Как работает двигатель внутреннего сгорания
В данной статье мы расскажем об устройстве двигателя, его компонентах, о том, как они работают вместе, какие могут возникнуть неполадки и как увеличить производительность.
Содержание статьи
- Введение
- Внутреннее сгорание
- Устройство двигателя
- Неполадки двигателя
- Клапанный механизм и система зажигания двигателя
- Системы охлаждения, воздухозабора и запуска двигателя
- Читайте также » Системы смазки, подачи топлива, выхлопа и электросистема двигателя
- Увеличение мощности двигателя
- Часто задаваемые вопросы по двигателям
- Чем 4-цилиндровый двигатель отличается от V-образного шестицилиндрового двигателя?
- Узнать больше
- Читайте также Статьи про все типы двигателей
Бензиновый автомобильный двигатель предназначен для преобразования энергии бензинового топлива для движения автомобиля. В настоящий момент самым простым способом привести автомобиль в движение является сгорание бензина в двигателе. В связи с тем, что двигатель автомобиля является двигателем внутреннего сгорания, сгорание топлива происходит внутри двигателя.
На заметку:
- Существуют различные типы двигателей внутреннего сгорания. Каждый из них имеет свои преимущества и недостатки.
- Также существуют и двигатели внешнего сгорания. Паровые двигатели в поездах старого образца и пароходах являются наглядным примером двигателей внешнего сгорания. В паровых двигателях топливо (уголь, дрова, масло и т.д.) сгорает вне двигателя для получения пара, который уже приводит двигатель в движение. Внутреннее сгорание является более эффективным (расход топлива на 1км значительно ниже) чем внешнее сгорание, помимо этого размеры двигателей внутреннего сгорания намного меньше двигателей внешнего сгорания. Именно поэтому нам не встречаются автомобили Ford или GM на паровых двигателях.
Внутреннее сгорание
Принцип работы любого поршневого двигателя внутреннего сгорания: Если поместить небольшой объем высокоэнергетического топлива (например, бензина) в небольшой закрытый сосуд и воспламенить, то в результате высвободится огромное количество энергии в виде расширяющегося газа. Этой энергии хватит для запуска картофелины на 1510м. В данном случае энергия используется для движения картофелины. Данную энергию можно использовать в более интересных целях. Например, если у Вас получится создать цикл, который позволит производить взрывы с частотой несколько сотен раз в минуту, и если Вам удастся эффективно использовать данную энергию, то Вы получите основную часть автомобильного двигателя!
Рисунок 1
На сегодняшний день практически во всех автомобилях используется так называемый четырехтактный цикл сгорания для преобразования энергии топлива в механическую энергию. Четырехтактный принцип работы также называют Цикл Отто, в честь Николауса Отто, который изобрел его в 1867г. Все четыре такта представлены на рисунке 1. Эти такты:
- Такт впуска
- Такт сжатия
- Рабочий такт
- Такт выпуска
На рисунке видно, что в картофельной пушке картофелина заменена устройством, которое называется поршень. При помощи шатуна поршень соединяется с коленчатым валом. При вращении коленвала создается эффект «перезарядки пушки». Во время цикла в двигателе происходят следующие процессы:
- Поршень начинает движение сверху, впускной клапан открывается, поршень движется вниз для наполнения цилиндра воздухом и бензином. Это такт впуска. На данном этапе для смеси топлива и воздуха требуется лишь небольшое количество бензина. (Часть 1 рисунка)
- Затем поршень движется вверх, сжимая топливно-воздушную смесь. Сжатие способствует более мощному взрыву. (Часть 2 рисунка)
- Как только поршень достигает верхней точки, срабатывает свеча зажигания, которая воспламеняет топливо. Происходит взрыв бензина, при этом поршень движется вниз. (Часть 3 рисунка)
- Как только поршень достигает нижней точки хода, открывается выпускной клапан для вывода продуктов сгорания по выхлопной трубе. (Часть 4 рисунка)
Теперь двигатель готов к началу следующего цикла, происходит впуск топлива и воздуха.
Обратите внимание, что движение, получаемое в результате работы двигателя внутреннего сгорания, является вращательным, в то время как движение, производимое картофельной пушкой — линейное (прямая линия). В двигателе линейное движение поршней переводится во вращательное движение при помощи коленвала. Вращательное движение идеально подходит для вращения колес автомобиля.
В следующем разделе мы предлагаем рассмотреть детали, которые обеспечивают работу двигателя, начиная с цилиндров.
Устройство двигателя
Цилиндр является самой важной частью двигателя, поршень совершает поступательные движения в цилиндре. Вышеописанный двигатель имеет один цилиндр. Такой двигатель типичен для газонокосилок, однако в автомобильные двигатели имеют более одного цилиндра (обычно четыре, шесть или восемь). В многоцилиндровых двигателях цилиндры расположены в одном из трех порядков: линейно, V-образно или оппозитно (т.н. двигатель с горизонтальными противолежащими цилиндрами или оппозитный двигатель).
Рисунок 2. Линейное расположение — Цилиндры расположены линейно в один ряд.
Рисунок 3. V-образное — Цилиндры расположены линейно в два ряда под углом друг к другу.
Рисунок 4. Оппозитное — Цилиндры расположены линейно в два ряда с противоположных сторон двигателя.
Говоря об управляемости, затратах на производство и характеристиках формы, необходимо отметить, что различные конфигурации имеют свои преимущества и недостатки. Благодаря этим преимуществам и недостаткам определенные типы двигателей подходят для определенных автомобилей.
Давайте более подробно рассмотрим основные детали двигателя.
Свеча зажигания подает искру для воспламенения топливно-воздушной смеси, что обеспечивает процесс сгорания. Для правильной работы двигателя искра должна подаваться в строго определенный момент.
Клапаны
Впускной и выпускной клапаны открываются в определенный момент для впуска топлива и воздуха и выпуска выхлопа. Обратите внимание, что оба клапана закрыты во время тактов сжатия и сгорания для обеспечения герметичности камеры сгорания.
Поршень
Поршень — это металлическая деталь цилиндрической формы, которая движется вверх и вниз внутри цилиндра.
Поршневые кольца
Поршневые кольца обеспечивают скользящее уплотнение между внешней кромкой поршня и внутренней кромкой цилиндра. Кольца используются для двух целей:
- Они препятствуют попаданию топливно-воздушной смеси в картер из камеры сгорания в процессе такта сжатия и рабочего такта.
- Они препятствуют попаданию масла из картера в камеру сгорания, где оно может сгореть.
Большинство автомобилей, которые «жгут масло» и требуют его добавления каждые 1000 км, имеют старые двигатели, поршневые кольца которых уже не могут обеспечивать надлежащее уплотнение.
Шатун
Шатун соединяет поршень и коленвал. Он может вращаться с обеих сторон для изменения угла во время движения поршня и вращения коленвала.
Коленвал
Коленвал преобразует поступательное движение поршней во вращательное как рычаг «чертика из табакерки».
Картер
Картер окружает коленвал. В нем находится некоторое количество масла, которое собирается в нижней части картера (поддоне картера).
Далее мы узнаем о неполадках двигателя.
Неполадки двигателя
Итак, одним прекрасным утром Вы садитесь в машину, а двигатель не заводится… Что же случилось? Теперь, когда Вы знакомы с принципом работы двигателя, Вы сможете разобраться с основными проблемами, которые мешают запуску двигателя. Три наиболее частые неполадки: плохая топливная смесь, недостаточная компрессия, отсутствие искры. Помимо вышеперечисленных, могут возникнуть тысячи других проблем, но мы остановимся на «большой тройке». Основываясь на простом двигателе, который мы описывали, мы расскажем о том, как эти проблемы могут повлиять на Ваш двигатель:
Плохая топливная смесь — Данная проблема может возникнуть по нескольким причинам:
- У Вас закончился бензин, поэтому в двигатель поступает только воздух без топлива.
- У Вас забилось впускное отверстие воздуха, поэтому поступает только топливо.
- Топливная система подает слишком много или мало топлива, в результате чего сгорание не происходит надлежащим образом.
- Возможно, в топливе присутствуют примеси (например, в бензобак попала вода), которые препятствуют сгоранию.
Недостаточная компрессия — Если топливно-воздушная смесь не будет сжата надлежащим образом, процесс сгорания будет проходить неправильно. Недостаточная компрессия может быть вызвана рядом причин:
- Износ поршневых колец (топливно-воздушная смесь вытекает за пределы поршня в процессе сжатия).
- Недостаточное уплотнение клапана впуска или выпуска, что опять же вызывает протечку.
- В цилиндре имеются повреждения.
Наиболее часто повреждение цилиндра происходит в его верхней части (на которой установлены клапаны, свеча зажигания и которая называется головка цилиндра
Регулярное техническое обслуживание может помочь избежать ремонта
Отсутствие искры — Искра может быть слишком слабой или отсутствовать вообще по следующим причинам:
- При износе свечи зажигания или ее провода может наблюдаться слабая искра.
- При повреждении или обрыве провода или система, передающая искру, не функционирует надлежащим образом, искра может отсутствовать.
- Если искра подается слишком рано или поздно во время цикла (т.е. если регулировка зажигания отключена), воспламенение топлива не произойдет в нужный момент, что может повлечь к различным проблемам.
Могут возникнуть и другие неполадки. Например:
- Если аккумулятор разряжен, Вы также не сможете завести двигатель.
- Если подшипники, которые обеспечивают свободное вращение коленвала, изношены, коленвал не сможет вращаться, в результате чего двигатель не заведется.
- Если открытие/закрытие клапанов не происходит в нужный момент и не происходит вообще, воздух не сможет поступать и выходить, что будет препятствовать работе двигателя.
- Если кто-то засунет картофелину Вам в выхлопную трубу, выхлоп не будет выпущен из цилиндра, поэтому двигатель не заведется.
- Если у Вас закончилось масло, поршень не сможет свободно двигаться в цилиндре, в результате чего двигатель заклинит.
- В исправно работающем двигателе все эти факторы находятся в допустимых пределах.
Как Вы видите, в двигателе имеется несколько систем, которые обеспечивают преобразование энергии топлива в механическую энергию. В следующих разделах мы рассмотрим различные подсистемы, которые используются в двигателях.
Клапанный механизм и система зажигания двигателя
Большинство подсистем двигателя может быть установлено с использованием различных технологий, а новые технологии могут улучшить показатели двигателя. Далее мы рассмотрим различные подсистемы, которые используются в современных двигателях, начиная с клапанного механизма.
Клапанный механизм состоит из клапанов и механизма, который открывает и закрывает их. Открывающая и закрывающая система называется распредвал. Распредвал имеет кулачки, которые перемещают клапаны вверх-вниз ,как показано на Рисунке 5.
Рисунок 5. Распредвал
В большинстве современных автомобилей используются так называемые верхнерасположенные распредвалы. Распредвал имеет кулачки, которые перемещают клапаны вверх-вниз, как показано на Рисунке 5. Кулачки воздействуют на клапаны напрямую или посредством очень короткой тяги. В старых моделях двигателей распредвал расположен в картере рядом с коленвалом. Штифты соединяют нижнюю часть кулачков с толкателями клапанов, расположенными над клапанами. В таком устройстве имеется больше движущихся частей, в результате чего возникает отставание между временем активации кулачка и последующим перемещением клапана. Ремень ГРМ или цепь ГРМ соединяет коленвал с распредвалом таким образом, чтобы клапаны двигались синхронно с поршнями. Скорость вращения распредвала в два раза ниже, чем у коленвала. Во многих мощных двигателях на каждый цилиндр установлено по четыре клапана (два впускных и два выпускных), такая конструкция требует наличия двух распредвалов на блок цилиндров, отсюда и название «двухраспредвальный вид головки». Для получения более подробной информации читайте статью «Как работает распредвал».
Система зажигания (Рисунок 6) генерирует электрический разряд высокого напряжения и передает его от свечи зажигания по проводам зажигания. Вначале заряд поступает на распределитель, который Вы легко можете найти под капотом большинства автомобилей. Распределитель имеет один провод, входящий в центре и четыре, шесть или восемь проводов (в зависимости от количества цилиндров), выходящие их него. Эти провода зажигания передают заряд на каждую свечу зажигания. Зажигание двигателя отрегулировано таким образом, что за один раз искру от распределителя получает только один цилиндр. Такая конструкция обеспечивает максимальную равномерность работы. Для получения более подробной информации читайте статью «Как работает автомобильная система зажигания».
Рисунок 6. Система зажигания
В следующем разделе мы рассмотрим, как происходит запуск, охлаждение и циркуляция воздуха в двигателе.
Системы охлаждения, воздухозабора и запуска двигателя
В большинстве автомобилей система охлаждения состоит из радиатора и водяного насоса. Охлаждающая жидкость циркулирует по охлаждающей рубашке цилиндров, затем попадает в радиатор для охлаждения. В некоторых автомобилях (преимущественно в Volkswagen Жук) и в большинстве мотоциклов и газонокосилок используется воздушное охлаждение двигателей (двигатель с воздушным охлаждением легко узнать по ребрам на внешней стороне цилиндров, которые рассевают тепло). Двигатели с воздушным охлаждением намного легче, но охлаждаются хуже, что снижает их срок эксплуатации и производительность. Для получения более подробной информации читайте статью «Как работает система охлаждения».
На схеме представлено соединение патрубков системы охлаждения
Итак, теперь Вы знаете, что и как охлаждает двигатель Вашего автомобиля. Но почему так важна циркуляция воздуха? Большинство двигателей является безнаддувными, т.е. воздух поступает через воздушные фильтры непосредственно в цилиндры. Более мощные двигатели либо имеют турбонаддув, либо наддув, т.е. воздух поступает в двигатель под давлением (для подачи в цилиндр большего объема топливно-воздушной смечи) для увеличения мощности двигателя. Уровень сжатия воздуха называется наддув. При турбонаддуве используется небольшая турбина, установленная на выхлопную трубу для вращения нагнетающей турбины входящим потоком воздуха. Турбокомпрессор устанавливается непосредственно на двигатель для вращения компрессора.
Для получения более подробной информации читайте статью «Как работает турбокомпрессор».
Увеличение мощности двигателя — это, конечно, хорошо, но что же происходит когда Вы поворачиваете ключ? Система запуска состоит из электростартера и соленоида стартера. При повороте ключа зажигания, стартер несколько раз проворачивает двигатель для начала процесса сгорания. Для запуска холодного двигателя требуется мощный стартер. Стартер должен преодолеть:
- Любое собственное трение, вызванное поршневыми кольцами
- Давление сжатия любого из цилиндров во время такта сжатия
- Энергию, необходимую для открытия и закрытия клапанов распредвалом
- А также действие всех остальных деталей, установленных непосредственно на двигателе, например водяного насоса, масляного насоса, генератора и т.д.
В связи с тем, что требуется большое количество энергии и в автомобилях используется 12-вольтная электросистема, на стартер должен поступать ток в несколько сотен ампер. Соленоид стартера — это большой электронный переключатель, который может выдержать ток такой силы. При повороте ключа зажигания, он запускает соленоид для подачи питания на стартер.
В следующем разделе мы расскажем о подсистемах двигателя, которые отвечают за то, что в него поступает (масло и топливо) и что выходит (выхлоп и выбросы).
Системы смазки, подачи топлива, выхлопа и электросистема двигателя
Когда дело касается повседневного обслуживания, скорее всего Вас, прежде всего, заинтересует количество бензина в бензобаке Вашего автомобиля. Каким же образом бензин, которым Вы заправляетесь, заставляет работать цилиндры? Топливная система при помощи насоса подает топливо из бензобака и смешивает его с воздухом в определенных пропорциях для того, чтобы топливно-воздушная смесь затем поступала в цилиндры. Существует три способа подачи топлива: карбюрация, впрыск во впускные каналы и непосредственный впрыск.
- При карбюрации устройство, которое называется карбюратор, смешивает бензин с воздухом при подаче воздуха в двигатель.
- В двигателях с впрыском топлива необходимое количество топлива впрыскивается в каждый цилиндр отдельно либо над впускным клапаном (впрыск во впускные каналы), либо в сам цилиндр (непосредственный впрыск).
Для получения более подробной информации читайте статью «Как работает система впрыска топлива».
Масло также играет очень важную роль. Система смазки обеспечивает подачу масла для каждой движущейся детали для того, чтобы они свободно двигались. Прежде всего, смазка требуется поршням (для их плавного движения в цилиндрах) и подшипникам, которые обеспечивают вращение таких деталей, как коленвал и распредвал. В большинстве автомобилей масла из поддона картера подается при помощи масляного насоса, проходит через масляный фильтр для удаления абразивных частиц, после чего под давлением поступает на подшипники и стенки цилиндра. Затем масло стекает обратно в картер, где оно собирается, после чего цикл повторяется.
Выхлопная система автомобиля Porsche 911
Теперь, когда Вы уже кое-что знаете о том, что заливается в автомобиль, давайте рассмотрим, что же из него выходит. Выхлопная система состоит из выхлопной трубы и глушителя. Если глушитель не установлен, то Вы сможете услышать звуки тысяч небольших взрывов, доносящихся из выхлопной трубы. Глушитель заглушает эти звуки. Выхлопная система также включает в себя и каталитический дожигатель выхлопных газов. Для получения более подробной информации читайте статью «Как работает каталитический дожигатель выхлопных газов».
В большинстве современных автомобилей система понижения токсичности выхлопа состоит из каталитического дожигателя выхлопных газов, и набора датчиков и приводов и компьютера, который отслеживает и регулирует происходящие процессы. Например, каталитический дожигатель использует катализатор и кислород для сжигания неотработанного топлива и некоторых других химических веществ, содержащихся в выхлопе. Датчик кислорода отвечает за количество кислорода в выхлопе, достаточное для работы катализатора, при необходимости датчик производит дополнительную регулировку.
Что еще помимо бензина питает Ваш автомобиль? Электросистема состоит из аккумулятора и генератора. Генератор соединяется с двигателем при помощи ремня и генерирует ток для зарядки аккумулятора. Аккумулятор подает 12 вольт на все системы, которым требуется электропитание (система зажигания, радио, фары, стеклоочистители, электрические стеклоподъёмники и сиденья с электрическим приводом регулировки, компьютеры и т.д.).
Теперь, когда Вы все узнали про подсистемы двигателя, мы расскажем о том, как увеличить мощность двигателя.
Увеличение мощности двигателя
Прочитав данную статью, Вы увидите, что существует множество способов увеличения показателей Вашего двигателя. Производители автомобилей постоянно экспериментируют со следующими параметрами для увеличения мощности двигателя или снижения расхода топлива.
Увеличение рабочего объема — Большой рабочий объем способствует увеличению мощности, т.к. при каждом обороте двигателя сгорает больше топлива. Увеличить рабочий объем можно, установив большие или дополнительные цилиндры. Практика показывает, что не имеет смысла устанавливать более 12 цилиндров.
Увеличение степени сжатия — Увеличение степени сжатия способствует увеличению мощности. Однако, чем сильнее происходит сжатие топливно-воздушной смеси, тем выше вероятность ее самовозгорания (еще до срабатывания свечи зажигания). Высокооктановый бензин предотвращает раннее сгорание топлива. Именно по этой причине мощные автомобили необходимо заправлять высокооктановым бензином — в их двигателях используется более высокая степень сжатия для увеличения мощности.
Увеличение объема подаваемой смеси — При увеличении подачи воздуха (и, соответственно, топлива), не изменяя размер цилиндра, можно увеличить мощность (точно также, как при увеличении размера цилиндра). Турбокомпрессоры и компрессоры наддува повышают давление поступающего воздуха, благодаря чему в цилиндр можно подать больше воздуха. Для получения более подробной информации читайте статью «Как работает турбокомпрессор».
Охлаждение поступающего воздуха — При сжатии воздуха, его температура повышается. Поэтому лучше обеспечивать подачу более холодного воздуха в цилиндр, т.к. чем выше температура воздуха, тем меньше его расширение при сгорании. По этой причине во многих двигателях с наддувом и турбонаддувом используются охладители воздуха. Охладитель воздуха — это специальный радиатор, по которому сжатый воздух проходит для охлаждения перед подачей в цилиндр. Для получения более подробной информации читайте статью «Как работает система охлаждения».
Облегчение подачи воздуха — При движении поршня вниз во время такта впуска, сопротивление воздуха может снизить мощность двигателя. Сопротивление воздуха может быть снижено благодаря установке двух впускных клапанов на каждый цилиндр. В некоторых современных автомобилях используются полированные впускные коллекторы для снижения сопротивления воздуха. Установка больших воздушных фильтров также может улучшить подачу воздуха.
Облегчение выпуска выхлопа — При выпуске выхлопа из цилиндра, сопротивление воздуха может снизить мощность двигателя. Сопротивление воздуха может быть снижено благодаря установке двух выпускных клапанов на каждый цилиндр (автомобиль с двумя впускными и двумя выпускными клапанами имеет по четыре клапана на каждый цилиндр, что увеличивает мощность двигателя — когда Вы слышите рекламу автомобиля, в которой говорится, что у него 4 цилиндра и 16 клапанов, это означает, что в двигателе установлено по четыре клапана на каждый цилиндр). Если выхлопная труба слишком узкая или сопротивление воздуха в глушителе слишком высокое, то это может создать противодавление, что также снизит мощность. В высокоэффективных выхлопных системах используются выпускные коллекторы, широкие выхлопные трубы и глушители для предотвращения образования противодавления в выхлопной системе. Поэтому, когда Вы слышите, что в автомобиле установлена «раздельная система выпуска», это значит, что для улучшения выпуска отработанных газов используется две выхлопных трубы вместо одной.
Снижение массы — Чем легче детали, тем эффективнее работает двигатель. Каждый раз, когда поршень меняет направления движения, он затрачивает энергию на то, чтобы прекратить движение в одну сторону и начать в другую. Чем легче поршень, тем меньше энергии ему требуется.
Впрыск топлива — Система впрыска топлива обеспечивает очень точное дозирование топлива для каждого цилиндра. Благодаря этому увеличивается мощность и снижается расход топлива. Для получения более подробной информации читайте статью «Как работает система впрыска топлива».
Часто задаваемые вопросы по двигателям
Ниже приведены наиболее часто задаваемые вопросы наших читателей, а также ответы на них:
- Чем отличаются бензиновые и дизельные двигатели? В дизельных двигателях отсутствует свеча зажигания. Дизельное топливо подается в цилиндр, возгорание происходит под действием тепла и давления во время такта сжатия. Энергетическая плотность дизеля значительно выше, чем у бензина, поэтому дизельный двигатель рассчитан на больший пробег. Для получения более подробной информации читайте статью «Как работает дизельный двигатель».
- Чем отличаются двухтактные и четырехтактные двигатели? В большинстве бензопил и лодочных моторов используются двухтактные двигатели. В двухтактном двигателе отсутствуют клапаны, а свеча зажигания дает искру каждый раз, когда поршень находится в верхней точке хода. Через отверстие в нижней части стенки цилиндра происходит впуск топлива и воздуха. Когда поршень движется вверх, сжимая смесь, свеча зажигания дает искру для начала процесса сгорания, отработанные газы выходят через другое отверстие в стенке цилиндра. В двухтактных двигателях необходимо смешивать масло с бензином, т.к. отверстия в стенках цилиндров не допускают использование уплотнительных колец для герметизации камеры сгорания. В общем, двухтактные двигатели являются достаточно мощными для своих размеров, т.к. в них на один поворот двигателя происходит в два раза больше циклов сгорания. Однако, двухтактный двигатель расходует больше бензина и сжигает большое количество масла, соответственно, он наносит больший вред экологии. Для получения более подробной информации читайте статью «Как работает двухтактный двигатель».
- В этой статье Вы упоминали паровые двигатели — существуют ли какие-либо преимущества паровых двигателей или других двигателей внешнего сгорания? Единственное преимущество паровых двигателей заключается в том, что в качестве топлива можно использовать все, что горит. Например, в паровом двигателе в качестве топлива можно использовать уголь, газеты, дрова, в то время как для работы двигателя внутреннего сгорания требуется очищенное высококачественное жидкое или газообразное топливо. Для получения более подробной информации читайте статью «Как работает паровой двигатель».
- Используются ли в автомобильных двигателях какие-либо другие циклы помимо цикла Отто? Как говорилось ранее, в двухтактных и дизельных двигателях используются другие циклы работы. В двигателе автомобиля Mazda Millenia используется модифицированный цикл Отто, который называется цикл Миллера. В газотурбинных двигателях используется цикл Брайтона. В дизельных ротационных двигателях Ванкеля используется цикл Отто, однако он происходит совершенно по-другому в отличие от четырехтактных поршневых двигателей.
- Зачем нужно устанавливать восемь цилиндров? Почему нельзя установить один большой цилиндр с таким же рабочим объемом, как у восьми цилиндров? По ряду причин в 4.0л двигателе используется восемь цилиндров объемом пол-литра каждый, а не один большой 4-литровый цилиндр. Основная причина — это равномерность работы. V-образный восьмицилиндровый двигатель работает более равномерно, т.к. в нем происходит восемь взрывов с равными интервалами вместо одного сильного взрыва. Другая причина — это начальный крутящий момент. Когда Вы заводите V-образный восьмицилиндровый двигатель, Вам необходимы только два цилиндра (1л) во время их тактов сжатия, если использовать один большой цилиндр, то придется производить сжатие 4 литров.
Чем 4-цилиндровый двигатель отличается от V-образного шестицилиндрового двигателя?
Количество цилиндров в двигателе играет важную роль в его мощности. Каждый цилиндр имеет поршень, который движется внутри него, эти поршни соединены с коленвалом и вращают его. Чем больше используется поршней, тем больше происходит сгораний топлива в определенный момент времени. Это означает, что за меньшее время может быть выработано больше мощности.
4-цилиндровые двигатели обычно имеют «прямое» или «линейное» расположение цилиндров, в то время как в 6-цилиндровых двигателях используется более компактное V-образное расположение, поэтому они и называются V-образные 6-цилиндровые двигатели. Американские производители автомобилей остановили свой выбор на V-образных 6-цилиндровых двигателях, т.к. являются более мощными и тихими, оставаясь при этом достаточно легкими и компактными для установки в автомобили.
4-цилиндровый двигатель с линейным расположением цилиндров автомобиля Lotus Elise
Исторически сложилось так, что американские автовладельцы отвернулись от 4-цилиндровых двигателей, считая их медленными, слабыми, работающими неравномерно и дающими слабое ускорение. Однако, когда такие японские производители автомобилей, как Honda и Toyota стали устанавливать мощные 4-цилиндровые двигатели в 1980-х и 90-х, американцы по достоинству оценили эти компактные двигатели. Даже, несмотря на то, что такие японские автомобили, как Toyota Camry имели огромный успех по сравнению с аналогичными моделями американских производителей, в США продолжался выпуск автомобилей с 6-цилиндровыми двигателями, т.к. считалось, что американцам необходимы мощные автомобили. На сегодняшний день, в связи с ростом цен на бензин и обострившейся экологической ситуацией, Детройт переходит на 4-цилиндровые двигатели благодаря их низкому расходу топлива и меньшим выбросам в атмосферу.
3,8л V-образный 6-цилиндровый двигатель с турбонаддувом автомобиля Nissan GT-R.
Что касается будущего 6-цилиндровых двигателей, то за последние годы были максимально устранены различия между 4-цилиндровыми и 6-цилиндровыми двигателями. Для того, чтобы соответствовать требованиям низкого расхода бензина и уровня выхлопных газов, производители приложили много усилий по улучшению работы 6-цилиндровых двигателей. Большинство современных автомобилей с 6-цилиндровыми двигателями соответствуют стандартам расхода топлива уровня выхлопов, установленных для компактных 4-цилиндровых двигателей. Таким образом, различия в эффективности и мощности этих двух типов двигателей ослабевают, и принятие решения о покупке 4-цилиндрового или 6-цилиндрового двигателя сводится к их стоимости. Что касается моделей автомобильных, доступных с обоими типами двигателей, конфигурация с 4-цилиндровым двигателем стоит дешевле до $1000 по сравнению с 6-цилиндровым. Таким образом, независимо от мощности автомобиля, 4-цилиндровый двигатель поможет Вам сэкономить.
И, напоследок: Не стоит пытаться установить 6-цилиндровый двигатель на автомобиль, в котором изначально стоял 4-цилиндровый. Переоборудование автомобиля с 4-цилиндровым двигателем для установки 6-цилиндрового может обойтись Вам дороже, чем покупка нового автомобиля.
Источник: https://auto.howstuffworks.com/
Вот уже около ста лет повсюду в мире основным силовым агрегатом на автомобилях и мотоциклах, тракторах и комбайнах, прочей технике является двигатель внутреннего сгорания. Придя в начале двадцатого века на смену двигателям внешнего сгорания (паровым), он и в веке двадцать первом остаётся наиболее экономически эффективным видом мотора. В данной статье мы подробно рассмотрим устройство, принцип работы различных видов ДВС и его основных вспомогательных систем.
Определение и общие особенности работы ДВС
Главная особенность любого двигателя внутреннего сгорания состоит в том, что топливо воспламеняется непосредственно внутри его рабочей камеры, а не в дополнительных внешних носителях. В процессе работы химическая и тепловая энергия от сгорания топлива преобразуется в механическую работу. Принцип работы ДВС основан на физическом эффекте теплового расширения газов, которое образуется в процессе сгорания топливно-воздушной смеси под давлением внутри цилиндров двигателя.
Классификация двигателей внутреннего сгорания
В процессе эволюции ДВС выделились следующие, доказавшие свою эффективность, типы данных моторов:
- Поршневые двигатели внутреннего сгорания. В них рабочая камера находится внутри цилиндров, а тепловая энергия преобразуется в механическую работу посредством кривошипно-шатунного механизма, передающего энергию движения на коленчатый вал. Поршневые моторы делятся, в свою очередь, на
- карбюраторные, в которых воздушно-топливная смесь формируется в карбюраторе, впрыскивается в цилиндр и воспламеняется там искрой от свечи зажигания;
- инжекторные, в которых смесь подаётся напрямую во впускной коллектор, через специальные форсунки, под контролем электронного блока управления, и также воспламеняется посредством свечи;
- дизельные, в которых воспламенение воздушно-топливной смеси происходит без свечи, посредством сжатия воздуха, который от давления нагревается от температуры, превышающей температуру горения, а топливо впрыскивается в цилиндры через форсунки.
- Роторно-поршневые двигатели внутреннего сгорания. В моторах данного типа тепловая энергия преобразуется в механическую работу посредством вращения рабочими газами ротора специальной формы и профиля. Ротор движется по «планетарной траектории» внутри рабочей камеры, имеющей форму «восьмёрки», и выполняет функции как поршня, так и ГРМ (газораспределительного механизма), и коленчатого вала.
- Газотурбинные двигатели внутреннего сгорания. В данных моторах преображение тепловой энергии в механическую работу осуществляется с помощью вращения ротора со специальными клиновидными лопатками, который приводит в движение вал турбины.
Наиболее надёжными, неприхотливыми, экономичными в плане расходования топлива и необходимости в регулярном техобслуживании, являются поршневые двигатели.
Технику с прочими видами ДВС можно вносить в Красную книгу. В наше время автомобили с роторно-поршневыми двигателями делает только «Mazda». Опытную серию автомашин с газотурбинным двигателем выпускал «Chrysler», но было это в 60-х годах, и более к этому вопросу никто из автопроизводителей не возвращался. В СССР газотурбинными двигателями оснащались танки «Т-80» и десантные корабли «Зубр», но в дальнейшем решено было отказаться от данного типа моторов. В связи с этим, подробно остановимся на «завоевавших мировое господство» поршневых двигателях внутреннего сгорания.
Устройство двигателя внутреннего сгорания
Корпус двигателя объединяет в единый организм:
- блок цилиндров, внутри камер сгорания которых воспламеняется топливно-воздушная смесь, а газы от этого сгорания приводят в движение поршни;
- кривошипно-шатунный механизм, который передаёт энергию движения на коленчатый вал;
- газораспределительный механизм, который призван обеспечивать своевременное открытие/закрытие клапанов для впуска/выпуска горючей смеси и отработанных газов;
- система подачи («впрыска») и воспламенения («зажигания») топливно-воздушной смеси;
- система удаления продуктов горения (выхлопных газов).
Четырёхтактный двигатель внутреннего сгорания в разрезе
При пуске двигателя в его цилиндры через впускные клапаны впрыскивается воздушно-топливная смесь и воспламеняется там от искры свечи зажигания. При сгорании и тепловом расширении газов от избыточного давления поршень приходит в движение, передавая механическую работу на вращение коленвала.
Работа поршневого двигателя внутреннего сгорания осуществляется циклически. Данные циклы повторяются с частотой несколько сотен раз в минуту. Это обеспечивает непрерывное поступательное вращение выходящего из двигателя коленчатого вала.
Определимся в терминологии. Такт — это рабочий процесс, происходящий в двигателе за один ход поршня, точнее, за одно его движение в одном направлении, вверх или вниз. Цикл — это совокупность тактов, повторяющихся в определённой последовательности. По количеству тактов в пределах одного рабочего цикла ДВС подразделяются на двухтактные (цикл осуществляется за один оборот коленвала и два хода поршня) и четырёхтактные (за два оборота коленвала и четыре ходя поршня). При этом, как в тех, так и в других двигателях, рабочий процесс идёт по следующему плану: впуск; сжатие; сгорание; расширение и выпуск.
Принципы работы ДВС
— Принцип работы двухтактного двигателя
Когда происходит запуск двигателя, поршень, увлекаемый поворотом коленчатого вала, приходит в движение. Как только он достигает своей нижней мёртвой точки (НМТ) и переходит к движению вверх, в камеру сгорания цилиндра подаётся топливно-воздушную смесь.
В своём движении вверх поршень сжимает её. В момент достижения поршнем его верхней мёртвой точки (ВМТ) искра от свечи электронного зажигания воспламеняет топливно-воздушную смесь. Моментально расширяясь, пары горящего топлива стремительно толкают поршень обратно к нижней мёртвой точке.
В это время открывается выпускной клапан, через который раскалённые выхлопные газы удаляются из камеры сгорания. Снова пройдя НМТ, поршень возобновляет своё движение к ВМТ. За это время коленчатый вал совершает один оборот.
При новом движении поршня опять открывается канал впуска топливно-воздушной смеси, которая замещает весь объём вышедших отработанных газов, и весь процесс повторяется заново. Ввиду того, что работа поршня в подобных моторах ограничивается двумя тактами, он совершает гораздо меньшее, чем в четырёхтактном двигателе, количество движений за определённую единицу времени. Минимизируются потери на трение. Однако выделяется большая тепловая энергия, и двухтактные двигатели быстрей и сильнее греются.
В двухтактных двигателях поршень заменяет собой клапанный механизм газораспределения, в ходе своего движения в определённые моменты открывая и закрывая рабочие отверстия впуска и выпуска в цилиндре. Худший, по сравнению с четырёхтактным двигателем, газообмен является главным недостатком двухтактной системы ДВС. В момент удаления выхлопных газов теряется определённый процент не только рабочего вещества, но и мощности.
Сферами практического применения двухтактных двигателей внутреннего сгорания стали мопеды и мотороллеры; лодочные моторы, газонокосилки, бензопилы и т.п. маломощная техника.
— Принцип работы четырёхтактного двигателя
Данных недостатков лишены четырёхтактные ДВС, которые, в различных вариантах, и устанавливаются на практически все современные автомобили, трактора и прочую технику. В них впуск/ выпуск горючей смеси/выхлопных газов осуществляются в виде отдельных рабочих процессов, а не совмещены со сжатием и расширением, как в двухтактных. При помощи газораспределительного механизма обеспечивается механическая синхронность работы впускных и выпускных клапанов с оборотами коленвала. В четырёхтактном двигателе впрыск топливно-воздушной смеси происходит только после полного удаления отработанных газов и закрытия выпускных клапанов.
Процесс работы двигателя внутреннего сгорания
Каждый такт работы составляет один ход поршня в пределах от верхней до нижней мёртвых точек. При этом двигатель проходит через следующие фазы работы:
- Такт первый, впуск. Поршень совершает движение от верхней к нижней мёртвой точке. В это время внутри цилиндра возникает разряжение, открывается впускной клапан и поступает топливно-воздушная смесь. В завершение впуска давление в полости цилиндра составляет в пределах от 0,07 до 0,095 Мпа; температура — от 80 до 120 градусов Цельсия.
- Такт второй, сжатие. При движении поршня от нижней к верхней мёртвой точке и закрытых впускном и выпускном клапане происходит сжатие горючей смеси в полости цилиндра. Этот процесс сопровождается повышением давления до 1,2—1,7 Мпа, а температуры — до 300-400 градусов Цельсия.
- Такт третий, расширение. Топливно-воздушная смесь воспламеняется. Это сопровождается выделением значительного количества тепловой энергии. Температура в полости цилиндра резко возрастает до 2,5 тысяч градусов по Цельсию. Под давлением поршень быстро движется к своей нижней мёртвой точке. Показатель давления при этом составляет от 4 до 6 Мпа.
- Такт четвёртый, выпуск. Во время обратного движения поршня к верхней мёртвой точке открывается выпускной клапан, через который выхлопные газы выталкиваются из цилиндра в выпускной трубопровод, а затем и в окружающую среду. Показатели давление в завершающей стадии цикла составляют 0,1-0,12 Мпа; температуры — 600-900 градусов по Цельсию.
Вспомогательные системы двигателя внутреннего сгорания
— Система зажигания
Система зажигания является частью электрооборудования машины и предназначена для обеспечения искры, воспламеняющей топливно-воздушную смесь в рабочей камере цилиндра. Составными частями системы зажигания являются:
- Источник питания. Во время запуска двигателя таковым является аккумуляторная батарея, а во время его работы — генератор.
- Включатель, или замок зажигания. Это ранее механическое, а в последние годы всё чаще электрическое контактное устройство для подачи электронапряжения.
- Накопитель энергии. Катушка, или автотрансформатор — узел, предназначенный для накопления и преобразования энергии, достаточной для возникновения нужного разряда между электродами свечи зажигания.
- Распределитель зажигания (трамблёр). Устройство, предназначенное для распределения импульса высокого напряжения по проводам, ведущим к свечам каждого из цилиндров.
Система зажигания ДВС
— Впускная система
Система впуска ДВС предназначена для бесперебойной подачи в мотор атмосферного воздуха, для его смешивания с топливом и приготовления горючей смеси. Следует отметить, что в карбюраторных двигателях прошлого впускная система состоит из воздуховода и воздушного фильтра. И всё. В состав впускной системы современных автомобилей, тракторов и прочей техники входят:
- Воздухозаборник. Представляет собою патрубок удобной для каждого конкретного двигателя формы. Через него атмосферный воздух всасывается внутрь двигателя, посредством разницы в показателях давления в атмосфере и в двигателе, где при движении поршней возникает разрежение.
- Воздушный фильтр. Это расходный материал, предназначенный для очистки поступающего в мотор воздуха от пыли и твёрдых частиц, их задержки на фильтре.
- Дроссельная заслонка. Воздушный клапан, предназначенный для регулирования подачи нужного количества воздуха. Механически она активируется нажатием на педаль газа, а в современной технике — при помощи электроники.
- Впускной коллектор. Распределяет поток воздуха по цилиндрам мотора. Для придания воздушному потоку нужного распределения используются специальные впускные заслонки и вакуумный усилитель.
— Топливная система
Топливная система, или система питания ДВС, «отвечает» за бесперебойную подачу горючего для образования топливно-воздушной смеси. В состав топливной системы входят:
- Топливный бак — ёмкость для хранения бензина или дизтоплива, с устройством для забора горючего (насосом).
- Топливопроводы — комплекс трубок и шлангов, по которым к двигателю поступает его «пища».
- Устройство смесеобразования, то есть карбюратор или инжектор — специальный механизм для приготовления топливно-воздушной смеси и её впрыска в ДВС.
- Электронный блок управления (ЭБУ) смесеобразованием и впрыском — в инжекторных двигателях это устройство «отвечает» за синхронную и эффективную работу по образованию и подаче горючей смеси в мотор.
- Топливный насос — электрическое устройство для нагнетания бензина или солярки в топливопровод.
- Топливный фильтр — расходный материал для дополнительной очистки топлива в процессе его транспортировки от бака к мотору.
Схема топливной системы ДВС
— Система смазки
Предназначение системы смазки ДВС — уменьшение силы трения и её разрушительного воздействия на детали; отведение части излишнего тепла; удаление продуктов нагара и износа; защита металла от коррозии. Система смазки ДВС включает в себя:
- Поддон картера — резервуар для хранения моторного масла. Уровень масла в поддоне контролируется не только специальным щупом, но и датчиком.
- Масляный насос — качает масло из поддона и подаёт его к нужным деталям двигателя через специальные просверленные каналы-«магистрали». Под действием силы тяжести масло стекает со смазанных деталей вниз, обратно в поддон картера, накапливается там, и цикл смазки повторяется снова.
- Масляный фильтр задерживает и удаляет из моторного масла твёрдые частицы, образующиеся из нагара и продуктов износа деталей. Фильтрующий элемент всегда меняется на новый вместе с каждой заменой моторного масла.
- Масляный радиатор предназначен для охлаждения моторного масла, с помощью жидкости из системы охлаждения двигателя.
— Выхлопная система
Выхлопная система ДВС служит для удаления отработанных газов и уменьшения шумности работы мотора. В современной технике выхлопная система состоит из следующих деталей (по порядку выхода отработанных газов из мотора):
- Выпускной коллектор. Это система труб из жаропрочного чугуна, которая принимает раскалённые отработанные газы, гасит их первичный колебательный процесс и отправляет далее, в приёмную трубу.
- Приёмная труба — изогнутый газоотвод из огнестойкого металла, в народе именуемый «штанами».
- Резонатор, или, говоря народным языком, «банка» глушителя — ёмкость, в которой происходит разделение выхлопных газов и снижение их скорости.
- Катализатор — устройство, предназначенное для очистки выхлопных газов и их нейтрадизации.
- Глушитель — ёмкость с комплексом специальных перегородок, предназначенных для многократного изменения направления движения потока газов и, соответственно, их шумности.
Выхлопная система ДВС
— Система охлаждения
Если на мопедах, мотороллерах и недорогих мотоциклах до сих пор применяется воздушная система охлаждения двигателя — встречным потоком воздуха, то для более мощной техники её, разумеется, недостаточно. Здесь работает жидкостная система охлаждения, предназначенная для забирания излишнего тепла у мотора и снижения тепловых нагрузок на его детали.
- Радиатор системы охлаждения служит для отдачи избыточного тепла в окружающую среду. Он состоит из большого количества изогнутых аллюминиевых трубок, с рёбрами для дополнительной теплоотдачи.
- Вентилятор предназначен для усиления охлаждающего эффекта на радиатор от встречного потока воздуха.
- Водяной насос (помпа) — «гоняет» охлаждающую жидкость по «малому» и «большому» кругам, обеспечивая её циркуляцию через двигатель и радиатор.
- Термостат — специальный клапан, обеспечивающий оптимальную температуру охлаждающей жидкости путём запуска её по «малому кругу», минуя радиатор (при холодном двигателе) и по «большому кругу», через радиатор — при прогретом двигателе.
Слаженная работа данных вспомогательных систем обеспечивает максимальную отдачу от двигателя внутреннего сгорания и его надёжность.
В заключение необходимо отметить, что в обозримом будущем не предвидится появления достойных конкурентов двигателю внутреннего сгорания. Есть все основания утверждать, что в своём современном, усовершенствованном виде, он ещё несколько десятилетий останется господствующим видом мотора во всех отраслях мировой экономики.
Двигатель внутреннего сгорания – это такой тип мотора, у которого топливо воспламеняется в рабочей камере внутри, а не в дополнительных внешних носителях. ДВС преобразует давление от сгорания топлива в механическую работу.
Из истории
Первый ДВС являлся силовым агрегатом Де Риваза, по имени его создателя Франсуа де Риваза, родом из Франции, который сконструировал его в 1807 году.
В этом двигателе уже было искровое зажигание, он был шатунный, с поршневой системой, то есть, это своего рода прообраз современных моторов.
Спустя 57 лет соотечественник де Риваза Этьен Ленуар изобрел уже двухтактный агрегат. Этот агрегат имел горизонтальное расположение своего единственного цилиндра, наличествовал искровым зажиганием и работал на смеси светильного газа с воздухом. Работы двигателя внутреннего сгорания в то время хватало уже на малогабаритные лодки.
Еще через 3 года конкурентом стал немец Николаус Отто, детищем которого стал уже четырехтактный атмосферный мотор с вертикальным цилиндром. КПД в данном случае увеличился на 11%, в отличие от кпд двигателя внутреннего сгорания Риваза, он стал 15-процентным.
Чуть позже, в 80-х годах этого же столетия, российский конструктор Огнеслав Костович впервые запустил агрегат карбюраторного типа, а инженеры из Германии Даймлер и Майбах усовершенствовали его в облегченный вид, который стал устанавливаться на мото- и автотехнике.
В 1897 году Рудольф Дизель выводит в свет ДВС по типу воспламенения от сжатия, используя нефть в качестве топлива. Этот вид двигателя стал родоначальником дизельных моторов, использующихся по настоящее время.
Виды двигателей
- Бензиновые моторы карбюраторного типа работают от топлива, смешанного с воздухом. Смесь эта предварительно подготавливается в карбюраторе, далее поступает в цилиндр. В нем смесь сжимается, воспламеняется искрой от свечи зажигания.
- Инжекторные двигатели отличаются тем, что смесь подается напрямую от форсунок во впускной коллектор. У этого вида имеются две системы впрыска – моновпрыск и распределенный впрыск.
- В дизельном моторе воспламенение происходит без свечей зажигания. В цилиндре данной системы находится воздух, разогретый до температуры, которая превышает температуру воспламенения топлива. В этот воздух через форсунку подается топливо, и вся смесь воспламеняется по образу факела.
- Газовый ДВС имеет принцип теплового цикла, топливом может являться как природный газ, так и углеводородный. Газ поступает в редуктор, где давление его стабилизируется в рабочее. Затем попадает в смеситель, а в итоге воспламеняется в цилиндре.
- Газодизельные ДВС работают по принципу газовых, только в отличие от них, смесь воспламеняется не свечой, а дизельным топливом, впрыск которого происходит также, как и у обычного дизельного мотора.
- Роторно-поршневые типы двигателей внутреннего сгорания принципиально отличаются от остальных наличием ротора, который вращается в камере, имеющей форму восьмерки. Чтобы понять, что такое ротор, нужно усвоить, что в данном случае ротор выполняет роль поршня, ГРМ и коленчатого вала, то есть специальный механизм ГРМ здесь полностью отсутствует. При одном обороте происходит сразу три рабочих цикла, что сравнимо с работой двигателя с шестью цилиндрами.
Принцип работы
В настоящее время преобладает четырехтактный принцип работы двигателя внутреннего сгорания. Это объясняется тем, что поршень в цилиндре проходит четыре раза – вверх и вниз одинаково по два.
Как работает двигатель внутреннего сгорания:
- Первый такт – поршень при движении вниз втягивает топливную смесь. При этом клапан впуска находится в открытом виде.
- После достижения поршнем нижнего уровня, он двигается вверх, сжимая горючую смесь, которая, в свою очередь, принимает объем камеры сгорания. Этот этап, включенный в принцип работы двигателя внутреннего сгорания, является вторым по счету. Клапаны, при этом, находятся в закрытом виде, и чем плотнее, тем качественнее происходит сжатие.
- В третий такт включается система зажигания, так как здесь происходит воспламенение топливной смеси. В назначении работы двигателя он называется «рабочим», так как при этом начинается процесс привода в работу агрегата. Поршень от взрыва топлива начинает движение вниз. Как и во втором такте, клапаны находятся в закрытом состоянии.
- Завершающий такт – четвертый, выпускной, который дает понять, что такое завершение полного цикла. Поршень через выпускной клапан избавляется от отработавших газов цилиндра. Затем все циклически повторяется снова, понять, как работает двигатель внутреннего сгорания, можно представив цикличность работы часов.
Устройство ДВС
Устройство двигателя внутреннего сгорания логично рассматривать с поршня, так как он является основным элементом работы. Он представляет собой своеобразный «стакан» с пустой полостью внутри.
Поршень имеет прорези, в которых фиксируются кольца. Отвечают эти самые кольца за то, чтобы горючая смесь не выходила под поршень (компрессионное), а так же за то, чтобы масло не попадало в пространство над самим поршнем (маслосъемное).
Порядок работы
- При попадании внутрь цилиндра топливной смеси, поршень проходит четыре вышеописанных такта, и возвратно-поступательное движение поршня приводит в движение вал.
- Дальнейший порядок работы двигателя следующий: верхняя часть шатуна закреплена на пальце, который находится внутри юбки поршня. Кривошип коленвала фиксирует шатун. Поршень, при движении, вращает коленвал и последний, в свое время, передает крутящий момент системе трансмиссии, оттуда на систему шестерен и далее к ведущим колесам. В устройстве двигателей автомобилей с задним приводом посредником до колес выступает еще и карданный вал.
Конструкция ДВС
Газораспределительный механизм (ГРМ) в устройстве двигателя внутреннего сгорания отвечает за впрыск топлива, а так же за выпуск газов.
Механизм ГРМ состоит из верхнеклапанного и нижнеклапанного, может быть двух видов – ременной или цепной.
Шатун чаще всего изготавливается из стали путем штамповки или ковки. Есть виды шатунов, изготовленные из титана. Шатун передает усилия поршня коленвалу.
Коленвал из чугуна или из стали представляет собой набор коренных и шатунных шеек. Внутри этих шеек есть отверстия, отвечающие за подачу масла под давлением.
Принцип работы кривошипно-шатунного механизма в двигателях внутреннего сгорания заключается в преобразовании движений поршня в движения коленвала.
Головка блока цилиндров (ГБЦ), большинства двигателей внутреннего сгорания, как и блок цилиндров, чаще всего изготавливается из чугуна и реже из различных сплавов алюминия. В ГБЦ находятся камеры сгорания, каналы впуска – выпуска, отверстия свечей. Между блоком цилиндров и ГБЦ находится прокладка, обеспечивающая полную герметичность их соединения.
В систему смазки, которую включает в себя двигатель внутреннего сгорания, входит поддон картера, маслозаборник, маслонасос, масляный фильтр и масляный радиатор. Все это соединено каналами и сложными магистралями. Система смазки отвечает не только за уменьшения трения между деталями мотора, но и за их охлаждение, а также за уменьшение коррозии и износа, увеличивает ресурс ДВС.
Устройство двигателя, в зависимости от его вида, типа, страны изготовителя, может быть чем-либо дополнено или, напротив, могут отсутствовать какие-то элементы ввиду устаревания отдельных моделей, но общее устройство двигателя остается неизменным так же, как и стандартный принцип работы двигателя внутреннего сгорания.
Дополнительные агрегаты
Само собой, двигатель внутреннего сгорания не может существовать как отдельный орган без дополнительных агрегатов, обеспечивающих его работу. Система запуска раскручивает мотор, приводит его в рабочее состояние. Существуют разные принципы работы запуска в зависимости от типа мотора: стартерный, пневматический и мускульный.
Трансмиссия позволяет развить мощность при узком диапазоне оборотов. Система питания обеспечивает ДВС двигатель малым электричеством. В нее входит аккумуляторная батарея и генератор, обеспечивающий постоянный поток электричества и заряд АКБ.
Выхлопная система обеспечивает выпуск газов. В любое устройство двигателя автомобиля входят: выпускной коллектор, который собирает газы в единую трубу, каталитический конвертер, который снижает токсичность газов путем восстановления оксида азота и использует образовавшийся кислород, чтобы дожечь вредные вещества.
Глушитель в этой системе служит для того, чтобы уменьшить выходящий из мотора шум. Двигатели внутреннего сгорания современных автомобилей должны соответствовать установленным законом нормам.
Тип топлива
Следует помнить и об октановом числе топлива, которое используют двигатели внутреннего сгорания разных типов.
Чем выше октановое число топлива – тем больше степень сжатия, что приводит к увеличению коэффициента полезного действия двигателя внутреннего сгорания.
Но существуют и такие двигатели, для которых увеличение октанового числа выше положенного заводом изготовителем, приведет к преждевременной поломке. Это может произойти путем прогорания поршней, разрушения колец, закопченности камер сгорания.
Заводом предусмотрено свое минимальное и максимальное октановое число, которое требует двигатель внутреннего сгорания.
Тюнинг
Любители увеличить мощность работы двигателей внутреннего сгорания зачастую устанавливают (если это не предусмотрено заводом изготовителем) различного рода турбины или компрессоры.
Компрессор на холостых оборотах выдает небольшую мощность, при этом держит стабильные обороты. Турбина же, наоборот, выжимает максимальную мощность при ее включении.
Установка тех или иных агрегатов требует консультации с мастерами, имеющими опыт работы в узком направлении, поскольку ремонт, замена агрегатов, или же дополнение двигателя внутреннего сгорания дополнительными опциями – это отклонение от назначения работы двигателя и уменьшают ресурс ДВС, а неправильные действия могут привести к необратимым последствиям, то есть работа двигателя внутреннего сгорания может быть навсегда окончена.
Двигатель внутреннего сгорания (ДВС) – это самый распространенный тип двигателя из всех, которые устанавливаются в настоящее время на автомобили. Несмотря на то, что современный двигатель внутреннего сгорания состоит из тысячи частей, принцип его работы весьма прост. В рамках данной статьи мы рассмотрим устройство и принцип работы ДВС.
Внизу страницы смотрите видео, на котором наглядно показано устройство и принцип работы бензинового ДВС.
В каждом двигателе внутреннего сгорания есть цилиндр и поршень. Именно внутри цилиндра ДВС происходит преобразование тепловой энергии, выделяемой при сжигании топлива, в энергию механическую, способную заставить наш автомобиль двигаться. Этот процесс повторяется с частотой несколько сотен раз в минуту, что обеспечивает непрерывное вращение выходящего из двигателя коленчатого вала.
Принцип работы четырёхтактного двигателя внутреннего сгорания
В подавляющем большинстве легковых автомобилей устанавливают четырехтактные двигатели внутреннего сгорания, поэтому мы и берём его за основу. Чтобы лучше понять принцип устройства бензинового ДВС, предлагаем вам взглянуть на рисунок:
Устройство двигателя внутреннего сгорания
Топливно-воздушная смесь, попадая через впускной клапан в камеру сгорания (такт первый – впуск), сжимается (такт второй – сжатие) и воспламеняется от искры свечи зажигания. При сжигании топлива, под воздействием высокой температуры в цилиндре двигателя образуется избыточное давление, заставляющее поршень двигаться вниз к так называемой нижней мертвой точке (НМТ), совершая при этом такт третий – рабочий ход. Перемещаясь во время рабочего хода вниз, с помощью шатуна, поршень приводит во вращение коленчатый вал. Затем, перемещаясь от НМТ к верхней мертвой точке (ВМТ) поршень выталкивает отработанные газы через выпускной клапан в выхлопную систему автомобиля – это четвертый такт (выпуск) работы двигателя внутреннего сгорания.
Такт – это процесс, происходящий в цилиндре двигателя за один ход поршня. Совокупность тактов, повторяющихся в строгой последовательности и с определенной периодичностью, обычно называют рабочим циклом, в данном случае, двигателя внутреннего сгорания.
- Такт первый — ВПУСК. Поршень перемещается от ВМТ к НМТ, при этом возникает разряжение и полость цилиндра ДВС заполняется горючей смесью через открытый впускной клапан. Смесь, попадая в камеру сгорания, смешивается с остатками отработавших газов. В конце впуска давление в цилиндре составляет 0,07–0,095 МПа, а температура 80-120 ºС.
- Такт второй – СЖАТИЕ. Поршень движется к ВМТ, оба клапана закрыты, рабочая смесь в цилиндре сжимается, а сжатие сопровождается повышением давления (1,2–1,7 МПа) и температуры (300-400 ºС).
- Такт третий – РАСШИРЕНИЕ. При воспламенении рабочей смеси в цилиндре ДВС выделяется значительное количество теплоты, резко увеличивается температура (до 2500 градусов по Цельсию). Под давлением поршень перемещается к НМТ. Давление равно 4–6 МПа.
- Такт четвертый – ВЫПУСК. Поршень стремится к ВМТ через открытый выпускной клапан, отработавшие газы выталкиваются в выпускной трубопровод, а затем в окружающую среду. Давление в конце цикла: 0,1–0,12 МПа, температура 600-900 ºС.
И так, вы смогли убедиться, что двигатель внутреннего сгорания устроен не очень сложно. Как говорится, все гениальное – просто. А для большей наглядности рекомендуем посмотреть видео, на котором также очень хорошо показан принцип работы ДВС.
Видео: как устроен двигатель внутреннего сгорания
Двигатель внутреннего сгорания — один из ключевых элементов конструкции транспортного средства. Он представляет собой внушительный агрегат, принцип работы двигателя внутреннего сгорания основывается на изменении энергии для действия определенных частей агрегата.
Виды моторов
Существует три вида двигателей, встречаемых в транспортных средствах:
- поршневой
- роторно-поршневой
- газотурбинный
Большой популярностью пользуется первый вариант моторов. На некоторые модели автомобилей устанавливают так поршневые двигатели с четырьмя тактами. Вызвана такая популярность тем, что подобные агрегаты стоят дешевле, имеют небольшой вес и подходят для использования практически во всех машинах вне зависимости от производства.
Если говорить простыми словами, то двигатель автомобиля — это особый механизм, способный изменить энергию тепла, превратив ее в механическую энергию, благодаря чему удается обеспечить работу множества элементов конструкции автомобиля, а также его систем.
Изучить принцип действия мотора не составит труда. Например, поршневые ДВС делятся на двух- и четырехтактные агрегаты. Четырехтактными двигатели называют потому, что в одном рабочем цикле элемента поршень двигается четыре раза (такта). Подробнее о том, что представляют собой такты, написано далее.
Устройство мотора
Прежде, чем разбираться с принципом работы, стоит сначала понять, как устроен силовой агрегат и что входит в его конструкцию. Так как поршневые считаются наиболее востребованными, рассматриваться будет именно такое устройство. К основным деталям следует отнести:
- Цилиндры, образующие отдельный блок
- Головку блока с ГРМ
- Кривошипно-шатунный механизм
Последний приводит в движение коленчатый вал, заставляя его вращаться. Механизм передает валу энергию, получаемую от двигающегося поршня, который в несколько тактов меняет свое положение. Движение поршня регулирует энергия тепла, возникающая в результате горения топлива.
Невозможно представить и организовать движение силового агрегата без установленных в нем механизмов. Так, например, ГРМ меняет положение клапанов, за счет чего удается обеспечить регулярную подачу топлива, впуская и выпуская определенные составы. Система поступления новых газов и выхода отработавших налажена.
Работа двигателя возможна только при одновременной работе всех включенных в конструкцию деталей, механизмов и других элементов. Также вместе с ними должны бесперебойно действовать следующие системы:
- зажигания, основная роль которой заключается в воспламенении топлива,
- содержащего также воздух;
- впускная, регулирующая своевременную подачу воздуха внутрь цилиндра;
- топливная, благодаря которой удается обеспечить подачу топлива для сгорания и дальнейшей работы транспорта;
- система смазки, снижающая износ трущихся деталей конструкции во время их работы;
- выхлопная, посредством действия которой удается удалить отработавшие газы, в результате чего снижается их токсичность.
Также работает система охлаждения, регулирующая температуру внутри агрегата и следящая за тем, чтобы она была оптимальной.
Рабочий цикл ДВС
Основной цикл мотора подразумевает выполнение четырех основных тактов. Именно о них и пойдет речь дальше по тексту.
Первый такт: впуск
Начальный — движение кулачков, которые являются частью конструкции распределительного вала. Они меняют воздействуют на клапан впуска, заставляя его открыться.
Далее, вслед за открывшимся клапаном, с места двигается поршень. Деталь постепенно перемещается из крайнего верхнего положения в крайнее нижнее. Воздух внутри цилиндра в связи с уменьшением пространства поршнем становится более разреженным, благодаря чему становится возможным поступление подготовленной рабочей смеси.
После этого поршень начинает действовать на коленвал через шатун, вследствие чего вал поворачивается на 180 градусов. Сам поршень уже достигает своего критического нижнего положения, и на этом моменте начинается второй такт.
Второй такт: сжатие
Он подразумевает дальнейшее сжатие смеси, находящейся внутри цилиндра. Клапан впуска закрывается, и поршень меняет свое направление, двигаясь вверх. Воздух в связи с уменьшением пространства начинает сжиматься, а рабочая смесь — нагреваться. Когда второй такт подходит к концу, в действие приходит система зажигания. Ее основное назначение — подача на свечу заряда электричества для образования искры. Именно эта искра поджигает сжатую смесь из топлива и воздуха, приводя к ее воспламенению.
Отдельно стоит рассмотреть, как зажигается топливо у дизельного ДВС. Как только завершается сжатие, начинает поступать мелкораспыленное дизельное топливо через форсунку внутрь камеры. Впоследствии горючее вещество перемешивается с воздухом внутри, благодаря чему происходит воспламенение.
Что касается карбюраторного двигателя со стандартным топливом, то на втором такте коленчатый вал успевает сделать полный оборот.
Третий такт: рабочий ход
Третий такт называется рабочим ходом. Газы, оставшиеся после сгорания смеси, начинают толкать поршень, перемещая его вниз. Полученная деталью энергия передается коленвалу, и тот снова поворачивается, но уже на половину оборота.
Четвертый такт: выпуск
Четвертый такт — выпуск оставшихся газов. Когда такт только начинается, кулачок меняет положение на этот раз выпускного клапана, открывая его. Это способствует началу движения поршня наверх, вследствие чего из цилиндра начинают выходить отработавшие газы.
Интересно, что на современных моделях транспортных средств ДВС оборудованы не одним цилиндром, а несколькими. Благодаря их слаженной работе обеспечивается более качественная работа мотора и систем машины. При этом в каждом цилиндре единовременно выполняются разные такты. Так, например, в одном цилиндре вовсю идет рабочий ход, а во втором — коленчатый вал еще только совершает оборот. Подобная конструкция также:
- избавляет от ненужных вибраций;
- уравновешивает силы, которые действуют на работу коленвала;
- организует ровную работу мотора.
Ввиду компактности двигатели с несколькими цилиндрами изготавливают не рядными, а V-образными. Также существует форма оппозитных двигателей, которые часто можно встретить на автомобилях производства Subaru. Такое решение позволяет сэкономить много места под капотом.
Как работает двухтактный мотор
Выше было упомянуто, что поршневые двигатели делятся как на 4-тактные, так и на 2-тактные. Принцип работы вторых немного отличается от того, что был описан ранее. Да и само устройство такого агрегата значительно проще предыдущей конструкции. В двухтактном агрегате всего два окна в цилиндре — впускное и выпускное. Второе расположено чуть выше первого, и сейчас будет объяснено, для чего это.
Поршень при начале первого такта, до этого перекрывавший впускное окно, начинает двигаться наверх, в результате чего перекрывает собой окно впуска топлива. Поршень в это же время продолжает опускаться, что приводит к сжатию рабочей смеси. Как только деталь достигает нужного положения, на свече образуется первая искра, и созданная смесь тут же поджигается, воспламеняясь. Впускное окно к этому моменту уже открывается. Оно пропускает очередную порцию топлива и воздуха, продолжая работу механизма.
Начало второго такта характеризуется сменой направления движения поршня — он начинает перемещаться вниз. На него действуют газы, стремящиеся расширить имеющееся пространство. Поршень перемещается, открывая впускное окно, и оставшиеся после сгорания смеси газы уходят, пропуская внутрь новую порцию топлива.
Какая-то часть рабочей смеси также покидает цилиндр через открытый выпускной клапан. Поэтому становится понятным, почему двухтактные двигатели требуют такого количества топлива.
Преимущества и недостатки
Преимуществом двухтактных поршневых агрегатов является достижение большой мощности при небольшом рабочем объеме, если сравнивать их с четырехтактными. Однако владелец авто будет страдать от внушительных расходов топлива, из-за чего в скором времени в его голове возникнет идея поменять агрегат.
Также плюсами двухтактных ДВС можно назвать простую конструкцию, понятную и равномерную работу, маленький вес и компактный размер. К минусам следует отнести грязный выхлоп, нехватку различных систем, а также быстрый износ деталей конструкции. Довольно часто владельцы машин с таким двигателем жалуются на перегрев агрегата и его поломку.
Также читайте:
Какое моторное масло лучше заливать в двигатель Мерседес
Компрессор Мерседес: Виды компрессоров Плюсы и Минусы
ТОП 5 ЛУЧШИХ и ХУДШИХ МОТОРОВ MERCEDES
Что означает индикатор Check Engine и почему может гореть?
Что такое VIN CODE ? Как расшифровать вин код автомобиля Мерседес
Люди постоянно пытаются построить экономичный и надёжный мотор. До сих пор идея об изобретении вечного двигателя не даёт покоя многим изобретателям. Неудачные разработки исчезли в веках. Но в результате проб и ошибок появилось несколько типов двигательных установок. Эти механизмы успешно нами эксплуатируются.
Все известные двигатели используют разные виды энергии, которую затем преобразуют в движение. В качестве приводной тяги может служить электроэнергия, вода и тепло. Поэтому они разделяются на следующие типы:
- электродвигатели;
- гидравлические машины;
- тепловые агрегаты.
Тепловые моторы основаны на преобразовании тепловой энергии в работу. В таких машинах применён один из двух способов сгорания топлива: внешний и внутренний.
В школе наверняка всем рассказывали о машинах, работающих на пару. Они как раз и представляют вид тепловых двигателей с внешней камерой сгорания. Первые паровые механизмы были построены ещё в середине XIX века. Сейчас паровые машины практически исчезли из нашей жизни. Они уступили место двигателям внутреннего сгорания (ДВС).
Принципиально ДВС отличаются от паровых машин местом размещения камеры сгорания. В механизмах с внутренним сгоранием эти камеры расположены в самих агрегатах. Такие моторы работают практически во всех транспортных средствах.
В этой статье приведена основная информация о принципе работы различных видов ДВС: газотурбинного, роторного, поршневого. Рассказано, как работает двигательный агрегат с внешней камерой сгорания – двигатель Стирлинга. Описана классификация и устройство двигателей внутреннего сгорания поршневого типа. Объяснено отличие двухтактного двигателя от четырёхтактного.
Принцип работы ДВС
Самым главным механизмом, установленным в каждом автомобиле, является двигатель внутреннего сгорания. Механики любят называть его сердцем автомобиля. Именно он отвечает за преобразование энергии сгорания углеводородного топлива в механическое движение. Работают ДВС на жидком или газообразном топливе.
Принцип работы ДВС прост. Небольшие порции топлива, смешанного с воздухом в нужной пропорции, поступают в камеру сгорания. В ней топливная смесь воспламеняется. Выделяемая при этом энергия приводит в движение поршни, которые вращают вал.
Все остальные узлы автомобиля предназначены либо для повышения производительности силового агрегата, либо для контроля и управления. Вспомогательные системы создают также комфорт пассажирам и водителям, при этом обеспечивая им безопасную езду.
Более чем за полуторавековую историю своего развития появились ДВС, различающиеся конструкцией, мощностью и используемым топливом.
Видео: Принцип работы двигателя внутреннего сгорания
Главная классификация ДВС
Все существующие ДВС разделены на 3 вида:
- газотурбинные.
В поршневых агрегатах рабочим органом является поршень. В роторных моторах используется движение ротора. В газотурбинных двигателях движение осуществляется турбиной.
В каждом из видов этих силовых установок конструктивно реализованы разные схемы преобразования тепловой энергии в полезную работу. Это принципиально отличает их друг от друга. Максимальная производительность силовых агрегатов зависит от того, каким образом преобразуется тепловая энергия. Каждый вид силовых агрегатов создан для эффективной работы в своей области применения.
Ниже подробно описаны конструкции этих агрегатов и физические процессы, происходящие в них. Отдельный раздел статьи посвящён двигателю Стирлинга. Он относится к механизмам с внешней камерой сгорания. Но принцип работы этого мотора по нескольким признакам похож на ДВС. Это часто вызывает путаницу.
Газотурбинный двигатель
При воспламенении топлива образуются газы, которые при нагреве расширяются. Этот факт всем известен из школьного курса физики. Указанный принцип положен в основу газотурбинной установки. Топливная смесь сгорает, и нагретый газ моментально расширяется, заставляя лопасти турбины вращаться. Чем больше температура газа, тем быстрее он увеличивается в объёмах. Эта зависимость определяет коэффициент полезного действия этого вида ДВС: чем выше температура газов, тем больше КПД.
Разработано два типа газотурбинных установок, отличающихся количеством рабочих валов. Агрегаты с двумя валами мощнее по сравнению с одновальными механизмами.
Газотурбинные двигатели устанавливают на машины, где необходима большая мощность силовой установки. Например, грузовые автомобили, корабли, самолёты и железнодорожные локомотивы.
Видео: Принцип работы газотурбинного двигателя
Роторный ДВС
В моторах этого вида реализован принцип вращения вала от кругового движения ротора. Ротором является треугольный поршень, который вращается в овальной камере – статоре. Ротор закреплён на валу с эксцентриситетом. При таком расположении во время вращения ротора в цилиндре создаются полости для тактов зажигания, сгорания и выпуска. За один оборот ротора происходит 3 такта работы.
Достоинством роторного ДВС является отсутствие шатунов, коленчатого вала и многих сопутствующих узлов. Инженеры подсчитали, что деталей в агрегате роторного типа намного меньше, чем в моторах других типов. Поэтому роторные моторы гораздо меньше других. Это является ещё одним их преимуществом.
В Японии, известной своими передовыми разработками в автомобилестроении, были сконструированы двигатели, имеющие несколько роторов. Например, японцы сконструировали агрегат, имеющий такую же мощность, что и шестипоршневой двигатель гоночного автомобиля. Но размеры многороторного движка при этом гораздо меньше.
На ранних моделях вазовских автомобилей в своё время устанавливались роторные моторы.
Роторные двигатели гораздо проще и эффективнее поршневых. Но по непонятной причине роторные агрегаты используются очень редко.
Видео: Принцип работы роторного двигателя
Поршневой двигатель
Это – самый распространённый тип двигателя. Рассмотрим его принципиальную схему работы.
В конструкции мотора этого вида имеется несколько цилиндров, внутри каждого из них поршни совершают возвратно-поступательные движения. В обоих концах цилиндров расположены клапаны. Открываясь, клапан пропускает порцию топливной смеси в камеру сгорания, образующуюся в цилиндре перед поршнем. В это время поршень, двигаясь вверх, сжимает смесь. В расчётный момент происходит её воспламенение. Образующиеся газы расширяются и толкают поршень в другую сторону. Несколько таких поршней закреплены на валу П-образной конструкции. Обычно такой вал называют коленчатым. За каждое движение поршня вал проворачивается на определённую величину. Цикл движения поршня от одной стороны цилиндра до другой называется тактом. Скоординированная работа поршней заставляет коленчатый вал проворачиваться на полный оборот. Такие циклы постоянно повторяются, заставляя вращаться вал с большой скоростью.
Автомобилестроители постоянно совершенствуют поршневые двигатели. Каждое усовершенствование приводит к повышению мощности двигателя. Поршневые агрегаты являются самыми надёжными из всех видов силовых установок.
Видео: Принцип работы дизельного двигателя
Двигатель Стирлинга
В качестве примера разновидности двигательного агрегата с внешней камерой сгорания можно привести так называемый двигатель Стирлинга. Своё название он получил по фамилии изобретателя – шотландского священника Роберта Стирлинга. Этот оригинальный мотор работает на основе неоднократного нагрева рабочего тела – порции воздуха.
Принцип работы внешне похож на схему ДВС. В моторе Стирлинга тоже имеется цилиндр с поршнем, который двигается по возвратно-поступательной траектории и приводит в движение кривошипно-шатунный механизм. Мало того, цилиндр имеет радиатор охлаждения как в двигателе внутреннего сгорания.
Но главным отличием двигателя Стирлинга от ДВС является отсутствие топливной смеси. Её роль в данном случае выполняет воздух, который нагревается внешним источником тепла.
Дело в том, что уже находящийся в цилиндре воздух, нагреваясь, расширяется и толкает вытеснитель, который в свою очередь двигает рабочий поршень вверх. Поршень проворачивает кривошип. Проходя через зону охлаждения, воздух сжимается, давление в цилиндре уменьшается, образуя разрежение. В это время кривошип, двигаясь дальше, возвращает поршень в нижнее положение. Так периодически чередуя циклы нагрева и остывания рабочего тела (воздуха), извлекают энергию из процесса изменения давления.
Примечательно, что такой агрегат легко превратить в тепловой насос, изменив координацию работы рабочего поршня и вытеснителя.
Двигатель Стирлинга может работать практически на любом топливе, от дров до ядерной энергии. При этом конструкция этого агрегата очень проста и надёжна. Инженеры разработали 3 типа моторов подобного рода и назвали их буквами греческого алфавита. Выше описан принцип самого простого из них: бета-типа.
Двигатель конструкции Стирлинга незаменим в тех случаях, когда появляется необходимость преобразования очень маленького перепада температур. В таких условиях ни одна газовая турбина функционировать не может. Проще говоря, установки Стирлинга могут эффективно работать от обычной переносной газовой горелки или даже спиртовки. Туристы уже оценили такие устройства. Учёные предсказывают, что двигатели Стирлинга сделают революцию в солнечной энергетике.
Видео: Принцип работы двигателя Стирлинга
Виды поршневых ДВС
Поршневые моторы классифицируются по типу используемого топлива:
Кроме того, двигатели отличаются системой зажигания. В установках, использующих принудительное зажигание, воспламенение топливной смеси производится устройствами, генерирующими искру. Их ещё называют свечами зажигания. В них периодически образуется электрическая дуга, которая и поджигает топливо в камере сгорания цилиндра. Работают свечи от электрического аккумулятора. Сложность представляет регулировка свечей. Необходимо отрегулировать свечи так, чтобы искра образовывалась точно в тот момент, когда смесь достигнет расчётного уровня сжатия.
Принудительное зажигание характерно только для бензиновых двигателей. Реже такая система применяется в двигателях, работающих на газе.
Топливная смесь может подаваться в цилиндры двумя способами: с помощью карбюратора или инжектора.
Поршневые агрегаты, использующие в качестве топлива солярку, называются дизельными и имеют другую систему воспламенения топлива в цилиндре. В дизельных установках смесь самопроизвольно воспламеняется в результате её сжатия поршнем. Отличительной особенностью дизельных двигателей является их «всеядность». Они способны работать на нескольких видах топлива. Дизели прекрасно функционируют, будучи заправлены другими горючими веществами. Например, керосином, мазутом или даже растительным маслом.
В зависимости от количества тактов рабочего цикла, различают двухтактные и четырёхтактные ДВС. Двухтактные двигатели обычно ставят на мотоциклы, мопеды или газонокосилки. Четырёхтактные моторы устанавливаются в современных автомобилях.
По пространственному расположению цилиндров ДВС тоже имеют свою классификацию.
Если цилиндры расположены на одной оси, то такие двигатели называются рядными. Обозначаются рядные моторы английским символом «R» с цифрой, указывающей на количество цилиндров.
Если цилиндры размещены под углом друг к другу, то такие агрегаты называют V-образными. Они гораздо компактнее других типов двигателей. Обычно угол между осями цилиндров составляет 120 градусов. Имеются модели V-образных моторов с другим углом между осями цилиндров.
Агрегаты, обозначаемые символом «Vr», имеют переходную конструкцию. Они обладают признаками и рядных, и V-образных двигателей.
При расположении цилиндров напротив друг друга, то есть под углом 180 градусов, двигатели называются оппозитными.
Устройство двигателя внутреннего сгорания: описание основных узлов ДВС
В этом разделе рассмотрено назначение и конструктивное исполнение отдельных узлов поршневых двигателей.
Кривошипно-шатунный механизм
Поршни в цилиндрах движутся возвратно-поступательно. Кривошип вместе с шатунами преобразуют это движение во вращение вала. Механизм называется кривошипно-шатунным (КШМ). Состоит из П-образного вала, называемого коленчатым, узла цилиндров, головки блока цилиндров (ГБЦ) и креплений.
Газораспределительная система
ГБЦ регулирует подачу обогащённой смеси в цилиндры. Процесс происходит за счёт скоординированных во времени циклов открытия и закрытия группы клапанов, осуществляющих подачу смеси и выпуск отработанных газов. Кроме этого, газораспределительная система отводит наружу выхлопные газы. Управляет клапанами распределительный вал, который связан с коленвалом зубчатой или ремённой передачей. Вращаясь, распределительный вал заставляет открываться и закрываться нужные клапана в строго определённое время.
Вся система состоит из распредвала и клапанных групп. Ремонт головки часто вызывает затруднения, так как требует тщательной установки уплотнений. При неправильно установленных прокладках произойдёт подсос воздуха, возможна также утечка топлива. Это нарушает баланс топливной смеси.
Система питания
Внутрь цилиндров подаётся не чистое горючее, а порция смеси, состоящей из обогащённого воздухом топлива. Карбюратор смешивает бензин с воздухом, то есть обогащает топливо. Затем приготовленная смесь через коллектор, называющийся впускным, попадает в камеру.
Если ДВС оборудован инжектором, то бензин под высоким давлением подается сразу во впускной коллектор. Впрыск происходит через форсунки. Бензин и воздух смешиваются не в карбюраторе, а непосредственно во впускном коллекторе.
Топливо циркулирует в системе питания за счёт работы насоса. В карбюраторных двигателях установлены механические насосы. В инжекторных – электрические.
Инжекторные двигатели обычно оснащаются электронным зажиганием. Такое зажигание эффективнее свечного, так как воспламенением топливно-воздушной смеси управляет бортовой компьютер. Для его эффективной работы в автомобиле установлены специальные датчики, собирающие все необходимые данные для компьютера.
Зажигание
В двигателях с карбюратором всегда имеются так называемые свечи зажигания. Они генерируют вольтову дугу, поджигающую топливную смесь. В народе такую дугу обычно называют искрой. В таких автомобилях система зажигания состоит из свечей и аккумулятора.
В двигателях на дизельном топливе процесс возгорания смеси принципиально отличается. Она самовоспламеняется. Это стало возможным благодаря уникальным свойствам дизельного топлива. Дизтопливо через форсунки под высоким давлением подаётся в цилиндр. Предварительно воздух в камере цилиндра тоже сжимается и нагревается до 700 градусов. В таких условиях солярка мгновенно самовоспламеняется.
Выхлопная система
Вывод газов наружу осуществляется системой выпуска продуктов сгорания – выхлопной системой. Токсичные газы направляются сначала в выпускной коллектор, в котором осуществляется сбор выхлопных газов от всех цилиндров. Из коллектора газ, содержащий большое количество вредных веществ, выбрасывается наружу через глушитель.
Последние модели всех автомобилей теперь выпускаются только с каталитическими нейтрализаторами. Они сильно снижают токсичность выхлопных газов, приводя их в соответствие с экологическими нормами.
Система смазки
В автомобиле есть много деталей вращения. Во время работы двигателя трущиеся между собой детали активно изнашиваются. Чтобы уменьшить износ и увеличить КПД двигателя, в каждом автомобиле предусмотрена замкнутая система, созданная для циркуляции смазки. Подача масла в систему осуществляет масляный насос. Перед тем, как попасть в двигатель, масло проходит через фильтр, где очищается от накопившихся загрязнений. Через систему распределения масло подаётся в подшипники коленчатого вала и в газораспределительный механизм для смазки деталей распределительного вала. Затем отработанное масло поступает в картер – специально сконструированную ёмкость в виде поддона. Из картера масло опять забирается насосом и направляется на следующий цикл смазки.
В результате работы системы смазки фильтры засоряются, что снижает степень очистки. Недостаточный уровень очистки ухудшает характеристики масла. По мере засорения фильтров давление масла начинает повышаться. Для сброса давления и безопасной работы узлов автомобиля устанавливают предохранительные, или так называемые редукционные клапаны, срабатывающие при превышении давления масла. Эти клапаны срабатывают вследствие засорения фильтров. Своевременная замена масла и фильтров является непременным условием эффективной работы ДВС.
Во время работы мотора масло нагревается, что тоже плохо отражается на работе мотора. Все мощные двигатели работают со своей системой охлаждения масла. Обычно их называют масляными радиаторами.
Системы охлаждения
Во время продолжительной работы двигатели могут нагреться до достаточно высоких температур. Температура внешней поверхности цилиндров достигает нескольких сотен градусов. Никакие механизмы не могут эффективно работать при таких высоких температурах. Поэтому конструкторы разработали системы для охлаждения узлов автомобиля. Принцип работы таких систем заключается в передаче тепла от нагретых частей к охлаждающей жидкости. Заметим, что состав таких жидкостей и их свойства постоянно улучшаются производителями.
Самым узнаваемым элементом системы охлаждения стал радиатор, который обычно находится в начале моторного отсека, непосредственно перед двигателем. Такое расположение позволяет радиатору дополнительно охлаждаться встречным потоком воздуха. Для повышения эффективности работы радиатора впереди него установлен мощный вентилятор.
Радиатор понижает температуру самого охлаждающего агента после того, как тот отберёт тепло от цилиндров. Вся система охлаждения состоит из термостата, помпы, небольшой расширительной ёмкости и устройства обогрева салона.
Работа системы охлаждения регулируется термостатом. Если двигатель ещё не нагрелся до критических величин, то помпа прогоняет охлаждающую жидкость по так называемому «малому» кругу, то есть только в пределах самого двигателя. Когда термостат включается, то жидкость пропускается через радиатор, охлаждаясь при этом гораздо эффективнее.
Порог срабатывания термостата обычно составляет 90 градусов. В некоторых моделях автомобилей температура срабатывания термостата может быть установлена больше или меньше этой величины.
Долговременная работа любого автомобиля невозможна без эффективной системы охлаждения.
Четырехтактный ДВС
Число тактов работы – одна из важнейших характеристик любого ДВС. Далее приведено описание взаимодействия поршня с клапанами поочерёдно в каждом такте. Напомним, 1 цикл – это 4 такта.
В первом такте выполняется впуск смеси. Топливо смешивается с воздухом. Поршень двигается к наивысшей точке. В камере сгорания создаётся область низкого давления – разрежение. Впускной клапан открывает отверстие в камере для подачи смеси. Коленвал начинает первый оборот.
Во втором такте смесь сжимается. Впускной клапан закрывается. Поршень, достигнув наивысшей точки, сжимает обогащённую топливную смесь. Коленвал завершает первый оборот.
Рабочий ход выполняется в третьем такте. Обогащённая смесь поджигается. В бензиновых двигателях поджигание производится электрической дугой от свечи. В дизельных – топливо воспламеняется самостоятельно в процессе сжатия. Облако расширяющихся газов заставляет поршень двигаться вниз. Начало второго оборота коленвала.
В четвёртом такте происходит выпуск. Открывается выпускной клапан. Газы выводятся в коллектор, а затем выбрасываются наружу. Поршень начинает двигаться вверх. Вал завершает второй оборот.
Таким образом, за 1 рабочий цикл этот двигатель совершает 4 такта, во время которых вал проворачивается дважды.
Видео: Принцип работы четырёхтактного двигателя
Двухтактный мотор
В этих двигателях сжатие и рабочий ход совершаются также как в четырёхтактных. Но очистка и заполнение цилиндров топливной смесью происходит за очень короткое время в момент нахождения поршня в самом нижнем положении. Если в четырёхтактном двигателе смесь попадает в камеру сгорания через открытые отверстия клапанов, то в этом моторе очередная порция смеси поступает в цилиндр через специальные отверстия, называемыми окнами. Они открываются и закрываются телом поршня. Процессы наполнения полостей цилиндра новой смесью и удаления продуктов сгорания называются продувкой.
Для осуществления продувки внутренняя полость цилиндра напрямую связана с КШМ. По сути, поршень двигается в одном пространстве с кривошипом. Под ним образуется полость, которую называют кривошипной камерой или картером. Эта камера тоже участвует в процессах газообмена. В ней периодически создаётся разрежение. Это позволяет поступать новой порции смеси через впускное отверстие.
Такая конструкция позволяет двигателю развивать в 1,5 раза большую мощность по сравнению с другими моторами аналогичного объёма при тех же оборотах двигателя. Но есть и ряд недостатков.
- Детали в таком двигателе работают с большей интенсивностью, то есть быстрее изнашиваются.
- Особое значение придаётся герметизации всех механизмов, работающих практически в одном пространстве: поршня, цилиндра и кривошипа.
- Так как в картере нельзя устроить масляную ванну, то смазку поршня и других деталей осуществляют добавлением масла в топливо.
- Перепады давления смеси в цилиндре не так велики, поэтому для повышения производительности двигателя часто используют принудительную продувку.
Рабочий цикл осуществляется в течение одного оборота коленвала.
Видео: Принцип работы двухтактного двигателя
Вам также будет интересно почитать:Устройство двигателя
Кла́пан — это устройство, предназначенное для открытия, закрытия, а также регулирования потока горючей смеси, которая попадает в цилиндры двигателя и выпуска отработавших газов.
Для нормальной работы четырехтактного двигателя требуется, как минимум, по два клапана на каждый цилиндр — впускной клапан и выпускной клапан. В данный момент широкое распространение получили клапаны тарельчатого типа со стержнем. Для качественного наполнения цилиндра горючей смесью диаметр тарелки впускного клапана делается немного больше, чем у выпускного.
Из чего изготавливают клапана
Седла клапанов изготавливаются из чугуна или стали, затем запрессовываются в головку блока цилиндров. Клапаны во время работы двигателя подвержены значительным механическим и тепловым нагрузкам, поэтому необходимо подбирать специальный сплав для изготовления детали.
Клапана для высокофорсированных двигателей должны хорошо охлаждаться, поэтому в них применяют клапаны с полым стержнем, с наполнением натрия внутри. При достижении рабочей температуры натрий плавится и начинает перетекать от тарелки клапана, к стержню равномерно распределяя тепло. Для равномерности теплопередачи и уменьшения нагара на фасках клапана применяют механизмы вращения клапана.
Виды ГРМ
Существуют следующие виды газораспределительных механизмов: нижнеклапанный ГРМ и верхнеклапанный ГРМ. Сегодня, на современных автомобилях, используются только верхнеклапанные ГРМ, когда клапаны располагаются в головке цилиндров.
Клапан удерживается в закрытом состоянии с помощью клапанной пружины, а открывается при нажатии на стержень клапана. Клапанные пружины должны иметь определенную жесткость (оптимальную, чтобы не увеличивать ударную нагрузку на седло клапана) для гарантированного закрытия клапана во время работы.
Чтобы снизить потери на трение в ГРМ применяют ролики, которые установлены на рычагах и толкателях привода клапанов. Применение роликов в клапанном механизме заменяет трение скольжения, на трение качение, что значительно уменьшает потери на привод клапанов.
При открытии впускного клапана проходит топливно-воздушная смесь (или воздух) наполняя цилиндр двигателя. Чем больше площадь проходного сечения, тем полнее заполнится цилиндр, что приводит к повышению выходных показателей цилиндра при рабочем ходе. Для улучшения очистки цилиндров от продуктов сгорания увеличивают диаметр тарелки выпускного клапана. Правда, размеры тарелок клапанов ограничены размером камеры сгорания, выполненной в головке цилиндров. Многое также зависит от регулировки клапанов.
Применение четырех клапанов на цилиндр началось еще в 1912 г. на двигателе автомобиля PeugeotGranPrix. Широкое использование такой схемы в серийном производстве легковых автомобилях началось только в конце 1970-х гг. Сегодня ГРМ с четырьмя клапанами на цилиндр стали практически стандартными для двигателей европейских и японских легковых автомобилей.
Mercedes выпускает двигатели, которые имеют по три клапана на цилиндр, два впускных и один выпускной, с двумя свечами зажигания (по одной с каждой стороны от выпускного клапана).
Существует практика использования даже 5 клапанов на цилиндр (3 впускных и 2 выпускных). Такой технологией практикует автомобильная группа Volksvagen-Audi, но при этом значительно усложняется привод клапанного механизма.
внутреннего сгорания | HowStuffWorks
Принцип, лежащий в основе любого поршневого двигателя внутреннего сгорания: если вы поместите небольшое количество топлива с высокой удельной энергией (например, бензина) в небольшое замкнутое пространство и подожжете его, высвобождается невероятное количество энергии в виде расширяющегося газа. ,
Вы можете использовать эту энергию для интересных целей. Например, если вы можете создать цикл, который позволяет запускать взрывы, подобные этому, сотни раз в минуту, и если вы можете использовать эту энергию полезным способом, то у вас есть ядро автомобильного двигателя.
Почти каждый автомобиль с бензиновым двигателем использует четырехтактный цикл сгорания для преобразования бензина в движение. Четырехтактный подход также известен как цикл Отто , в честь Николая Отто, который изобрел его в 1867 году. Четыре удара показаны на Рис. 1 . Они:
- Ход впуска
- Ход сжатия
- Ход горения
- Ход выпуска
Этот контент не совместим с этим устройством.
Рисунок 1
Поршень соединен с коленчатым валом с помощью шатуна . Поскольку коленчатый вал вращается, он имеет эффект «сброса пушки». Вот что происходит, когда двигатель проходит свой цикл:
- Поршень запускается сверху, впускной клапан открывается, и поршень движется вниз, чтобы двигатель мог впустить цилиндр, наполненный воздухом и бензином. Это , ход впуска .Чтобы это работало, в воздух нужно подмешать только крошечную каплю бензина. (Часть 1 рисунка)
- Затем поршень перемещается назад, чтобы сжать эту топливно-воздушную смесь. Сжатие делает взрыв более мощным. (Часть 2 рисунка)
- Когда поршень достигает максимума своего хода, свеча зажигания зажигает искру, чтобы зажечь бензин. Заряд бензина в цилиндре взрывается , приводя поршень в действие. (Часть 3 рисунка)
- Как только поршень достигнет нижнего положения своего хода, выпускной клапан открывается, и выпуск выпускается из цилиндра, чтобы выйти из выхлопной трубы.(Часть 4 рисунка)
Теперь двигатель готов к следующему циклу, поэтому он потребляет еще один заряд воздуха и газа.
В двигателе линейное движение поршней преобразуется во вращательное движение коленчатым валом. Вращательное движение приятно, потому что мы все равно планируем вращать (вращать) колеса автомобиля.
Теперь давайте рассмотрим все части, которые работают вместе, чтобы это произошло, начиная с цилиндров.
,Тест— Как работает двигатель внутреннего сгорания
Какой из следующих компонентов находится в головке блока цилиндров?
клапанные возвратные пружины, клапаны и поршень
распределительный вал, ведро клапана и шатун
клапаны, свечи зажигания и инжекторы
Продолжить >>
Сколько оборотов коленчатого вала совершается за полный цикл двигателя (4 удары льда)?
\ [540 ^ {\ circ} \]
\ [720 ^ {\ circ} \]
\ [360 ^ {\ circ} \]
Продолжить >>
Какой правильный порядок ударов двигателя?
1.впуск 2. выхлоп 3. сжатие 4. мощность
1. впуск 2. сжатие 3. мощность 4. выхлоп
1. мощность 2. впуск 3. сжатие 4. выхлоп
Продолжить >>
Какой тип энергии трансформация выполняется в ДВС?
от термического к механическому
от гидравлического к механическому
от механического к термическому
Продолжить >>
Когда возникает искра (для бензинового двигателя)?
К концу такта сжатия, но до того, как поршень достигнет ВМТ
Точно, когда поршень достигнет ВМТ
После того, как поршень пройдет ВМТ
Продолжить >>
Что означают ВМТ и BDC?
Наконечник Мертвая точка и базовая мертвая точка
Верхняя мертвая зона и нижняя мертвая зона
Верхняя мертвая точка и нижняя мертвая точка
Продолжить >>
Сколько ходов поршня в полном цикле двигателя (в современном легковой автомобиль)?
Продолжить >>
Во время какого хода двигатель потребляет энергию?
впуск, сжатие и выпуск
выпуск, впуск и мощность
сжатие, мощность и выпуск
Продолжить >>
Двигатель внутреннего сгорания
Двигатель внутреннего сгорания
Двигатель внутреннего сжатия
Продолжить >>
Где создается камера сгорания?
между шатуном и поршнем
между выпускным клапаном и впускным клапаном
между поршнем, головкой цилиндров и блоком цилиндров
Продолжить >> Тест
— Как работает двигатель внутреннего сгоранияПрочитайте статью еще раз!
Поделитесь своими результатами:
Facebook Twitter Google+ ВКонтакте Викторина — как работает двигатель внутреннего сгоранияБронзовая медаль!
Поделитесь своими результатами:
Facebook Twitter Google+ VK Quiz — Как работает двигатель внутреннего сгоранияСеребряная медаль !
Поделитесь своими результатами:
Facebook Twitter Google+ ВКонтакте Викторина — Как работает двигатель внутреннего сгоранияЗолотая медаль !
Поделитесь своими результатами:
Facebook Twitter Google+ ВКонтактеПожалуйста, поделитесь этой викториной для просмотра своих результатов.
FacebookИГРАТЬ СНОВА!
Двигатель внутреннего сгорания — Energy Education
Двигатели внутреннего сгорания (ДВС) являются наиболее распространенной формой тепловых двигателей, так как они используются в транспортных средствах, лодках, кораблях, самолетах и поездах. Они названы так, потому что топливо зажигается, чтобы сделать работу в двигателе. [1] Та же смесь топлива и воздуха затем выбрасывается в качестве выхлопных газов. Это можно сделать с помощью поршня (называемого поршневым двигателем) или с помощью турбины.
Закон идеального газа
Тепловые двигатели внутреннего сгорания работают по принципу закона идеального газа: [math] pV = nRT [/ math].Повышение температуры газа увеличивает давление, которое заставляет газ хотеть расширяться. [1] Двигатель внутреннего сгорания имеет камеру, в которую добавлено топливо, которое воспламеняется, чтобы повысить температуру газа.
Когда в систему добавляется тепло, это заставляет газ внутри расширяться. В поршневом двигателе это вызывает подъем поршня (см. Рисунок 2), а в газовой турбине горячий воздух нагнетается в камеру турбины, поворачивая турбину (Рисунок 1). Прикрепляя поршень или турбину к распределительному валу, двигатель способен преобразовывать часть подводимой энергии в систему в полезную работу. [2] Для сжатия поршня в двигателе с прерывистым сгоранием двигатель выпускает газ. Затем используется радиатор, чтобы система работала при постоянной температуре. Газовая турбина, которая использует непрерывное сгорание, просто истощает свой газ непрерывно, а не в цикле.
Поршни против турбин
Рис. 1. Схема газотурбинного двигателя. [3]Двигатель, в котором используется поршень , , называется двигателем внутреннего сгорания с прерывистым движением , тогда как двигатель, в котором используется турбина , , называется двигателем сгорания непрерывного действия, .Разница в механике очевидна из-за названий, но разница в использовании менее очевидна.
Поршневой двигатель чрезвычайно чувствителен по сравнению с турбиной, а также более экономичен при низких выходах. Это делает их идеальными для использования в транспортных средствах, так как они также запускаются быстрее. Наоборот, турбина имеет превосходное отношение мощности к весу по сравнению с поршневым двигателем, и ее конструкция более надежна для непрерывной высокой производительности. Турбина также работает лучше, чем безнаддувный поршневой двигатель на больших высотах и при низких температурах.Его легкий вес, надежность и высокая высотная способность делают турбины предпочтительным двигателем для самолетов. Турбины также широко используются на электростанциях для производства электроэнергии.
Четырехтактный двигатель
- главная страница
Хотя существует много видов двигателей внутреннего сгорания, четырехтактный поршневой двигатель (рис. 2) является одним из наиболее распространенных.Он используется в различных автомобилях (которые специально используют бензин в качестве топлива), таких как автомобили, грузовики и некоторые мотоциклы. Четырехтактный двигатель обеспечивает один рабочий ход на каждые два цикла поршня. Справа анимация четырехтактного двигателя и дальнейшее объяснение процесса ниже.
- Топливо впрыскивается в камеру.
- Топливо воспламеняется (в дизельном двигателе это происходит иначе, чем в бензиновом двигателе).
- Этот огонь толкает поршень, который является полезным движением.
- Отходы химикатов, по объему (или массе) это в основном водяной пар и углекислый газ. Там могут быть загрязнители, а также угарный газ от неполного сгорания.
Двухтактный двигатель
- главная страница
Как видно из названия, система требует только двух поршневых движений для выработки энергии. Основным дифференцирующим фактором, который позволяет двухтактному двигателю функционировать только с двумя поршневыми движениями, является то, что выпуск и впуск газа происходят одновременно, [6] , как видно на рисунке 3.Сам поршень используется в качестве клапана системы вместе с коленчатым валом для направления потока газов. Кроме того, из-за его частого контакта с движущимися компонентами, топливо смешивается с маслом для добавления смазки, что позволяет плавно перемещаться. В целом двухтактный двигатель содержит два процесса:
- Добавляется топливовоздушная смесь и поршень движется вверх (сжатие). Впускной канал открывается из-за положения поршня, и топливовоздушная смесь поступает в камеру хранения.Свеча зажигания зажигает сжатое топливо и начинает рабочий ход.
- Нагретый газ оказывает высокое давление на поршень, поршень движется вниз (расширение), отработанное тепло уходит.
Роторный (Ванкель) двигатель
- главная страница
В двигателе этого типа имеется ротор (внутренний круг, обозначенный буквой «B» на рис. 4), который содержится в корпусе овальной формы.Он выполняет общие четырехтактные этапы цикла (впуск, сжатие, зажигание, выпуск), однако эти этапы выполняются 3 раза за один оборот ротора , создавая три рабочих удара за оборот .
для дальнейшего чтения
Список литературы
- ↑ 1,0 1,1 Р. Д. Найт, «Тепловые двигатели и холодильники» в Физика для ученых и инженеров: стратегический подход, 3-е изд. Сан-Франциско, США: Pearson Addison-Wesley, 2008, ch.19, с.2, с.530
- ↑ Р. А. Хинрикс и М. Кляйнбах, «Тепло и работа», в Энергия: ее использование и окружающая среда , 5-е изд. Торонто, Онтарио Канада: Брукс / Коул, 2013, ч.4, с.93-122
- ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/4/4c/Jet_engine.svg
- ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/d/dc/4StrokeEngine_Ortho_3D_Small.gif
- File «Файл: Двухтактный двигатель.gif — Wikimedia Commons «, Commons.wikimedia.org, 2018. [Online]. Доступно: https://commons.wikimedia.org/wiki/File:Two-Stroke_Engine.gif.[Accesscessed: 17 мая-2018].
- ↑ C. Ву, Термодинамика и тепловые циклы. Нью-Йорк: Nova Science Publishers, 2007
- ↑ Wikimedia Commons [Online], доступно: http://upload.wikimedia.org/wikipedia/commons/f/fc/Wankel_Cycle_anim_en.gif
Страница не найдена | MIT
Перейти к содержанию ↓- образование
- Исследовательская работа
- новаторство
- Прием + помощь
- Студенческая жизнь
- Новости
- Alumni
- О MIT
- Больше ↓
- Прием + помощь
- Студенческая жизнь
- Новости
- Alumni
- О MIT
Попробуйте поискать что-нибудь еще! Что вы ищете? Посмотреть больше результатов
Предложения или отзывы?
,