью алюминиевому двигателю V8 требуется 10 галлонов в минуту при 50 фунтах на квадратный дюйм. Масляный насос будет рассчитан на поддержание некоторого предпочтительного уровня давления масла на холостом ходу, когда двигатель и масло горячие, поэтому насос будет иметь гораздо большую производительность, чем требуется для поддержания 10 галлонов в минуту при 50 фунтах на квадратный дюйм при рабочей скорости.(Это то, что делает «предохранительный» клапан: отводит избыточную пропускную способность обратно на вход насоса, что, в качестве дополнительного преимущества, также значительно снижает предполагаемую кавитацию во входной линии насоса.)

Итак, предположим, что ваш насос с КПД 75% поддерживает 50 фунтов на квадратный дюйм при рабочей скорости и обеспечивает 10 галлонов в минуту, необходимые для двигателя. Фактически он перекачивает примерно 50 галлонов в минуту (10 из которых проходят через двигатель, а оставшиеся 40 — через предохранительный клапан) при 50 фунтах на квадратный дюйм. Мощность для привода этой ступени нагнетательного насоса:

л.с. = (50 галлонов в минуту x 50 фунтов на кв. Дюйм) / (1714 x 0.75 КПД) = 1,95 л.с.

Предположим, вы поддались шумихе и выложили действительно большие деньги за насос с эффективностью 90%. Этот насос (при том же расходе и давлении) потребляет:

л.с. = (50 галлонов в минуту x 50 фунтов на кв. Дюйм) / (эффективность 1714 x 0,90) = 1,62 л.с.

ВАУ. Чистый прирост 1/3 HP. Может ли ВАШ дино даже точно измерить разницу в 1 л.с.?

Общие наблюдения

Чтобы спроектировать двигатель для конкретного применения, полезно построить график оптимальной кривой мощности для этого конкретного приложения, а затем на основе этой проектной информации определить кривую крутящего момента, которая требуется для получения желаемой кривой мощности.Оценивая требования к крутящему моменту по сравнению с реалистичными значениями BMEP, вы можете определить разумность целевой кривой мощности.

Обычно пик крутящего момента происходит при значительно более низких оборотах в минуту, чем пиковая мощность. Причина в том, что, как правило, кривая крутящего момента не спадает (в%) так быстро, как увеличивается число оборотов в минуту (в%). Для гоночного двигателя часто бывает выгодно (в рамках граничных условий приложения) эксплуатировать двигатель значительно выше пикового значения мощности, чтобы обеспечить максимальную среднюю мощность в требуемом диапазоне оборотов.

Однако для двигателя, который работает в относительно узком диапазоне оборотов, такого как авиационный двигатель, обычно требуется, чтобы двигатель вырабатывал максимальную мощность при максимальных оборотах. Для этого требуется, чтобы пик крутящего момента был достаточно близок к максимальным оборотам в минуту. Для авиационного двигателя вы обычно проектируете кривую крутящего момента так, чтобы она была максимальной при нормальном крейсерском режиме и оставалась ровной до максимальных оборотов. Такое расположение кривой крутящего момента позволило бы двигателю производить значительно большую мощность, если бы он мог работать на более высоких оборотах, но цель состоит в том, чтобы оптимизировать производительность в пределах рабочего диапазона.

Пример этой концепции показан на Рисунке 3 ниже. Три пунктирные линии представляют три разные кривые крутящего момента, каждая из которых имеет точно такую ​​же форму и значения крутящего момента, но с пиковыми значениями крутящего момента, расположенными при разных значениях числа оборотов в минуту. Сплошные линии показывают мощность, создаваемую кривыми крутящего момента того же цвета.

Рисунок 3

Обратите внимание, что с пиком крутящего момента 587 фунт-фут при 3000 об / мин розовая линия электропередачи достигает пика примерно 375 л.с. между 3500 и 3750 об / мин.При той же кривой крутящего момента, перемещенной вправо на 1500 об / мин (черный, пик крутящего момента 587 фунт-фут при 4500 об / мин), пиковая мощность подскакивает примерно до 535 л.с. при 5000 об / мин. Опять же, перемещение той же кривой крутящего момента вправо еще на 1500 об / мин (синий, пик крутящего момента 587 фунт-фут при 6000 об / мин) приводит к максимальной мощности около 696 л.с. при 6500 об / мин

Используя в качестве примера черные кривые, обратите внимание, что двигатель выдает 500 л.с. при 4500 и 5400 об / мин, что означает, что двигатель может выполнять такой же объем работы за единицу времени (мощности) при 4500, что и при 5400.ОДНАКО, он будет сжигать меньше топлива для выработки 450 л.с. при 4500 об / мин, чем при 5400 об / мин, потому что паразитные потери мощности (мощность, потребляемая для вращения коленчатого вала, компонентов возвратно-поступательного движения, клапанного механизма) увеличивается пропорционально квадрату частоты вращения коленчатого вала.

Диапазон оборотов, в котором двигатель развивает максимальный крутящий момент, ограничен. Вы можете настроить двигатель так, чтобы он имел высокий пиковый крутящий момент с очень узким диапазоном или более низкое значение пикового крутящего момента в более широком диапазоне. Эти характеристики обычно продиктованы параметрами приложения, для которого предназначен двигатель.

Пример этого показан на Рисунке 4 ниже. Это то же самое, что и график на Рисунке 3 (выше), ЗА ИСКЛЮЧЕНИЕМ, синяя кривая крутящего момента была изменена (как показано зеленой линией), поэтому она не спадает так быстро. Обратите внимание, как это приводит к тому, что зеленая линия электропередачи выходит за пределы пикового крутящего момента. Такого рода изменение кривой крутящего момента может быть достигнуто путем изменения различных ключевых компонентов, включая (но не ограничиваясь) профили выступов кулачков, разделение выступов кулачков, длину впускных и / или выпускных направляющих, поперечное сечение впускных и / или выпускных направляющих.Изменения, направленные на расширение пикового крутящего момента, неизбежно уменьшат значение пикового крутящего момента, но желательность данного изменения определяется применением.

Рисунок 4

Вывод уравнения мощности


(для всех, кто интересуется)

Эта часть может не представлять интереса для большинства читателей, но несколько человек спрашивали:

«Хорошо, если л.с. = ОБ / МОМ x МОМЕНТ ÷ 5252 , то откуда 5252?»

Вот ответ.

По определению, МОЩНОСТЬ = СИЛА x РАССТОЯНИЕ ÷ ВРЕМЯ (как описано выше под заголовком МОЩНОСТЬ )

Используя пример на Рисунке 2 выше, где постоянная тангенциальная сила в 100 фунтов была приложена к 12-дюймовой рукоятке, вращающейся со скоростью 2000 об / мин, мы знаем задействованную силу , поэтому для расчета мощности нам потребуется расстояние до ручки перемещений на единицу время , выражается как:

Мощность = 100 фунтов x расстояние в минуту

Хорошо, как далеко перемещается рукоятка кривошипа за одну минуту? Сначала определите расстояние, на которое он проходит за один оборот на :

РАССТОЯНИЕ за оборот = 2 x π x радиус

РАССТОЯНИЕ за оборот.= 2 x 3,1416 x 1 фут = 6,283 фута

Теперь мы знаем, как далеко кривошип перемещается за один оборот. Как далеко заводится за одну минуту ?

РАССТОЯНИЕ в мин. = 6,283 фута на оборот х 2000 изм. за мин. = 12,566 футов в минуту

Теперь мы знаем достаточно, чтобы рассчитать мощность, определенную как:

МОЩНОСТЬ = СИЛА x РАССТОЯНИЕ ÷ ВРЕМЯ
, поэтому
Мощность = 100 фунтов x 12,566 футов в минуту = 1,256,600 фут-фунтов в минуту

Пухло, а как насчет ЛОШАДЕЙ? Помните, что одна ЛОШАДЬ определяется как 33000 фут-фунтов работы в минуту .Следовательно, HP = МОЩНОСТЬ (фут-фунт в минуту) ÷ 33000. Мы уже подсчитали, что мощность, подаваемая на кривошипное колесо выше, составляет 1 256 600 фут-фунтов в минуту.

Сколько это HP?

л.с. = (1,256,600 ÷ 33,000) = 38,1 л.с.

Теперь мы объединяем кое-что, что мы уже знаем, чтобы произвести магию 5252. Мы уже знаем это:

МОМЕНТ = СИЛА x РАДИУС.

Если мы разделим обе части этого уравнения на РАДИУС, мы получим:

(a) СИЛА = МОМЕНТ ÷ РАДИУС

Теперь, если РАССТОЯНИЕ на оборот = РАДИУС x 2 x π, то

(b) РАССТОЯНИЕ в минуту = РАДИУС x 2 x π x об / мин

Мы уже знаем

(c) МОЩНОСТЬ = СИЛА x РАССТОЯНИЕ в минуту

Итак, если мы подставим эквивалент FORCE из уравнения (a) и расстояние в минуту из уравнения (b) в уравнение (c), мы получим:

МОЩНОСТЬ = (МОМЕНТ ÷ РАДИУС) x (ОБ / МИН x РАДИУС x 2 x π)

Разделив обе стороны на 33000, чтобы найти HP,

л.с. = МОМЕНТ ÷ РАДИУС x ОБ / МИН x РАДИУС x 2 x π ÷ 33,000

Путем уменьшения получаем

л.с. = МОМЕНТ x ОБ / МИН x 6.28 ÷ 33,000

С

33 000 ÷ 6,2832 = 5252

Следовательно,

л.с. = МОМЕНТ x ОБ / МИН ÷ 5252

Обратите внимание, что при 5252 об / мин крутящий момент и л.с. равны. При любой частоте вращения ниже 5252 значение крутящего момента больше, чем значение HP; Выше 5252 об / мин значение крутящего момента меньше значения л.с.

Физика двигателя внутреннего сгорания

Физика, лежащая в основе современных четырехтактных двигателей
Дэвид Гиссель
Университет Аляски Фэрбенкс
Веб-проект Physics 211, осень 2002 г.

Мощность двигателя измеряется двумя способами.Первый — это прямое измерение мощности двигателя: крутящий момент. Крутящий момент определяется как количество массы, которое можно поднять на определенное расстояние от центра вращения (измеряется в фунтах-футах в Америке и Н-м в остальном мире). Крутящий момент — это то, что ускоряет машину. Это то, что толкает вас обратно на сиденье при ускорении.

Второй способ измерения выходной мощности — в лошадиных силах (в других странах мощность определяется единицей PS). В остальном мире объем производства также измеряется в киловаттах.Лошадиная сила — это расчетная единица (не измеряется напрямую). Его можно просто представить как крутящий момент, который двигатель производит при заданных оборотах. Первоначально он был определен Джеймсом Ваттом как вес, который лошадь может поднять на 100 футов за одну минуту. Ватт оценил это число как 330 фунтов.

Чтобы преобразовать мощность в лошадиные силы в крутящий момент, мы должны понимать уравнения работы и мощности, перечисленные ниже.

Работа = Сила * 2 * Пи * радианы = (в английских единицах) 1 фунт * 2 * 3.14 * 1 фут = 2 * 3,14 фунт-фут = 6,283 фунт-фут

Мощность = Работа / время = 6,283 фунт-фут / мин

1 л.с. определяется как 550 фунт-фут / с = 33000 фунт-фут / мин (по измерениям Джеймса Ватта)

Итак, если 1 фунт-фут крутящего момента применяется за одну минуту (1 об / мин) = (6,283 фунт-фут / мин) / (33000 фунт-фут / мин) = 1/5252 от 1 л.с.

Из этого мы видим, что в одной лошадиной силе 5252 фунт / фут крутящего момента в минуту. Или … если мы умножим крутящий момент в фунт-футах на число оборотов в минуту, при котором этот крутящий момент создается, а затем разделим на 5252, мы получим выходную мощность при этих оборотах.Если мы посмотрим на показания динамометрического станка двигателя, эта взаимосвязь станет более ясной.


Динамометрические диаграммы предоставлены SCDYNE performance

Темно-синие и темно-зеленые линии — это базовый крутящий момент и крутящий момент с наддувом (мы обсудим наддув на следующей странице) для двигателя Saturn с двумя распредвалами, измеренные от колес (примерно на 10 процентов ниже измеренного крутящего момента на кривошипе из-за трения в трансмиссия). Как вы можете видеть, кривые крутящего момента очень плоские примерно до 6500 об / мин, где они начинают падать.Вы также можете четко видеть, как крутящий момент увеличивается с увеличением числа оборотов линейно, пока кривая крутящего момента является плоской. Если вы едете в автомобиле с плоской кривой крутящего момента, вы будете чувствовать один и тот же толчок в спинку сиденья на каждой передаче, вплоть до высоких оборотов, когда крутящий момент падает. Мощность в лошадиных силах (особенно пиковая) не отражает этого ускоряющего толчка. Он просто показывает время, в течение которого этот крутящий момент может поддерживаться (мощность увеличивается до тех пор, пока крутящий момент не упадет). Таким образом, мощность в лошадиных силах — это просто отражение того, как долго вы можете сильно ускоряться на данной передаче.Также обратите внимание, что мощность и крутящий момент пересекаются при 5252 оборотах в минуту на обоих динамометрических графиках. Это результат ранее упомянутых отношений между ними.

Крутящий момент и мощность двигателя не напрямую соответствуют характеристикам автомобиля. Например, автомобиль, который развивает большой крутящий момент в диапазоне низких оборотов, но не так много мощности из-за низких максимальных оборотов, может иметь более высокое передаточное число, чтобы обеспечить большую скорость на данной передаче при заданных оборотах. И наоборот, автомобиль, который не развивает большой крутящий момент, но имеет очень высокие максимальные обороты, может быть переведен на низкий уровень, чтобы обеспечить лучшее ускорение.Вот почему автомобили с меньшей мощностью, такие как старые Subaru или Toyotas с мощностью 90 или менее лошадиных сил, могут быть очень управляемыми. Указанные автомобили используют большую часть своего крутящего момента (около 100 фунт-футов) в диапазоне 2000–3000 об / мин. Поэтому производители оснастили их более высокими передачами, позволяющими водителю переключаться на более низких оборотах при ускорении в условиях большого крутящего момента. Многие современные автомобили, такие как Honda, придерживаются противоположной философии. Эти автомобили развивают очень маленький крутящий момент на низких оборотах, но могут иметь очень высокие обороты, что обеспечивает более высокую пиковую выходную мощность.Эти автомобили имеют более низкие передачи и переключаются на более высоких оборотах с теми же соответствующими скоростями.

Имея базовое представление о мощности и крутящем моменте, давайте рассмотрим несколько способов увеличить их количество с помощью наддува!

Крутящий момент и лошадиные силы

Крутящий момент и лошадиные силы

Энергия, вырабатываемая двигателем транспортного средства, обычно обсуждали с точки зрения крутящего момента и лошадиных сил. Чтобы лучше понимать, о чем говорят люди, когда они обсудить крутящий момент или мощность, каждая должна быть правильно определенный.

Крутящий момент — это мера силы в круговой направление; то есть скручивающая сила. В частности, он описывается как количество сила (F), приложенная по касательной в данном расстояние (d) от центра вращения. Когда вы поворачиваете гаечный ключ или отвертку на болте или винт, вы прикладываете к нему крутящий момент.Чем больше сила, которую вы прикладываете, тем выше крутящий момент.

Мощность в лошадиных силах может быть описана как результат крутящего момента. Это показатель реально выполняемой работы и ее скорости. в настоящее время делается. Если болт или винт поворачиваются при крутящем моменте подана, работа проделана. Из физики точки зрения, объем проделанной работы связан с сила, расстояние (как далеко был повернут болт) и время (сколько времени потребовалось, чтобы повернуть это так далеко).Итак, если вы приложил к болту определенный крутящий момент, и он повернули на 1/2 круга за 1 секунду, вы бы сгенерировали определенное количество мощности. Увеличение крутящего момента приведет к приведет к тому, что болт будет повернут дальше в той же времени или повернуть его на такое же расстояние за меньшее время.

Математически крутящий момент измеряется в фунт-футах. (фунт-фут) или ньютон-метр, если вы используете метрическую систему измерения.Поскольку большинство автомобилей в США используют американские размеры, мы в качестве единицы измерения будет использоваться фунт-фут.

Следует проявлять осторожность при имея дело с крутящим моментом, так как фунт-фут также используется для описания работы при работе с линейными движение. Крутящий момент не работает; это сила. Сила раз движение равняется работе.

лошадиных сил связано с крутящим моментом в том смысле, что в ней используется крутящий момент. как часть его уравнения.Мощность равна количеству приложенный крутящий момент, умноженный на пройденное расстояние, деленное на время, которое потребовалось, чтобы преодолеть это расстояние. Другими словами, объем работы, выполненной за период времени, равен власть.

Итак, какое отношение все это имеет к автомобилю? Показано ниже приведен график типичных лошадиных сил и крутящего момента данный двигатель.

Обратите внимание, как крутящий момент увеличивается до пика, после чего он падает.Это связано с тем, что двигатель не работает. «настроен» на наиболее эффективную работу в заданном Диапазон оборотов (см. Систему впуска , ). Этот диапазон выбирается, когда двигатель спроектирован для соответствовать целям дизайнеров производителя. это дорогостоящая разработка двигателя с широким и равномерным крутящим моментом. изгиб. Невозможно построить двигатель, обеспечивающий одинаковый крутящий момент во всем рабочем диапазоне, хотя теоретически это возможно.

Теперь обратите внимание, как пик мощности достигается на более высокая частота вращения двигателя, чем пик крутящего момента. Это связано с соотношение между мощностью и крутящим моментом. Отзывать эта мощность зависит от крутящего момента, расстояния и времени. Вы заметите, что по мере увеличения крутящего момента и расстояния, лошадиные силы тоже поднимутся. Кроме того, время, необходимое для преодолеть заданное расстояние уменьшается, мощность должна быть выше.Теперь, несмотря на то, что крутящий момент ниже на этих более высоких обороты двигателя, увеличенный пройденный путь, а также более короткое время требуется больше, чем преодолеть снижение в крутящем моменте, до определенного момента. Отношение между крутящий момент, обороты и мощность лучше всего описываются следующая формула:

Константа 5252 была получена путем преобразования круговое движение к линейному движению, чтобы удовлетворить определение лошадиных сил.Также учитываются любые единицы преобразования, которые необходимо исправить.

Согласование шестерен с кривой мощности

Теперь видно, как связан выбор передач кривым крутящего момента и мощности двигателя. В идеале двигатель должен работать в диапазоне, обеспечивающем достаточное крутящий момент, необходимый для повседневного вождения независимо от скорости автомобиля.

Вернуться к Двигатель

Вернуться к Математика шестерен

Вернуться к Коробка передач

Дом


Тормоза , Дифференциал , Трансмиссия , Электронное управление , Управление выбросами , Двигатель , Шина Формула , Gear Math , Система зажигания , Впускной Система , Подвеска , Трансмиссия

.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *