Датчик фаз газораспределения: Неисправность датчика фаз: признаки, причины, как определить

Содержание

где находится датчик распредвала, его назначение и неисправности

Инжекторный бензиновый и дизельный двигатель с электронным управлением оснащается большим количеством различных датчиков. Указанные датчики ЭСУД контролируют работу мотора,  управляют подачей топлива, фиксируют всевозможные сбои и т.д. Фактически, без нормальной работы электронной системы современный двигатель или не сможет работать, или же будет работать со сбоями, перейдет в аварийный режим и т.д.

При этом важнейшими датчиками считаются ДПКВ и датчик фазы (датчик положения распределительного вала, установленный на некоторых моторах). Далее мы рассмотрим, что такое датчик фазы (ДПРВ или ДФ), как он устроен и работает, какие функции выполняет датчик данного типа, а также какие неисправности и сбои указывают на проблемы с датчиком фаз.

Содержание статьи

Датчик фазы: назначение, устройство и принцип работы

Начнем с того, что если рассматривать датчик фаз ВАЗ, ГАЗ, ЗАЗ и других автомобилей отечественного и иностранного производства, многие модели оснащаются данным элементом и конструктивно решение везде похожее.

Датчик положения распределительного вала фактически отслеживает положение распределительного вала в ГБЦ. Если иначе, этот датчик определяет, в каком положении находится механизм газораспределения.

При помощи этого датчика удается определить начало цикла работы двигателя по первому цилиндру в ВМТ (верхняя мертвая точка). В свою очередь, это необходимо для нормальной работы системы фазированного впрыска. Указанный датчик тесно связан с ДПКВ. ЭСУД получает показания от обоих датчиков, после чего ЭБУ формирует импульсы на впрыск топлива и зажигания в каждом отдельном цилиндре.

Датчик фазы ставят только на бензиновые моторы с распределенным фазированным впрыском, а также на некоторые дизельные ДВС. Установка датчика позволяет  максимально просто реализовать фазированный впрыск топлива и зажигание для каждого цилиндра с отдельным учетом режима работы силового агрегата.

Например, на моторах с карбюраторной дозирующей системой такой датчик не нужен, так как рабочая смесь топлива и воздуха  подается в общий коллектор,  тогда как зажиганием управляет распределитель зажигания  и/или датчик положения коленвала.

Еще датчик фазы активно используется на моторах с системой изменения фаз газораспределения. В такой системе стоят  датчики фаз для каждого распредвала,  которые по отдельности управляют управляющих впускными и выпускными клапанами. Системы электронного управления  на подобных моторах сложнее.

Как работает и как устроен датчик фаз

Итак, если отдельно рассматривать указанный датчик, то на многих авто в плане конструкции он похож. Другими словами, датчик распредвала ВАЗ 2114 по функциональности и назначению не будет сильно отличаться от какой-либо иномарки аналогичного класса. 

Сегодня активно применяются датчики, в основе которых лежит эффект Холла. Данный эффект заключается в том, что возникает разность потенциалов в полупроводниковой пластине, когда по ней протекает постоянный ток и она помещена в магнитное поле.

Сам датчик Холла относительно простой: квадратная или прямоугольная пластина из полупроводника, с четырех сторон которой подключены контакты (пара входных для подачи постоянного тока, а также пара выходных для передачи сигнала).

Вся эта конструкция выполнена в виде небольшой микросхемы, заключенной в корпус вместе с магнитом и дополнительными элементами.

Датчики фаз бывают двух типов:

  • щелевой датчик;
  • стержневой или торцевой датчик;

Датчик щелевой  имеет форму в виде буквы П, в разрезе  проходит отметчик распредвала (репер). Корпус может быть разделен на две части (в одной стоит постоянный магнит,  тогда как во второй установлен чувствительный элемент). Как в первой, так и во второй части установлены магнитопроводы особой формы, которые реализуют изменение магнитного поля в момент прохождения отметчика.

Торцевой датчик  выполнен в форме цилиндра, отметчик распредвала проходит перед торцом. В датчике данного типа чувствительный элемент установлен в торце, сверху стоит постоянный магнит, а также магнитопроводы.

Также можно добавить, что ДПРВ является интегральным датчиком, сочетая чувствительный элемент (формирование сигнала) и преобразователь-усилитель сигнала,  который подает  подходящий для обработки сигнал на ЭБУ.

Преобразователь интегрирован в датчик, что упрощает установку и настройку системы

  • Идем далее. Что касается принципа работы, на разных авто датчик работает практически одинаково (например, датчик распредвала 2114). Такой датчик  функционирует в паре с диском (задающий диск), который стоит на распредвале. Указанный диск может иметь отметчик-репер, который имеет ту или иную конструкцию. Основная задача — во время работы  отметчик должен пройти перед датчиком (также проход может быть реализован в зазоре датчика).

В момент прохода перед датчиком отметчик замыкает выходящие из него магнитные линии, это меняет магнитное поле, которое пересекает чувствительный элемент. В свою очередь, датчик способен сформировать электрический импульс. Этот импульс усиливается, а после видоизменяется (преобразовывается), после чего осуществляется подача  полностью готового выходного сигнала на ЭБУ силовой установкой.

Обратите внимание, щелевой и торцевой датчики имеют разные в плане конструкции задающие диски.

Щелевой датчик получает диск с воздушным зазором. Данная схема предполагает, что управляющий импульс будет сформирован во время прохождения зазора.  Торцевой датчик  означает, что с ним используется диск с зубцами (зубчатый задающий диск). Также могут быть использованы короткие реперы. В свою очередь, управляющий импульс  создается в момент прохождения репера.

На моторах с инжектором диск и датчик фазы стоят так, чтобы импульс  от  ДПРВ был сформирован в момент  прохождения ВМТ в первом цилиндре.  В этот же момент  сигнал подается от ДПКВ,  после чего система учитывает показания этих датчиков. Далее ЭБУ посылает сигналы на впрыск топлива и зажигания с учетом порядка работы цилиндров ДВС.

Синхронная работа ДПРВ и ДПКВ позволяет  гибко отслеживать любые изменения частоты вращения коленчатого вала и режима работы мотора, а также обеспечить точный впрыск горючего и четкую работу системы зажигания.

Кстати, что касается дизельных моторов,  система работает точно так же, но есть одна отличительная особенность.

Система следит за положением поршня в каждом отдельном цилиндре. Для реализации такой функции задающий диск  имеет несколько основных и дополнительных отметчиков-реперов, которые отличаются друг от друга по ширине.

Когда система работает, именно по разным отметчикам удается определить, в каком из цилиндров поршень находится в ВМТ. В свою очередь, принимая за основу эти данные, ЭБУ управляет работой форсунок.

Признаки неисправности датчика распределительного вала

Как уже было сказано выше,  на двигателях с датчиком фаз  система управления ДВС опирается на показания указанного датчика. Само собой, если датчик выходит из строя или работает со сбоями, двигатель будет работать неустойчиво. Если датчик выходит из строя,  ЭБУ переведет двигатель в режим парафазного впрыска топлива. Фактически, управление будет происходить только с учетом показаний датчика коленчатого вала.

При этом важно понимать, что без датчика распредвала  ЭБУ не сможет определить начало цикла работы двигателя,  то есть каждая форсунка  будет принудительно впрыскивать половину дозы топлива два  раза в рамках одного цикла.

С одной стороны, это позволит подавать рабочую смесь в  каждый цилиндр, то есть мотор будет работать.  Однако с другой расход топлива увеличится, мотор не будет работать ровно и четко.

Рекомендуем также прочитать статью о том, что такое датчик детонации (ДД). Из этой статьи вы узнаете о назначении, устройстве, принципах работы, а также основных признаках неисправности датчика детонации и способах проверки датчика детонации двигателя автомобиля.

Как правило, на отечественных форумах можно встретить проблему с мотором ВАЗ 2114, датчик распредвала при этом многими упускается из виду. В свою очередь, именно при детальной и углубленной диагностике именно датчик фаз ВАЗ 2114 вполне может оказаться неисправным элементом. Также это касается и других авто как отечественного, так и иностранного производства.

Обычно при выходе из строя датчика фаз на приборной панели горит «чек», мотор теряет мощность, работает с перебоями, перерасходует топливо, теряется мощность. Зачастую в памяти ЭБУ прописан код ошибки датчика фаз.

В рамках компьютерной диагностики это позволяет определить, что датчик фазы ВАЗ 2114 или любого другого авто вышел из строя. 

Главное, провести диагностику и правильно расшифровать коды ошибок, после чего выполнить проверку и заменить датчик при такой необходимости. Также может потребоваться провести настройку ЭСУД после замены датчика.

Подведем итоги

Как видно, при условии наличия датчика фаз именно фазированный впрыск позволяет получить от двигателя максимум мощности и эффективности. Когда датчик в норме, мотор оптимально работает  на разных режимах, под нагрузкой и т.д. Это достигается благодаря слаженной работе ДПРВ и ДПКВ. В свою очередь, датчики позволяют точно управлять впрыском и зажиганием.

Рекомендуем также прочитать статью о том, что такое датчик ДМРВ. Из этой статьи вы узнаете о назначении, принципах работы, а также признаках неисправностей, способах диагностики и ремонта датчика воздуха на примере ВАЗ 2114.

Напоследок отметим, что  если датчик фаз вышел из строя, замена датчика распредвала зачастую является оптимальным решением. Дело в том, что такие датчики не отличаются особой ремонтопригодностью и лучше сразу заменить проблемный элемент на новый датчик или заведомо рабочий б/у. С учетом относительно доступной стоимости, именно замена позволяет быстро решить проблему и полностью восстановить работоспособность ДВС.

Как выявить неполадку датчика фаз

Датчики относятся к измерительным приборам, они преобразуют измеряемые физические величины в электрические сигналы и выводят на табло цифровые данные.

Датчик фаз присутствует во всех 16-ти клапанных моторах  семейства ВАЗ; На 8-ми клапанных с нормой токсичности евро-3 и с фазированным, последовательно распределённым впрыском топлива.

 Стоит отметить, что в период с 2004г по 2005г на такие двигатели как 2111, 2112, 21114, 21124 с блоками управления двигателем Bosch M7.9.7 и Январь 7.2 началась массовое внедрение Датчиков фаз.

         Датчик фаз предназначен для определения цикла работы двигателя и формирования импульсного сигнала. Датчик фаз, является интегральным датчиком, т.е. включает чувствительный элемент и вторичный преобразователь сигнала в импульс. Чувствительный элемент датчика работает по принципу Холла, реагируя на изменения магнитного поля. Вторичный элемент датчика содержит в себе мостовую схему, операционный усилитель, выходной каскад. Выходной каскад выполнен по типу открытого коллектора.

         Работа датчика фаз представляет собой  выбор такта для первого цилиндра: распредвал активная ссылка переход в корзину распределительный вал определяет какой клапан открыт, какая фаза газораспределения.

В карбюраторных моторах данного датчика нет. Дело в том, что карбюраторный мотор подаёт искру свечи в момент сжатия и в конце пуска отработавших газов, а для такого принципа работы достаточно показаний датчика положения коленчатого вала (ДПКВ). Данный тип работы двигателя носит название «система зажигания».

На инжекторных двигателях, когда датчик фаз(ДФ) умирает, загорается чек, и двигатель переходит  с фазированного впрыска на систему зажигания, то есть опираясь всего лишь на показания ДПКВ.

 

         Ситема фазированного впрыска устроена следующим образом: датчик фаз передают импульс на  электронный блок управления двигателем (ЭБУД) активная ссылка переход в корзинуЭБУД, который управляет подачей топлива и форсунка впрыскивает бензин в цилиндр перед самым открытием впускного клапана. Когда клапан открылся, воздух всасывается в впускной клапан и топливо активно перемешивается с воздухом.

 

         Датчик фаз установлен на двигателе со стороны воздушного фильтра, рядом с головкой блока цилиндров.

Внешние проявления неисправностей датчика фаз

 

- Во время запуска двигателя, стартер крутится 3-4 секунды, затем двигатель запускается и загорается лампочка(Check engine)). В этом случае, во время запуска, ЭБУД ждёт показания с датчика фаз, не дожидается и переходит в режим работы двигателя опираясь на систему зажигания (по ДПКВ).

- Повышенный расход бензина.

- Сбои режима самодиагностики.

- Снижение динамики двигателя, (так же причина может быть в  Датчике массового расхода воздуха (ДМРВ) BOSCH  M7.9.7 и в низкой компрессии двигателя.

- может быть затруднён запуск двигателя, но это чаще всего связано с BOSCH мозгами, но Январе – проблем не возникает.

Ошибка датчика фаз

0340  Ошибка датчика фазы.
0343  Высокий уровень сигнала датчика фаз (Датчик положения распределительного вала– высокий сигнал)

 

         При неисправности датчика загорается красная лампочка(Check engine)) и выскакивает ошибка P0340 – «Ошибка датчика фазы» или «неисправен датчик положения распредвала».

 

 

Датчик фаз и датчик положения распредвала – это один и тот же датчик.

 

Чаще всего ремонт обходится просто: нужно заменить датчик на новый.

 

Датчик фаз (8-клап.) и датчик фаз (16-клап.)  - Вы можете приобрести у нас !

  НЕ ТОРМОЗИ  -  ПОКУПАЙ ДЕШЕВЛЕ ! ! !

 

Не стоит упускать из виду, что контакты на датчике могли окислиться или оборваться. Для этого нужно зачистить контакты и прозвонить проводку:  на клемме датчика, на контакте А постоянно должно присутствовать 12В, на других клеммах – по 0.

Так же ошибки, связанные с датчиком фаз, могут быть связаны с неисправной работой ДПКВ или ремень ГРМ  соскочил на зуб.

 

Вам, так же будет полезна информация : Как самостоятельно заменить датчик фаз (ДПРВ) на автомобиле семейства ВАЗ с инжекторной системой двигателя.

 

 Если не нашли интересующий Вас ответ, то задайте свой вопрос! Мы ответим в ближайшее время.

Не забудьте поделиться со своими друзьями и знакомыми найденной информацией, т. к. она им тоже может понадобится — просто нажмите одну из кнопок социальных сетей.

Зачем менять фазы газораспределения — ДРАЙВ

Качество работы двигателя — его КПД, мощность, крутящий момент и экономичность зависят от многих факторов, в том числе и от фаз газораспределения, то есть от своевременности открытия и закрытия впускных и выпускных клапанов.

В обычном четырёхтактном двигателе внутреннего сгорания клапаны приводятся в действие кулачками распределительного вала. Профиль этих кулачков определяет момент и продолжительность открытия (то есть ширину фаз), а также величину хода клапанов.

В большинстве современных двигателей фазы меняться не могут. И работа таких двигателей не отличается высокой эффективностью. Дело в том, что характер поведения газов (горючей смеси и выхлопа) в цилиндре, а также во впускном и выпускном трактах меняется в зависимости от режимов работы двигателя. Постоянно изменяется скорость течения, возникают различного рода колебания упругой газовой среды, которые приводят к полезным резонансным или, наоборот, паразитным застойным явлениям. Из-за этого скорость и эффективность наполнения цилиндров при различных режимах работы двигателя неодинаковы.

Фазы газораспределения в поршневых двигателях внутреннего сгорания — это моменты открытия и закрытия впускных и выпускных клапанов (окон). Фазы газораспределения обычно выражаются в градусах поворота коленчатого вала и отмечаются по отношению к начальным или конечным моментам соответствующих тактов.

Так, например, для работы на холостом ходу уместны узкие фазы газораспределения с поздним открытием и ранним закрытием клапанов без перекрытия фаз (время, когда впускной и выпускной клапаны открыты одновременно). Почему? Потому что так удаётся исключить заброс выхлопных газов во впускной коллектор и выброс части горючей смеси в выхлопную трубу.

Тюнеры часто мудрят со сдвигом фаз при помощи таких сборных звёздочек. Заменив штатный распредвал на «спортивный» с другими фазами, можно добиться существенной прибавки мощности.

При работе на максимальной мощности ситуация сильно меняется. С повышением оборотов время открытия клапанов закономерно сокращается, но для обеспечения высоких крутящего момента и мощности через цилиндры необходимо прогнать куда больший объём газов, нежели на холостом ходу. Как решить столь непростую задачу? Открывать клапаны чуть раньше и увеличивать продолжительность их открытия, иными словами, сделать фазы максимально широкими. При этом для лучшей продувки цилиндров фазу перекрытия обычно делают тем шире, чем выше обороты.

Хондовская VTEC (Variable Valve Timing and Electronic Control) так же, как и тойотовская VVT-I (Variable Valve Timing with intelligence), позволяет плавно изменять фазы газораспределения фазовращателем с гидравлическим управлением. Это достигается путём поворота распределительного вала впускных клапанов относительно вала выпускных клапанов в диапазоне 40—60° (по углу поворота коленчатого вала).

Так что при разработке и доводке двигателей конструкторам приходится увязывать ряд взаимоисключающих требований и идти на сложные компромиссы. Посудите сами. С одними и теми же фиксированными фазами двигатель должен обладать неплохой тягой на низких и средних оборотах, приемлемой мощностью — на высоких. И плюс ко всему устойчиво работать на холостом ходу, быть максимально экономичным и экологичным. Вот так задачка!

Но конструкторы такие задачи уже давно щёлкают как семечки и способны при помощи сдвига и изменения ширины фаз газораспределения менять характеристики двигателя до неузнаваемости. Поднять момент? Пожалуйста. Повысить мощность? Не вопрос. Снизить расход? Не проблема. Правда, подчас получается так, что при улучшении одних показателей приходится жертвовать другими.

Doppel-VANOS (Doppel Variable Nockenwellen Steuerung) от BMW умеет двигать фазы плавно от начального до конечного значения. При помощи гидравлики система заведует как процессами впуска, так и выпуска.

А что если научить газораспределительный механизм подстраиваться под различные режимы работы двигателя? Запросто. Благо способов для этого придумана масса. Один из них — применение фазовращателя — специальной муфты, которая способна под действием управляющей электроники и гидравлики поворачивать распределительный вал на определённый угол относительно его первоначального положения. Наиболее часто такая система устанавливается на впуске. С повышением оборотов муфта проворачивает вал по ходу вращения, что ведёт за собой более раннее открытие впускных клапанов и как следствие — лучшее наполнение цилиндров на высоких оборотах.

Механизм газораспределения 3,2-литровой «шестёрки» FSI от Audi приводится цепями со стороны маховика. У каждого распределительного вала свой фазовращатель.

Но неуёмные инженеры не остановились на этом и разработали ряд систем, способных не только двигать фазы, но и расширять или сужать их. В зависимости от конструкции это может достигаться несколькими способами. Например, в тойотовской системе VVTL-i после достижении определённых оборотов (6000 об/мин) вместо обычного кулачка в работу начинает вступать дополнительный — с изменённым профилем. Профиль этого кулачка задаёт иной закон движения клапана, более широкие фазы и, кстати, обеспечивает больший ход. При раскрутке коленчатого вала до максимальных оборотов (около 8500 об/мин) на частоте вращения в 6000—6500 об/мин у двигателя словно открывается второе дыхание, которое способно придать автомобилю резкий и мощный подхват при ускорении.

Система Valvetronic позволила отказаться от дроссельной заслонки, система меняет и степень открытия клапанов и фазы. Применяется она на моторах BMW с 2001 года. Ход клапана меняется при помощи электродвигателя и сложной кинематической схемы и пределах 0,2–12 мм.

Изменять момент и продолжительность открытия — это замечательно. А что если попробовать изменять высоту подъёма? Ведь такой подход позволяет избавиться от дроссельной заслонки и переложить процесс управления режимами работы двигателем на газораспределительный механизм (ГРМ).

Аналогичная система от немецкой компании Mahle.

Чем вредна заслонка? Она ухудшает наполнение цилиндров на низких и средних оборотах. Ведь во впускном тракте под прикрытым дросселем при работе двигателя создаётся сильное разрежение. К чему оно приводит? К большой инертности разреженной газовой среды (топливовоздушной смеси), ухудшению качества наполнения цилиндра свежим зарядом, снижению отдачи и уменьшению скорости отклика на нажатие педали газа.

Система Variable Valve Event and Lift System (VEL), разработанная Ниссаном, напоминает баварский Valvetronic. Специальный эксцентрик, который приводится от электродвигателя, смещает точку опоры коромысла, и за счёт этого изменяет ход клапана. Высота подъёма варьируется в пределах 0,5–2 мм.

Поэтому идеальным вариантом было бы открывать впускной клапан только на время, необходимое для достижения нужного наполнения цилиндра горючей смесью. Ответ инженеров — механическая система управления подъёмом впускных клапанов. В таких системах высота подъёма и, соответственно, продолжительность фазы впуска изменяются в зависимости от нажатия на педаль газа. По разным данным, экономия от применения системы бездроссельного управления может составлять от 8% до 15%, прирост мощности и момента в пределах 5—15 %. Но и это не последний рубеж.

Так работает «трёхступенчатый» i-VTEC (Intelligent Variable Valve Timing and Lift Electronic Control). На низкой частоте вращения топливо экономится благодаря тому, что половина впускных клапанов практически дезактивирована. При переходе на средние обороты ранее «дремавшие» клапаны включаются в работу, но их амплитуда не максимальна. На мощностных режимах впускные клапаны начинают работать от единственного центрального кулачка. Он обеспечивает максимальный подъём клапанов, кроме того, его профиль специально заточен под мощностные режимы. Управление режимами осуществляется гидравликой и электроникой.

Несмотря на то что количество и размеры клапанов приблизились к максимально возможным, эффективность наполнения и очищения цилиндров можно сделать ещё выше. За счёт чего? За счёт скорости открытия клапанов. Правда, механический привод здесь сдаёт позиции электромагнитному.

Осенью 2007 года Toyota запустит в производство моторы с газораспределительным механизмом Valvematic, который будет изменять не только фазы газораспределения, но и высоту подъёма впускных клапанов. Не секрет, что многие производители достаточно давно применяют подобные системы. Но Toyota в серию такую систему запускает впервые. Мощность двухлитрового атмосферника 1AZ-FE, благодаря новому газораспределительному механизму, удалось поднять со 152 до 158 сил, а момент — с 194 до 196 Нм.

В чём ещё плюс электромагнитного привода? В том, что закон (ускорение в каждый момент времени) подъёма клапана можно довести до идеала, а продолжительность открытия клапанов позволяется менять в очень широких пределах. Электроника согласно прописанной программе время от времени ненужные клапаны может не открывать, а цилиндры отключать вовсе. Зачем? В целях экономии, например, на холостом ходу, при движении в установившемся режиме или при торможении двигателем. Да что режимы — прямо во время работы электромагнитный ГРМ способен превратить обычный четырёхтактный мотор в шеститактный. Интересно, скоро ли появятся такие системы на конвейере?

А это схема работы механизма VVTL-i, предложенная компанией Toyota. Здесь высота подъёма и продолжительность открытия обоих впускных клапанов изменяются скачкообразно. При работе двигателя на частотах вращения коленчатого вала до 6000 об/мин высота подъёма и продолжительность открытия обоих клапанов задаются кулачком (1), который через рокер (5) воздействует на оба клапана. На оборотах выше 6000 закон движения клапанов задаётся более высоким кулачком (2). Чтобы ввести его в строй, нужно переместить сухарь (3) вправо (сухарь перемещается под давлением масла, которое в нужный момент повышается в управляющей магистрали). После того как сухарь переместился вправо, кулачок (2) через шток (4), который до этого времени свободно качался, начинает воздействовать на клапаны через рокер.

Опытный образец четырёхцилиндрового мотора с электромагнитным приводом клапанов и непосредственным впрыском был создан компанией BMW. Здесь количество воздуха, поступающего в цилиндр, регулируется продолжительностью открытия клапана, ход при этом не регулируется. Якорь подпружиненного клапана помещён между двумя мощными электромагнитами, которые призваны удерживать его только в крайних положениях. Чтобы предотвратить ударные нагрузки, каждый раз при приближении к крайнему положению клапан тормозится. Положение и скорость перемещения клапана фиксируются специальным датчиком.

Пожалуй, дальнейшее увеличение эффективности работы мотора за счёт ГРМ уже невозможно. Выжать ещё больше мощности и момента с того же объёма при меньшем расходе можно будет только с применением иных средств. Например, комбинированного наддува или конструкций, изменяющих степень сжатия, других видов топлива. Но это — уже совсем другой разговор.

Ina 427001410 Датчик положения распределительного вала OPEL ASTRA/VECTRA/ZAFIRA 1.

6/1.8 05-
Наименование модификации Годы выпуска кВ ЛС Двигатель, см3 Тип кузова
=$brands?>
ALFA ROMEO 159 (939_) 1.8 MPI01/2005-01/20111031401796седан
ALFA ROMEO 159 Sportwagon (939_) 1.8 MPI01/2006-01/20111031401796универсал
=$brands?>
BUICK (SGM) EXCELLE GT 1.601/2010-по наст. время891211598седан
BUICK (SGM) EXCELLE GT 1.801/2010-по наст. время1081471796седан
BUICK (SGM) EXCELLE XT 1.601/2010-по наст. время891211598Наклонная задняя часть
BUICK (SGM) EXCELLE XT 1.801/2010-по наст. время1081471796Наклонная задняя часть
BUICK (SGM) REGAL II 1.6 Turbo01/2008-по наст. время1351841598седан
=$brands?>
CHEVROLET AVEO Saloon (T300) 1.601/2011-по наст. время851161598седан
CHEVROLET CRUZE (J300) 1.601/2009-по наст. время831131598седан
CHEVROLET CRUZE (J300) 1.801/2009-по наст. время1041411796седан
=$brands?>
CHEVROLET (SGM) AVEO Hatchback (T300) 1.601/2011-по наст. время891211598Наклонная задняя часть
CHEVROLET (SGM) CRUZE Saloon 1.601/2009-01/2013891211598седан
CHEVROLET (SGM) CRUZE Saloon 1. 801/2009-01/20131081471796седан
CHEVROLET (SGM) EPICA 1.801/2006-01/20151051431797седан
=$brands?>
FIAT CROMA (194_) 1.8 16V01/2005-по наст. время1031401796универсал
=$brands?>
OPEL ASTRA H (L48) 1.601/2004-01/2014851161598Наклонная задняя часть
OPEL ASTRA H (L48) 1.801/2004-01/20141031401796Наклонная задняя часть
OPEL ASTRA H GTC (L08) 1.601/2005-01/2010851161598Наклонная задняя часть
OPEL ASTRA H GTC (L08) 1.801/2005-01/20101031401796Наклонная задняя часть
OPEL ASTRA H Saloon (L69) 1. 601/2007-01/2014851161598седан
OPEL ASTRA H Saloon (L69) 1.801/2007-01/20141031401796седан
OPEL ASTRA H Estate (L35) 1.601/2004-01/2014851161598универсал
OPEL ASTRA H Estate (L35) 1.801/2004-01/20141031401796универсал
OPEL ASTRA H TwinTop (L67) 1.601/2005-01/2010851161598Кабриолет
OPEL ASTRA H TwinTop (L67) 1.801/2005-01/20101031401796Кабриолет
OPEL ASTRA FAMILY (L48) 1.601/2009-по наст. время851161598Наклонная задняя часть
OPEL ASTRA J 1.601/2009-по наст. время851151598Наклонная задняя часть
OPEL ASTRA J Saloon 1. 601/2012-по наст. время851161598седан
OPEL ASTRA J GTC 1.801/2011-по наст. время1031401796Наклонная задняя часть
OPEL ASTRA J Sports Tourer 1.6 LPG01/2010-по наст. время841141598универсал
OPEL ASTRA J Sports Tourer 1.601/2010-по наст. время851161598универсал
OPEL INSIGNIA A (G09) 1.6 (68)01/2008-по наст. время851161598Наклонная задняя часть
OPEL INSIGNIA A (G09) 1.8 (68)01/2008-по наст. время1031401796Наклонная задняя часть
OPEL INSIGNIA A Saloon (G09) 1.6 (69)01/2008-по наст. время851161598седан
OPEL INSIGNIA A Saloon (G09) 1.8 (69)01/2008-по наст. время1031401796седан
OPEL INSIGNIA A Estate (G09) 1. 6 (35)01/2008-по наст. время851161598универсал
OPEL INSIGNIA A Estate (G09) 1.8 (35)01/2008-по наст. время1031401796универсал
OPEL MOKKA / MOKKA X 1.601/2012-по наст. время851161598вездеход закрытый
OPEL MOKKA / MOKKA X 1.801/2012-по наст. время1031401796вездеход закрытый
OPEL MOKKA / MOKKA X 1.8 4x401/2012-по наст. время1031401796вездеход закрытый
OPEL SIGNUM 1.801/2003-по наст. время1031401796Наклонная задняя часть
OPEL VECTRA C GTS 1.801/2002-по наст. время1031401796Наклонная задняя часть
OPEL VECTRA C 1.801/2002-по наст. время1031401796седан
OPEL VECTRA C Estate 1. 801/2003-по наст. время1031401796универсал
OPEL ZAFIRA B (A05) 1.601/2005-по наст. время851151598вэн
OPEL ZAFIRA B (A05) 1.801/2005-по наст. время1031401796вэн
OPEL ZAFIRA TOURER C (P12) 1.801/2011-по наст. время851151796вэн
OPEL ZAFIRA TOURER C (P12) 1.8 LPG01/2011-по наст. время1011371796вэн
OPEL ZAFIRA TOURER C (P12) 1.801/2011-по наст. время1031401796вэн

Как проверить датчик фаз мультиметром, проверка дпрв

Рекомендуем:  е 210 км в час. Если нет никакого обозначения, то наибольшая скорость разрешена не выше 110 км в час. Автомобильные покрышки для спортивных версий автомобилей имеют в маркировке буквы W и Y, означающие соответственно скорости 270 и 300 км в час.

Как работает датчик распредвала.

ДПРВ по принципу работы классифицируются на 3 вида:

  • магнитный дпрв;
  • оптический дпрв;
  • дпрв Холла.

Магнитный датчик положения распредвала или индукционный работает из-за того, что металлический зубчик постоянно двигается в магнитном поле. Такой датчик имеет два вывода.

Принцип работы оптического датчика работает благодаря излучаемому источником лучика света, который отслеживается и фиксируется приемом и прерыванием фотоэлементом.

Датчик на эффекте Холла отслеживает изменения магнитного поля вокруг себя. ДПРВ на эффекте Холла имеют три вывода. Эффект Холла также называется холловским напряжением.

Самые редко используемые датчики положения распределительного вала — это оптические. Не удивляйтесь, если в автомобиле больше одного или даже двух ДПРВ датчиков, такое тоже возможно.

Что вы слышали о безопасности SRS системы? Она состоит из датчиков удара, исполнительных механизмов и блока управления SRS.

Принцип работы холловского датчика заключается в том, что он фиксирует изменения напряжения, которое пересекает его магнитное поле. В строении датчика есть пистонный магнит и полупроводниковый элемент, которое и фиксирует изменения напряжения. Если магнитное поле не изменяется, то датчик никаких изменений не будет фиксировать. Магнитное поле будет изменять только, если будет какой-либо металлический элемент в этой среде. Насечки или зубцы на распредвале как раз являются металлическими элементами, которые изменяют магнитное поле.

Как было уже упомянуто выше, что ДПРВ называют также датчиком фаз. Такое название получилось от того, что датчик фиксирует цилиндрические фазы впуска и выпуска.

 

Устранение неполадок ДПРВ

Если на панели уже загорелся индикатор Check Engine (он может светиться не постоянно, а появляться периодически), необходимо просто считать код неисправности с помощью диагностического устройства. Если у вас нет такого прибора и купить его невозможно, необходимо обратиться к специалистам.

После получения точного кода неисправности и его расшифровки, мы рекомендуем выполнить несколько несложных тестов. Не всегда наличие одного из перечисленных выше кодов неисправности ДПРВ свидетельствуют о том, что датчик обязательно подлежит замене. Иногда источником проблемы является повреждение проводки, разъема и т.д. Такие неполадки вполне реально устранить своими силами.

Но для проверки работоспособности самого датчика положения распредвала необходимо выполнить несколько действий. Конечно, сигнал сложно проверить, не имея специального оборудования. Но базовую информацию предоставит проверка датчика распредвала мультиметром.

Сначала визуально проверьте, в каком состоянии находится разъем датчика и провода, которые к нему идут. Убедитесь в том, что там нет грязи, масла или ржавчины, которые могут создавать перебои. Проверьте провода на отсутствие повреждений. Иногда проблемы создают переломанные провода, плохие контакты или дефекты изоляционного слоя, вызванные воздействием повышенных температур. Провода ДПРВ не должны контактировать с высоковольтными проводами системы зажигания.

После этого берём в руки цифровой мультиметр, он «умеет» проверять значение переменного и постоянного тока (AC и DC, соответственно). Но вам заранее необходимо получить информацию о том, какими должны быть эти показатели для используемого на вашем авто датчика.

В некоторых датчиках разъемы устроены так, что вы можете подключить к ним дополнительные провода для считывания данных мультиметром.

Если это невозможно, попробуйте отключить разъем ДПРВ и подключить тонкие медные провода к каждой клемме разъема. После этого установите разъем на место, чтобы из его корпуса торчали два провода.

Ещё один вариант – пробить каждый из проводов иглой или булавкой (делайте всё аккуратно, чтобы не замкнуть провода!). После такой диагностики поврежденные участки изоляции следует хорошо замотать изолентой, чтобы внутрь не попадала влага.

Проверка двухпроводного датчика положения распредвала:

  • Если в авто используется электромагнитный ДПРВ, переведите мультиметр в режим AC.
  • Другой человек должен включить зажигание, провернув ключ в замке, не запуская при этом двигатель.
  • В цепи должно появиться напряжение. Один из щупов мультиметра соедините с «землей» (любой металлический компонент двигателя), а второй по очереди подключайте к проводам датчика распредвала. Отсутствие тока на всех проводах свидетельствует о проблеме в проводке, которая идёт к датчику.
  • Попросите человека в машине запустить двигатель.
  • Прикоснитесь одним щупом мультиметра к одному проводу разъема ДПРВ, а вторым – к другому. На экране прибора появятся значения, которые следует сравнить с рабочими показаниями, приведенными в инструкции по эксплуатации авто. Как правило, показатели на экране меняются в пределах 0,3-1 вольта.
  • Отсутствие сигнала свидетельствует о неисправности датчика распредвала.

Проверка трехпроводного ДПРВ:

  • Идентифицируйте провод питания, «земли» и сигнальный провод (воспользуйтесь инструкцией по ремонту), после чего проверьте целостность проводки, которая идет к датчику. Мультиметр надо перевести в режим DC.
  • Другой человек должен включить зажигание, не запуская мотор.
  • Черный щуп мультиметра соединяем с «землей» (любая металлическая деталь двигателя), а красный – с проводом питания ДПРВ. Полученные результаты следует сравнить с данными с инструкции по эксплуатации.
  • Помощник должен запустить двигатель.
  • Дотроньтесь красным щупом мультиметра к сигнальному проводу ДПРВ, а черный щуп соедините с проводом заземления. В случае неисправности датчика напряжение будет ниже заявленного в руководстве по ремонту. Иногда мультиметр вообще ничего не показывает, что также свидетельствует о выходе из строя датчика.
  • Снимите ДПРВ и проверьте элемент на наличие механических повреждений или загрязнений.

Ниже опубликовано видео, которое наглядно демонстрирует, как вы можете проводить такие испытания. В некоторых случаях электрическая цепь исправна, датчик во время тестов также выдает правильные показания. Возникает вопрос о том, почему же появляются ошибки и проблемы в работе двигателя? Иногда причины связаны с другими компонентами двигателя. Ошибки могут появляться из-за ослабленного ремня ГРМ или неисправности его натяжителя. Из-за этого ДПРВ будет передавать неправильный сигнал.

Конструкция и местонахождение измерителя

Принцип работы ДПРВ основан на эффекте Холла – датчик реагирует на приближение металлической массы, изменяя напряжение на сигнальном проводе. По конструкции прибор похож на другой элемент – определитель положения коленчатого вала. Внутри пластикового корпуса находится катушка, куда постоянно подводится напряжение бортовой сети 12 В.

Измеритель устанавливается на головке цилиндров двигателя в непосредственной близости от распределительного вала. Последний оснащается специальной пластиной либо шестеренкой, чье вращение воздействует на ДПРВ. Алгоритм работы выглядит так:

  1. После включения зажигания и пуска мотора на датчик подается напряжение питания 12 В. Через третий сигнальный провод элемент отдает контроллеру напряжение величиной 90–95%!от исходного.
  2. Когда выступ на вращающейся детали распредвала проходит рядом с корпусом ДПРВ, напряжение на сигнальном контакте падает до 0,2–0,4 вольта в зависимости от конструкции прибора и модели транспортного средства.
  3. По моментам падения напряжения электронный блок четко «видит» фазы газораспределения, своевременно подает топливную смесь в цилиндры двигателя и направляет искровой разряд к нужной свече зажигания.

Примечание. На автомобилях с 16-клапанными моторами устанавливается 2 датчика – по одному на каждый распределительный вал.

Когда измеритель неисправен, электроника не способна контролировать работу газораспределительного механизма. В подобных случаях блок управления уходит в ошибку и ориентируется на сигналы остальных измерителей. Искрообразование и топливоподача корректируется согласно заложенной программе, что сказывается на работе силового агрегата.

Что такое датчик распредвала, принцип действия ДПРВ

Чтобы разобраться в работе и принципе действия устройства, нужно знать где находится датчик распредвала. Датчик расположен со стороны шкивов помпы и гидроусилителя. Ось датчика всегда соответствует направлению оси распредвала.

Датчик распредвала – это устройство, которое обеспечивает нормальную работу двигателя машины. Он определяет угловое положение механизма газораспределения, в отношении с положением коленного вала. После этого, информация с датчика идет в систему управления двигателем для управления впрыском топлива.

Чтобы ответить на вопрос : «для чего нужен датчик распредвала?» Нужно разобраться в принципе его работы. В самом датчике расположен магнит, который создает специальное магнитное поле. Репер (штырь или металлический зубчик), который располагается на задающем диске. Он замыкает магнитный зазор и происходят изменения в магнитном поле.

Блок управления двигателем, получив сигнал от датчика, получает данные о положении поршня первого цилиндра. После этого, система управления задает впрыск топлива и зажигание топливной смеси, согласно порядку работы цилиндров двигателя.

Важно! Если вы заметили, что датчик положения распределительного вала вышел из строя нужно как можно быстрее его заменить для уменьшения расхода топлива и нормальной работы автомобиля.

Видео “Датчик положения распредвала”

Просмотрев запись, Вы узнаете, где находится датчик распредвала и как его заменить.

Какие причины неисправности в работе ДПРВ

Если датчик положения распредвала вышел из строя, то форсунка будет срабатывать за каждый оборот коленвала, то есть в два раза чаще.

Симптомы или признаки сломанного датчика:

  1. Значительно увеличивается расход топлива.
  2. Двигатель работает асинхронно во время движения, то есть дергается во время движения, едет рывками, теряет скорость. Двигатель может глохнуть как-будто кончился бензин. Также, иногда, авто не может набрать высокую скорость, более 60 км/час. В конструкциях автомобилей стоят датчики скоростей. Узнайте к чему приводят неполадки в их работе и как проверить датчики скоростей.
  3. На определенных марках и моделях авто при неисправном ДПРВ может застопориться коробка передач. Выходом из зафиксированной коробки передач будет перезапуск двигателя. Если это происходит постоянно, то точно вышел из рабочего режима CMP.
  4. При диагностировании своими руками сканером, могут возникать сбои в работе.
  5. Также может пропасть искра и не запускаться мотор.
  6. Горит ЧЕК (check) на холостых оборотах, на высоких оборотах гаснет.

Такие причины нерабочего датчика показываются на панели приборов соответствующими значками. Когда ДПРВ (СМР) не рабочий, блок управления запишет неправильный режим работы и выдаст определенный код ошибки. Для расшифровки кодов ошибок можно закачать приложение на телефон или планшет и узнать, что конкретно означает данный код ошибки.

Вот самые часто выскакивающие ошибки:

  1. P0365 означает, чт нет сигнала в цепи датчика положения распредвала.
  2. P0344 предупреждает, что подаваемый датчиком сигнал слабый, прерывистый.
  3. P0343 слишком высокий подаваемый датчиком CMP сигнал.
  4. P0342 говорит, что слишком низкий уровень сингла ДПРВ.
  5. Р0341 фаза газораспределения не соответствует состоянию правильной работы двигателя.
  6. P0340 полностью отсутствует сигнал с датчика.
  7. P0300 расшифровывается, как нарушение циклов воспламенения в системе зажигания (воспламенение часто пропускается).

Факторы, влияющие на появление причин, указывающих на нерабочее состояние датчика положения распредвала:

  1. Сигнальные провода не подсоединены к датчику.
  2. Присутствует влага в соединении датчика.
  3. Сигнальный провод задевает «массу» (какой-либо металлический объект в автомобиле).
  4. Сигнальный провод разомкнут, оторван.
  5. Сигнальный провод замыкает на бортовую сеть.
  6. Нарушена изоляция датчика, обрыв экранирующей оболочки или жгута.
  7. Провод питания датчика оторван или поврежден.
  8. Неправильно подсоединены питающие провода.
  9. Неисправны высоковольтные провода цепи зажигания.
  10. Неправильно работает блок управления двигателем.
  11. Не соответствующий норме зазор между датчиком и меткой (слишком большой или слишком маленький зазор).
  12. Шестерня распредвала «бьет», то есть имеет превышенную норму торцевого биения.
  13. Есть металлическая стружка на корпусе ДПРВ.

Установка или замена датчика распредвала

Замена датчика положения распредвала, конечно же производится, когда он выходит из строя. Как проверить датчик распредвала? Для этого существует внешний индикатор, который покажет вам, какие неисправности датчика положения распредвала возникли.

При работающем двигателе постоянно горит индикатор неисправности. При этом самодиагностика датчика показывает: ошибка датчика распредвала. В данном случае, проверка датчика распредвала проводится следующим образом:

  • Проверить исправность электроцепей датчика
  • проверить контакт экранирующей оболочки с массой на двигателе;
  • проверить монтажный зазор между отметчиком и торцом датчика распредвала.

На холостых оборотах происходит бессистемное загорание индикатора датчика. Самодиагностика показывает код неисправности.

  • опять начинаем с проверки контакта экрана с массой двигателя;
  • могут существовать торцевые биения штифта отметчика распредвала.

Если проверка датчика распредвала показывает его неустранимые неисправности, то самый оптимальный вариант – замена датчика распредвала.

Для информации, как правило, монтажный зазор между верхней кромкой штифта-отметчика и торцом датчика, выставляется на конвейере и не регулируется.

Замена датчика осуществляется исходя из типа двигателя вашего автомобиля, руководствуясь мануалом по Ремонту и эксплуатации от производителя.

По сути, замена датчика распредвала не составит для вас труда. Самое главное используйте именно те параметры, которые указаны в мануале производителя.

Удачи вам при диагностике и замене датчика распредвала.

VVT: Регулируемая синхронизация клапанов - знайте свои детали

К началу 1990-х годов почти все производители автомобилей имели успешную систему изменения фаз газораспределения (VVT). Системы VVT обеспечивают более высокую производительность при более высоких оборотах.

VVT Эксплуатация


Системы VVT просты в диагностике. Большинство деталей не обслуживаются и имеют встроенные датчики. В обычном двигателе выпускные и впускные клапаны открыты или закрыты в зависимости от коленчатого вала, и рисунок не может быть изменен.С помощью VVT можно изменить время в соответствии с частотой вращения двигателя, требованиями к крутящему моменту и перекрытием клапанов. Это увеличивает производительность и экономию топлива. Еще одним большим преимуществом VVT является его способность снимать часть нагрузки с коленчатого вала, открывая клапан до конца такта сгорания. Системы VVT сделали клапаны рециркуляции выхлопных газов (EGR) устаревшими. Клапаны системы рециркуляции ОГ создают дым, вызывающий возврат оксидов азота во впускной коллектор. Система VVT контролирует синхронизацию, чтобы оставить инертный газ в камере для следующего цикла сгорания, таким образом регулируя температуру сгорания и образование оксидов азота.

VVT - через диагностический разъем

.


Два общих кода ошибок, с которыми техники сталкиваются при работе с системами VVT, - это P0011 и P0021 (датчик положения распредвала «ряд 1» и датчик положения распределительного вала «ряд 2» соответственно). Эти коды (как и любой другой) не означают, что датчик неисправен, поэтому проверьте систему VVT на наличие неисправности и проверьте датчик. Некоторые из общих областей, на которые следует обратить внимание: фаза газораспределения, масляный регулирующий клапан, сетка фильтра масляного регулирующего клапана, фаза фаз газораспределения / шестерни, а также электрическая сторона работы, а также PCM.Первое, что нужно сделать, это проверить масло, потому что грязное масло может привести к накоплению шлама, который может повредить масляные каналы в кулачке, что приведет к выходу кулачка из строя. Отсутствие регулярного обслуживания - большая проблема для систем VVT.

В будущем системы VVT станут довольно обычным явлением из-за преимуществ, связанных с производительностью и выбросами.

Электромагнитный клапан с регулируемой синхронизацией клапана (VVT)

Другие условия производителя для электромагнитного клапана VVT

Автопроизводители, использующие соленоид VVT

Электронная система регулирования фаз газораспределения, впервые разработанная компанией Nissan в начале 90-х годов, стала практически универсальной функцией на серийных автомобилях, чтобы соответствовать более строгим нормам выбросов.

Технология VVT может быть обычным явлением, но многие компании используют разные торговые марки и патенты для одной и той же системы.

Многие приложения для соленоида Spectra VVT носят другое название оригинального оборудования:

Производитель Акроним / термин Определение
Audi Клапанный подъемник
BMW VANOS Изменяемый Nockenwellensteuerung
Fiat MultiAir
Форд Ti-VCT / VCT Независимая синхронизация фаз газораспределения с двумя независимыми регулируемыми фазами фаз газораспределения / фаза изменения фаз газораспределения
Дженерал Моторс DCVCP Двойной непрерывный переменный кулачок с фазированием
Хонда, Акура VTEC, я-VTEC Электронное управление с изменяемой синхронизацией клапана и подъемом
Hyundai, Kia, Volvo CVVT Непрерывная регулировка фаз газораспределения
Hyundai, Киа VTVT Клапанный механизм с изменяемой фазой газораспределения
Мазда S-VT Последовательная синхронизация клапана
Митсубиси MIVEC Инновационная электронная система регулирования фаз газораспределения Mitsubishi
Nissan, Infiniti CVTCS / VVEL Непрерывное регулирование фаз газораспределения / Nissan Variable Valve Event and Lift
Nissan N-VCT / VVL Nissan Variable Cam Timing / Nissan Ecology Oriented Variable Valve Lift and Timing
Порше VarioCam
Тойота, Лексус VVT-i, VVTL-i Регулируемая синхронизация клапана с интеллектуальным управлением
Субару AVCS / AVLS Активная система управления клапаном

Общие симптомы неисправности соленоида VVT

  • Неровный холостой ход двигателя
  • Проверьте свет двигателя
  • Пропуски зажигания в двигателе под нагрузкой

Больше информации

Распространенные причины отказа

Загрязнения в моторном масле - основная причина выхода из строя системы VVT. Неисправный агрегат приведет к нестабильной работе двигателя на холостом ходу и низкой экономии топлива. Несоблюдение замены умирающего узла может привести к выходу из строя зубчатой ​​передачи двигателя и цепи привода ГРМ. Всегда следите за индикатором «Проверьте двигатель»

.

Признаки неисправного или неисправного соленоида регулируемого клапана синхронизации (VVT)

В начале и середине 1960-х годов американские автомобильные гиганты Крайслер, Форд и Дженерал Моторс правили улицами и тащили полосы по земле. С каждым новым автомобилем «Большая тройка» узнавала все больше о характеристиках двигателей и о том, как выжать из своих двигателей каждую унцию лошадиных сил, вручную регулируя зазор клапанов и угол зажигания.Одним из самых больших достижений стала разработка системы изменения фаз газораспределения (VVT), новой системы, в которой использовалась передовая (на то время) электронная технология для подачи регулируемых электронных сигналов от системы зажигания посредством соленоида с изменяемой фазой газораспределения. Сегодня систему VVT можно найти практически во всех серийных автомобилях, продаваемых в Соединенных Штатах.

Каждый производитель автомобилей имеет свою собственную уникальную систему VVT, но большинство из них полагаются на полностью функциональный соленоид с регулируемыми фазами газораспределения для управления потоком масла в систему VVT при ее включении.Эта система обычно активируется при значительной нагрузке на двигатель. Некоторые примеры этого включают в себя то, что транспортное средство несет дополнительный вес, движется в гору или когда ускорение ускоряется за счет управления дроссельной заслонкой. Когда соленоид VVT активируется, масло направляется для смазки цепи регулируемого газораспределения и узла шестерни. Если соленоид VVT выходит из строя или блокируется, отсутствие надлежащей смазки может привести к преждевременному износу или полному разрыву цепи привода ГРМ и шестерни.

Существует несколько других проблем, которые могут возникнуть, когда соленоид VVT изнашивается или сломался, что может привести к полному отказу двигателя. Чтобы снизить вероятность возникновения этих серьезных ситуаций, ниже перечислены несколько предупреждающих знаков, о которых следует помнить, которые могут указывать на проблему с соленоидом VVT. Вот несколько симптомов изношенного или сломанного соленоида VVT.

1. Загорается индикатор двигателя.

Поскольку современные автомобили управляются блоком управления двигателем (ЭБУ), практически все отдельные компоненты контролируются ЭБУ. Когда одна часть начинает выходить из строя, ЭБУ сохранит конкретный код неисправности, который позволит механику, использующему сканирующий прибор, узнать о существовании проблемы.Как только код будет сгенерирован, он будет сигнализировать водителю, подсвечивая предупреждение о конкретной зоне. Самый распространенный индикатор, который загорается при выходе из строя соленоида VVT, - это индикатор проверки двигателя.

Из-за того, что каждый производитель автомобилей использует разные коды, владельцу автомобиля очень важно связаться с местным сертифицированным механиком ASE, чтобы осмотреть автомобиль, загрузить код с помощью правильного диагностического инструмента и определить точный источник проблемы. Фактически, существуют буквально десятки индивидуальных кодов для проблем с соленоидом VVT для каждого производителя автомобилей.Как только механик получит эту исходную информацию, он сможет приступить к решению конкретной проблемы.

2. Моторное масло грязное

Это скорее причина, чем симптом. Соленоид VVT работает лучше всего, когда моторное масло чистое, без мусора или если масло в двигателе частично утратило смазывающую способность или вязкость. Когда моторное масло забивается мусором, грязью или другими посторонними частицами, оно имеет тенденцию забивать канал от соленоида к цепи и шестерне VVT. Если моторное масло не было заменено вовремя, это может привести к повреждению соленоида VVT, цепи VVT и зубчатой ​​передачи.

Чтобы избежать этой ситуации, замените моторное масло в соответствии с рекомендациями производителя автомобиля. Низкий уровень масла также может вызвать проблемы с соленоидом VVT и другими компонентами системы газораспределения.

3.

Неровная работа двигателя на холостом ходу

Обычно система VVT не активируется до тех пор, пока двигатель не наберет более высокие обороты, или пока двигатель не будет подвержен нагрузкам, например, при движении в гору. Однако, если соленоид VVT неисправен, возможно, он добавит дополнительное моторное масло в шестерни VVT.Это может вызвать резкую работу двигателя на холостом ходу, в частности, колебания оборотов двигателя при активации системы. Если быстро не проверить, это может привести к преждевременному износу дополнительных компонентов двигателя. Если ваш двигатель работает плохо на холостом ходу, убедитесь, что сертифицированный механик проверит это как можно скорее.

4. Снижение топливной экономичности

Назначение регулируемых фаз газораспределения - гарантировать, что клапаны открываются и закрываются в нужное время, чтобы максимизировать производительность двигателя и снизить расход топлива.Когда соленоид VVT неисправен, вся система может выйти из строя, что может привести к открытию и закрытию впускных и выпускных клапанов в неподходящее время. Обычно это приводит к резкому снижению экономии топлива.

Если вы обнаружите какие-либо из вышеперечисленных предупреждающих признаков неисправного или неисправного соленоида системы изменения фаз газораспределения, обратитесь к местному сертифицированному механику ASE от YourMechanic. Они могут осмотреть ваш автомобиль, при необходимости заменить соленоид системы изменения фаз газораспределения и обеспечить надежную работу вашего автомобиля или грузовика.

Ищете соленоид VVT?

Посмотрите десятки отличных вариантов прямо здесь.

купить сейчас
Autoblog может получать долю от покупок, сделанных по ссылкам на этой странице. Цены и доступность могут быть изменены.

5 симптомов неисправного соленоида с регулируемой синхронизацией клапана (VVT), расположение и стоимость замены

Электромагнитные клапаны

с изменяемой фазой газораспределения (VVT) - одно из величайших нововведений в автомобильной промышленности.

Они помогают двигателям внутреннего сгорания увеличивать производительность и эффективность.

К сожалению, эти соленоиды VVT также могут выйти из строя, что может привести к дорогостоящему ремонту.

5 признаков неисправности соленоида регулируемого клапана синхронизации (VVT)
  1. Проверьте свет двигателя
  2. Неровный холостой ход
  3. Резкое ускорение
  4. Повышенный расход топлива
  5. Низкая производительность двигателя

Вот более подробный список 5 наиболее распространенных симптомов неисправного соленоида VVT.

Индикация контрольной лампы двигателя

С помощью электронного блока управления (ECU), которым оснащены современные новые автомобили, вы можете заметить любую необычную активность, происходящую в вашем автомобиле, с помощью контрольной лампы двигателя.

Ваши мониторы ECU сравнивают и сообщают обо всех действиях, происходящих в вашем автомобиле. Если одна из текущих ситуаций несовместима с предопределенными значениями, загорается индикатор проверки двигателя.

В результате, когда соленоид VVT не работает должным образом, на приборной панели загорается индикатор проверки двигателя.

Грубый холостой ход

Соленоид VVT регулирует синхронизацию распределительного вала, когда ваш автомобиль работает на холостом ходу. Это потому, что холостой ход должен быть максимально плавным. Очень запаздывающая синхронизация фаз газораспределения очень затруднит работу двигателя, чтобы не упасть слишком низко на оборотах и ​​не заглохнуть.

Если вы заметили странные проблемы с холостым ходом в вашем автомобиле, это может быть из-за неисправного соленоида VVT.

Грубое ускорение

Основное назначение соленоида VVT - регулировка фаз газораспределения, чтобы обеспечить эффективную и плавную работу двигателя на всех различных оборотах.Если это не удается, вы можете обнаружить, что это приводит к резкому ускорению и даже может вызвать пропуски зажигания при ускорении.

Если у вас резкое ускорение вместе с проверкой двигателя на приборной панели, это может быть абсолютно связано с неисправным клапаном VVT.

Повышенный расход топлива

Электромагнит

VVT управляет временем открытия и закрытия клапанов, чтобы обеспечить сохранение эффективного расхода топлива.

Следовательно, любая неисправность соленоида VVT обязательно приведет к эффективному расходу топлива.Поэтому, если вы заметили значительное снижение или увеличение среднего расхода топлива и запах несгоревшего топлива, весьма вероятно, что ваш датчик изменения фаз газораспределения неисправен.

Низкая производительность двигателя

Соленоид VVT был усовершенствован для увеличения мощности на более высоких оборотах при сохранении стабильных характеристик двигателя на более низких оборотах. Следовательно, неисправный соленоид VVT может привести к значительному падению производительности, если он не опережает синхронизацию распределительного вала во время ускорения.

Функция соленоида VVT

Практически все современные автомобили используют технологию VVT для улучшения характеристик и экономии топлива.Соленоид VVT помогает двигателям изменять фазы газораспределения, обеспечивая максимальную производительность без потери управляемости на более низких оборотах.

Электронные принципы электромагнетизма в виде электромагнитного клапана регулируют поток масла к распределительным валам. Блок управления двигателем посылает питание и массу на соленоид VVT, когда приходит время открыть соленоид и отрегулировать фазу газораспределения.

Расположение соленоида VVT

Соленоид VVT почти всегда находится в головке блока цилиндров рядом с распределительными валами.Чаще всего он расположен на впускной стороне, потому что VVT часто устанавливается только на впускном распредвале в большинстве моделей автомобилей.

Если у вашей кошки VVT на выпускном распредвале, у вас может быть два соленоида VVT.

В некоторых моделях автомобилей соленоид VVT расположен на внутренней стороне крышки клапана, что, безусловно, затрудняет доступ к нему.

Стоимость замены соленоида VVT

Средняя стоимость замены соленоида VVT составляет от 100 до 500 долларов. В зависимости от модели автомобиля затраты на рабочую силу могут составить 50–300 долларов, а стоимость самой детали - 50–300 долларов.

Для соленоидов VVT существует большая разница в цене в зависимости от вашего автомобиля. Для некоторых моделей автомобилей придется разбирать половину двигателя; для других его можно заменить в течение 5 минут. Подробную информацию вы найдете в руководстве по ремонту.

Двигатель

Система двигателя 2015 Murano ® включает новые функции и особенности.

3,5-литровый двигатель VQ35DE включает в себя регулируемый впускной и выпускной клапаны синхронизации. Датчики положения впускных и выпускных клапанов расположены на крышках распределительных валов каждого ряда. Эти датчики контролируют точное положение распределительных валов и подают сигнал в ECM. Время впускного и выпускного клапанов регулируется с помощью давления моторного масла и ряда масляных регулирующих клапанов, управляемых контроллером ЭСУД. Они обеспечивают опережение или запаздывание впускных и выпускных клапанов в зависимости от условий движения.

Контроллер ЭСУД контролирует положение коленчатого и распределительного валов, частоту вращения коленчатого вала, температуру охлаждающей жидкости и другие сигналы, чтобы определить, требуется ли регулировка фаз впускных клапанов. Контроллер ЭСУД отправляет сигнал с широтно-импульсной модуляцией на масляный регулирующий клапан, чтобы продвигать, удерживать или замедлять синхронизацию впускного клапана, чтобы увеличить крутящий момент двигателя в диапазоне низких / средних скоростей и выходную мощность в лошадиных силах в диапазоне высоких скоростей.

ВПУСКНОЙ КЛАПАН ПРОМЕЖУТОЧНЫЙ ЗАМОК

Назначение функции промежуточной блокировки в системе управления изменяемой фазой газораспределения впускных клапанов состоит в том, чтобы заблокировать звездочку впускного распределительного вала в промежуточном положении во время запусков холодного двигателя.Фиксация звездочки в этом положении помогает снизить выбросы при холодном запуске. В системе промежуточной блокировки используются два подпружиненных стопорных штифта, которые удерживают звездочку в промежуточном положении. Стопорный штифт 1 управляет положением замедления, а стопорный штифт 2 управляет положением опережения. Когда температура охлаждающей жидкости повышается, на соленоид промежуточного клапана управления синхронизацией впускных клапанов подается питание, и давление масла толкает стопорные ключи наружу, чтобы разблокировать звездочку, что позволяет управлять переменным моментом времени.

РЕГУЛИРУЕМЫЙ РЕГУЛЯТОР ВЫПУСКНОГО КЛАПАНА

Система регулирования фаз газораспределения выпускных клапанов работает по тому же гидравлическому принципу, что и система регулирования фаз впускных клапанов, но не включает в себя компоненты промежуточной блокировки. Контроллер ЭСУД может регулировать синхронизацию выпускных клапанов, изменяя широтно-импульсный сигнал, подаваемый на соленоид клапана управления синхронизацией выпускных клапанов. Увеличение запаздывания фаз газораспределения выпускных клапанов на более высоких оборотах двигателя приводит к большему перекрытию впускных и выпускных клапанов, обеспечивая дополнительную производительность при высоких оборотах. Система на Murano начинает замедлять синхронизацию на гораздо более низких скоростях, чем на других автомобилях с регулируемыми фазами газораспределения.

ДАТЧИК МАССОВОГО РАСХОДА ВОЗДУХА (С ДАТЧИКОМ ТЕМПЕРАТУРЫ НА ВСАСЫВАНИИ)

Новый датчик массового расхода воздуха (MAF) расположен на впускной воздушной трубке между воздушным фильтром и корпусом дроссельной заслонки.Датчик температуры воздуха на впуске встроен в датчик массового расхода воздуха. Помещенный в поток всасываемого воздуха, он измеряет скорость всасываемого потока по мере увеличения потока всасываемого воздуха. Распределение температуры вокруг нагревателя изменяется в зависимости от увеличения объема всасываемого воздуха.

Датчик определяет температуру всасываемого воздуха и передает сигнал в ECM от датчика массового расхода воздуха. Контроллер ЭСУД преобразует сигнал в данные о расходе воздуха на впуске. Новый датчик массового расхода воздуха представляет собой четырехпроводную схему вместо пятипроводной схемы, которая использовалась на предыдущих моделях Muranos.При диагностике данных датчика массового расхода воздуха с помощью CONSULT-III plus характеристики теперь указываются в граммах в секунду и герцах вместо вольт.

Электромагнитный клапан с изменяемой фазой газораспределения | Holstein Parts - Датчики управления двигателем

Для чего нужен соленоид с регулируемым фазированием клапана?

Электромагнитный клапан изменения фаз газораспределения (VVTS) управляет потоком масла, чтобы управлять работой звездочки, которая изменяет положение распределительного вала. Положение меняется в зависимости от команд компьютера автомобиля для увеличения или уменьшения фаз газораспределения двигателя.

Где находятся соленоиды с регулируемым фазированием клапана?

Электромагнитный клапан изменения фаз газораспределения расположен в передней части двигателя, обычно рядом с передней частью клапанной крышки.

Будет ли неисправный электромагнитный клапан регулировки фаз газораспределения зажигать контрольную лампу двигателя или влиять на работу автомобиля?

Да, неисправный VVTS может вызвать загорание контрольной лампы двигателя и вызвать несколько кодов.

Каковы общие причины сбоев?

VVTS может выйти из строя из-за низкого уровня моторного масла, засорения из-за масляного шлама и / или нерегулярной замены моторного масла и фильтров.

Как определить, неисправны ли соленоиды регулируемого газораспределения:

Возможные признаки неисправности или неисправности VVTS включают в себя: горящую лампу проверки двигателя, шум двигателя и / или его остановку, грубую работу на холостом ходу и общую плохую работу.

Что делает соленоиды регулируемого газораспределения Holstein лучшими?

  • Holstein Parts фокусируется на использовании только материалов высочайшего качества, изготовленных в соответствии со строгими стандартами для вторичного рынка, который действительно построен, чтобы соответствовать или превосходить оригинальную часть
  • Линия датчиков регулируемого положения клапана Holstein Parts имеет превосходное покрытие для внутреннего и импортного применения
  • Гарантия 3 года / 36000 миль на все датчики VVT Holstein Parts

Обзор продукта

• Более 330 наименований товаров, покрывающих 98% рынка Северной Америки
• Усиленные материалы защищают от накопления шлама и утечек масла
• Агрегаты проходят испытания на обеспечение правильного потока и давления масла для максимальной производительности
• Уплотнительные кольца и прокладки премиум-класса используются для увеличения срока службы и надежности продукта

Также упоминается как привод с изменяемой фазой газораспределения или контроллер VVT

Распредвал выпускных клапанов приводится в движение ремнем газораспределительного механизма, а распредвал впускных клапанов приводится в движение шестерней на конце распредвала выпускных клапанов. Шестерня привода распределительного вала впускных клапанов интегрирована с контроллером изменения фаз газораспределения для изменения фаз газораспределения впускного распредвала. Регулятор изменения фаз газораспределения состоит из корпуса, приводимого в действие распредвалом выпускных клапанов, и лопатки, закрепленной на распредвале впускных клапанов. См. Рис.71. Давление масла может подаваться со стороны опережения или запаздывания впускного распределительного вала к контроллеру изменения фаз газораспределения. Это давление масла заставляет контроллер изменения фаз газораспределения вращать впускной распределительный вал и изменять фазы газораспределения.Когда двигатель остановлен, впускной распределительный вал переводится в наиболее замедленное состояние для улучшения устойчивости на низких скоростях. В это время стопорный штифт фиксирует корпус и лопатку внутри контроллера изменения фаз газораспределения. После запуска двигателя стопорный штифт освобождается под давлением масла.

Масляный клапан регулировки фаз газораспределения - это клапан с электрическим управлением, который принимает давление масла от масляного насоса. См. Рис.72. Контроллер ЭСУД использует входные сигналы для частоты вращения коленчатого вала двигателя, объема всасываемого воздуха, положения дроссельной заслонки и температуры охлаждающей жидкости двигателя для определения работы масляного клапана регулирования фаз газораспределения.Контроллер ЭСУД также использует входные сигналы от датчиков изменения фаз газораспределения и датчика положения коленчатого вала для определения фактических фаз газораспределения впускных клапанов. Датчики изменения фаз газораспределения также могут называться датчиками положения распределительного вала. Контроллер ЭСУД управляет масляным клапаном регулировки фаз газораспределения, контролируя положение золотникового клапана. Это определяет, на какой стороне контроллера изменения фаз газораспределения будет применяться давление масла для опережения или замедления фаз газораспределения путем вращения впускного распределительного вала.См. Рис.72. Когда двигатель остановлен, масляный клапан регулировки фаз газораспределения находится в запаздывающем состоянии.

Когда двигатель работает на холостом ходу, фаза фаз газораспределения впускного распределительного вала устанавливается в стандартное положение или положение удержания для стабилизации холостого хода и повышения экономии топлива. При небольшой нагрузке на двигатель синхронизация фаз газораспределения впускных клапанов остается запаздывающей для обеспечения стабильной работы двигателя. При средней нагрузке двигателя синхронизация фаз газораспределения впускного распредвала улучшается, чтобы обеспечить повышенную производительность, экономию топлива и улучшенный контроль выбросов.При большой нагрузке на двигатель в диапазоне от низких до средних скоростей фазы газораспределения впускного распредвала опережают для обеспечения повышенного крутящего момента. При большой нагрузке на двигатель в диапазоне высоких скоростей фазы газораспределения впускного распредвала задерживаются, чтобы обеспечить улучшенную работу в диапазоне высоких скоростей и лучшую экономию топлива. При низких температурах фазы газораспределения впускных клапанов остаются в стандартном или удерживаемом положении для стабилизации высоких оборотов холостого хода и повышения экономии топлива. Когда двигатель запускается или останавливается, фаза фаз газораспределения впускного распределительного вала устанавливается в положение задержки, чтобы улучшить запуск двигателя.Если проблема существует в системе VVT, диагностический код неисправности (DTC) может храниться в ECM. См. ПРОЦЕДУРУ ТЕСТИРОВАНИЯ в разделе СИСТЕМА САМОДИАГНОСТИКИ в соответствующей статье САМОДИАГНОСТИКА для получения кодов неисправности.

2001 ДВИГАТЕЛЬ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ Теория и работа

Рис. 70: Определение компонентов системы фаз газораспределения (Avalon, Highlander 3.0L V6 и Sienna) Предоставлено TOYOTA MOTOR SALES, USA, INC. Эксплуатация

Рис.71: Определение компонентов контроллера изменения фаз газораспределения (Avalon, Highlander 3.0L V6 и Sienna)

Предоставлено TOYOTA MOTOR SALES, USA, INC.

Рис.71: Определение компонентов контроллера изменения фаз газораспределения (Avalon, Highlander 3.0L V6 и Sienna)

Предоставлено TOYOTA MOTOR SALES, USA, INC.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *