Датчик кислорода принцип работы: Кислородный датчик (лямбда-зонд): устройство и принцип работы

Датчик кислорода:назначение,виды,устройство,фото,принцип работы | АВТОМАШИНЫ

Кислородный датчик — устройство, предназначенное для фиксирования количества оставшегося кислорода в отработавших газах двигателя автомобиля. Он расположен в выпускной системе вблизи катализатора. На основе данных, полученных кислородником, электронный блок управления двигателем (ЭБУ) корректирует расчет оптимальной пропорции топливовоздушной смеси. Коэффициент избытка воздуха в ее составе обозначается в автомобилестроении греческой буквой лямбда (λ), благодаря чему датчик получил второе название — лямбда-зонд.

Содержание статьи

  • Типы датчиков кислорода
  • Циркониевый
  • Титановый
  • Широкополосный
  • Основные положения и функции Кислородного датчика : Теория.
  • Конструкция и принцип работы кислородного датчика
  • Принцип работы кислородного датчика на языке автомобилистов ( основные моменты):
  • Распространённые причины неисправностей лямбда зонда и способы их устранения
  • Электронная проверка лямбда зонда
  • Замена лямбда зонда
  • Вопрос — ответ
    • Устройство и принцип работы современного гидротрансформатора:описание,фото
    • Подвеска МакФерсон (McPherson): устройство,описание,назначение,фото
    • Датчик детонации:описание,виды,устройство,принцип работы
    • Вариатор:описание,фото,принцип работы,устройство,виды

Содержание

Типы датчиков кислорода

Циркониевый датчик стоит впереди катализатора и сам генерирует напряжение, либо отрицательное, либо положительное. Опорное напряжение такого датчика составляет 0,45 В, которое отклоняется либо до 0,9 В, либо до 0,1 В. Главное отличие такого датчика от титанового является именно тот факт, что циркониевый самостоятельно генерирует напряжение.

При ремонте стоить помнить, что к такому датчику ни в коему случае нельзя припаивать какие попало провода, потому что именно в изоляции проложены каналы для прохождения эталонного воздуха. Если такового не будет, то датчик попросту не будет правильно работать.

Широкополосный датчик – это новейшая конструкция лямбда-зонда на данный момент. Его устройство позволяет не просто определять бедную или богатую смесь на входе в цилиндры, но так же и определять степень отклонения. Именно такие параметры сделали его более точным, в то же время широкополосный кислородный датчик быстрее реагирует на изменения состава выхлопных газов.

Всем известно, что любой кислородный датчик начинает работать только после 350 градусов. Здесь же для более быстрого достижения рабочей температуры устанавливается нагревательных элемент.

Циркониевый

Одна из наиболее распространённых моделей. Создана на основе диоксида циркония (ZrO2).

Циркониевый датчик кислорода действует по принципу гальванического элемента с твёрдым электролитом в виде керамики из диоксида циркония (ZrO2)

Керамический наконечник с диоксидом циркония с обеих сторон покрыт защитными экранами из токопроводящих пористых платиновых электродов. Свойства электролита, пропускающего ионы кислорода, проявляются при нагреве ZrO2 выше 350°C. Лямбда-зонд не будет работать, не прогревшись до нужной температуры. Быстрый нагрев осуществляется за счёт встроенного в корпус нагревательного элемента с керамическим изолятором.

Выхлопные газы поступают к наружной части наконечника через специальные просветы в защитном кожухе. Атмосферный воздух попадает внутрь датчика через отверстие в корпусе или пористую водонепроницаемую уплотнительную крышку (манжету) проводов.

Разница потенциалов образуется за счёт передвижения ионов кислорода по электролиту между наружным и внутренним платиновыми электродами. Напряжение, образующееся на электродах, обратно пропорционально количеству О2 в выхлопной системе.

Напряжение, которое образуется на двух электродах, обратно пропорционально количеству кислорода

Относительно сигнала, поступающего от датчика, блок управления регулирует состав ТВС, стараясь приблизить её к стехиометрической. Напряжение, поступающее от лямбда-зонда, ежесекундно меняется по несколько раз. Это даёт возможность регулировать состав топливной смеси независимо от режима работы ДВС.

По количеству проводов можно выделить несколько типов циркониевых устройств:

  1. В однопроводном датчике существует единственный сигнальный провод. Контакт на массу осуществляется через корпус.
  2. Двухпроводное устройство оснащено сигнальным и заземляющим проводами.
  3. Трёх- и четырёхпроводные датчики снабжены системой нагрева, управляющим и заземляющим проводами к ней.

Циркониевые лямбда-зонды в свою очередь разделяются на одно-, двух-, трёх- и четырёхпроводные датчики

Титановый

Визуально похож на циркониевый. Чувствительный элемент датчика создан из диоксида титана. В зависимости от количества кислорода в выхлопных газах скачкообразно меняется объёмное сопротивление датчика: от 1 кОм при богатой смеси до более 20 кОм при бедной. Соответственно, меняется проводимость элемента, о чём датчик сигнализирует блоку управления. Рабочая температура титанового датчика — 700°C, поэтому наличие нагревательного элемента обязательно. Эталонный воздух отсутствует.

Из-за своей сложной конструкции, дороговизны и привередливости к перепадам температуры большое распространение датчик не получил.

Кроме циркониевых, существуют также кислородные датчики на основе двуокиси титана (TiO2)

Широкополосный

Конструктивно отличается от предыдущих 2 камерами (ячейками):

  • Измерительной;
  • Насосной.

В камере для измерений с использованием электронной схемы модуляции напряжения поддерживается состав газов, соответствующий λ=1. Насосная ячейка при работающем моторе на обеднённой смеси устраняет лишний кислород из диффузионного зазора в атмосферу, при богатой смеси — пополняет диффузионное отверстие недостающими ионами кислорода из внешнего мира. Направление тока для перемещения кислорода в разные стороны меняется, а его величина пропорциональна количеству О2. Именно значение тока и служит детектором λ выхлопных газов.

Температура, необходимая для работы (не менее 600°C), достигается за счёт работы нагревательного элемента в датчике.

Широкополосные датчики кислорода детектируют лямбду от 0,7 до 1,6

Основные положения и функции Кислородного датчика :
Теория.

Жесткие экологические нормы во многих странах мира, стали диктовать количество выбросов вредных веществ, тем самым узаконили применение на автомобилях каталитических нейтрализаторов (в обиходе – катализаторы) – устройств, способствующих снижению содержания вредных веществ в выхлопных газах автомобилей с двигателем внутреннего сгорания. Катализатор — нужный и ответственный узел автомобиля, но эффективно работает лишь при определенных условиях. Без постоянного контроля состава топливно-воздушной смеси катализатор умрёт ( потеряет свои основные свойства и функции) очень быстро – для того чтобы, как можно дольше продлить его жизнь и приходит на помощь датчик кислорода, он же О2-датчик, он же лямбда-зонд (ЛЗ).

Название датчика происходит от греческой буквы L (лямбда), которая в автомобилестроении обозначает коэффициент избытка воздуха в топливно-воздушной смеси. При оптимальном составе этой смеси, когда на 14,7 части воздуха приходится 1 часть топлива (речь идет о объемном соотношении величин), L равна 1 (график 1). «Окно» эффективной работы катализатора очень узкое: L=1±0,01. Обеспечить такую точность возможно только с помощью систем питания с электронным (дискретным) впрыском топлива и при использовании в цепи обратной связи лямбда-зонда. Таким образом, Лямбда зонд создан и поставлен инженерами для информирования компьютера, инжекторного автомобиля об отклонении от нормы соотношения топливно воздушной смеси.

График 1. Зависимость мощности двигателя (P) и расхода топлива (Q) от коэффициента избытка воздуха (L)

Избыток воздуха в смеси измеряется весьма оригинальным способом ( причем этот способ не является обходным путем, а дает уверенно точные показания ) – определения в выхлопных газах содержания остаточного кислорода (О2). Поэтому лямбда-зонд и стоит в выпускном коллекторе перед катализатором.

Электрический сигнал датчика считывается электронным блоком управления системы впрыска топлива (ЭБУ), а тот в свою очередь оптимизирует состав смеси путем изменения количества подаваемого в цилиндры топлива. Таким образом, происходит регулировка не воздуха, а именно топлива, относительно воздуха, тем самым достигается максимальный процент сгорания топлива в цилиндрах, максимально эффективная работа катализатора, и как следствие максимальный крутящий момент двигателя автомобиля.

Причем на большинстве современных моделях автомобилей имеется еще один лямбда-зонд, так же возможна установка дополнительных датчиков работающих в связке (например датчик температуры катализатора, расположен он на выходе катализатора). Этим достигается большая точность приготовления смеси и контролируется эффективность работы катализатора (рис. 1).

Рис. 1. Схема L-коррекции с одним и двумя датчиками кислорода двигателя 1 – впускной коллектор; 2 – двигатель; 3 – блок управления двигателем; 4 – топливная форсунка; 5 – основной лямбда-зонд; 6 – дополнительный лямбда-зонд; 7 – каталитический нейтрализатор.

Конструкция и принцип работы кислородного датчика

Конструкция кислородного датчика

Существует несколько видов лямбда-зондов, применяемых на современных автомобилях. Рассмотрим конструкцию и принцип работы наиболее популярного из них — датчика кислорода на основе диоксида циркония (ZrO2). Датчик состоит из следующих основных элементов:

  • Наружный электрод — осуществляет контакт с выхлопными газами.
  • Внутренний электрод — контактирует с атмосферой.
  • Нагревательный элемент — используется для подогрева кислородного датчика и более быстрого вывода его на рабочую температуру (около 300 °C).
  • Твердый электролит — расположен между двумя электродами (диоксид циркония).
  • Корпус.
  • Защитный кожух наконечника — имеет специальные отверстия (перфорацию) для проникновения отработавших газов.
Устройство наконечника лямбда-зонда

Внешний и внутренний электроды покрыты платиновым напылением. Принцип работы такого лямбда зонда основан на возникновении разности потенциалов между слоями платины (электроды), которые чувствительны к кислороду. Она возникает при нагревании электролита, когда через него происходит движение ионов кислорода от атмосферного воздуха и выхлопных газов. Напряжение, возникающее на электродах датчика, зависит от концентрации кислорода в отработавших газах. Чем она выше, тем ниже напряжение. Диапазон напряжений сигнала кислородного датчика находится в пределах от 100 до 900 мВ. Сигнал имеет синусоидальную форму, у которой выделяются три области: от 100 до 450 мВ — бедная смесь, от 450 до 900 мВ — богатая смесь, значение 450 мВ соответствует стехиометрическому составу топливовоздушной смеси.

Принцип работы кислородного датчика на языке автомобилистов ( основные моменты):

Кислород содержит отрицательно заряженные ионы, которые собираются на платиновых электродах, и когда датчик достигает температуры около 400°C, любая разность потенциалов образует электрическое напряжение. В случае если смесь бедная, содержание кислорода в отработавших газах высокое. При сравнении с содержанием кислорода в атмосфере существует только очень маленькая разность потенциалов, и, как следствие, возникает небольшое напряжение (около 0,2–0,3 В).

В случае если смесь богатая, то содержание кислорода в отработавших газах низкое. Создается большая разность потенциалов, поэтому возникает относительно более высокое напряжение (0,7–0,9 В). Система управления двигателем будет непрерывно подстраивать длительность импульсного сигнала под форсунки с целью выйти на среднее напряжение, составляющее около 0,4–0,6 В при значении лямбда около 1.0. Поскольку в процессе движения режимы работы двигателя постоянно изменяются, значение напряжения колеблется в обе стороны от среднего значения.

Поэтому данный датчик в силу своей неспособности определить небольшие изменения в содержании кислорода известен как узкополосный. Датчик, установленный после каталитического нейтрализатора отработавших газов, действует по тому же способу, что и датчик перед ним, но с одним очень большим отличием. После того, как газы были обработаны каталитическим нейтрализатором, содержание кислорода в них остается на неизменном уровне. Это обеспечивает постоянное напряжение около 0,4–0,6 В. Теперь система управления двигателем может эффективно отслеживать работу каталитического нейтрализатора отработавших газов.

Распространённые причины неисправностей лямбда зонда и способы их устранения

Датчики содержания кислорода в топливовоздушной смеси со временем выходят из строя, что можно определить по нестабильной работе двигателя и увеличенному расходу горючего. Причины неисправности лямбда — это заправка топлива низкого качества, неполадки системы приготовления и подачи горючего, попадание на датчик спецжидкостей. Неполадки проявляется следующими признаками:

  • резкий рост оборотов до максимальных значений и мгновенное отключение мотора;
  • ухудшение качества подаваемой в цилиндры смеси, снижение полноты сгорания;
  • колебания оборотов холостого хода;
  • значительное снижение мощности при увеличении оборотов;
  • сбои в работе электронных блоков из-за задержек в подаче сигналов с датчика;
  • движение автомобиля рывками;
  • появление в двигательном отсеке звуков, которые нехарактерны при нормальной работе мотора;
  • поздний впрыск при нажатии педали.

Для восстановления работоспособности электроники и системы впрыска понадобится замена или правильная очистка лямбда зонда. При очистке нужно снять керамический наконечник и удалить загрязнения при помощи химических средств.

Электронная проверка лямбда зонда

Узнать о состоянии лямбда зонда можно путем его проверки на профессиональном оборудовании. Для этого используется электронный осциллограф. Некоторые специалисты определяют работоспособность кислородного датчика при помощи мультиметра, однако, он способен только констатировать или же опровергнуть факт его поломки.

Проверяется устройство во время полноценной работы двигателя, так как в состоянии покоя датчик не сможет полностью передать картину своей работоспособности. В случае даже незначительного отхождения от нормы, лямбда зонд рекомендуется заменить.

Замена лямбда зонда

В большинстве случаев такая деталь, как лямбда зонд не подлежит ремонту, о чем свидетельствуют утверждения о невозможности произведения ремонта от многих автомобильных производителей. Однако, завышенная стоимость такого узла у официальных дилеров отбивает всякую охоту его приобретения. Оптимальным выходом из сложившейся ситуации может стать универсальный датчик, который стоит гораздо дешевле родного аналога и подходит практически всем автомобильным маркам. Также в качестве альтернативы можно приобрети датчик бывший в использовании, но с продолжительностью гарантийного периода или же полностью выпускной коллектор с установленным в него лямбда зондом.

Однако, бывают случаи, когда лямбда зонд функционирует с определенной погрешностью из-за сильного загрязнения в результате оседания на нем продуктов сгорания. Для того чтобы убедиться, что это действительно так, датчик необходимо проверить у специалистов. После того как проверка лямбда зонда состоялась и подтвержден факт его полной работоспособности, его нужно снять, почистить и установить обратно.

Для того чтобы демонтировать датчик уровня кислорода, необходимо прогреть его поверхность до 50 градусов. После снятия, с него снимается защитный колпачок и только после этого можно приступать к очистке. В качестве высокоэффективного очищающего средства рекомендуется использовать ортофосфорную кислоту, которая с легкостью справляется даже с самыми стойкими горючими отложениями. По окончании процедуры отмачивания, лямбда зонд ополаскивается в чистой воде, тщательно просушивается и устанавливается на место. При этом не стоит забывать о смазке резьбы специальным герметиком, который обеспечить полную герметичность.

Устройство автомобиля очень сложное, поэтому он нуждается в постоянной поддержке работоспособности и проведении своевременных профилактических работ. Поэтому в случае возникновения подозрений о неисправности лямбда зонда, необходимо незамедлительно произвести диагностику его работоспособности и в случае подтверждения факта выхода из строя, заменить лямбда зонд. Таким образом, все важнейшие функции транспортного средства будут сохранены на прежнем уровне, что станет гарантом отсутствия дальнейших проблем с двигателем и прочими важными элементами автомобиля.

Вопрос — ответ

В: Чем отличаются специальные и универсальные датчики?
O: Эти датчики имеют разные способы установки. Специальные датчики уже имеют контактный разъем в комплекте и готовы к установке. Универсальные датчики могут не комплектоваться разъемом, поэтому нужно использовать разъем старого датчика.

B: Что произойдет, если выйдет из строя датчик кислорода?
O: В случае выхода из строя датчика кислорода ЭБУ не получит сигнала о соотношении топлива и воздуха в смеси, поэтому он будет задавать количество подачи топлива произвольно. Это может привести к менее эффективному использованию топлива и, как следствие, увеличению его расхода. Это также может стать причиной снижения эффективности катализатора и повышения уровня токсичности выбросов.

B: Как часто необходимо менять датчик кислорода?
O: DENSO рекомендует заменять датчик согласно указаниям автопроизводителя. Тем не менее следует проверять эффективность работы датчика кислорода при каждом техобслуживании автомобиля. Для двигателей с длительным сроком эксплуатации или при наличии признаков повышенного расхода масла интервалы между заменами датчика следует сократить.

Ассортимент кислородных датчиков

• 412 каталожных номеров покрывают 5394 применения, что соответствует 68 % европейского автопарка.
• Кислородные датчики с подогревом и без (переключаемого типа), датчики соотношения «воздух — топливо» (линейного типа), датчики обедненной смеси и титановые датчики; двух типов: универсальные и специальные.
• Регулирующие датчики (устанавливаемые перед катализатором) и диагностические (устанавливаемые после катализатора).
• Лазерная сварка и многоэтапный контроль гарантируют точное соответствие всех характеристик спецификациям оригинального оборудования, что позволяет обеспечить эффективность работы и надежность при длительной эксплуатации.

В DENSO решили проблему качества топлива!

Вы знаете о том, что некачественное или загрязненное топливо может сократить срок службы и ухудшить эффективность работы кислородного датчика? Топливо может быть загрязнено присадками для моторных масел, присадками для бензина, герметиком на деталях двигателя и нефтяными отложениями после десульфуризации.

При нагреве свыше 700 °C загрязненное топливо выделяет вредные для датчика пары. Они влияют на работу датчика, образуя отложения или разрушая его электроды, что является распространенной причиной выхода датчика из строя. DENSO предлагает решение этой проблемы: керамический элемент датчиков DENSO покрыт уникальным защитным слоем оксида алюминия, который защищает датчик от некачественного топлива, продлевая срок его службы и сохраняя его рабочие характеристики на необходимом уровне.

В: Почему на некоторых автомобилях устанавливаются два кислородных датчика?
O: Многие современные автомобили дополнительно кроме датчика кислорода, расположенного перед катализатором, оснащаются и вторым датчиком, установленным после него. Первый датчик является основным и помогает электронному блоку управления регулировать состав топливовоздушной смеси. Второй датчик, установленный после катализатора, контролирует эффективность работы катализатора, измеряя содержание кислорода в выхлопных газах на выходе. Если весь кислород поглощается химической реакцией, происходящей между кислородом и вредными веществами, то датчик выдает сигнал высокого напряжения. Это означает, что катализатор работает нормально. По мере износа каталитического нейтрализатора некоторое количество вредных газов и кислорода перестает участвовать в реакции и выходит из него без изменений, что отражается на сигнале напряжения. Когда сигналы станут одинаковыми, это будет указывать на выход из строя катализатора.

В: Почему состав топливовоздушной смеси нужно постоянно регулировать?
O: Соотношение «воздух — топливо» крайне важно, поскольку оно влияет на эффективность работы каталитического нейтрализатора, который снижает содержание оксида углерода (CO), несгоревших углеводородов (CH) и оксида азота (NOx) в выхлопных газах. Для его эффективной работы необходимо наличие определенного количества кислорода в выхлопных газах. Датчик кислорода помогает ЭБУ определить точное соотношение «воздух — топливо» в смеси, поступающей в двигатель, передавая в ЭБУ быстроизменяющийся сигнал напряжения, который меняется в соответствии с содержанием кислорода в смеси: слишком высокого (бедная смесь) или слишком низкого (богатая смесь).

ЭБУ реагирует на сигнал и изменяет состав топливовоздушной смеси, поступающей в двигатель. Когда смесь слишком богатая, впрыск топлива уменьшается. Когда смесь слишком бедная — увеличивается. Оптимальное соотношение «воздух — топливо» обеспечивает полное сгорание топлива и использует почти весь кислород из воздуха. Оставшийся кислород вступает в химическую реакцию с токсичными газами, в результате которой из нейтрализатора выходят уже безвредные газы.

Устройство и принцип работы современного гидротрансформатора:описание,фото
Подвеска МакФерсон (McPherson): устройство,описание,назначение,фото
Датчик детонации:описание,виды,устройство,принцип работы
Вариатор:описание,фото,принцип работы,устройство,виды

ПОХОЖИЕ СТАТЬИ:

  • 7 Самых популярных кроссоверов в сегменте продаж (скидки)
  • Как выбрать автосервис: описание,фото
  • Хендай Элантра 2021:обзор,описание,комплектации,характеристики,фото
  • HanTeng Red 01 — интересная электрическая концепция, несмотря на решетку для терки сыра
  • Проверка автомобиля перед покупкой — (кузов двигатель окрас подвеска)
  • 2018 Porsche 911 Carrera T- с ценой от 102 100 долл США.
  • Toyo Snowprox S943: популярная модель для украинских автолюбителей
  • Тонировка авто: виды пленок и как наклеить самому
  • Как купить летние покрышки?
  • toyota urban cruiser: технические характеристики,цена,габариты,фото
  • Что такое газораспределительный механизм в автомобиле?
  • 2017 Mercedes-Benz GLC: обзор,описание,технические характеристики,фото,видео,цена.
  • BMW X4 M40I 2016-2017: обзор,описание,характеристики,комплектации,цена,фото,видео.
  • Бмв е92 технические характеристики,тюнинг,отзывы,фото,видео.
  • Как проходят краш-тесты автомобилей в Германии
Датчик кислорода (Лямбда-зонд): как работает, проблемы, симптомы

На чтение 5 мин. Просмотров 777 Опубликовано

Датчик кислорода (ДК) — он же лямбда-зонд — измеряет количество кислорода в выхлопных газах, отправляя сигнал на блок управления двигателя (ЭБУ).

Где находится датчик кислорода

Передний датчик кислорода ДК1 установлен в выпускном коллекторе или в передней выпускной трубе перед каталитическим нейтрализатором. Как вы знаете, каталитический нейтрализатор является основной частью системы контроля выбросов в автомобиле.

Датчик кислорода Поло седанДатчик кислорода Поло седан

Задний кислородный датчик ДК2 установлен в выхлопе после каталитического нейтрализатора.

датчик кислородадатчик кислорода

На 4-цилиндровых двигателях устанавливают как минимум два лямбда-зонда. Двигатели V6 и V8 имеют как минимум четыре датчика O2.

ЭБУ использует сигнал от переднего кислородного датчика для регулировки топливно-воздушной смеси путем добавления или уменьшения топлива.

Сигнал заднего датчика кислорода используется для контроля работы каталитического нейтрализатора. В современных автомобилях вместо переднего кислородного датчика используется датчик воздушно-топливного отношения. Он работает аналогично, но точнее.

датчик кислородадатчик кислорода

Как работает датчик кислорода

Существует несколько типов лямбда-зондов, но для простоты в этой статье мы рассмотрим только обычные генерирующие напряжение датчики кислорода.

Как следует из названия, генерирующий напряжение датчик кислорода генерирует небольшое напряжение, пропорциональное разнице в количестве кислорода внутри и снаружи выхлопного газа.

Для правильной работы лямбда-зонд необходимо нагреть до определенной температуры. Типичный современный датчик имеет внутренний электрический нагревательный элемент, который питается от ЭБУ двигателя.

датчик кислорода в разрезедатчик кислорода в разрезе

Когда топливовоздушная смесь (ТВС), поступающая в двигатель, бедная (мало топлива и много воздуха), в выхлопе остается больше кислорода, и кислородный датчик создает очень небольшое напряжение (0,1 – 0,2 В).

Если ТВС обогащается (много топлива и мало воздуха), в выхлопе остается меньше кислорода, поэтому датчик будет генерировать бОльшее напряжение (около 0,9 В).

Регулировка соотношения топливовоздушной смеси

Передний датчик O2 отвечает за поддержание оптимального соотношения смеси воздух / топливо, поступающей в двигатель, которая составляет приблизительно 14,7:1 или 14,7 частей воздуха на 1 часть топлива.

работа-переднего-датчика-кислородаработа-переднего-датчика-кислорода

Блок управления регулирует топливовоздушную смесь на основе обратной связи от переднего датчика кислорода. Когда передний лямбда-зонд обнаруживает высокий уровень кислорода, ЭБУ предполагает, что двигатель работает на бедной смеси (недостаточно топлива) и поэтому добавляет топлива.

Когда уровень кислорода в выхлопе становится низким, ЭБУ предполагает, что двигатель работает на богатой смеси (слишком много топлива) и уменьшает подачу топлива.

Этот процесс непрерывен. Компьютер двигателя постоянно переключается между обедненным и обогащенным состоянием, чтобы поддерживать оптимальное соотношение воздух / топливо. Этот процесс называется операцией замкнутого цикла.

Если вы посмотрите на сигнал напряжения переднего датчика кислорода, он будет циклически колебаться где-то между 0,2 вольт (бедная) и 0,9 вольт (богатая).

осциллограмма-датчика-кислорода-1осциллограмма-датчика-кислорода-1

Когда автомобиль заводится холодным, передний кислородный датчик не прогрет полностью, и ЭБУ не использует сигнал ДК1 для регулировки топлива. Этот режим называется разомкнутым контуром. Только когда датчик полностью прогрелся, система впрыска топлива переходит в режим замкнутого контура.

В современных автомобилях вместо обычного датчика кислорода установлен широкополосный датчик топливовоздушного соотношения. Датчик соотношения воздух / топливо работает по-другому, но служит той же цели — для определения, является ли топливовоздушная смесь, поступающая в двигатель, обогащённой или обеднённой.

Датчик топливовоздушного соотношения является более точным и может измерять более широкий диапазон.

Задний датчик кислорода

Задний или нижний кислородный датчик установлен в выхлопе после каталитического нейтрализатора. Он измеряет количество кислорода в выхлопных газах, выходящих из катализатора. Сигнал от заднего лямбда-зонда используется для контроля эффективности нейтрализатора.

осциллограмма-датчика-кислорода-1осциллограмма-датчика-кислорода-1
Контроллер постоянно сравнивает сигналы от передних и задних датчиков O2. Основываясь на двух сигналах, ЭБУ знает, насколько хорошо каталитический нейтрализатор работает. Если катализатор выходит из строя, ЭБУ включает индикатор «Check Engine», чтобы вы знали об этом.

Задний датчик кислорода можно проверить с помощью диагностического сканера, адаптера ELM327 с программой Torque или осциллографа.

Идентификация датчика кислорода

Передний лямбда-зонд перед каталитическим нейтрализатором обычно называют датчиком «выше по потоку» или датчиком 1.

Задний датчик, установленный после катализатора, называется датчик «ниже по потоку» или датчик 2.

Типичный рядный 4-цилиндровый двигатель имеет только один блок (ряд 1 / банк 1). Поэтому в рядном 4-цилиндровом двигателе термин «Банк 1, Датчик 1» просто относится к переднему датчику кислорода. «Банк 1, Датчик 2» — это задний кислородный датчик.

Читайте подробнее: Что такое Банк 1, Банк 2, Датчик 1, Датчик 2?

Двигатель V6 или V8 имеет два блока (или две части этого «V»). Обычно блок цилиндров, содержащий цилиндр № 1, называется «Банк 1».

осциллограмма-датчика-кислорода-1осциллограмма-датчика-кислорода-1Различные производители автомобилей определяют Банк 1 и Банк 2 по-разному. Чтобы узнать, где банк 1 и банк 2 в вашем автомобиле, вы можете посмотреть в руководстве по ремонту или в Google, указав год, марку, модель и объём двигателя.

Замена датчика кислорода

Проблемы с датчиком кислорода являются распространёнными. Неисправный лямбда-зонд может привести к увеличению расхода топлива, увеличению выбросов в атмосферу и различным проблемам во время вождения (провалы оборотов, плохое ускорение, плавающие обороты и т. д.). Если датчик кислорода неисправен, его необходимо заменить.

В большинстве автомобилей замена ДК является довольно простой процедурой. Если вы хотите заменить кислородный датчик самостоятельно, с некоторыми навыками и руководством по ремонту, это не так сложно, но вам может понадобиться специальная торцевая головка для датчика (на фото).

golovka-dlya-lyambda-zondagolovka-dlya-lyambda-zonda

Иногда может быть трудно вытащить старый лямбда-зонд, так как они часто сильно ржавеют.

Еще одна вещь, о которой следует знать — некоторые автомобили, как известно, имеют проблемы с заменяемыми датчиками кислорода.

Например, есть сведения о неоригинальном датчике кислорода, вызывающем проблемы в некоторых двигателях Chrysler. Если вы не уверены, лучше всегда использовать оригинальный датчик.

Что такое лямбда зонд. Принцип работы, функции и причины неисправностей
Что такое лямбда зонд. Принцип работы, функции и причины неисправностей

Сегодня мы узнаем, что называется автомобильным лямбда зондом, для чего он нужен, какие функции и задачи выполняет, а также как узнать, что данный элемент топливной системы транспортного средства вышел из строя

 ЧТО ТАКОЕ ЛЯМБДА ЗОНД. ПРИНЦИП РАБОТЫ, ФУНКЦИИ И ПРИЧИНЫ НЕИСПРАВНОСТЕЙ


Добрый день, сегодня мы узнаем, что называется автомобильным лямбда зондом, для чего он нужен, какие функции и задачи выполняет, а также как узнать, что данный элемент топливной системы транспортного средства вышел из строя. Кроме того, расскажем про принцип функционирования и для чего была изобретена эта деталь автопроизводителями. В заключении мы наглядно увидим принципиальную схему работы лямбда зонда, а также, что в первую очередь влияет на стабильность и долговечность его работы.

Что такое лямбда зонд. Принцип работы, функции и причины неисправностей
Многие автолюбители довольно часто в своем обиходе употребляют такие автомобильные термины, как АБС и ЕСП, однако понятия инжектор, лямбда зонд многим уже позабылись. Для того, чтобы понимать какие задачи выполняет лямбда зонд, для чего он нужен, а также как проверить его на исправность, необходимо понимать, как он функционирует. Данные вопросы мы и разберем в нашем рассказе, чтобы у нас осталось детальное представление об этой ключевой детали топливной системы автомобиля.Что такое лямбда зонд. Принцип работы, функции и причины неисправностей
Благодаря тому, что последние 20 лет применяются жесткие меры относительно экологических норм, они поспособствовали использованию на транспортных средствах специальных каталитических нейтрализаторов – устройств, которые снижают содержание вредных компонентов в отработанных газах. Катализатор – это довольно хороший элемент топливной системы, но эффективно функционировать он способен только в определенных условиях. Однако без систематического контроля состава топливно-воздушной смеси невозможно обеспечить долгий срок службы данного устройства, поэтому ему на помощь приходит специальный датчик кислорода, который и называется лямбда зондом.

1. Понятие, функции и задачи автомобильного лямбда зонда

Само название датчика кислорода лямбда исходит от древнегреческой литеры “лямбда“, которая издревле в автомобилестроении означала специальный коэффициент избытка воздуха в воздушно-топливной системе. Говоря простыми словами датчик кислорода или лямбда зонд измеряет состав отработанных газов автомобиля для поддержания оптимальной концентрации топлива и воздуха в топливо-воздушной смеси.

Что такое лямбда зонд. Принцип работы, функции и причины неисправностей
В том случае, когда состав топливо-воздушной смеси находится в оптимальном состоянии и на 14,7 части воздуха приходится 1 часть топлива, то коэффициент лямбда в этом случае равен единице. Для того, чтобы обеспечить такую высочайшую точность, применяются высокоточные системы питания с электронным впрыском топлива, а также применяется устройство обратной связи под названием лямбда зонд. Поэтому считается, что в топливной системе, датчик лямбда зонд играет одну из ключевых ролей.Что такое лямбда зонд. Принцип работы, функции и причины неисправностей
Процесс измерения избытка воздуха в топливной смеси происходит весьма неординарным способом, путем определения в отработанных газах содержания кислорода остаточного уровня. Вот и ответ на вопрос: “почему устанавливают датчик лямбда зонд на выпускном коллекторе перед катализатором?“. Благодаря работе электронного блока управления системы топлива, который считывает электрический сигнал датчика, происходит оптимизация состава топливной смеси при помощи изменения количества направляемого в рабочую область цилиндров топлива.
Что такое лямбда зонд. Принцип работы, функции и причины неисправностей
На современных моделях автомобилей устанавливают несколько датчиков кислорода (лямбда зондов), которые располагаются один стандартно, на выпускном коллекторе, а второй на выходе катализатора. Благодаря сочетанию двух датчиков достигается высокая точность приготовления топливо-воздушной смеси, а также происходит детальный контроль эффективности функционирования самого катализатора.

2. Принцип работы лямбда зонда

Точное и эффективное измерение кислорода остаточного уровня выхлопных газов лямбда зондом обеспечивается после разогрева системы до рабочей температуры от 250 до 450 градусов по Цельсию. Только такой температурный режим обеспечивает условия для того, чтобы циркониевый электролит приобретал высокую проводимость. Кроме того, разница в количестве кислорода с атмосферы и кислорода в трубе выхлопных газов ведет к появлению на электродах датчика лямбда зонда нужного выходного напряжения.

Что такое лямбда зонд. Принцип работы, функции и причины неисправностей


Принципиальная схема любого датчика кислорода или лямбда зонда на основе диоксида циркония, который расположен в выхлопной трубе включает в свой состав следующие элементы: 1. электролит твердого типа с маркировкой ZrO2; 2. наружный электрод; 3. внутренний электрод; 4. контакт заземления; 5. контакт сигнального типа; 6. отверстие для крепления к выхлопной трубе. Ниже на изображение можем наглядно видеть схему лямбда зонда и его основные компоненты.

Что такое лямбда зонд. Принцип работы, функции и причины неисправностей

Когда происходит запуск и прогрев мотора, управление впрыском топлива происходит без воздействия датчика кислорода, а корректировка топливо-воздушной смеси осуществляется по сигналам прочих устройств, например: положения заслонки дроссельного типа, рабочей температуры охлаждающей жидкости или числа оборотов коленчатого вала двигателя внутреннего сгорания.

Что такое лямбда зонд. Принцип работы, функции и причины неисправностей


Главной отличительной чертой циркониевого лямбда зонда является тот момент, что при незначительных отклонениях состава и концентрации топливо-воздушной смеси от эталонного значения напряжения, на выходе датчика оно изменяется ростом, а иногда скачком, в диапазоне от 0,1 до 0,8 Вольт. Ниже на изображении можем наглядно видеть зависимость напряжения датчика кислорода от коэффициента избытка воздуха при температуре лямбда зонда в диапазоне от 500 до 800 градусов по Цельсию.

Что такое лямбда зонд. Принцип работы, функции и причины неисправностей
Отметим, что для повышения чувствительности датчиков кислорода на пониженных рабочих температурах и после запуска не прогретого двигателя применяют специальный принудительный подогрев лямбда зонда. Как правило, нагревательное устройство располагается внутри корпуса зонда и подключается к электрической цепи транспортного средства. Для подключения к электрической цепи применяется специальная проводка, которая обеспечивает высокую и быструю передачу электрической энергии к источнику потребления тока.

3. Как установить, что лямбда зонд перестал работать

Первым и основным признаком того, что лямбда зонд перестал стабильно функционировать или вышел из строя является тот момент, когда электронный блок управления начинает работать по усредненным показателям, которые записываются в его памяти. Кроме того, состав топливо-воздушной смеси, которая образуется в системе будет значительно отличаться от эталонного значения. В результате чего появляется повышенный расход топлива, нестабильная работа мотора на холостых оборотах, повышение содержания углекислого газа, общее снижение мощности двигателя, однако при этом транспортное средство находится в движении. Что такое лямбда зонд. Принцип работы, функции и причины неисправностей

Весь список возможных неисправностей датчика кислорода довольно широкий и некоторые поломки очень тяжело обнаружить самостоятельно, как правило, они не фиксируются. Поэтому для того, чтобы принять окончательное решение о неисправности лямбда зонда нужно детально его проверить. Такую проверку лучше всего осуществлять на специальном оборудовании станций технического обслуживания транспортных средств. Кроме того, заметим, что попытки заменить неисправный датчик кислорода эмуляторами (заглушками) ни к чему хорошему не приведет, так как электронный блок управления топливной системы автомобиля не сможет распознавать посторонние сигналы и не будет их использовать для корректировки состава приготавливаемой топливо-воздушной смеси, то есть произойдет обычное игнорирование инородного устройства.


Видео: “Автомобильный лямбда зонд (датчик кислорода): функции и неисправности”


В заключении отметим, что датчик кислорода или лямбда зонд является одним из самых уязвимых устройств в современном транспортном средстве. Ресурс лямбда зонда составляет в среднем от 50 до 85 тысяч километров пробега, в зависимости от условий эксплуатации, а также исправности мотора и его узлов. Крайне чувствителен датчик кислорода к качеству заправляемого топлива. Заметим, что после нескольких заправок не качественным топливом датчик перестает работать в штатном режиме и может просто выйти из строя. Для того, чтобы наверняка убедиться в неисправности лямбда зонда, необходимо производить диагностику этого устройства только на специализированных станциях технического осмотра транспортных средств.

БОЛЬШОЕ СПАСИБО ЗА ВНИМАНИЕ. ОСТАВЛЯЙТЕ СВОИ КОММЕНТАРИИ, ДЕЛИТЕСЬ С ДРУЗЬЯМИ. 
ЖДЕМ ВАШИХ ОТЗЫВОВ И ПРЕДЛОЖЕНИЙ.

Лямбда зонд - признаки неисправности и способы проверки

Инжекторная система питания автомобиля является более экономичной и эффективной, чем карбюраторная. Достигается это за счет полного контроля за подачей топлива и воздуха, которое осуществляется рядом датчиков. Они выполняют проверку рабочих параметров, передают их на электронный блок, который анализирует и на их основе корректирует работу всей системы.

Причем датчики для обеспечения полной информации о работе системы устанавливаются не только на впуске (количества топлива, воздуха), но и в выпускной системе. В ней используется всего один датчик, но от его работы зависит, какое количество воздуха будет подаваться в цилиндры. Он так и называется – датчик кислорода, другое название — лямбда-зонд.

Зачем нужен лямбда зонд в машине?

1) металлический корпус с резьбой и шестигранником “под ключ”;
2) уплотнительное кольцо;
3) токосъемник электрического сигнала;
4) керамический изолятор;
5) провода;
6) манжета проводов уплотнительная;
7) токоподводящий контакт провода питания нагревателя;
8) наружный защитный экран с отверстием для атмосферного воздуха;
9) чувствительный элемент;
10) керамический наконечник;
11) защитный экран с отверстием для отработавших газов.

Основная задача этого датчика кислорода – оценка количества несгоревшего кислорода в отработанных газах. Дело в том, что самое эффективное сгорание топливовоздушной смеси достигается при определенном соотношении топлива и воздуха — одна часть бензина должно смешиваться с 14,7 частями воздуха.

Если топливовоздушная смесь будет обедненной, то содержание воздуха будет увеличенным, и наоборот – обогащенная смесь обеспечит меньшее процентное содержание кислорода в выхлопных газах. А это уже сказывается на мощности, расходе, приемистости.

А поскольку двигатель работает на разных режимах, поэтому такое соотношение далеко не всегда соблюдается. Чтобы была возможность контролировать количество подаваемого воздуха, в систему питания и включен лямбда-зонд.

На основе показаний этого датчика электронный блок оценивает качество топливовоздушной смеси и при обнаружении несоответствия нормам – корректирует работу системы, обеспечивая подачу оптимальной смеси путем подачи сигнала на форсунки, которые увеличивают или уменьшают количество впрыскиваемого топлива.

Устройство и принцип работы лямбда зонда

Принцип работы лямбда зонда

Принцип вроде и прост, но реализация его — не такая уж и легкая. Этот датчик должен с чем-то сравнивать полученные результаты, чтобы «понять», что произошло изменение процента кислорода. Поэтому он делает замеры в двух местах – атмосферный воздух и тот, что остался после сгорания смеси. Это позволяет ему «почувствовать» разницу при изменении соотношения топливовоздушной смеси.

1 – твердый электролит ZrO2; 2, 3 – наружный и внутренний электроды; 4 – контакт заземления; 5 – «сигнальный контакт»; 6 – выхлопная труба

При этом на электронный блок должен подаваться электрический сигнал. Для этого лямбда-зонду необходимо преобразовать результаты замеров в импульс, который будет подаваться на ЭБУ. Для проведения замеров концентрации кислорода в атмосфере и в выхлопных газах, используется два электрода, вступающих в реакцию с ним. То есть, в работе этого датчика задействован принцип гальванического элемента, при котором смена параметров химической реакции влечет за собой изменение напряжения между электродами датчика. Так, при обогащенной смеси, когда процент кислорода – меньше, напряжение возрастает, а при обеднении – снижается.

Полученный в результате химической реакции электрический импульс подается на ЭБУ, параметры которого он сравнивает с прописанными в своей памяти и в результате этого производит корректировку работы системы питания.

Используя для работы химические реакции, лямбда-зонд не является сложным по конструкции. Основным его элементом выступает керамический наконечник, изготовленный из диоксида циркония (реже – диоксида титана) с платиновым покрытием, которое и выступает в роли электродов, вступающих в реакцию. Одной своей стороной наконечник контактирует с атмосферой, а другой – с выхлопными газами.

Лямбда зонд с подогревом

Особенность работы такого керамического наконечника заключается в том, что произведение эффективных замеров остаточного процента кислорода выполняется только при определенном температурном режиме. Чтобы наконечник обрел необходимую проводимость, необходима температура в 300-400 град. С.

Чтобы обеспечить необходимый температурный режим изначально этот датчик устанавливали ближе к выпускному коллектору, что обеспечивало достижение необходимой температуры по мере прогрева силовой установки. То есть, в работу он вступал не сразу. До того, как лямбда-зонд начнет передавать импульсы, электронный блок основывался на показания других датчиков, включенных в систему питания, но при этом оптимальное смесеобразование не соблюдалось.

Видео: Как подключить лямбда зонд с подогревом

Ещё кое-что полезное для Вас:

Некоторые модели лямбда-зондов в своей конструкции имеют специальные электрические подогреватели, что обеспечивает более быстрый выход на необходимый температурный режим. Запитка подогревателя осуществляется от бортовой сети авто.

Датчик, выполняющий свою работу за счет химической реакции, получил название двухточечного, за счет того, что замеры производятся в двух местах. Но выпускаются еще и другой тип лямбда-зонда – широкополосный, который является более современной версией датчика. В его конструкции тоже используется двухточечный элемент, а также еще один керамический элемент – закачивающий. При этом суть сводится все к той же подаче электрического сигнала на ЭБУ.

Использование двух и более датчиков

Сейчас многие автомобили, чтобы повысить их экологичность, используют каталитические нейтрализаторы, что позволяет снизить вредные выбросы в атмосферу. При этом выхлопная система оснащается не одним, а двумя и более кислородными датчиками.

В такой выхлопной системе эти датчики производят не только замер остаточного кислорода, но еще и оценивают эффективность работы нейтрализатора. Один из датчиков устанавливается перед катализатором, а второй – за ним. Это позволяет на основании сравнения показаний двух лямбда-зондов понять, выполняется ли нейтрализация вредных веществ.

С одной стороны, такая система позволяет меньше загрязнять окружающую среду, но с другой – она очень «капризна». Одна-две заправки некачественным бензином запросто может испортить нейтрализатор. А это уже скажется на показаниях кислородных датчиков, и как следствие – на работе всей системы питания.

К тому же даже при соблюдении всех условий эксплуатации авто, нейтрализатор выйдет из строя, поскольку у него имеется свой ресурс, после которого он подлежит замене, чтобы восстановить нормальную работоспособность системы питания. А поскольку замена – «удовольствие» дорогостоящее, то на выручку приходят разные хитрости.

Многие просто вырезают нейтрализатор, а на его место устанавливают пламегаситель – обычный отрезок трубы необходимого диаметра. А чтобы получить разницу в показаниях двух датчиков, используют так называемую обманку на лямбда зонд – специальную проставку, устанавливаемую на второй лямбда-зонд.

Эта обманка просто удаляет наконечник от потока выхлопных газов, что влияет на его показания. За счет этого и достигается разница, которую ЭБУ воспринимает как работу катализатора.

Видео: Лямбда зонд (датчик кислорода). Как обмануть второй лямбда зонд

Признаки неисправности датчика кислорода

Лямбда-зонд – достаточно важный элемент в системе питания авто и его поломка может значительно сказаться на работе силовой установки. Признаки неисправности его таковы:

  • увеличение расхода бензина;
  • «плавающие» обороты на холостом ходу;
  • понижение динамики разгона;
  • щелчки и треск из-под авто после остановки мотора;

Одна из особенностей лямбда-зонда кроется в том, что его неисправность далеко не всегда распознается системой самодиагностики авто. К тому же невозможно его проверить при помощи обычных измерительных приборов в гаражных условиях. Его работоспособность проверяется только осциллографом.

Также он не ремонтопригоден. Единственное, что можно устранить, так это – обрыв проводки, ведущей к датчику. Но с ним бывают также и такие неисправности как повреждение подогревающего элемента и потеря чувствительности самого датчика.

Видео: Как проверить лямбда зонд

Замена

Поэтому многие автолюбители не пытаются проводить диагностику работоспособности лямбда-зондов, а просто периодически производят его замену на новый. Чтобы поддерживать работоспособность системы питания в рабочем состоянии следует производить замену раз в 2-3 года.

Данная операция не является сложной и выполняется она на смотровой яме. Предварительно следует приобрести необходимую модель датчика. Перед демонтажем отключается колодка проводов от зонда, а затем он выкручивается со своего посадочного места рожковым ключом соответствующего размера. Для облегчения откручивания допускается обработка специальными средствами (WD-40 или др.). На место выкрученного элемента вкручивается новый и к нему подключается проводка.

Как проверить лямбда-зонд на работоспособность

Инжекторные двигатели экономичны и дружелюбны к экологии в отличии от карбюраторных моторов. Высоких показателей инженеры добились благодаря датчикам в системе питания. Один из датчиков, который непосредственно влияет на смесеобразование – это лямбда-зонд или кислородный датчик.

Содержание статьи:

Если он выходит из строя, можно наблюдать потерю мощности, большой расход топлива, нестабильную работу мотора.

Зачем в автомобиле нужен лямбда-зонда, место расположения

Лямбда-зонд необходим для измерения коэффициента содержания кислорода в горючей смеси. Он устанавливается всегда в районе приемной трубы до катализатора и измеряет объем несгоревшего кислорода в продуктах сгорания. Эта информация позволит ЭБУ готовить оптимальную смесь.

Наиболее эффективно сгорает смесь, в которой содержится 14,7 частей воздуха и одна часть топлива. Это оптимальные показатели, если кислород присутствует в больших количествах, то смесь бедная, если воздуха меньше, то богатая.

Читайте также: Почему горит ЧЕК в машине, что делать, можно ли ехать и как его потушить

Сгорание богатой смеси менее эффективно – можно наблюдать снижение мощности, повышенный расход топлива.

Так как моторы в автомобилях функционируют на совершенно разных режимах, то оптимальное соотношения воздуха и топлива может не соблюдаться. Для контроля качества смеси в системах питания применяют кислородные датчики.

На основе сигналов от лямбды ЭБУ может оценить качество смеси. Если обнаружены показатели, которые не соответствуют нормам, смесь корректируется.

Принцип работы кислородного датчика

Принцип действия кислородного датчика достаточно простой. Лямбда-зонд должен сравнивать показания с какими-то идеальными результатами, чтобы понимать, как меняется процент кислорода в смеси, поэтому замеры проводятся в двух местах – измеряется атмосферный воздух и продукты сгорания.

Такой подход позволяет датчику чувствовать разницу, если соотношения топливной смеси меняется.

ЭБУ должен получать от лямбда-зонда электрический импульс. Для этого датчик должен уметь преобразовывать замеры в электрические сигналы. Для измерения применяются специальные электроды, которые могут вступать с кислородом в реакцию.

В работе лямбды используется принцип гальванических элементов – смена условий химических реакций приводит к изменению напряжения между двумя электродами. Когда смесь богатая, а содержание кислорода за нижним порогом, тогда напряжение растет. Если смесь обедненная, напряжение будет падать.

Далее импульс, который возникает на этапе химических реакций, отправляется на ЭБУ, где параметры сравниваются с записанными в памяти топливными картами. В результате корректируется работа системы питания.

Статья по теме: Как сделать пеногенератор для автомойки из подручных вещей своими руками

Датчик кислорода работает на химических реакциях, но при этом конструкция его относительно простая. Главный элемент – специальный наконечник из керамических материалов. В качестве сырья используется диоксид циркония, а реже – диоксид титана.

Наконечник покрыт напылением из платины – именно этот слой и вступает в реакцию с кислородом. Одной стороной этот наконечник контактирует с выхлопными газами, другой стороной – с воздухом в атмосфере.

Электроды лямбда-зонда имеют одну особенность. Так, чтобы реакция проходила эффективнее и показатели были точными, замеры содержания кислорода в выхлопе производятся при условии определенных температур.

Для того, чтобы наконечник вышел на рабочие характеристики и нужную электропроводимость, температура среды должна составлять 300-400 градусов.

Для обеспечения нужного режима температур изначально лямбда-зонд устанавливался в непосредственной близости к выпускному коллектору. Это обеспечивало нужную температуру после прогрева ДВС. В работу датчик вступал не сразу. До того, как лямбда достаточно нагреется и начнет выдавать точные параметры, ЭБУ использовало сигналы других датчиков. Оптимальная смесь в процессе прогрева не приготавливалась.

Некоторые модели кислородных датчиков оснащены электрическими нагревателями. Благодаря им лямбда может быстрее выходить на рабочие температурные режимы. Подогрев использует энергию бортовой сети автомобиля.

Признаки и причины неисправности датчика

При неисправном лямбда-зонде выхлопные газы становятся более токсичными. Определить это можно при помощи специального диагностического оборудования. При этом никаких внешних признаков не будет, также, как и не будет никакого особенного запаха.

Вырастает расход топлива. Водители, как правило следят за тем, насколько наполнен топливный бак, стараются определить скорость, при которой расход минимален. Повышенный расход будет сразу же заметен. В зависимости от серьезности поломки датчика кислорода, расход вырастет в пределах от 1 л до 4 л.

Перегрев каталитического нейтрализатора. Если лямбда неисправна, то в ЭБУ подается неверный сигнал. Это может приводить к неправильной работе катализатора. Он перегревается вплоть до красного цвета и выходит из строя.

Автомобиль будет дергаться, и водитель сможет услышать хлопки. Лямбда перестает формировать правильные сигналы, в результате – нестабильный ХХ. Обороты могут колебаться в очень широких диапазонах.

Это интересно: Как восстановить кожу на руле автомобиля методом покраски

Снижаются динамические характеристики. Автомобиль теряет мощность. Эти признаки можно наблюдать в сильно запущенных случаях. Датчик не работает на холодном моторе, а автомобиль всячески сигнализирует о неисправности.

Среди причин поломок можно выделить:

  • Повреждения, вызванные сильными ударами, ДТП, наездами на бордюр;
  • Некорректную работу ДВС и проблемы в работе системы зажигания, когда элемент перегревается и выходит из строя;
  • Засор системы и некачественное топливо. Чем больше в бензине тяжелых металлов, тем быстрее лямбда выйдет из строя;
  • Поршневая группа – часто из-за изношенной ЦПГ в выпускной коллектор попадает масло, а продукты его сгорания забивают зонд;
  • Замыкания в электропроводке;
  • Бедная или слишком богатая смесь;
  • Попадание лишнего воздуха в выхлопную систему;
  • Пропуски зажигания;
  • Топливные присадки.

Проверка лямбда-зонд с помощью диагностического устройства

В большинстве случае ДВС сам подсказывает есть ли неисправности в работе датчиков. Самым быстрым и эффективным способом диагностики в таком случае будет подключение ODBII сканера.

Из доступных на рынке вариантов рекомендуем обратить внимание на модель корейского производства Scan Tool Pro Black Edition.

ScanToolProScanToolPro

Данное устройство относится к бюджетному сегменту, но в отличие от китайских аналогов на 8-битном чипе, имеет 32-битную базу, что позволяет осуществлять диагностику не только двигателя, но и других систем автомобиля (коробку передач, трансмиссию, ABS, ESP, систему кондиционирования и т.д.).

Сканер достаточно прост в использовании, имеет широкий функционал и совместим с большинством автомобилей начиная с 1993 года выпуска.

Если все плохо, то в ЭБУ будет выдавать следующие ошибки – это P0131, P0134, P0171. Более подробно о них в видео ниже.

Также будет загораться лампочка «проверьте двигатель», но здесь точно установить причину можно только при помощи диагностики. Чек загорается и в случае других проблем.

Как проверить лямбда-зонд мультиметром

Когда наблюдаются рывки при движении, повышенный расход горючего, и горящий “чек”, то стоит провести диагностику. Эти признаки могут говорить и о других неисправностях, но если есть мультиметр, то можно проверить кислородный датчик своими руками. Специалисты рекомендуют проверять лямбду через измерение напряжений.

К сведению: Стук в Двигателе все причины появления странных звуков при работе мотора

Но прежде любых измерений нужно прогреть ДВС. Если лямбда холодная, она не будет работать. Также рекомендуется по возможности снять датчик и осмотреть его и проводку на предмет грязи и повреждений. Если датчик деформирован, электрод поцарапан или покрыт сажей, нагаром, то лучше его заменить.

Измерения напряжения в цепи подогрева

ScanToolProScanToolPro

Включают зажигание, щупами протыкают провода, которые идут к нагревателю. Можно также втыкать щупы мультиметра в разъем. Напряжение будет примерно равно напряжению в бортовой сети. Если двигатель не запущен, то напряжения может и не быть.

Обычно плюс приходит к нагревателю напрямую. Минус подает блок управления. Если отсутствует плюс, следует проверить цепи от аккумулятора до датчика. Если отсутствует минус, тогда нужно проверить цепь от ЭБУ до датчика.

Проверка нагревателя

ScanToolProScanToolPro

Можно проверить работоспособность кислородного датчика при помощи омметра. Очень часто поломка связана со спиралью подогрева или проводкой к ней.

Для проверки омметр присоединяют между контактами нагревателя. Если нагреватель исправен, то омметр покажет сопротивление от 2 до 10 ОМ. В цепи подогрева сопротивление будет от 1 кОм до 10 мОм. Если сопротивления нет, то стоит поискать обрыв в проводке.

Опорное напряжение

ScanToolProScanToolPro

Имея под рукой мультиметр, можно проверить опорное напряжения. Для этого включают зажигание, затем измеряют напряжение между проводом сигнала и массой.

В правильно работающей лямбде напряжение будет в пределах 0,45 В. Если имеются отличия хотя-бы на 0,2 В, то проблемы с сигнальной цепи или плохая масса.

Проверка сигнала с датчика осциллографом

ScanToolProScanToolPro

Двигатель необходимо прогреть. Осциллограф подключают между сигналом и массой. Затем поднимают обороты до 3000 и наблюдают за изменениями показаний. Сигнал должен меняться в пределах от 0,1 В до 0,9 В. Если осциллограф точный и видно, что изменения в более узком диапазоне, то лямбда неисправна.

По теме: Как нумеруются цилиндры, виды их расположения в двигателе

Также стоит засечь время, в течении которого показания опускаются от большего уровня к меньшему. За 10 секунд показания должны меняться 10 раз. Если смены происходят реже, тогда может появиться ошибка под датчику.

Принцип работы датчика Лямбда зонд

Любознательные автолюбители давно уже слышали о таких системах, как антиблокировочная тормозная система (ABS) или стабилизация курсовой устойчивости (ESP), да и о других тоже. Сегодня поговорим о датчике Лямбда зонд, рассмотрим принцип работы датчика Лямбда зонд, узнаем для чего надо датчик Лямбда зонд, за что он отвечает и так далее.

С каждым годом человечество все больше задумывается о сохранении окружающей среды, ведь не мало было упущено в прошлом, надо подумать и о будущем. Узаконивание жестких экологических норм относительно автомобилей, привело к разработке и применению новых устройств, таких как каталитические нейтрализаторы.

Каталитический нейтрализатор

 

Каталитический нейтрализатор – это устройство, назначение которого является снижение вредных выбросов в окружающую среду. Катализатор очень полезная вещь, только для его корректной работы следует соблюдать некоторые условия. Огромное влияние на работу катализатора оказывает состав топливно-воздушной смеси. Именно от качества топливно-воздушной смеси и зависит ресурс работы катализатора. Поэтому и был разработан датчик Лямбда зонд, который отвечает за контроль состава этой же топливно-воздушной смеси. В просто народе его называют датчик кислорода.

Что такое Лямбда зонд икак выглядит датчик Лямбда зонд?

Не секрет, что свое название датчик получил от обозначения коэффициента избытка воздуха, который обозначается греческой буквой Лямбда. Лямбда зонд применяется для измерения состава отработавших газов и содействует в дальнейшем для поддержания оптимального состава смеси топлива и воздуха. Оптимальное соотношение топливно-воздушной смеси обеспечит качественное сгорание, что уменьшит выброс вредных веществ в атмосферу.

Оптимальный состав топливно-воздушной смеси это когда на 14,7 частей воздуха приходится 1 часть топлива, при этом Лямбда равняется одному. На старых советских двигателях такого сложно было добиться. А в современных автомобилях для этого используют системы питания с электронным впрыском топлива, которая взаимодействует с датчиком Лямбда-зонд.

Как измеряется избыток воздуха в топливно-воздушной смеси?

Избыток воздуха в топливно-воздушной смеси измеряется путем определения в отработавших газах содержания остаточного кислорода (О2). Этим объясняется и расположение датчика в выпускном коллекторе непосредственно перед катализатором.

Для считывания сигнала с Лямбда датчика используется электронный блок управления системы впрыска топлива (ЭБУ), который отвечает за оптимизацию состава топливно-воздушной смеси, то уменьшая, то увеличивая подачу топлива в цилиндры двигателя.

Некоторые производители автомобилей пошли еще дальше, и начали устанавливать по два Лямбда датчика в выхлопной системе, перед катализатором и после него. Два датчика Лямбда устанавливали для того, чтобы увеличить точность приготовления горючей смеси и улучшить работу катализатора.


Принцип работы лямбда-зонда

Схема датчика кислорода лямбда зонда на основе диоксида циркония: 1 – твердый электролит; 2, 3 – наружный и внутренний электроды; 4 – контакт заземления; 5 – сигнальный контакт; 6 – выхлопная труба.

Наиболее качественное измерение выхлопных газов Лямбда датчиком обеспечивается при температуре 300-400 градусов Цельсия. При такой температуре Циркониевый электролит становиться более проводимым, вследствие чего на электродах датчика появляются выходное напряжение.

Поэтому при запуске и прогреве двигателя датчик не используется. На этих режимах работы двигателя контроль качества топливно-воздушной смеси осуществляют датчики положения дроссельной заслонки, датчик температуры охлаждающей жидкости, датчик количества оборотов коленчатого вала.

 не работает датчик Лямбда
На схеме представлена зависимость напряжения лямбда-зонда от коэффициента избытка воздуха при 500-800°С температуре датчика.

Для качественной работы датчика при низких температурах применяют принудительные нагревательные элементы.

Что будет если не работает датчик Лямбда?

Если не работает датчик лямбда зонд, тогда ЭБУ выбирает средние параметры работы, считывая данные с своей памяти. Параметры топливно-воздушной смеси будут разниться от идеальной.

К чему приведет поломка Лямбда датчика?

Поломка Лямбда датчика приведет к повышению расхода топлива, на холостом ходу двигатель будет работать неравномерно, в выхлопных газах будет содержаться повышенный уровень СО, упадет мощность двигателя, но автомобиль будет на ходу.

Самому проверить Лямбда датчик достаточно сложно, поэтому лучше проконсультироваться с специалистами.

Какой срок службы Лямбда датчика?

Срок службы Лямбда датчика зависит от качества заливаемого топлива. Бывает так, что достаточно нескольких заправок некачественным бензином и датчик приходит в негодность. Средний срок службы Лямбда датчика составляет от 40 до 80 тыс. км пробега.

за что отвечает кислородный датчик, как он работает, его чистка и распиновка

Лямбда-зонд отвечает за качество, а также пропорции топлива и воздуха при создании воздушной смеси. От работы этого устройства зависит корректное функционирование автомобильного мотора.

Содержание

Открытьполное содержание

[ Скрыть]

Для чего нужен кислородный датчик в автомобиле?

Данный контроллер в авто — такое устройство сопротивления, которое предназначено для определения объема оставшегося кислорода в отработанных газах. В соответствии с сигналами, которые отправляются датчиком, микропроцессорный модуль силового агрегата оценивает, на каком типе горючей смеси работает мотор. Он может быть нормальным, обедненными либо обогащенным. С учетом полученных показаний и необходимого режима функционирования, блок управления выполняет корректировку объема горючего, которое подается в цилиндры двигателя.

В ходе прогрева силового агрегата импульсы, которые отправляет лямбда-зонд, игнорируются микропроцессорным модулем. Это происходит до момента, пока температура мотора машины не увеличится до необходимой. Контроллеры применяются для дополнительной регулировки состава горючей смеси, а также контроля исправности работы каталитического нейтрализатора.

Канал «Kanistra» подробно рассказал о необходимости использовании кислородного контроллера в автомобиле.

Что будет, если отключить датчик?

Игнорировать работу датчика кислорода возможно, но выполнять его отключение нежелательно, поскольку из-за этого ЭБУ запустит автономный режим подачи горючей смеси. Это станет причиной большего расхода бензина, а в отработавших газах возрастет объем токсических элементов.

Помимо этого, возникнут такие проблемы:

  1. На электродах свечей зажигания появится черный нагар. Из-за этого ухудшится запуск силового агрегата, в частности, при первом старте после стоянки. Горючая смесь будет хуже воспламеняться, а также уменьшится зазор свечи.
  2. На клапанах появится нагар. Из-за этого снизится продуваемость всасывающих, а также выхлопных магистралей головки блока цилиндров. Постепенно забьются впускное и выпускное коллекторные устройства, что приведет к падению величины мощности транспортного средства.
  3. Начнет образовываться нагар на катализаторе. Со временем это станет причиной его расплавления. В результате силовой агрегат будет останавливаться сразу после старта.
  4. Образуется нагар на поршнях. В конечном счете это приведет к необходимости осуществления капитального ремонта.

Об отключении контроллера без последствий рассказал канал «Жизнь в гараже».

Где находится лямбда-зонд?

Чтобы понять, где находится этот элемент на авто, надо знать год выпуска транспортного средства. В машинах, произведенных до 2000 года, в большинстве случаев используется один контроллер кислорода, но их может быть и два, расположенных в разных местах. Во всех транспортных средствах, выпущенных после 2000 года, имеется от двух до четырех кислородных регуляторов. В плане конструкции они не имеют между собой отличий, но могут выполнять различные функции.

Количество кислородных контроллеров в автомобиле зависит от объема силового агрегата. Если этот параметр составляет менее двух литров, то в машине установлено для датчика — один верхний, другой нижний. Первый можно найти в моторном отсеке, он легко заменяем, а второй располагается под днищем машины.

Для определения места установки первого регулятора надо сделать следующее:

  1. Открывается моторный отсек транспортного средства.
  2. Находится сам силовой агрегат, он располагается в центре подкапотного пространства и на более современных авто скрыт пластмассовой крышкой. На ней должна указываться марка авто. Если крышка закрывает не только силовой агрегат, но и весь моторный отсек, ее надо демонтировать.
  3. Производится визуальный осмотр пространства вокруг мотора машины. Необходимо определить металлические магистрали, которые идут к двигателю от пространства в глубине отсека. Это и есть впускной коллектор. По данным магистралям из силового агрегата отводятся выхлопные газы. Коллекторное устройство может закрываться специальным теплозащитным экраном, выполненным из металлизированного материала, при его наличии придется произвести демонтаж защиты.
  4. Производится визуальная диагностика узла. На нем должна располагаться деталь, выполненная в цилиндрическом корпусе длиной около 5-7 см. Одна часть данного устройства установлена в коллекторный узел, а к другой подсоединен толстый кабель, это кислородный контроллер.
  5. Если эти действия не помогли обнаружить датчик, то надо проследить за магистралью, которая идет от выпускного коллектора. Контроллер должен располагаться на ней.

Устройство и принцип работы лямбда-зонда

Элементы, из которых состоит универсальный регулятор, расположенный перед катализатором либо после него:

  1. Корпус кислородного датчика. Регулятор комплектуется устройством, выполненным из металла и оборудованным нарезной резьбой, которая позволяет его установить.
  2. Изолятор, сделанный из керамики.
  3. Уплотнительный элемент, обеспечивающий герметизацию устройства при монтаже.
  4. Наконечник устройства, выполненный из керамики.
  5. Кабели с манжетами, обеспечивающими качественное уплотнение.
  6. Для эффективной вентиляции контроллера используется специальный корпус, оборудованный дополнительным отверстием.
  7. Контактный элемент, по нему проходит напряжение.
  8. Дополнительный защитный щиток. Он оборудуется отверстием, которое требуется для выпуска отработавших газов.
  9. Универсальный лямбда-зонд может оборудоваться спиралью, которая монтируется в отдельном резервуаре.

Канал «Chevrolet Aveo» рассказал об устройстве контроллера.

Основная особенность кислородного регулятора заключается в том, что для производства устройства применяется термостойкая база. Использование подобных материалов дает возможность работать контроллеру в системах, где присутствуют повышенные температуры. В зависимости от датчика к нему может подключаться разъем с количеством проводников, составляющих от одного до четырех.

Регулятор концентрации объема кислорода — это элемент обратной связи, который функционирует так:

  1. Два электрода, наружный и внутренний. На первом есть платиновое напыление, имеющее высокую чувствительность по отношению к содержанию кислорода.
  2. Внутренний контроллер выполнен из циркониевого сплава. Его электрод функционирует под воздействием отработавших газов, а внешний предназначен для контакта с атмосферным воздухом.
  3. Когда внутренний контроллер разогревается, в его керамической основе появляется разница потенциалов. Это способствует образованию электрического напряжения.
  4. В соответствии с этим параметром определяется объем кислорода в отработавших газах.

Распиновка

Схема контактов лямбда-зонда

Рассмотрен пример обозначения проводов на кислородном устройстве от ВАЗ 2110, оснащенном четырьмя контактами:

  1. Кабель в черной оболочке является сигнальным выходом. Он подсоединяется к микропроцессорному блоку. ЭБУ используется для считывания и обработки поступающих импульсов об объеме кислорода, содержащегося в выхлопных газах.
  2. Два контакта белого цвета используются для подключения к обогревательному компоненту, расположенному в контроллере. При подсоединении неважно, куда подключать конкретный кабель — к положительному или отрицательному выходу.
  3. Четвертый проводник устройства выполнен в серой оболочке. Это масса или заземление.

Виды лямбда-зондов

Типы кислородных контроллеров различаются между собой по следующим параметрам:

  • конструкции и устройству;
  • методу крепления на трубе;
  • параметру ширины измерения лямбды.
Узкополосные

Такие устройства считаются двухуровневыми и являются самыми простыми в плане конструкции. Узкополосные регуляторы, по сути, это генераторы волнообразных импульсов. Такой датчик представляет собой простой гальванический компонент, но вместо электролита здесь используются керамические соты. Они свободно пронизывают ионы кислорода, а чтобы сделать их проводимыми, необходим обогрев до температуры около 400 градусов. Основная особенность узкополосного регулятора состоит в том, что он может монтироваться перед нейтрализаторным устройством либо после него.

Титановые

Для наконечника кислородного регулятора керамическая часть может быть выполнена из оксида циркония либо титана. Принцип работы данного типа устройств немного отличается от универсальных. Регулятор производит замер не величины напряжения, а параметра электрического сопротивления кислорода на выхлопе. Чем выше будет концентрация кислорода, то есть горючая смесь обедненная, тем меньше рабочая величина. Сопротивление увеличивается при снижении кислородного объема.

На изменения, которые происходят в составе выхлопа, титановые устройства реагируют оперативнее. Они характеризуются более высоким ресурсом эксплуатации и выдачей точных показаний. По сравнению с циркониевыми устройствами их стоимость более высокая. Первые хоть и уступают титановым в плане точности и срока службы, но спрос на них более высокий.

Широкополосные

Конструкция такого устройства более сложная. Основная особенность кислородного регулятора заключается в том, что он может изменять образование смеси для каждого отдельного цилиндра силового агрегата. На изменение происходящих внутри двигателя процессов датчик реагирует мгновенно. В целом это положительно отражается на функционировании мотора и способствует снижению объема вредных элементов в отработанных газах. Широкополосные типа устройств используются в качестве входных контроллеров каталитического нейтрализаторного устройства.

Сергей Л подробно рассказал об одном из популярных фирменных лямбда-зондов широкополосного типа.

Без нагревателя

Устройства, в которых нет обогревателя, считаются наиболее ранним типом. Если по конструкции регулятор относится к однопроводным, то в нем имеется один сигнальный кабель. В двухпроводных используется общий проводник и он подключается к заземлению со стороны электрики машины.

Контроллеры, не оборудованные нагревателем, устанавливаются в близости к выхлопным отверстиям силового агрегата. Такое место монтажа считается не самым оптимальным для выполнения замеров, поэтому сигналы, отправляющиеся с датчика, могут быть неточными. Основной минус устройства заключается в том, что для достижения необходимой температуры, когда он будет работать более точно, ему потребуется время.

С нагревателем

Кислородные контроллеры с обогревательным элементом бывают трех- и четырехполосными. Их использование дает возможность быстрее достичь необходимой температуры, что обеспечит корректную работу регулятора. Сам нагреватель выполнен в виде внутреннего резистора, который прогревается, когда через него проходит ток.

Такие устройства могут устанавливаться на системе выхлопа ниже по потоку отработанных газов. Они функционируют в более щадящем режиме в плане температуры, если сравнивать с датчиками без нагревателей. Все современные устройства, имеющиеся в продаже, обязательно оборудуются обогревательными элементами. Но время прогрева может отличаться в зависимости от модели.

Универсальные

Монтаж такого типа регуляторов допускается на любой тип транспортного средства, но при подборе важно правильно определить вид ДВС. Иногда для установки требуется внести изменения в электропроводку машины и колодку подключения контроллера. Универсальные датчики хоть и называются так, то тип силового агрегата очень важен, иначе мотор может функционировать некорректно.

Об установке такого типа лямбда-зондов рассказал пользователь Denis Marian.

С быстрым разогревом

Такие устройства еще называются кислородными регуляторами типа FLO либо UFLO. В основе конструкции контроллера применяется низкоомное высокотемпературное нагревательное устройство, позволяющее снизить время прогрева. Для достижения необходимого уровня температуры регулятору может потребоваться менее двадцати секунд. Вредные вещества, находящиеся в составе отработавших газов, наиболее опасны при запуске силового агрегата «на холодную». Поэтому устройства с быстрым нагревом позволяют снизить уровень загрязнения в момент первоначального запуска ДВС.

Причины и признаки неисправности датчика

Работа контроллера может быть нарушена из-за таких причин:

  1. Использование некачественного либо этилированного топлива. В частности, для любого двигателя опасно горючее с высоким содержанием свинца.
  2. Ошибки, допущенные автовладельцем. При установке кислородного контроллера мог использоваться нетермостойкий герметичный клей. Либо средство, в составе которого используется силикон.
  3. Перегрев кислородного регулятора. Причин такой проблемы может быть множество. К основным относятся неверно выставленный момент опережения зажигания и обогащение горючей смеси. Иногда устройство перегревается в результате сбоев в работе системы зажигания.
  4. Неудачные и многократные попытки старта силового агрегата. Из-за этого в выхлопную систему попадает большой объем горючего. Есть вероятность воспламенения смеси с детонацией.
  5. Отсутствие герметичности в системе выхлопа.
  6. Износ маслосъемных колпачков. Это приводит к попаданию моторной жидкости в систему выхлопа.
  7. Проблемы с контактом в выходной электроцепи кислородного регулятора. Неисправность может заключаться в обрыве либо замыкании на массу. Возможен плохой контакт устройства с бортовой сетью машины.
  8. Попадание охлаждающего вещества в систему выхлопа.
  9. Нарушение герметизации корпуса кислородного регулятора.
  10. Неверное либо нестабильное питание в электросети машины. В частности, речь идет об участке цепи от кислородного датчика к микропроцессорному блоку управления двигателем.

Подробнее о причинах неисправностей лямбда-зондов рассказал канал «Интернет магазин автозапчастей».

О выходе из строя регулятора могут сообщить следующие признаки:

  1. Транспортное средство при езде по ровной дороге без причины начинает двигаться рывками.
  2. Значительно повысилось потребление топлива двигателем.
  3. Автомобиль плохо едет, практически не набирает скорость. При нажатии на педаль газа ощущаются «провалы», мощность силового агрегата не увеличивается.
  4. Двигатель машины функционирует неустойчиво при работе на холостых оборотах.
  5. Когда силовой агрегат остановлен, из-под капота доносится треск. Нехарактерный для нормальной работы двигателя звук можно услышать в районе установки кислородного датчика.
  6. Корпус регулятора покраснел, это можно оценить визуально. Такая проблема говорит о перегреве устройства.

Диагностика датчика

Для определения работоспособности контроллера можно проверять следующие параметры:

  • величину напряжения в электроцепи подогрева, если регулятор оборудован обогревателем;
  • работоспособность нагревательного элемента внутри конструкции;
  • величину опорного напряжения;
  • сигнал, поступающий с устройства, но для этого потребуется осциллограф либо стрелочный вольтметр.

Для диагностики регулятора потребуется именно такой тип тестера, поскольку он оперативнее реагирует на смену показаний. Перед выполнением тестирования надо произвести визуальную проверку устройства. Требуется убедиться в отсутствии механических дефектов и повреждений электропроводки, подключенной к контроллеру.

Если лямбда-зонд покрыт сажей или другими веществами, диагностика не потребуется, поскольку регулятор уже необходимо менять.

Проверка напряжения в электроцепи обогрева

Тестирование выполняется с использованием цифрового либо стрелочного вольтметра, процедура производится так:

  1. Ключ устанавливается в замок, выполняется активация зажигания. На этом этапе важно не отключить колодку от контроллера. Это приведет к тому, что микропроцессорный модуль мотора определит это как ошибку. Соответствующая информация о неисправности лямбда-зонда будет занесена в память блока управления.
  2. Острые щупы тестера надо установить на контакты, подключенные к обогревательному элементу. Контроллер не отключается, выводами вольтметра именно протыкается колодка. Можно использовать разъем со стороны проводников.
  3. Значение напряжения на контактах должно соответствовать аналогичному параметру АКБ. Для легковых авто и внедорожников — 12 вольт и 24 — для микроавтобусов. Если двигатель не запущен, напряжение с микропроцессорного модуля может не идти на контроллер. Из-за этого потребуется запуск силового агрегата. Но в большинстве случаев достаточно просто активировать зажигание.

Положительный сигнал идет на нагревательный элемент напрямую через предохранительное устройство. А отрицательный импульс подается с микропроцессорного модуля управления мотором. Поэтому, если положительный сигнал отсутствует, надо произвести более детальную диагностику электроцепи на участке от батареи до предохранительного устройства и регулятора. В некоторых автомобилях этот проводник оснащается реле. Если отсутствует отрицательный сигнал, производится проверка проводки до микропроцессорного модуля, есть вероятность, что контакт «потерялся» в одном из штекеров.

Канал «Все по теме» рассказал о нескольких методах тестирования контроллера, в том числе о проверке напряжения.

Диагностика исправности нагревательного элемента

Для проверки этого устройства потребуется омметр, который надо заранее настроить в режим замера величины сопротивления.

Процесс диагностики выполняется так:

  1. От кислородного контроллера отключается колодка с проводами.
  2. Производится замер параметра сопротивления. Эту величину надо измерить между проводниками нагревательного устройства. Сюда устанавливаются щупы тестера.
  3. Значение сопротивления в зависимости от контроллера может быть разным. Как правило, этот параметр составляет от 2 до 10 Ом.

Если тестер не показал сопротивление вовсе, это говорит об обрыве внутри регулятора. Потребуется замена устройства.

Диагностика опорного напряжения кислородного регулятора

Для проверки этого параметра понадобится тестер (возможно использование мультиметра), настроенный в режим вольтметра.

Процесс диагностики:

  1. Ключ устанавливается в замок, выполняется активация зажигания.
  2. Производится замер величины напряжения, для этого щупы тестера надо подключить между сигнальным кабелем и массой.
  3. На большинстве транспортных средств полученный параметр должен составить около 0,45 В. Если значение отклоняется в большую или меньшую сторону более, чем на 0,2 вольта, надо детальнее проверять сигнальную цепь контроллера. Возможны проблемы в контакте устройства с массой.

Пользователь Игорь Белов рассказал о нескольких методах диагностики лямбда-зонда, в том числе проверке опорного напряжения.

Диагностика сигнала кислородного регулятора

Этот вариант тестирования считается наиболее сложным в плане реализации и самым ответственным. Для его выполнения потребуется осциллограф либо стрелочный вольтметр. При их отсутствии допускается использование специального прибора — мотор-тестера. Если имеется осциллограф, то необязательно использовать оборудование, допускается применение компьютерных программ. Но к ПК дополнительно необходимо подключить специальную приставку с щупами.

Процедура проверки выполняется так:

  1. Ключ устанавливается в замок, производится запуск силового агрегата. Двигатель необходимо прогреть до рабочей температуры. Кислородный регулятор не будет оптимально функционировать, пока не нагреется.
  2. Затем щупы диагностирующего прибора подключаются между сигнальным кабелем, а также проводником массы устройства.
  3. Путем нажатия на педаль газа обороты коленвала силового агрегата увеличиваются приблизительно до трех тысяч в минуту.
  4. После этого выполняется проверка показаний контроллера кислорода.

Сигнал с регулятора должен меняться в диапазоне от 0,1 до 0,9 вольт. Если диагностическое устройство точное и полученные значения составляют от 0,2 В до 0,7 В, то кислородный контроллер вышел из строя. Затем надо засечь, в течение какого времени параметры изменяются от большего значения к меньшему. За десять секунд лямбда-зонд должен поменять около 9-10 значений. Если процедура изменения осуществляется реже, то есть вероятность появления ошибки в плане медленного отклика устройства.

Как устранить неисправности лямбда-зонда

Если проблемы в работе кислородного контроллера не связаны с самим регулятором, но его работу можно попытаться восстановить:

  1. Производится диагностика проводов на участке от датчика к микропроцессорному блоку. Если имеется обрыв или повреждение изоляции, кабель надо менять. Процедура замены выполняется с помощью перепайки. Место спайки необходимо обмотать изолентой либо установить в специальную термоусадочную трубку.
  2. Выполняется очистка контактных элементов на разъеме цепи, к которой подключен датчик. Проблема может заключаться в их загрязнении, из-за этого устройство будет передавать некорректные сигналы. Процедура очистки выполняется путем продувки разъема или использованием специальной железной щетки.
  3. Если контактные элементы повреждены, то саму колодку надо перепаять. Для этого на разборке авто ищется б/у датчик, от него отрезается разъем. Можно найти штекер в автомагазине. Процедура пайки выполняется посредством разрезания кабеля с колодкой и установкой нового разъема.

Пользователь Олег Донской рассказал о выполнении ремонта лямбда-зонда в гаражных условиях.

Чистка датчика кислорода

Есть два варианта почистить контроллер. Независимо от метода, перед выполнением процедуры устройство надо демонтировать из посадочного места. Для этого используется специальный съемник либо гаечный ключ соответствующего размера.

Первый способ

Данный вариант не является наиболее простым и быстрым, поскольку потребителю необходимо получить доступ к керамической составляющей регулятора. А эта основа расположена за защитным стальным колпачком, который демонтировать самостоятельно бывает проблематично. Для выполнения задачи придется использовать ножовку по металлу, но действовать надо аккуратно, чтобы не повредить поверхность. Поэтому более целесообразно использовать токарный станок — с его помощью у основания регулятора можно срезать колпачок рядом с резьбой, используя резцу.

При отсутствии соответствующего оборудования допускается воспользоваться напильником. Полностью демонтировать колпачок таким инструментом не выйдет, но можно сделать небольшие отверстия длиной около 5 мм. Когда будет обеспечен доступ к основанию кислородного регулятора, можно чистить устройство, для выполнения задачи потребуется ортофосфорная кислота.

Процесс очистки:

  1. Берется около 100 мл очистительного средства. При отсутствии ортофосфорной кислоты можно использовать флюс для пайки либо преобразователь ржавчины.
  2. Средство очистки наливается в стеклянную емкость, для этого можно использовать обычную банку либо рюмку. В нее опускается сердечник кислородного датчика. Полностью класть регулятор в емкость нельзя.
  3. Через 15-20 минут выполняется промывка основания контроллера с помощью дистиллированной воды. Затем датчик необходимо полностью высушить.
  4. Процедура прочистки может повторяться несколько раз, пока налет не исчезнет с металлического основания сердечника. Если удалить загрязнения не получилось, то воздействие очистительного средства можно усилить, используя кисть, которой необходимо обрабатывать и прочищать основание.
  5. Если ранее удалось демонтировать защитный колпачок, то вместо кисти допускается применение зубной щетки. Когда процедура завершена, регулятор промывается и высушивается. Вернуть колпачок на место можно, используя аргонную сварку.

При реализации этого метода надо учитывать нюансы:

  1. Ортофосфорная кислота представляет собой агрессивное и химически опасное средство. При работе с ней необходимо соблюдать все правила техники безопасности. Нельзя допустить ее попадания на слизистые оболочки или внутрь организма.
  2. Если кислородный контроллер сильно загрязнен, то 20 минут для его качественной прочистки будет недостаточно. Поэтому нужно подождать несколько часов, пока датчик лежит в емкости с кислотой. В запущенных случаях воздействие очистительного средства можно увеличить до 8 ч.
  3. Чтобы убедиться в том, что процедура ремонта была выполнена правильно, может понадобиться определенное время. Это позволит автовладельцу оценить качество работы транспортного средства и произвести замер расхода горючего. Если на приборной панели после очистки продолжает гореть индикатор «Чек Энджин», это говорит о том, что восстановить работу регулятора не получилось.
  4. В случае когда кислородный контроллер оборудован защитным колпачком с двойной оболочкой, сделать отверстия с помощью напильника не выйдет. Оптимальным вариантом будет прочистка сердечника путем его замачивания в кислоте с защитным компонентом.

Второй способ

Для реализации этого метода понадобится то же очистительное средство. Процедура восстановления будет выполняться с использованием газовой плиты либо горелки. В первом случае рекомендуется использование самой маленькой конфорки, этот вариант более удобный. С нее необходимо заранее демонтировать крышку, после чего перевернуть ее и положить, сместив в сторону и установив так, чтобы она закрывала газовую трубу от попадания кислоты внутрь.

Затем огонь зажигается, сердечник лямбда-зонда обрабатывается кислотой, а потом разогревается на конфорке. После того как кислота начнет брызгать и кипеть, на поверхности устройства появится сине-зеленая соль. Необходимо дождаться, пока очистительное средство полностью не выкипит, а затем обмыть регулятор дистиллированной водой. После этого процедура обработки кислотой и прогрева повторяется еще несколько раз до момента, пока датчик не заблестит. Прежде чем устанавливать на место резьбу, ее рекомендуется смазать графитовым средством. Затем регулятор ставится на место.

Как обойти лямбда-зонд?

Для обхода кислородного регулятора можно использовать обманку — механическую либо электронную. В первом случае речь идет об установке так называемой проставки или втулки вместо катализаторного устройства. Этот элемент монтируется между самим контроллером и выхлопной трубой. Размеры устройства должны быть определенными и соответствовать конкретной марке авто. Для более качественной работы важно, чтобы втулка была изготовлена из теплоустойчивой стали либо бронзы.

В самой проставке необходимо сделать отверстие сверлом на 2 мм, через него отработанные газы будут проходить в обманку. Во втулку ставится керамическая крошка, ее надо заранее обработать каталитическим спреем. Химическое воздействие выхлопных газов с этим материалом приведет к окислению, соответственно, будет снижена концентрация вредоносных элементов на выходе. В итоге это станет причиной того, что информация с двух контроллеров будет разной, а микропроцессорный модуль воспримет это как штатную работу катализаторного устройства.

Пример схемы для создания механической обманки лямбды

Для монтажа обманки выполняются следующие действия:

  1. Автомобиль загоняется в гараж с ямой либо на эстакаду.
  2. От АКБ отключается клеммный зажим.
  3. Производится демонтаж кислородного контроллера.
  4. Устанавливается проставка, подключается аккумуляторная клемма.
  5. Производится запуск мотора. Если микропроцессорный модуль выдает ошибку, процедура демонтажа и установки повторяется.

Этот тип обманки самый экономичный, он оптимально подойдет для использования в любом типе авто. Реализация электронных обманок более сложная.

Чтобы соорудить такое устройство, потребуются следующие детали:

  • неполярный конденсаторный элемент К10-17Б, емкость устройства должна составить 1 мкФ;
  • резисторный элемент С1-4, он должен быть рассчитан на 0,25 Вт, 5%;
  • паяльник с припоем и канифолью;
  • изолента;
  • канцелярский нож.

Монтаж обманки производится на проводники, идущие от контроллера к колодке. Сам разъем в некоторых моделях авто может располагаться в тоннеле между креслами водителя и пассажиром. Его место установки может быть в подкапотном отсеке или под центральной консолью, этот момент надо уточнить. Конденсаторное устройство рекомендуется монтировать сразу от коннектора перед резисторным элементом. Прежде чем выполнять задачу, необходимо отсоединить отрицательную клемму от АКБ.

Схема электронной обманки для кислородного регулятора

После осуществления подключений все компоненты надо качественно заизолировать. Оптимальнее всего установить всю схему в пластмассовый корпус и эффективно закрыть коробку, для этого залить эпоксидной смолой. Соединение проводников рекомендуется сделать там, где гофра отключается. Затем закрыть место изоляции.

Также допускается использование специальных приборов — эмуляторов. Но это не обманка. Такое устройство позволит обеспечить качественную работу микропроцессорного модуля, но не обойти его. Блок управления, установленный внутри эмулятора, позволит оценить качество отработавших газов и проанализировать работу первого контроллера. Затем устройство формирует импульс, соответствующий сигналу со второго контроллера.

Для решения проблемы можно перепрошить микропроцессорный модуль. Принцип заключается в том, что после выполнения задачи управляющий блок не станет учитывать импульсы от контроллера за катализаторным устройством. Модуль будет ориентироваться на сигналы регулятора, расположенного перед ним. Проблема состоит в том, что найти заводскую прошивку почти невозможно.

Загрузка ...Загрузка ... Загрузка ...

Видео «Обзор обманок для кислородного контроллера»

Пользователь Виктор Токарь в своем ролике рассказал об устройствах для обхода лямбда-зондов с описанием основных особенностей и недостатков.

Принцип работы, типы и области применения

В настоящее время автомобильные двигатели могут управляться с помощью датчиков различных типов. Эти датчики контролируют производительность и выбросы двигателя. Когда датчик не дает точных данных, возникает много проблем, таких как управляемость, увеличение расхода топлива и сбой в выбросах. Одним из основных датчиков, используемых в автомобилях, являются датчики кислорода, и химическая формула этого o2. Первый датчик кислорода был изобретен в 1976 году в автомобиле Volvo 240.В 1980 году автомобили в Калифорнии использовали эти датчики для снижения выбросов.

Что такое датчик кислорода?

Кислородный датчик - это один тип датчика, который имеется в выхлопной системе автомобиля. Размер и форма этого датчика похожи на свечу зажигания. В зависимости от расположения каталитического нейтрализатора этот датчик можно установить до (выше по потоку) или после (ниже по потоку) преобразователя. Большинство автомобилей, которые были разработаны после 1990 года, включают в себя датчики кислорода вверх и вниз по течению.

Датчики кислорода, используемые в автомобилях, - это один датчик, установленный перед каталитическим нейтрализатором, и один датчик, установленный в каждом выпускном коллекторе автомобиля. Но максимальное количество этих датчиков в автомобиле в основном зависит от двигателя, модели, года выпуска. Но большинство автомобилей имеют 4 датчика:

, oxygen-sensors, oxygen-sensors, кислородный датчик,

, принцип работы

,

. Принцип работы датчика o2 заключается в проверке количества кислорода в выхлопе. Во-первых, этот кислород был добавлен в топливо для хорошего зажигания.Связь этого датчика может быть выполнена с помощью сигнала напряжения. Так что кислородный статус в выхлопе будет определять компьютер автомобиля.

Компьютер регулирует смесь топлива или кислорода, поступающего в двигатель автомобиля. Расположение датчика до и после каталитического нейтрализатора позволяет поддерживать гигиену выхлопных газов и проверять эффективность конвертера.

Типы кислородных датчиков

Кислородные датчики подразделяются на два, а именно бинарный выхлопной газ и универсальный выхлопной газ.

PCBWay PCBWay

1). Бинарный датчик кислорода для выхлопных газов

Бинарный датчик обеспечивает переход электрического напряжения при температуре 350 ° C на основе уровня кислорода в выхлопных газах. Он сравнивает остаточное содержание кислорода в выхлопе с уровнем кислорода в окружающем воздухе и распознает переход от недостатка воздуха к избытку воздуха и наоборот.

2). Универсальный выхлопной газ

Этот датчик очень точен при расчете соотношений недостатка и избытка воздуха или топлива.Он имеет лучший расчетный диапазон и также подходит для использования в газовых и дизельных двигателях.

Признаки неисправного датчика

Неисправный датчик можно найти по следующим признакам.

  • Разбивка, превышающая анализ выбросов
  • Расход топлива может быть уменьшен.
  • Индикатор двигателя не горит
  • Производительность низкая, глохнет и работает на холостом ходу.
  • Проверка кода, распознающая неисправность датчика

Применения

Применения кислородных датчиков включают в себя морское дыхание, быстрый мониторинг реакции, стендовые исследования и разработки, мониторинг топливного бака, особую углеводородную среду, долгосрочный контроль процедур, ферментацию, упаковку продуктов питания и Упаковка для напитков, фармацевтическая и медицинская, и т. Д.

Таким образом, это все о обзоре кислородного датчика. Эти датчики доступны в двух структурах, таких как датчик типа имбиря и плоский датчик. Вот вам вопрос, в чем преимущества датчика кислорода?

Кислородные датчики

: как они работают и чем занимаются

Что такое датчик кислорода?

Датчик кислорода (обычно называемый «датчиком O2», так как O2 - химическая формула для кислорода) установлен в выпускном коллекторе автомобиля, чтобы контролировать, сколько несгоревшего кислорода находится в выхлопе при выходе из выхлопной трубы. двигатель.

Где расположены датчики кислорода?

Количество датчиков кислорода в автомобиле варьируется. Каждый автомобиль, выпущенный после 1996 года, должен иметь датчик кислорода перед и после каждого каталитического нейтрализатора.Следовательно, в то время как большинство транспортных средств имеют два датчика кислорода, в двигателях V6 и V8, оснащенных двойным выхлопом, имеется четыре датчика кислорода - по одному на входе и выходе от каталитического нейтрализатора на каждом ряду двигателя.

Что делает датчик кислорода?

Датчики кислорода работают, вырабатывая собственное напряжение, когда они нагреваются (примерно 600 ° F). На конце кислородного датчика, который подключается к выпускному коллектору, находится циркониевая керамическая колба. Внутренняя и внешняя части колбы покрыты пористым слоем платины, которые служат электродами.Внутренняя часть колбы вентилируется изнутри через корпус датчика во внешнюю атмосферу. Когда внешняя часть колбы подвергается воздействию горячих газов отработавших газов, разница в уровнях кислорода между колбой и внешней атмосферой внутри датчика вызывает протекание напряжения через колбу. Если соотношение топлива невелико (не хватает топлива в смеси), напряжение относительно низкое - примерно 0,1 вольт. Если соотношение топлива высокое (слишком много топлива в смеси), напряжение относительно высокое - примерно 0.9 вольт. Когда воздушно-топливная смесь находится в стехиометрическом соотношении (14,7 частей воздуха на 1 часть топлива), датчик кислорода выдает 0,45 вольт.

Датчик кислорода верхнего потока (датчик кислорода 1)

Датчик кислорода 1 является датчиком кислорода выше по потоку относительно каталитического нейтрализатора. Он измеряет воздушно-топливное отношение выхлопа, выходящего из выпускного коллектора, и посылает сигналы высокого и низкого напряжения на модуль управления силовой трансмиссией для регулирования воздушно-топливной смеси.Когда модуль управления трансмиссией получает сигнал низкого напряжения (обеднения), он компенсирует это путем увеличения количества топлива в смеси. Когда модуль управления трансмиссией получает сигнал высокого напряжения (обогащенный), он наклоняет смесь, уменьшая количество топлива, которое он добавляет в смесь. Использование модулем управления силовой передачи входного сигнала от датчика кислорода для регулирования топливной смеси называется замкнутым контуром управления с обратной связью. Эта работа с замкнутым контуром приводит к постоянному переключению между обогащенным и обедненным, что позволяет каталитическому нейтрализатору минимизировать выбросы, поддерживая общее среднее соотношение топливной смеси в надлежащем балансе.Однако, когда запускается холодный двигатель или выходит из строя кислородный датчик, модуль управления трансмиссией переходит в режим разомкнутого контура. При работе в разомкнутом контуре модуль управления трансмиссией не получает сигнал от датчика кислорода и выдает фиксированную обогащенную топливную смесь. Работа в разомкнутом контуре приводит к увеличению расхода топлива и выбросов. Многие новые датчики кислорода содержат нагревательные элементы, которые помогают им быстро достичь рабочей температуры, чтобы минимизировать количество времени, затрачиваемого на работу в разомкнутом контуре.

Датчик кислорода ниже по потоку (Датчик кислорода 2)

Датчик кислорода 2 является датчиком кислорода ниже по потоку относительно каталитического нейтрализатора. Он измеряет соотношение воздух-топливо, выходящее из каталитического нейтрализатора, чтобы убедиться, что каталитический нейтрализатор работает нормально. Каталитический нейтрализатор работает для поддержания стехиометрического отношения воздух-топливо 14,7: 1, в то время как модуль управления трансмиссией постоянно переключается между богатыми и бедными воздушно-топливными смесями благодаря входному сигналу от верхнего кислородного датчика (датчик 1).Следовательно, нижний кислородный датчик (датчик 2) должен генерировать постоянное напряжение примерно 0,45 вольт.

Что такое парциальное давление кислорода и как его рассчитать?

Рис. 2 Парциальное давление при влажности 0%

Конечно, это значение имеет значение только при сухой атмосфере (влажность 0%). При наличии влаги часть общего давления определяется давлением водяного пара. Поэтому парциальное давление кислорода (ppO₂) может быть рассчитано более точно при измерении относительной влажности и температуры окружающей среды вместе с общим барометрическим давлением.

Рисунок 3 Давление паров жидкости

Во-первых, рассчитывается давление водяного пара:

WVP Давление водяного пара (мбар)

Относительная влажность воздуха 9 000 000 H (%)

WVP макс. Максимальное давление водяного пара (мбар)

Максимальное давление водяного пара также называется точкой росы.Более теплый воздух может удерживать больше водяного пара и поэтому имеет более высокий WVP макс. .

Парциальное давление кислорода при этом равно:

ppO 2 Парциальное давление O 2 (мбар)

BP Барометрическое давление (мбар)

Давление водяного пара (мбар)

Пример 2 :

Пример 2 ниже описывает влияние влажности, снижающее парциальное давление кислорода и, следовательно, объемное содержание кислорода.

В обычный день с калиброванной метеостанции регистрируется следующая информация:

Температура: 22 ° C

Влажность: 32%

Барометрическое давление: 986mbar

Использование давления водяного пара вверх по таблице выше, WVP MAX = 26,43 мбар.

Парциальное давление кислорода в этом случае равно:

Так как теперь мы знаем парциальное давление кислорода и общее барометрическое давление, мы можем определить объемное содержание кислорода.

Следуйте @SSTSensingLtd

.
3 Методы измерения концентрации растворенного кислорода

Растворенный кислород (DO) и качество воды

Растворенный кислород является ключевой мерой качества воды, используемой в различных областях. При промышленной обработке воды уровень растворенного кислорода может быть индикатором проблем с качеством воды, которые приводят к коррозии оборудования. В аквакультуре, транспорте рыб и в аквариумах растворенный кислород контролируется для того, чтобы у водных видов было достаточно кислорода в их среде обитания, чтобы выжить, расти и размножаться.На муниципальных очистных сооружениях содержание растворенного кислорода в сточных водах контролируется во время процессов очистки аэрационных вод.

Измерение концентрации растворенного кислорода

Концентрация растворенного кислорода в воде может постоянно измеряться или контролироваться с помощью датчика растворенного кислорода. Как работает датчик растворенного кислорода? Ответ на этот вопрос зависит от типа используемого датчика растворенного кислорода. Коммерчески доступные датчики растворенного кислорода обычно подразделяются на 3 категории:

  • Гальванические датчики растворенного кислорода
  • Полярографические датчики растворенного кислорода
  • Оптические датчики растворенного кислорода

Каждый тип датчика растворенного кислорода имеет несколько иной принцип работы.Таким образом, каждый тип датчика растворенного кислорода имеет свои преимущества и недостатки в зависимости от приложения для измерения воды, где он будет использоваться.

Принцип работы электрохимического датчика растворенного кислорода:

Гальванические датчики DO и полярографические датчики DO являются типами электрохимических датчиков растворенного кислорода. В электрохимическом датчике DO растворенный кислород диффундирует из образца через проницаемую для кислорода мембрану в датчик.Попав внутрь датчика, кислород подвергается реакции химического восстановления, которая генерирует электрический сигнал. Этот сигнал может быть прочитан прибором растворенного кислорода.

Полярографический и гальванический датчики DO:

Разница между гальваническим датчиком DO и полярографическим датчиком DO заключается в том, что полярографический датчик DO требует приложения постоянного напряжения. Это должно быть поляризовано. Напротив, гальванический датчик DO самополяризуется из-за свойств материала анода (цинк или свинец) и катода (серебро).Это означает, что, хотя гальванические датчики DO можно использовать сразу после калибровки, полярографические датчики требуют 5-15 минут времени прогрева.

Принцип работы оптического датчика растворенного кислорода:

Оптический датчик растворенного кислорода не имеет анода или катода, и кислород не восстанавливается во время измерения. Вместо этого крышка датчика содержит люминесцентный краситель, который светится красным при воздействии синего света. Кислород влияет на люминесцентные свойства красителя, эффект, называемый «гашением».Фотодиод сравнивает «закаленное» свечение с эталонным показанием, позволяя рассчитать концентрацию растворенного кислорода в воде.

Оптические и гальванические датчики DO:

Как оптическое измерение растворенного кислорода, так и измерение гальванического растворенного кислорода имеют свои преимущества и преимущества. Хорошей новостью является то, что обе технологии обеспечивают одинаковый уровень точности при измерении концентрации растворенного кислорода. Это справедливо для широкого диапазона значений измерений: полевые испытания показали аналогичные результаты для оптических и гальванических датчиков DO от ~ 1 мг / л до 14 мг / л.

Одно из различий между оптическими и гальваническими датчиками DO заключается в том, что гальванические датчики DO демонстрируют зависимость от потока. Это означает, что для поддержания точности измерений требуется минимальная скорость притока (2 дюйма / сек для моделей Sensorex). Оптические датчики DO не требуют минимальной скорости притока.

Некоторые составляющие выборки могут влиять на точность измерений. Сероводород, например, соединение, содержащееся в сточных водах, на дне озера и на заболоченных территориях, может проникать через мембрану гальванического датчика.Оптический датчик растворенного кислорода будет лучшим выбором в этих условиях, поскольку эти датчики не подвержены помехам от H 2 S.

Одним из преимуществ гальванических датчиков DO по сравнению с оптическими датчиками DO является то, что гальванические датчики DO имеют более быстрый отклик время. Гальванические датчики DO реагируют в 2-5 раз быстрее, чем оптические датчики DO, в зависимости от материала мембраны. Это ограничение оптических датчиков DO более обременительно в приложениях, где будет проводиться большое количество измерений образцов.Время отклика обычно не является ограничивающим фактором при выборе датчика DO для непрерывного мониторинга.

Сравнение полярографических, гальванических и оптических датчиков DO:

В таблице ниже приведены преимущества и недостатки трех основных методов измерения концентрации растворенного кислорода в воде:

.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *