Механизм изменения фаз газораспределения – :

Содержание

Изменение фаз газораспределения — Энциклопедия журнала «За рулем»

Выбор фаз газораспределения — один из инженерных компромиссов. Для того, чтобы получить максимальную мощность при высокой частоте вращения коленчатого вала, необходимо обеспечить существенное перекрытие клапанов в районе ВМТ, потому что мощность в наибольшей степени зависит от максимально возможного количества горючей смеси, попадающей в цилиндр за короткое время, но чем выше частота вращения коленчатого вала, тем меньше отводимое на это время. С другой стороны, при малых оборотах, когда не требуется максимальная мощность, лучше, когда угол перекрытия близок к нулю. Небольшое или нулевое перекрытие клапанов заставляет двигатель более чутко реагировать на изменение положения педали «газа», что очень важно при движении автомобиля в транспортном потоке.

Рис. Схема работы механизма изменения фаз газораспределения: α° — диапазон изменения фаз газораспределения

В начале 1990-х гг. появились двигатели с автоматическими устройствами для изменения фаз газораспределения. Обычно в приводном шкиве (или звездочке) распределительного вала впускных клапанов размещается специальное устройство, которое имеет гидравлический привод от смазочной системы двигателя и может поворачивать распределительный вал относительно приводной звездочки (шкива) и, следовательно, относительно коленчатого вала.

При этом впускные клапаны могли открываться и закрываться раньше или позже. Изменение фаз открытия и закрытия впускных клапанов оказывает больший эффект, чем изменение аналогичных фаз выпускных клапанов. Первые устройства обеспечивали простое переключение в два положения, обеспечивая один угол перекрытия для малых оборотов двигателя, а другой — для высоких оборотов и нагрузки. Этого было достаточно для того, чтобы обеспечить хороший пуск, достаточный крутящий момент при сравнительно малых оборотах и нагрузках двигателя и возможность достижения большой мощности при высоких оборотах. Постепенно были разработаны устройства, которые могли изменять фазы газораспределения во всем диапазоне оборотов двигателя, а некоторые производители начали изменять фазы открытия-закрытия выпускных клапанов, в основном для того, чтобы снизить выбросы вредных веществ. Сегодня изменяемые фазы газораспределения

VIVT (Variable Inlet Valve Timing) стали общепринятыми и появился целый ряд двигателей, оборудованных системой изменения фаз газораспределения во всем диапазоне.
В некоторых ГРМ имеется возможность отключать один из впускных клапанов в каждом цилиндре. Такое устройство используется компанией Honda в высокофорсированном двигателе CVT. Здесь не обеспечивается полное отключение клапана, а происходит его открытие на небольшую величину в целях исключения возможности его прихвата к седлу.

Альтернативной разработкой, впервые использовавшейся фирмой Toyota, а сейчас широко применяемой в двигателях с двумя впускными клапанами на цилиндр, стало простое закрытие одного из впускных патрубков с помощью автоматически управляемой заслонки. Обычно два впускных патрубка имеют разную форму: один, который всегда остается открытым, имеет форму, которая обеспечивает турбулизацию горючей смеси в камере сгорания, чтобы создать хорошо перемешанный поток, необходимый работе двигателя на малых оборотах, и другой, короткий прямой патрубок, открывающийся при высоких оборотах и нагрузке обеспечивает максимально возможное наполнение цилиндров. Двигатели, имеющие устройства такого типа, получили название

двигателей с изменяемой длиной впускных трубопроводов. Более сложные системы могут постоянно и плавно изменять длину впускных трубопроводов.

Перспективными конструкциями ГРМ являются механизмы без распределительного вала, в которых клапаны управляются индивидуальными устройствами с помощью электромагнитных соленоидов. Использование такой техники дает возможность индивидуального контроля за работой каждого клапана. При этом можно не только оптимально управлять временем открытия каждого клапана и обеспечивать получение максимальных мощности или крутящего момента, но и отключать некоторые цилиндры полностью или переводить их на малую нагрузку для более эффективной работы остальных цилиндров. Можно переводить двигатель в режим компрессора, разгружая, таким образом, тормоза, и, возможно, запасая часть энергии при спуске с возвышенности (рекуперация). Но главное преимущество этой системы заключается в том, что время и степень открытия клапанов в любой момент времени могут быть оптимальными для работы двигателя при данных условиях движения.

Сегодня уже созданы такие экспериментальные системы с хорошей эффективностью действия (уменьшено потребление топлива до 20 %). Кроме того, конструкция самого двигателя может быть упрощена, потому что обычный привод — цепи, зубчатые ремни, механизм натяжения, шестерни и кулачковые валы — становятся ненужными.
Препятствием на пути к широкому применению таких «бескулачковых» клапанных механизмов является большое потребление электроэнергии и большие габариты при водных устройств, получаемые при существующем 12-вольтовом электрооборудовании. Эти проблемы значительно уменьшаются в случае повышения рабочего напряжения на борту в несколько раз.

wiki.zr.ru

Системы изменения фаз газораспределения | Газораспределительный механизм (ГРМ)

В обычном двигателе фазы газораспределения определяются формой кулачка распределительного вала и остаются неизменными во всех диапазонах работы двигателя. Однако постоянные фазы газораспределения не позволяют создавать оптимальные процессы смесеобразования.

Чтобы варьировать фазами газораспределения необходимо изменять положение распределительного вала относительно коленчатого.

Холостой ход. На этом режиме работы следует устанавливать такой угол поворота распределительного вала, который соответствует самому позднему началу открытия впускных клапанов (максимальный угол задержки, при минимальном перекрытии клапанов). Этим обеспечивается минимальное поступление отработавших газов во впускной трубопровод, что улучшает стабильность работы двигателя и снижение расхода топлива.

Режим низких нагрузок. Перекрытие клапанов уменьшается для минимизации поступления отработавших газов во впускной трубопровод, что улучшает стабильность работы двигателя.

Режим средних нагрузок. Перекрытие клапанов увеличивается, что позволяет снизить «насосные» потери, при этом часть отработавших газов поступает во впускной трубопровод, что позволяет снизить температуру рабочего цикла и вследствие этого содержание оксидов азота в отработавших газах.

Режим высоких нагрузок при низкой частоте вращения коленчатого вала. На этом режиме обеспечивается раннее закрытие впускных клапанов, что обеспечивает увеличение крутящего момента. Небольшое или нулевое перекрытие клапанов заставляет двигатель бо­лее четко реагировать на изменение положения дроссельной заслонки, что, например, очень важно в транспортном потоке.

Режим высоких нагрузок при высокой частоте вращения коленчатого вала. Для того чтобы получить максимальную мощность при высокой частоте вращения коленчатого вала, необходимо перекры­тие клапанов около ВМТ с большим углом поворота коленчатого вала. Это связано с тем, что мощность в наиболь­шей степени зависит от максимально возможного количества топливно-воздушной смеси, попадающей в цилиндр за ко­роткое время, но, чем выше частота вращения, тем меньше время, отводимое на заполнение цилиндра.

Главными задачами системы изменения фаз газораспределения являются:

  • улучшение качества работы двигателя на холостом ходу
  • снижение расхода топлива
  • оптимизация крутящего момента в области средних и высоких частот вращения коленчатого вала
  • увеличение внутренней рециркуляции отработавших газов с сопутствующим ей снижением температуры газов при сгорании и уменьшением выброса оксидов азота
  • увеличение мощности в области высоких частот вращения коленчатого вала

В 90-е годы все больше и больше двигателей стали обору­доваться системами изменения фаз газораспределения таким образом, что угол перекрытия клапанов мог изменяться в со­ответствии с режимами работы двигателя. В этих системах, применяемых на двигателях DOHC (с двумя распределительными валами), монтировалось специальное устройство в привод­ную шестерню распределительного вала впускных клапанов. Такие устройства называют изменяемыми фазами газораспределения VIVT (Variable inlet valve timing).

Впервые изменение фаз газораспределения было применено на автомобилях Альфа Ромео в 1983 году. После этого такие системы стали применяться на автомобилях Мерседес, Ниссан, БМВ, Порше и др. Принцип действия привода поворота распределительного вала, для изменения фаз газораспределения, может быть механический, гидравлический, электрический и пневматический.

Как правило, изменение фаз газораспределения применяется в двигателях с двумя распределительными валами, один из которых служит для открытия впускных клапанов, другой – выпускных. Широкое распространение находят системы с изменение натяжения цепи по принципу гидравлического кольца. Изменение фаз газораспределения при таком виде производится только для впускных клапанов. Распределительный вал для открытия выпускных клапанов приводится во вращение от коленчатого вала двигателя через шестерню или звездочку ременной или цепной передачи 1, а распределительный вал для открытия впускных клапанов через цепную передачу от звездочки установленной на распределительном вале привода выпускных клапанов 2.

Рис. Привод системы с изменение натяжения цепи по принципу гидравлического кольца:
1 – привод распределительного вала для выпускных клапанов; 2 – звездочка распределительного вала для привода выпускных клапанов; 3 – звездочка распределительного вала для привода впускных клапанов

В систему изменения фаз газораспределения масло поступает через отверстие в головке блока. Изменение потоков масла осуществляется управляющим клапаном 1, передвигающим золотник 2, по сигналам блока управления двигателем.

Рис. Устройство для изменения фаз газораспределения по натяжению цепи:
1 – управляющий клапан; 2 – золотник; 3 – звездочка привода впускных клапанов; 4,9 – натяжитель цепи; 5 – толкатель натяжителя цепи; 6 – полость для масла; 7 – звездочка привода выпускных клапанов; 8 – фиксатор стартовый; 10 – управляющий поршень

Для изменения фаз газораспределения впускных клапанов служит гидравлический цилиндр с поршнем 10. При подаче масла в цилиндр по сигналу блока управления поршень, выдвигаясь, воздействует на натяжитель цепи. Одна сторона цепи начинает удлиняться, а противоположная укорачиваться, при этом происходит поворот звездочки для привода впускных клапанов, не связанной цепной передачей с коленчатым валом. Управление подачей масла осуществляется с помощью клапана 1, управляемого электронным блоком управления. Указанная система имеет дискретный двухпозиционный диапазон изменения фаз газораспределения, так как давление масла, развиваемое штатным масляным насосом, изменяется в зависимости от частоты вращения коленчатого вала, и может служить только для движения поршня в верхнее или нижнее положение. Такой принцип изменения фаз газораспределения имеют серийные двигатели фирм Ауди, Порше и Фольксваген.

В зависимости от сигнала блока управления масло направляется в каналы А или В. При неработающем двигателе изменения натяжения цепи не происходит, ввиду отсутствия давления масла на управляющий поршень 6. Стартовый фиксатор 4 при этом входит в паз канавки управляющего поршня и стопорит его, исключая колебания цепи. Распределительный вал в данном случае устанавливается на более позднее открытие клапанов, соответствующее увеличению мощности двигателя.

Рис. Схема подачи масла в устройство изменения фаз газораспределения:
а – позднее открытие клапанов; б – раннее открытие клапанов; 1 – возврат масла; 2 – подвод масла; 3 – продувочное и масляное отверстие; 4 – фиксатор стартовый; 5 – полость для масла; 6 – управляющий поршень; 7 – управляющие каналы

После запуска двигателя, когда давление масла начинает возрастать, оно воздействует на плоскость стартового фиксатора, преодолевая натяжение его пружины. Стартовый фиксатор освобождает управляющий поршень и он, передвигаясь, натягивает цепь, устанавливая фазы газораспределения в положение раньше или позже, соответствующее увеличению крутящего момента или мощности двигателя. При открытом управляющем канале А, масло воздействует на поршень сверху и он натягивает цепь вниз, устанавливая открытие клапанов в положение соответствующее большей мощности (позднее открытие клапанов).

При достижении частоты вращения коленчатого вала 1300 об/мин открывается канал В и масло воздействует на поршень снизу и он натягивает цепь вверх, устанавливая открытие клапанов в положение соответствующее большему крутящему моменту (раннее открытие клапанов).

Полость для масла служит для наполнения без давления плунжера натяжного устройства цепи нагнетательной полости при запуске двигателя. Это сказывается также положительно на шумовых свойствах при запуске двигателя. Отверстие 3 сверху полости для масла служит для вентиляции и смазки цепи.

В связи с все более повышающимися требованиями к уменьшению выбросов токсичных веществ с отработавшими газами в настоящее время разработаны устройства, которые могут из­менять фазы газораспределения во всем диапазоне возмож­ной частоты вращения коленчатого вала двигателя, как для впускных так и для выпускных клапанов, что позволяет регулировать количество остаточных отработавших газов в камере сгорания. Бесступенчатое изменение фаз газораспределения позволяет также улучшить работу двигателя на холостом ходу и полных нагрузках, обеспечивая повышение крутящего момента и мощности. Для увеличения давления на поршень может применяться отдельный масляный насос. Применения высокого давления позволяет устанавливать более точное положение распределительного вала в зависимости от нагрузки двигателя.

Необходимый угол изменения фаз газораспределения выбирается в зависимости от нагрузки и частоты вращения коленчатого вала по полю параметрических характеристик. Отклонение необходимого угла поворота распределительного вала от истинного угла рассчитывается по алгоритму блока управления, согласно выданному значению которого, изменяется ток в клапане управления давлением масла. Клапан управления в свою очередь изменяет давление масла на исполнительный механизм, позволяющий поворачивать распределительный вал. Частота вращения коленчатого вала определяется индуктивными датчиками, установленными на коленчатом или распределительном валах, считывающими частоту вращения по зубчатым колесам, установленным на валах.

Распределительный вал привода впускных клапанов может поворачиваться и с помощью поршня.

Рис. Схема устройства изменения фаз газораспределения:
1 – головка блока; 2 – распределительный вал; 3 – звездочка привода распределительного вала; 4 – поршень; 5 – электромагнит; 6 – якорь-клапан; 7 – косозубые шлицы; а – поздние фазы; б – ранние фазы; в – соединение деталей устройства косозубыми шлицами

Устройство устанавливается на переднем конце распределительного вала, управляющего впускными клапанами.

При низких частотах вращения коленчатого вала обеспечивается позднее открытие впускных клапанов и минимальное перекрытие клапанов, что позволяет добиться минимально воз­можного обратного выброса отработавших газов во впускной канал, увели­чения крутящего момента и снижения расхода топлива. В этом положении якоря-клапана его вертикальный канал соединен с пространством с правой стороны поршня, так как электромагнит 5 устройства выключен. Поршень 4 отжат влево под воздействием пружины и давления масла, поступающего через якорь-клапан 6.

На высоких частотах по команде электронного блока управления двигате­лем включается электромагнит 5, сердечник кото­рого соединяет вертикальный канал с пространством с левой стороны поршня. Масло из центрального отверстия распределительного вала поступает под поршень 4, имеющий внутренние и наружные косые шлицы. Ответные шлицы име­ет конец вала и ступица звездочки цепи 3. Двигаясь в направ­лении «назад», поршень за счет шлицев обеспечивает сдвиг звездочки в окружном направлении относительно вала на 12…15° в сторону более раннего впуска. Это позволяет увели­чить крутящий момент двигателя на высоких частотах враще­ния. Подобные механизмы устанавлива­ются на двигателях (MERCEDES-BENZ, ALFA ROMEO и др.) с двумя верхними распределительными валами.

В конструкции двигателей БМВ применены принципы работы обоих вышеописанных способов изменения фаз газораспределения.

Рис. Бесступенчатое изменение фаз газораспределения фирмы БМВ:
1 – управляющий поршень; 2 – косозубая шестерня; 3 – прямозубая шестерня; 4 – натяжитель цепи

Косозубая шестерня 2 может перемещаться в продольном направлении при воздействии масла на управляющий поршень. Перемещаясь, она сдвигает в окружном направлении звездочку привода распределительного вала. Применение такой конструкции позволяет изменять фазы газораспределения не только для впускных (до 60°), но и для выпускных клапанов (до 46°).

Альтернативной вышеизложенным системам является более дешевая конструкция системы изменения фаз газораспределения, действующая с использованием гидроуправляемой муфтой.

Рис. Схема системы непрерывного изменения фаз газораспределения с гидроуправляемой муфтой:
1 – масляный насос; 2 –электронный блок управления двигателем; 3 – датчик Холла для распределительного вала привода выпускных клапанов; 4 – датчик Холла для распределительного вала привода впускных клапанов; 5 – распределительный вал для впускных клапанов; 6 – распределительный вал для выпускных клапанов; 7 – электрогидравлический распределитель распределительного вала для впускных клапанов; 8 – электрогидравлический распределитель распределительного вала для выпускных клапанов; 9 – рабочие полости; 10 – ротор; 11 – гидроуправляемая муфта; а – общая схема; б – поворот ротора относительно корпуса вправо; в – поворот ротора относительно корпуса влево

Рис. Общий вид системы непрерывного изменения фаз газораспределения с использованием лопастного гидравлического двигателя:

Привод состоит из двух частей – внутренней с закручивающимся ротором 10, связанной с распределительным валом и внешней 11, приводимой цепью или ременной передачей от коленчатого вала. Связь между обеими частями осуществляется с помощью масляной полости, в которой выступы ротора или лопасти поворачивают ротор влево или вправо. Одновременно с ротором поворачивается распределительный вал, на который навинчен ротор.

Давление масла в рабочей камере зависит от частоты вращения коленчатого вала, нагрузки и температуры двигателя. Положение распределительного вала относительно коленчатого вала во время работы двигателя может быть как переменным, так и постоянным (фиксированным). Питание рабочей полости осуществляется от системы смазки двигателя.

Жесткая связь между приводной звездочкой и ротором, связанным с распределительным валом, существует только во время запуска двигателя. Некоторые производители, например Ауди, при запуске двигателя блокируют ротор при запуске двигателя специальным плунжером, управляемым гидравлической системой, что позволяет установить распределительный вал привода впускных клапанов в положении наиболее благоприятного впуска топливовоздушной смеси. При наполнении масляной полости маслом, внутренняя и внешняя части привода разъединяются. При самом большом давлении масла распределительные валы поворачиваются в положение соответствующее наиболее позднему впуску горючей смеси и наиболее раннему выпуску отработавших газов.

Управляющий электрогидравлический распределитель 8 состоит из гидравлической части и электромагнита. Клапан установлен на корпусе распределительных валов и подключен к системе смазки двигателя. В цилиндре распределителя установлен золотник, перемещение которого приводит к изменению потоков масла. Управление положением золотника управляющего распределителя происходит по сигналу электронного блока управления 2. В зависимости от положения распределителя масло подается к гидроуправляемой муфте через один или через оба канала. Подключением того или иного канала производится перестановка ротора в положение «рано» или «поздно» или же он удерживается в определенном фиксированном положении.

Исходное положение золотника определяется натяжением возвратной пружины.

Диапазон перестановки распределительного вала составляет 40° по углу поворота коленчатого вала или 20° по углу поворота распределительных валов.

В настоящее время системы непрерывного изменения фаз газораспределения применяются на двигателях Ауди, Фольксваген, Тойота, Рено, Вольво и др.

ustroistvo-avtomobilya.ru

Регулирование фаз газораспределения ДВС

Эко ДВС

Бюро автомобильных технологий США (VTO), входящее в Министерство энергетики США (DOE), совместно с другими

Эко ДВС

Североамериканское отделение немецкой компании Schaeffler убедительно доказывает, что возможности повышения топливной экономичности и снижения

Эко ДВС

Чтобы отсрочить закат эры ДВС, производители всеми силами пытаются его усовершенствовать. Причем иногда применяют

Эко ДВС

Инженеры Toyota разработали способ применения цикла Аткинсона, используемого в тойотовских гибридах с 1997 года,

Эко ДВС

Уменьшение расхода топлива – один из путей снижения вредных выбросов автомобилей. Уменьшить расход помогают

Эко ДВС

Система управления цилиндрами предназначена для отключения части цилиндров при работе двигателя на небольших нагрузках.

avtonov.info

Системы изменения фаз ГРМ

Общественная организация НАПА предоставляет техническую информацию по современным системам и узлам автомобиля.

 

Приведенная ниже информация носит исключительно ознакомительный характер и будет актуальной для всех работников автомобильной отрасли.

Для удобного использования материалы структурированы по категориям на сайте НАПА. Список тем будет постепенно пополняться.


 

Постоянно растущие требования к современному автомобилю заставляют производителей авто разрабатывать и улучшать различные конструктивные элементы, повышать качество узлов и компонентов, создавать более современные узлы.

Двигатели современных автомобилей также претерпели изменения. Современные двигатели должны быть достаточно мощными с высоким крутящим моментом, экономичным расходом топлива и низким уровнем выбросов вредных веществ в отработавших газах.

Наибольшее распространение получили два типа ГРМ двигателей. Первый – это двигатель, у которого газораспределительный механизм (ГРМ) имеет один распределительный вал и клапана, расположенные в головке блока цилиндров (ГБЦ). Он обозначается SOHC (Single OverHead Camshaft). И второй – это двигатель c двумя распределительными валами, также расположенными в ГБЦ (DOHCDouble OverHead Camshaft).

При этом существуют две серьёзно различающиеся разновидности этих механизмов, основное отличие заключается в количестве клапанов. DOHC с четырьмя клапанами на цилиндр, т.е. два впускных клапана и два выпускных. Такое количество клапанов повышает качество и скорость наполнения цилиндров воздушно-топливной смесью. Особенно это актуально, когда двигатель работает под нагрузкой или на повышенных оборотах.

SOHC

DOHC

Если при неизменном составе топливно-воздушной смеси повышать частоту оборотов коленвала ДВС (двигатель внутреннего сгорания), сохраняя постоянный угол опережения искрообразования, то будет наблюдаться все более позднее развитие процесса сгорания. И как следствие: повышение расхода топлива, снижение мощности двигателя и увеличение выброса в атмосферу с отработавшими газами окиси углерода (СО) и не полностью сгоревших углеводородов СхНу.

Одним из способов сохранения технических показателей двигателей является применение газораспределительной системы с изменяемыми фазами. Наиболее важным для высокоскоростных бензиновых двигателей серийного производства считается момент закрытия впускного клапана. Поэтому постоянно ведутся работы, направленные на усовершенствование конструкций системы газораспределения с изменяемыми фазами и увеличение диапазона их применения на различных двигателях.

В данном пособии мы хотели бы достаточно подробно описать конструкции и принцип действия новых систем изменения фаз газораспределения.

Каждый производитель разработал свою конструкцию системы, и назвал по-своему.

Механизм газораспределения с изменяемыми фазами – это система, которая изменяет время открытия впускных клапанов, чтобы достичь оптимального момента их открытия.

Некоторые производители применили конструкцию, которая меняет время открытия и закрытия впускных клапанов, путем изменения положение кулачков распредвала относительно шкива. Такая система изменения фаз газораспределения применяется на автомобилях марки Volkswagen, Alfa Romeo, Peugeot Citroën и др. В частности на двигателях V6 рабочим объемом 2,8 л и V5 рабочим объемом 2,3 л. В дальнейшем ее предполагается использовать на других двигателях, в частности на двигателях W8 и W12.

Непосредственно на распределительный вал устанавливается или интегрируется в шкив гидроуправляемая муфта, которая по сигналу электронного блока управления двигателем через систему масляных каналов проворачивает распределительный вал.

Некоторые производители аналогичную муфту устанавливают на выпускном распределительном вале. Обе муфты являются гидравлическими устройствами и подключены через корпус механизма газораспределения к системе смазки двигателя.

Технология VVT-i

Технология VTEC

 

VVT-i (Variable Valve Timing with intelligence) — система газораспределения с изменяемыми фазами от Toyota. Является разновидностью технологии VVT и CVVT. Включает в себя, по мере развития, технологии VVT-i, VVTL-i, Dual VVT-i, VVT-iE и Valvematic.

Технология VVT-i была впервые выпущена на рынок в 1996 году и заменила собой первое поколение VVT (1991 год, двигатель 4A-GE).

Принцип VVT-i

В зависимости от условия работы двигателя, система VVT-i плавно изменять фазы газораспределения. Это достигается путем поворота распределительного вала впускных клапанов относительно вала выпускных в диапазоне 20-30° (по углу поворота коленвала). В результате изменяется момент начала открытия впускных клапанов и величина времени «перекрытия» (то есть времени, когда выпускной клапан еще не закрыт, а впускной — уже открыт).

Основным элементом устройства является муфта VVT-i интегрированная в шкив, который выполняет роль корпуса муфты. Ротор муфты находится внутри и непосредственно соединен с распределительным валом.

Изначально фазы впускных клапанов установлены таким образом, чтобы добиться максимального крутящего момента при низкой частоте вращения коленвала. После того, как обороты значительно увеличиваются в корпусе муфты сделано несколько полостей, к которым по каналам подводится моторное масло из системы смазки.

Возросшее давление масла открывает клапан VVT-i, заполняя ту или иную полость, обеспечивает поворот ротора относительно корпуса и, соответственно, смещение распределительного вала на определенный угол.

Кулачки имеют определенную форму и при повороте коленчатого вала открывают впускные клапана немного раньше, а закрывают позже, что благоприятно сказывается на увеличении мощности и крутящего момента на высоких оборотах.

 

 

VTEC (Variable valve Timing and lift Electronic Control) система динамического изменения фаз газораспределения, фирменная разработка компании Honda. Вначале система VTEC была успешно реализована в двигателях, применяемых в спортивных автомобилях, а затем, после признания и успеха данная система использована на двигателях гражданских автомобилей.

Особенность системы VTEC заключается в том, что возможно конструировать компактные, но очень мощные (в соотношении объем/л.с.) двигатели без применения дополнительных устройств (турбин, компрессоров), при этом технология производства подобных двигателей остается недорогой, а автомобиль с установленной на нем системой VTEC не испытывает проблем, характерных для турбированных автомобилей.

Принцип работы VTEC, в классическом виде по сравнению с другими системами газораспределения, конструктивно выглядит просто, — на распредвале между основными кулачками разместили один дополнительный кулачок большего профиля. Получается, что на каждый цилиндр приходится по одному дополнительному кулачку.

За наполнение топливной смесью камеры сгорания на низких и средних оборотах работы двигателя, отвечают два внешних кулачка, а центральный задействуется на высоких оборотах. Обратите внимание, что непосредственно на клапана воздействуют не кулачки распредвала, а через так называемые коромысла/рокеры, которых тоже три. Внешние кулачки воздействуют на рокеры, обеспечивающие открытие клапанов независимо друг от друга, а центральная пара кулачек-рокер, хотя и работает, но работает, что называется вхолостую. Клапаны имеют минимальную высоту подъема, фазы ГРМ характеризуются малой продолжительностью.

Как только двигатель достигает определенного количества оборотов, т.е. переходит в режим высоких оборотов, система VTEC активируется. Под давлением масла происходит смещение синхронизирующего штифта внутри рокеров таким образом, что все три рокера как бы становятся одной целой конструкцией, и после этого усилие на впускные клапаны передается от большого кулачка распредвала. Таким образом, увеличивается ход клапанов и фазы газораспределения.

При снижении количества оборотов система возвращается в исходную позицию.

Недостатками такой системы являются ступенчатый переход с одного режима на другой и конструктивная сложность реализации процесса блокировки.

 

Разновидности VTEC

На сегодняшний день существует несколько разновидностей системы VTEC. Первая категория рассчитана на увеличение мощности. Второй, VTEC-E, ставились совсем иные задачи — экономия топлива, о чем и говорит приставка «E» — econom. Итак, разновидности:

      • DOHC VTEC 1989-2001 гг, cамый мощный в семействе VTEC до 2001 года
      • SOHC VTEC 1991-2001 гг, средняя, более простая конструкция по сравнению с DOHC VTEC, но и менее мощная
      • SOHC VTEC-E 1991-2001 гг, самый экономичный VTEC
      • 3-stage VTEC-E 1995-2001 гг, совместил SOHC VTEC и VTEC-E, в отличие от них различает низкие, средние и высокие обороты
      • DOHC і-VTEC c 2001 года
      • SOHC і-VTEC c 2006 года
      • 3-stage i-VTEC (только на «гибридах») c 2006 года

Особенность данного двигателя заключается в том, что в городском цикле у автомобиля с системой VTEC-E, расход топлива составляет около 6,5-7 литров бензина на 100 км пути. Это поистине выдающийся результат, учитывая то, что такие двигатели Honda развивают мощность 115 «лошадиных сил». Но автомобили с таким двигателем лишены драйверских ощущений.

Такой результат достигается за счет того, что при небольших оборотах двигатель работает на обедненной топливовоздушной смеси, которая поступает в его цилиндры только через один впускной клапан. Это происходит по причине того, что на втором клапане, кулачек управляющий открытием и закрытием клапана, имеет профиль кольца и поэтому реально работает только один клапан.

За счёт несимметричности потока поступающей горючей смеси (один клапан закрыт, а второй открыт) возникают завихрения, происходит лучше и равномернее заполнение камеры сгорания, что позволяет двигателю работать на довольно бедной смеси. При увеличении оборотов (2500 оборотов и выше) срабатывает система VTEC, синхронизирующий шток под давлением масла перемещается, и рокер первичного клапана входит в зацепление с рокером вторичного клапана и оба клапана работают синхронно.

3-stage VTEC-E

Газораспределительный механизм 3-stage SOHC VTEC представляет собой объединение системы SOHC VTEC и SOHC VTEC-E. В отличие от всех вышеописанных систем эта система имеет не два режима работы, а три.

На первой стадии, когда частота вращения коленчатого вала не превышает ~2500 об/мин, рокер (коромысло) первого и второго работают независимо. Почти круглый кулачок второго клапана через рокер приводит в действие второй клапан, т.е. фактически процесс впуска осуществляется посредством первого клапана, тогда как второй клапан лишь ненамного приоткрывается для избегания скопления топлива над ним. Кулачок второго клапана работает вхолостую.

На второй стадии, начиная приблизительно с 2500 об/мин, масло, поступающее по каналу в распредвале, давит на синхронизирующий шток, который соединяет рокеры первого и второго клапана, обеспечивая синхронную работу обоих впускных клапанов в соответствии с профилем кулачка первого клапана. Остальные кулачки работают вхолостую.

В третьем режиме масло по-прежнему давит на шток в положении, когда обеспечивается синхронная работа обоих клапанов, в то время как, начиная с ~4500 об/мин начинает поступать масло по каналу в другую полость и давить на шпильку, обеспечивающую передачу управления клапанами от третьего кулачка большего профиля, обеспечивающему большую высоту подъема.

В зоне низких оборотов система обеспечивает экономичный режим работы двигателя на обедненной топливо-воздушной смеси. В этом случае используется только один из впускных клапанов. На средних оборотах в работу включается второй клапан, но фазы газораспределения и высота подъема клапанов не изменяются. Двигатель в этом случае реализует высокий крутящий момент. На режиме высоких оборотов оба клапана управляются одним центральным кулачком, отвечающим за снятие с двигателя максимальной мощности.

i-VTEC

Очередной разработкой компании Honda газораспределительного механизма с изменяемыми фазами VTEC является система, получившая обозначение i-VTEC (где буква «i» означает «Intellegence» — «интеллектуальный»).

«Интеллектуальность» же данной системы заключалась в следующем — управление изменением фаз осуществляется компьютером, при помощи функции поворота распредвала, регулируя угол опережения. Система i-VTEC позволила двигателям Honda получить больший крутящий момент на низких оборотах, что было постоянной проблемой для двигателей компании, — при высокой мощности они отличались малым крутящим моментом, получаемым на высоких оборотах.

Версия i-VTEC если не устранила, но существенно подкорректировала этот недостаток. Система i-VTEC начала устанавливаться на мощные моторы серии К и некоторых серии R, например, в автомобилях серии Type R, или Acura RSX. Другая версия, напротив, получила «экономичное» направление, и стала устанавливаться в гражданской серии двигателей (например на автомобилях CR-V, Accord, Element, Odyssey, и других).

Принцип работы SOHC i-VTEC

 

Компания Honda реализовала работу SOHC i-VTEC на простых принципах, которые заключаются, в том, что когда мы управляем автомобилем, то мы придерживаемся в основном двух различных стилей вождения.

Первый стиль вождения мы принимаем за спокойную езду без резких ускорений, с пустым багажником и без пассажиров. В таком режиме обороты двигателя, как правило, не превышают порог в 2,5 – 3,5 тысяч оборотов в минуту, а усилия на педаль газа минимальны. Такие условия являются наиболее благоприятными для экономии топлива.

В классическом виде воздействуя на педаль газа, мы открываем или закрываем дроссельную заслонку и регулируем подачу количества воздуха. В зависимости от количества попадающего воздуха, электронная система управления двигателем в нужной пропорции подает топливо для образования топливно-воздушной смеси. Чем сильнее нажимаем на педаль газа, тем больше открывается дроссельная заслонка (увеличивается поперечное сечение впускного канала). В это же время дроссельная заслонка являлась препятствием для прохождения воздуха.

Дроссельная заслонка — элемент впускной системы, которая регулирует подачу воздуха в двигатель.

По идее, такое поведение дроссельной заслонки должно способствовать экономии топлива — поступает меньше воздуха и соответственно компьютер уменьшает дозу подаваемого топлива. Однако это не совсем так. В такой ситуации дроссельная заслонка выступает в качестве силы сопротивления, препятствуя прохождению воздуха, когда этого требует рабочий процесс. Получается поршень, опускаясь в цилиндре вниз нижней мертвой точки, должен всасывать топливно-воздушную смесь, затрачивая на это собственную энергию. Энергию, которая в конечном итоге должна была полностью передаться на колеса. Этот побочный эффект прозвали «насосными потерями».

Попытаемся взглянуть на это с практической точки зрения на примере системы SOHC i-VTEC. Ведь именно устранение насосных потерь – преимущество нового i-VTEC на двигателях с одним распредвалом.

 

Все, что надо было сделать – это на низких оборотах двигателя дроссельную заслонку оставить открытой, а регулировку подачи топливно-воздушной смеси доверить системе i-VTEC. На деле, разумеется, не все так просто.

Следует учитывать следующий момент, что в период, когда дроссельная заслонка полностью открыта, во впускную систему поступает чрезмерно много воздуха и соответственно в цилиндры много топливно-воздушной смеси.

В стандартных двигателях на фазе впуска впускные клапаны открыты, поршень движется вниз к нижней мертвой точке (НМТ). Как только поршень достигает нижней мертвой точки, впускные клапаны синхронно закрываются, а поршень, начиная фазу сжатия, поднимается к верхней мертвой точке (ВМТ).

Но смесь не сгорает, как вы, наверное, подумали. Фишка системы состоит в том, что один из двух впускных клапанов в цилиндре после фазы впуска закрывается значительно позже второго.

Двигатель с SOHC i-VTEC работает несколько иначе. На фазе впуска – поршень движется к НМТ, впускные клапаны открыты. На фазе сжатия поршень начинает движение вверх к ВМТ. По условию работы i-VTEC в режиме экономии один из впускных клапанов остается открытым и под давлением движущегося вверх поршня, лишняя топливно-воздушная смесь, которая попала в цилиндр благодаря полностью открытой дроссельной заслонке, беспрепятственно возвращается во впускной коллектор.

Механизм SOHC i-VTEC

Механизм системы SOHC i-VTEC аналогичен механизму VTEC предыдущих поколений. Все двигатели с системой SOHC i-VTEC имеют два впускных клапана и два выпускных на каждый цилиндр, т.е 16 клапанов на 4 цилиндра. На каждую пару клапанов приходится 3 кулачка – два обычных крайних и один центральный большего профиля VTEC. Кулачки распредвала традиционно воздействуют на клапаны не непосредственно, а через рокеры, которых тоже три на два клапана.

При отключенной системе i-VTEC внешние кулачки обеспечивают открытие клапанов и каждый рокер работает независимо друг от друга, а центральный кулачок, хотя и вращается вместе с остальными, но работает вхолостую.

Как только двигатель переходит в режим работы, которую система Drive by Wire определяет как благоприятную для работы системы — посредством давления масла система смещает шток внутри рокеров таким образом, что два из трех рокеров работают, как единая конструкция. И с этого момента, рокер впускного клапана, который синхронизирован штоком с рокером кулачка системы VTEC, открывает клапан на величину и продолжительность в соответствии с профилем кулачка системы VTEC. Практически, как обычная система газораспределения с изменяемыми фазами VTEC, с той лишь разницей, что работают системы при разных условиях и в разных фазах.

Drive by Wire (DRW) или «управление по проводам» — электронная цифровая система управления автомобилем.

В обычной системе VTEC два внешних кулачка отвечают за работу двигателя на низких оборотах, а центральный кулачок системы VTEC, подключается на высоких оборотах, таким образом, обеспечивая большее высоту и период открытия, чтобы в цилиндры поступило как можно больше топливно-воздушной смеси. В «умном» SOHC i-VTEC все работает наоборот — рабочая зона системы находится в диапазоне от 1000 до 3500 оборотов в минуту. На «верхах» же мотор вступает в стандартный режим работы.

Однако, диапазон оборотов не единственный фактор по которому система Drive by Wire определяет момент включения и выключения системы. Иначе новый i-VTEC мало чем отличался бы от предшественников.

Новый SOHC i-VTEC в паре с «Drive by Wire» дополнительно определяет нагрузку на двигатель и в зависимости от ее величины принимает решение включать VTEC или нет.

Именно символ «i» в названии системы указывает на работу этих двух систем. Получается, что система VTEC работает при определенных оборотах двигателя и определенной величине нагрузки на двигатель. Поэтому «Drive by Wire», которая и определяет оптимальные условия, является наиважнейшей составляющей системы в целом.

Общий рабочий диапазон SOHC i-VTEC демонстрирует график. Красная зона на графике и есть благоприятная среда для работы системы.

info-parts.com.ua

Системы изменения фаз ГРМ

Общественная организация НАПА предоставляет техническую информацию по современным системам и узлам автомобиля.

 

Приведенная ниже информация носит исключительно ознакомительный характер и будет актуальной для всех работников автомобильной отрасли.

Для удобного использования материалы структурированы по категориям на сайте НАПА. Список тем будет постепенно пополняться.


 

Постоянно растущие требования к современному автомобилю заставляют производителей авто разрабатывать и улучшать различные конструктивные элементы, повышать качество узлов и компонентов, создавать более современные узлы.

Двигатели современных автомобилей также претерпели изменения. Современные двигатели должны быть достаточно мощными с высоким крутящим моментом, экономичным расходом топлива и низким уровнем выбросов вредных веществ в отработавших газах.

Наибольшее распространение получили два типа ГРМ двигателей. Первый – это двигатель, у которого газораспределительный механизм (ГРМ) имеет один распределительный вал и клапана, расположенные в головке блока цилиндров (ГБЦ). Он обозначается SOHC (Single OverHead Camshaft). И второй – это двигатель c двумя распределительными валами, также расположенными в ГБЦ (DOHCDouble OverHead Camshaft).

При этом существуют две серьёзно различающиеся разновидности этих механизмов, основное отличие заключается в количестве клапанов. DOHC с четырьмя клапанами на цилиндр, т.е. два впускных клапана и два выпускных. Такое количество клапанов повышает качество и скорость наполнения цилиндров воздушно-топливной смесью. Особенно это актуально, когда двигатель работает под нагрузкой или на повышенных оборотах.

SOHC

DOHC

Если при неизменном составе топливно-воздушной смеси повышать частоту оборотов коленвала ДВС (двигатель внутреннего сгорания), сохраняя постоянный угол опережения искрообразования, то будет наблюдаться все более позднее развитие процесса сгорания. И как следствие: повышение расхода топлива, снижение мощности двигателя и увеличение выброса в атмосферу с отработавшими газами окиси углерода (СО) и не полностью сгоревших углеводородов СхНу.

Одним из способов сохранения технических показателей двигателей является применение газораспределительной системы с изменяемыми фазами. Наиболее важным для высокоскоростных бензиновых двигателей серийного производства считается момент закрытия впускного клапана. Поэтому постоянно ведутся работы, направленные на усовершенствование конструкций системы газораспределения с изменяемыми фазами и увеличение диапазона их применения на различных двигателях.

В данном пособии мы хотели бы достаточно подробно описать конструкции и принцип действия новых систем изменения фаз газораспределения.

Каждый производитель разработал свою конструкцию системы, и назвал по-своему.

Механизм газораспределения с изменяемыми фазами – это система, которая изменяет время открытия впускных клапанов, чтобы достичь оптимального момента их открытия.

Некоторые производители применили конструкцию, которая меняет время открытия и закрытия впускных клапанов, путем изменения положение кулачков распредвала относительно шкива. Такая система изменения фаз газораспределения применяется на автомобилях марки Volkswagen, Alfa Romeo, Peugeot Citroën и др. В частности на двигателях V6 рабочим объемом 2,8 л и V5 рабочим объемом 2,3 л. В дальнейшем ее предполагается использовать на других двигателях, в частности на двигателях W8 и W12.

Непосредственно на распределительный вал устанавливается или интегрируется в шкив гидроуправляемая муфта, которая по сигналу электронного блока управления двигателем через систему масляных каналов проворачивает распределительный вал.

Некоторые производители аналогичную муфту устанавливают на выпускном распределительном вале. Обе муфты являются гидравлическими устройствами и подключены через корпус механизма газораспределения к системе смазки двигателя.

Технология VVT-i

Технология VTEC

 

VVT-i (Variable Valve Timing with intelligence) — система газораспределения с изменяемыми фазами от Toyota. Является разновидностью технологии VVT и CVVT. Включает в себя, по мере развития, технологии VVT-i, VVTL-i, Dual VVT-i, VVT-iE и Valvematic.

Технология VVT-i была впервые выпущена на рынок в 1996 году и заменила собой первое поколение VVT (1991 год, двигатель 4A-GE).

Принцип VVT-i

В зависимости от условия работы двигателя, система VVT-i плавно изменять фазы газораспределения. Это достигается путем поворота распределительного вала впускных клапанов относительно вала выпускных в диапазоне 20-30° (по углу поворота коленвала). В результате изменяется момент начала открытия впускных клапанов и величина времени «перекрытия» (то есть времени, когда выпускной клапан еще не закрыт, а впускной — уже открыт).

Основным элементом устройства является муфта VVT-i интегрированная в шкив, который выполняет роль корпуса муфты. Ротор муфты находится внутри и непосредственно соединен с распределительным валом.

Изначально фазы впускных клапанов установлены таким образом, чтобы добиться максимального крутящего момента при низкой частоте вращения коленвала. После того, как обороты значительно увеличиваются в корпусе муфты сделано несколько полостей, к которым по каналам подводится моторное масло из системы смазки.

Возросшее давление масла открывает клапан VVT-i, заполняя ту или иную полость, обеспечивает поворот ротора относительно корпуса и, соответственно, смещение распределительного вала на определенный угол.

Кулачки имеют определенную форму и при повороте коленчатого вала открывают впускные клапана немного раньше, а закрывают позже, что благоприятно сказывается на увеличении мощности и крутящего момента на высоких оборотах.

 

 

VTEC (Variable valve Timing and lift Electronic Control) система динамического изменения фаз газораспределения, фирменная разработка компании Honda. Вначале система VTEC была успешно реализована в двигателях, применяемых в спортивных автомобилях, а затем, после признания и успеха данная система использована на двигателях гражданских автомобилей.

Особенность системы VTEC заключается в том, что возможно конструировать компактные, но очень мощные (в соотношении объем/л.с.) двигатели без применения дополнительных устройств (турбин, компрессоров), при этом технология производства подобных двигателей остается недорогой, а автомобиль с установленной на нем системой VTEC не испытывает проблем, характерных для турбированных автомобилей.

Принцип работы VTEC, в классическом виде по сравнению с другими системами газораспределения, конструктивно выглядит просто, — на распредвале между основными кулачками разместили один дополнительный кулачок большего профиля. Получается, что на каждый цилиндр приходится по одному дополнительному кулачку.

За наполнение топливной смесью камеры сгорания на низких и средних оборотах работы двигателя, отвечают два внешних кулачка, а центральный задействуется на высоких оборотах. Обратите внимание, что непосредственно на клапана воздействуют не кулачки распредвала, а через так называемые коромысла/рокеры, которых тоже три. Внешние кулачки воздействуют на рокеры, обеспечивающие открытие клапанов независимо друг от друга, а центральная пара кулачек-рокер, хотя и работает, но работает, что называется вхолостую. Клапаны имеют минимальную высоту подъема, фазы ГРМ характеризуются малой продолжительностью.

Как только двигатель достигает определенного количества оборотов, т.е. переходит в режим высоких оборотов, система VTEC активируется. Под давлением масла происходит смещение синхронизирующего штифта внутри рокеров таким образом, что все три рокера как бы становятся одной целой конструкцией, и после этого усилие на впускные клапаны передается от большого кулачка распредвала. Таким образом, увеличивается ход клапанов и фазы газораспределения.

При снижении количества оборотов система возвращается в исходную позицию.

Недостатками такой системы являются ступенчатый переход с одного режима на другой и конструктивная сложность реализации процесса блокировки.

 

Разновидности VTEC

На сегодняшний день существует несколько разновидностей системы VTEC. Первая категория рассчитана на увеличение мощности. Второй, VTEC-E, ставились совсем иные задачи — экономия топлива, о чем и говорит приставка «E» — econom. Итак, разновидности:

      • DOHC VTEC 1989-2001 гг, cамый мощный в семействе VTEC до 2001 года
      • SOHC VTEC 1991-2001 гг, средняя, более простая конструкция по сравнению с DOHC VTEC, но и менее мощная
      • SOHC VTEC-E 1991-2001 гг, самый экономичный VTEC
      • 3-stage VTEC-E 1995-2001 гг, совместил SOHC VTEC и VTEC-E, в отличие от них различает низкие, средние и высокие обороты
      • DOHC і-VTEC c 2001 года
      • SOHC і-VTEC c 2006 года
      • 3-stage i-VTEC (только на «гибридах») c 2006 года

Особенность данного двигателя заключается в том, что в городском цикле у автомобиля с системой VTEC-E, расход топлива составляет около 6,5-7 литров бензина на 100 км пути. Это поистине выдающийся результат, учитывая то, что такие двигатели Honda развивают мощность 115 «лошадиных сил». Но автомобили с таким двигателем лишены драйверских ощущений.

Такой результат достигается за счет того, что при небольших оборотах двигатель работает на обедненной топливовоздушной смеси, которая поступает в его цилиндры только через один впускной клапан. Это происходит по причине того, что на втором клапане, кулачек управляющий открытием и закрытием клапана, имеет профиль кольца и поэтому реально работает только один клапан.

За счёт несимметричности потока поступающей горючей смеси (один клапан закрыт, а второй открыт) возникают завихрения, происходит лучше и равномернее заполнение камеры сгорания, что позволяет двигателю работать на довольно бедной смеси. При увеличении оборотов (2500 оборотов и выше) срабатывает система VTEC, синхронизирующий шток под давлением масла перемещается, и рокер первичного клапана входит в зацепление с рокером вторичного клапана и оба клапана работают синхронно.

3-stage VTEC-E

Газораспределительный механизм 3-stage SOHC VTEC представляет собой объединение системы SOHC VTEC и SOHC VTEC-E. В отличие от всех вышеописанных систем эта система имеет не два режима работы, а три.

На первой стадии, когда частота вращения коленчатого вала не превышает ~2500 об/мин, рокер (коромысло) первого и второго работают независимо. Почти круглый кулачок второго клапана через рокер приводит в действие второй клапан, т.е. фактически процесс впуска осуществляется посредством первого клапана, тогда как второй клапан лишь ненамного приоткрывается для избегания скопления топлива над ним. Кулачок второго клапана работает вхолостую.

На второй стадии, начиная приблизительно с 2500 об/мин, масло, поступающее по каналу в распредвале, давит на синхронизирующий шток, который соединяет рокеры первого и второго клапана, обеспечивая синхронную работу обоих впускных клапанов в соответствии с профилем кулачка первого клапана. Остальные кулачки работают вхолостую.

В третьем режиме масло по-прежнему давит на шток в положении, когда обеспечивается синхронная работа обоих клапанов, в то время как, начиная с ~4500 об/мин начинает поступать масло по каналу в другую полость и давить на шпильку, обеспечивающую передачу управления клапанами от третьего кулачка большего профиля, обеспечивающему большую высоту подъема.

В зоне низких оборотов система обеспечивает экономичный режим работы двигателя на обедненной топливо-воздушной смеси. В этом случае используется только один из впускных клапанов. На средних оборотах в работу включается второй клапан, но фазы газораспределения и высота подъема клапанов не изменяются. Двигатель в этом случае реализует высокий крутящий момент. На режиме высоких оборотов оба клапана управляются одним центральным кулачком, отвечающим за снятие с двигателя максимальной мощности.

i-VTEC

Очередной разработкой компании Honda газораспределительного механизма с изменяемыми фазами VTEC является система, получившая обозначение i-VTEC (где буква «i» означает «Intellegence» — «интеллектуальный»).

«Интеллектуальность» же данной системы заключалась в следующем — управление изменением фаз осуществляется компьютером, при помощи функции поворота распредвала, регулируя угол опережения. Система i-VTEC позволила двигателям Honda получить больший крутящий момент на низких оборотах, что было постоянной проблемой для двигателей компании, — при высокой мощности они отличались малым крутящим моментом, получаемым на высоких оборотах.

Версия i-VTEC если не устранила, но существенно подкорректировала этот недостаток. Система i-VTEC начала устанавливаться на мощные моторы серии К и некоторых серии R, например, в автомобилях серии Type R, или Acura RSX. Другая версия, напротив, получила «экономичное» направление, и стала устанавливаться в гражданской серии двигателей (например на автомобилях CR-V, Accord, Element, Odyssey, и других).

Принцип работы SOHC i-VTEC

 

Компания Honda реализовала работу SOHC i-VTEC на простых принципах, которые заключаются, в том, что когда мы управляем автомобилем, то мы придерживаемся в основном двух различных стилей вождения.

Первый стиль вождения мы принимаем за спокойную езду без резких ускорений, с пустым багажником и без пассажиров. В таком режиме обороты двигателя, как правило, не превышают порог в 2,5 – 3,5 тысяч оборотов в минуту, а усилия на педаль газа минимальны. Такие условия являются наиболее благоприятными для экономии топлива.

В классическом виде воздействуя на педаль газа, мы открываем или закрываем дроссельную заслонку и регулируем подачу количества воздуха. В зависимости от количества попадающего воздуха, электронная система управления двигателем в нужной пропорции подает топливо для образования топливно-воздушной смеси. Чем сильнее нажимаем на педаль газа, тем больше открывается дроссельная заслонка (увеличивается поперечное сечение впускного канала). В это же время дроссельная заслонка являлась препятствием для прохождения воздуха.

Дроссельная заслонка — элемент впускной системы, которая регулирует подачу воздуха в двигатель.

По идее, такое поведение дроссельной заслонки должно способствовать экономии топлива — поступает меньше воздуха и соответственно компьютер уменьшает дозу подаваемого топлива. Однако это не совсем так. В такой ситуации дроссельная заслонка выступает в качестве силы сопротивления, препятствуя прохождению воздуха, когда этого требует рабочий процесс. Получается поршень, опускаясь в цилиндре вниз нижней мертвой точки, должен всасывать топливно-воздушную смесь, затрачивая на это собственную энергию. Энергию, которая в конечном итоге должна была полностью передаться на колеса. Этот побочный эффект прозвали «насосными потерями».

Попытаемся взглянуть на это с практической точки зрения на примере системы SOHC i-VTEC. Ведь именно устранение насосных потерь – преимущество нового i-VTEC на двигателях с одним распредвалом.

 

Все, что надо было сделать – это на низких оборотах двигателя дроссельную заслонку оставить открытой, а регулировку подачи топливно-воздушной смеси доверить системе i-VTEC. На деле, разумеется, не все так просто.

Следует учитывать следующий момент, что в период, когда дроссельная заслонка полностью открыта, во впускную систему поступает чрезмерно много воздуха и соответственно в цилиндры много топливно-воздушной смеси.

В стандартных двигателях на фазе впуска впускные клапаны открыты, поршень движется вниз к нижней мертвой точке (НМТ). Как только поршень достигает нижней мертвой точки, впускные клапаны синхронно закрываются, а поршень, начиная фазу сжатия, поднимается к верхней мертвой точке (ВМТ).

Но смесь не сгорает, как вы, наверное, подумали. Фишка системы состоит в том, что один из двух впускных клапанов в цилиндре после фазы впуска закрывается значительно позже второго.

Двигатель с SOHC i-VTEC работает несколько иначе. На фазе впуска – поршень движется к НМТ, впускные клапаны открыты. На фазе сжатия поршень начинает движение вверх к ВМТ. По условию работы i-VTEC в режиме экономии один из впускных клапанов остается открытым и под давлением движущегося вверх поршня, лишняя топливно-воздушная смесь, которая попала в цилиндр благодаря полностью открытой дроссельной заслонке, беспрепятственно возвращается во впускной коллектор.

Механизм SOHC i-VTEC

Механизм системы SOHC i-VTEC аналогичен механизму VTEC предыдущих поколений. Все двигатели с системой SOHC i-VTEC имеют два впускных клапана и два выпускных на каждый цилиндр, т.е 16 клапанов на 4 цилиндра. На каждую пару клапанов приходится 3 кулачка – два обычных крайних и один центральный большего профиля VTEC. Кулачки распредвала традиционно воздействуют на клапаны не непосредственно, а через рокеры, которых тоже три на два клапана.

При отключенной системе i-VTEC внешние кулачки обеспечивают открытие клапанов и каждый рокер работает независимо друг от друга, а центральный кулачок, хотя и вращается вместе с остальными, но работает вхолостую.

Как только двигатель переходит в режим работы, которую система Drive by Wire определяет как благоприятную для работы системы — посредством давления масла система смещает шток внутри рокеров таким образом, что два из трех рокеров работают, как единая конструкция. И с этого момента, рокер впускного клапана, который синхронизирован штоком с рокером кулачка системы VTEC, открывает клапан на величину и продолжительность в соответствии с профилем кулачка системы VTEC. Практически, как обычная система газораспределения с изменяемыми фазами VTEC, с той лишь разницей, что работают системы при разных условиях и в разных фазах.

Drive by Wire (DRW) или «управление по проводам» — электронная цифровая система управления автомобилем.

В обычной системе VTEC два внешних кулачка отвечают за работу двигателя на низких оборотах, а центральный кулачок системы VTEC, подключается на высоких оборотах, таким образом, обеспечивая большее высоту и период открытия, чтобы в цилиндры поступило как можно больше топливно-воздушной смеси. В «умном» SOHC i-VTEC все работает наоборот — рабочая зона системы находится в диапазоне от 1000 до 3500 оборотов в минуту. На «верхах» же мотор вступает в стандартный режим работы.

Однако, диапазон оборотов не единственный фактор по которому система Drive by Wire определяет момент включения и выключения системы. Иначе новый i-VTEC мало чем отличался бы от предшественников.

Новый SOHC i-VTEC в паре с «Drive by Wire» дополнительно определяет нагрузку на двигатель и в зависимости от ее величины принимает решение включать VTEC или нет.

Именно символ «i» в названии системы указывает на работу этих двух систем. Получается, что система VTEC работает при определенных оборотах двигателя и определенной величине нагрузки на двигатель. Поэтому «Drive by Wire», которая и определяет оптимальные условия, является наиважнейшей составляющей системы в целом.

Общий рабочий диапазон SOHC i-VTEC демонстрирует график. Красная зона на графике и есть благоприятная среда для работы системы.

info-parts.com.ua

Как работают различные типы систем изменения фаз газораспределения?

Система изменения фаз газораспределения, о которой Вы гораздо чаще услышите под конкретными торговыми названиями, такими как VTEC или VVTi — такая система, которая позволяет двигателю значительно улучшить свою мощность и экономичность топлива, а также количество вредных выбросов в выхлопах за счёт динамического изменения времени и продолжительности открытия и закрытия клапанов на разных оборотах мотора. Система изменения фаз газораспределения работает, слегка изменяя поток топлива и воздуха в двигатель и сгоревшей смеси из двигателя за счёт изменения времени относительно такта двигателя и глубины открытия клапанов.

Но чтобы понять, как работает система изменения фаз газораспределения, давайте вспомним (если Вы читали статью о том, как работает двигатель) или узнаем, как работают клапаны во время различных тактов работы мотора.

Современные двигатели имеют клапаны в верхней части каждого цилиндра — по два или по четыре на каждый цилиндр, которые открываются, чтобы топливо и воздух поступали в двигатель, а затем другие клапаны открываются, так что сгоревшая смесь может выпустится.

Схема работы клапанов в бензиновом двигателе

Клапаны управляются специальным валом — распределительным валом, который приводится во вращение непосредственно двигателем и имеет несколько яйцевидной формы лопастей вдоль его длины. По мере того как длинный (наиболее выступающий) конец лепестка крутится вокруг своей оси, он проходит через клапан, толкая его, и тем самым, открывая его (пружины на клапане позволяют ему закрываться обратно, когда лепесток на распредвале уйдёт от него). Лепестки — они правильно называются «кулачками» — на распредвале имеют точно такую ​​форму, чтобы контролировать сроки, продолжительность и глубину поднятия клапанов — это очень точно рассчитанное время, поэтому кулачки должны быть идеально ровными и очень точно выточенными, чтобы максимально точно срабатывать в пяти параметрах:

  • когда они начинают открывать клапан,
  • как надолго они открывают клапан,
  • как сильно (насколько высоко) они открывают клапан,
  • как долго они заставляют клапан быть открытым,
  • как быстро они закрывают клапан.

Все эти пять параметров, в свою очередь, определяют, как топливо и воздух будут сгорать в камере сгорания и, соответственно, насколько эффективно всё это будет сгорать, в каком количестве поступать и насколько воздушно-топливная смесь будет готовой к моменту подачи искры от свечи. Форма кулачка, известная также как профиль кулачка, играет большую роль в том, как двигатель развивает мощность. А 5 вышеперечисленных параметров носят название «фаз газораспределения«.

Так зачем же менять фазы открытия и закрытия клапанов? А затем, что двигателю требуются разные условия работы на низких и высоких оборотах. В идеале, газораспределение (продолжительность и время открытия/закрытия клапанов) должно меняться для того, чтобы оптимизировать цикл сгорания топлива в двигателе на меняющихся оборотах.

Да, распредвал оказался самым надёжным методом для открытия и закрытия клапанов в течение века, но его основным недостатком является то, что профиль распределительного вала статичен — он железный и на него наварены кулачки, и потому он не может изменить размеры и формы этих кулачков на лету. Инженеры должны придумать профиль, который нашёл бы компромисс, чтобы обеспечить плавные обороты на холостом ходу и убойное питание на высоких оборотах. Более подробно о том, почему двигателю требуется разное время, продолжительность и высота открытия/закрытия клапанов, мы расписали в статье о работе конкретной системы изменения фаз — VTEC.

Инженеры разработали различные системы изменения фаз газораспределения как способ оказать некоторый контроль над описанным процессом. На сегодняшний день существуют несколько систем в использовании разных производителей автомобилей. Наиболее распространённая из них — VTEC от компании Honda, которая использует распредвал с двумя наборами кулачков — одни короче, а другие — длиннее и немного другой формы. На определённой частоте вращения коленчатого вала двигателя специальный механизм заставляет распредвал немного перемещаться вдоль своей оси, чтобы передвигать оба набора кулачков к клапанам.

Другие системы изменения фаз газораспределения, такие как VCT компании Форд, используют фазировку вращения распределительного вала. Умный механизм заставляет поэтапно замедляться во вращении распредвал, чтобы клапаны оставались открытыми дольше в процессе работы двигателя. Третья система действует на сам толкатель (деталь, обеспечивающая механическую связь между кулачком и клапаном), будучи способной изменить время, на которое клапан открывается каждый раз, когда кулачок толкает его. А некоторые автомобили вовсе объединяют эти перечисленные системы.

Будущее: двигатели без распределительного вала

В то время как изменение фаз газораспределения предлагает огромные преимущества по сравнению с неменяющимся профилем кулачков распредвала, это всё ещё далеко не оптимальная система. В идеале, если бы двигатель вовсе не имел распредвал, а клапаны бы открывались и закрывались с помощью электронной системы, которая бы не полагалась на привод от двигателя. Вместо этого, клапаны будут находиться под контролем независимого механизма, который сможет изменять сроки, продолжительность и высоту подъёма клапанов по мере необходимости. Между тем, не такая то это и мечта — моторы без распредвалов! Системы управления открытием/закрытием клапанов уже разработаны и используются для больших низкооборотистых морских и промышленных двигателей. Тем не менее, до коммерческой жизнеспособной системы они ещё не дошли, так как требуют очень точной и компактной структуры, которая могла бы надёжно работать при очень высоких оборотах двигателя.

Но есть ещё одна система, которая в некоторой степени устраняет разрыв между изменяемыми фазами газораспределения и мотором без распределительного вала. Это система под названием «MultiAir» от Fiat. MultiAir использует традиционный распредвал, однако, вместо того, чтобы непосредственно толкать впускные клапаны, этот распределительный вал управляет тем, что, по существу, является гидравлическим насосом. Толкатель (устройство, которое толкает клапан) использует это гидравлическое давление, чтобы открыть и закрыть клапан в случае необходимости, изменяя сроки, высоту и продолжительность в гораздо более гибком и большем диапазоне, чем это делают большинство традиционных систем с переменной фаз газораспределения. Однако, профиль полной мощности (максимальные сроки и продолжительность открытия впускных клапанов) всё ещё ограничены профилем кулачка, так как профиль кулачка определяет количество гидравлического давления.

Вообще, система MultiAir используется обычно только для выпускных клапанов. Работу этой системы можно найти в 1,4-литровом турбодвигателе и 2,4-литровом двигателе автомобилей Fiat и Chrysler.

howcarworks.ru

Механизм изменения фаз газораспределения — Компания Автотехнологии

Что это такое и как это работает?


Чтобы понять, что это решение все чаще используется во всех современных конструкциях двигателей, важно помнить, для чего предназначена система синхронизации. Его основная задача — подавать топливовоздушную смесь в цилиндр, а затем выпускать выхлопные газы в выпускные каналы.

Какие сроки?

В современных силовых установках используются три основных типа синхронизации: OHV (верхний клапан), OHC (верхний распределительный вал — верхний клапан с одним валом в головке) и DOHC (двойной верхний распределительный вал) , т.е. верхний клапан с двойным распредвалом в головке).

Кроме того, в традиционной системе газораспределения может использоваться специальная операционная система, задачей которой является регулирование времени открытия впускного клапана — она называется переменным газораспределением.

Первая такая композиция появилась в 1981 году у Alfie Romeo Spider. Восемь лет спустя переменная синхронизация (как система VTEC), найденная Honda, появилась в BMW (Doppel-Vanos) и Toyota (VVT-i).

Как это работает?

Механизм изменения фаз газораспределения регулирует изменение моментов открытия и закрытия клапанов в зависимости от нагрузки двигателя и скорости его вращения.

Он активируется давлением масла, а его поступление в механизм контролируется электромагнитным клапаном, управляемым компьютером управления двигателем. Время наполнения и опорожнения цилиндра изменяется: при низких оборотах двигателя впускной клапан открывается позже и закрывается раньше, чем при более высоких скоростях.

В результате получается плоская кривая крутящего момента, что на практике означает наличие большего крутящего момента даже при более низких скоростях вращения. Это приводит к повышению гибкости двигателя, в то время как расход топлива уменьшается

Работа механизма изменения фаз газораспределения зависит от производителя. В случае системы VTEC Honda на валу, есть два набора кулачков управления клапанами.

Они переключаются после 4500 оборотов в минуту, поэтому двигатель работает на высоких оборотах. Переменное время газораспределения аналогично в автомобилях Mitsubishi (обозначенных как MIVEC) и Nissan (VVL). В свою очередь, в решениях, предлагаемых Toyota (VVT-i), Ford (Zetec SE), BMW (Double-Vanos) и Alfa Romeo (Super Fire), время открытия и закрытия клапанов контролируется гидравлическим толкателем (не кулачковыми наборами, как в случае VTEC Honda).

Он устанавливает угол наклона вала, на котором расположены кулачки: в случае более простых систем запрограммировано несколько фиксированных углов наклона, которые меняются в зависимости от вращения, более сложные изменения угла наклона плавным способом. И наконец, что не менее важно, Honda и улучшенная система i-VTEC. Он сочетает в себе кулачки на валу с гидравлической системой, которая позволяет любым способом изменять угол наклона распределительного вала, то есть плавно регулировать время газораспределения на частоте вращения двигателя.

Для чего он используется?

Переменная регулировка фаз газораспределения используется для оптимизации параметров сгорания топливовоздушной смеси, что приводит к улучшению динамики привода и снижению расхода топлива.

В настоящее время это решение все чаще используется во всех современных конструкциях двигателей. Механизм изменения фаз газораспределения обеспечивает лучшее заполнение цилиндров топливовоздушной смесью по сравнению со стандартными решениями, которые обременены усредненными значениями скорости вращения и нагрузки двигателя.

Каковы недостатки?

Из-за сложной конструкции систем изменения фаз газораспределения их потенциальный ремонт связан со значительными затратами, связанными также с тем, что он был сделан только в специализированном цехе или в авторизованном сервисе.

Минусом является также стоимость покупки автомобиля, как нового, так и на вторичном рынке: они дороже своих аналогов без изменения фаз газораспределения.

Что ломается?

Симптомы неисправности системы могут включать шум во время работы холодного двигателя, а также его нестабильную работу (или выключение) на холостом ходу. Иногда также могут возникнуть проблемы с запуском привода или отключением питания. В свою очередь, физическим свидетельством повреждения системы регулируемого газораспределения является утечка масла из регулятора газораспределения или электромагнитного клапана.


aftersale.ru

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *