Охладитель мотора – Охладитель мотора 8 букв

Содержание

Так охлаждаются суперкары: - Журнал Движок.

Система охлаждения — непременный атрибут любого автомобиля. Слишком много энергии при движении машины вынужденно преобразуется в тепло. Двигатель и трансмиссия требуют обязательного активного охлаждения, как и тормозная система, мощные электрические компоненты и система кондиционирования. А чем отличаются от «обычных» системы охлаждения суперкаров? Ведь эти автомобили одновременно мощные, компактные и предельно облегченные. Какие интересные технические решения встречаются в их конструкциях?

Поддерживать температуру мотора мощностью свыше 300 л. с. совсем не простая задача, особенно когда он работает на полной мощности, а скорости невысоки. И динамические возможности современных суперкаров очень сильно зависят от температуры наружного воздуха.

Зачастую повысить мощность двигателя не позволяет так называемый «тепловой пакет» — показатель мощности рассеивания систем охлаждения двигателя и трансмиссии, а не возможности силовых агрегатов. Казалось бы, на высокой скорости проблема охлаждения не должна стоять так уж остро: радиаторы продуваются воздухом. Но и тут особенности конструкции скоростного автомобиля вносят свои нюансы. Аэродинамические свойства машины во многом зависят от возможности создания граунд-эффекта, а безопасное движение — еще и от работы тормозных механизмов. Не на последнем месте и банальное аэродинамическое сопротивление, а также общая обтекаемость, их тоже приходится учитывать. Как в таких условиях обеспечивается стабильная работа всех систем?

Для суперкара аэродинамическая проработка кузова — это основа всего. В том числе и качества работы системы охлаждения. И «классические» решения с расположением радиаторов под капотом, в передней части машины, не в чести. Даже у моделей с передним расположением двигателя дизайн радиаторов и аэродинамическая проработка существенно отличаются от стандартных.

Так, передняя часть Mercedes SLR McLaren W199 стандартна только на первый взгляд. Тут расположен основной радиатор, жидкостный радиатор интеркулера с двумя электропомпами, большой радиатор трансмиссии и маслобак двигателя — применена система с сухим картером, и масло сначала охлаждается в секции основного радиатора, а затем еще снижает температуру в корпусе бака, который выполнен с большой оребренной поверхностью.

Для лучшей работы днища кузова часть воздуха с радиаторов отводится вверх через капот, и пакет радиаторов скомпонован таким образом, чтобы «правильно» распределить потоки. Двигатель находится в пределах колесной базы, и объем, занимаемый системой охлаждения, в несколько раз больше, чем у типичных легковых машин. Конструкция радиаторов принципиально от обычной не отличается. Алюминиевое «ядро» и пластиковые бачки можно увидеть на большинстве серийных суперкаров. Цельноалюминиевые детали широко предлагаются только в качестве тюнинга и на машинах практически единичной сборки. Электровентиляторы системы также вполне стандартны, разве что заметно мощнее обычных, имеют лучшую аэродинамику и меньшую массу.

У машин с задним и центральным расположением силового агрегата в большинстве случаев используется достаточно компактная система охлаждения с боковым и задним расположением радиаторов охлаждения двигателя и наддувочного воздуха. Так поступают, например, Audi на модели R8, McLaren на модели P12, и так устроены почти все модели Ferrari с центральным расположением двигателя.

Но вот создатели Porsche 911 сделали систему охлаждения куда более протяженной и расположили радиаторы мотора в передней части кузова. Характерно, что в системе обычно используется не один большой, а несколько малоразмерных радиаторов. Их три у 911, три и у R8, у McLaren радиаторов заметно больше, поскольку используется гибридный привод и в системе охлаждения есть еще контур охлаждения батарей и инверторов.

Интересное техническое решение использует Porsche. На модели 911 GT3 у мотора вентилятора радиатора свой индивидуальный блок контроля и управления, что обеспечивает плавное регулирование его производительности и более широкие возможности подстройки и диагностики. А еще боковые радиаторы с электровентиляторами выполнены едиными быстросъемными моделями, и забота об аэродинамике проявляется даже в такой мелочи, как колпачок электродвигателя.

При большой протяженности трасс охлаждения и большом количестве радиаторов помпы двигателей являются важной составляющей. Mercedes и Porsche довольствуются стандартной усиленной конструкцией, но с профилем лопастей, оптимизированным для предотвращения кавитации. При оборотах мотора более 7 тыс. падение производительности может стать фатальным.

Весьма интересная конструкция у Audi R8 с мотором V10: маслонасос с помпой и термостатом объединены в единый модуль с пониженной частотой вращения, который приводится в движение цепью. И в любом случае не обходится без дополнительных электронасосов — они позволяют обеспечить стабильную циркуляцию жидкости в больших блоках цилиндров и прокачивать охлаждающую жидкость через радиаторы при малых оборотах коленчатого вала.

Также важной их функцией является предотвращение закипания большого, сложного и очень теплоемкого мотора после выключения, а при наличии турбин насосы занимаются и их охлаждением. В системах жидкостного охлаждения наддувочного воздуха на моторах Mercedes SLR и McLaren P12 используют многоконтурные системы охлаждения с выделенным низкотемпературным контуром. Причем система охлаждения Mercedes двухконтурная, а на McLaren контуров уже три — еще один нужен для охлаждения и подогрева электронных систем и батареи гибрида.

Маслорадиаторы двигателя и трансмиссии — непременный атрибут суперкара. Эти детали присутствуют и на двигателях обычных машин, но разница в масштабе. Маслорадиатор АКПП серии 722.6 Mercedes SLR по размеру сравним с основным радиатором малолитражки, а в системе охлаждения масла Audi R8 радиаторов несколько, включая водомасляный теплообменник и обычные воздушные. Охлаждения требует не только АКПП, но и обычная «механика», и даже у редукторов зачастую есть собственные радиаторы для масла или встроенные жидкостные теплообменники.

Важная составляющая системы охлаждения — ее рабочее тело, иными словами, антифриз. На экстремальных машинах зачастую применяются весьма нестандартные составы. Цель одна — заставить систему охлаждения работать максимально эффективно при наименьших затратах мощности, но помимо этого есть еще несколько факторов. Во-первых, в самых продвинутых моторах часто используются сложные сплавы на основе магния и других активных металлов. В этом случае предотвращение коррозии является очень важной задачей и типовые составы антифризов могут не справиться. А еще «суперкаровскому» антифризу полагается быть чуть более текучим и обеспечивать лучший теплообмен. Улучшение этих параметров на доли процента уже обещает серьезный выигрыш в работе, но обойдется оно очень недешево. Впрочем, Mercedes, Audi и Porsche устраивают вполне стандартные, пусть и не самые дешевые антифризы. А вот если у вас Ferrari или McLaren, то рекомендации, как и полагается эксклюзивным машинам, будут экзотическими.

Среди характерных примет систем охлаждения суперкаров еще и предельно малая масса, широкое использование легких сплавов и пластмасс, а также нестандартных технологий и практически штучный выпуск. Так, Porsche использует вклеиваемые патрубки систем охлаждения на двигателях для снижения массы блока цилиндров. А такая экзотика, как магний, титан и керамика в конструкциях, встречается едва ли не чаще вполне традиционных чугуна и стали. Высокая плотность и малая толщина трубок радиаторов — тоже деталь характерная, не зря на многих машинах защитные сетки радиаторов установлены на заводе.

dvizhok.su

Система охлаждения двигателя

Система охлаждения двигателя служит для поддержания нормального теплового режима работы двигателей путем интенсивного отвода тепла от горячих деталей двигателя и передачи этого тепла окружающей среде.

Отводимое тепло состоит из части выделяющегося в цилиндрах двигателя тепла, не превращающейся в работу и не уносимой с выхлопными газами, и из тепла работы трения, возникающего при движении деталей двигателя.

Большая часть тепла отводится в окружающую среду системой охлаждения, меньшая часть – системой смазки и непосредственно от наружных поверхностей двигателя.

Принудительный отвод тепла необходим потому, что при высоких температурах газов в цилиндрах двигателя (во время процесса горения 1800–2400 °С, средняя температура газов за рабочий цикл при полной нагрузке 600–1000 °С) естественная отдача тепла в окружающую среду оказывается недостаточной.

Нарушение правильного отвода тепла вызывает ухудшение смазки трущихся поверхностей, выгорание масла и перегрев деталей двигателя. Последнее приводит к резкому падению прочности материала деталей и даже их обгоранию (например, выпускных клапанов). При сильном перегреве двигателя нормальные зазоры между его деталями нарушаются, что обычно приводит к повышенному износу, заеданию и даже поломке. Перегрев двигателя вреден и потому, что вызывает уменьшение коэффициента наполнения, а в бензиновых двигателях, кроме того, – детонационное сгорание и самовоспламенение рабочей смеси.

Чрезмерное охлаждение двигателя также нежелательно, так как оно влечет за собой конденсацию частиц топлива на стенках цилиндров, ухудшение смесеобразования и воспламеняемости рабочей смеси, уменьшение скорости ее сгорания и, как следствие, уменьшение мощности и экономичности двигателя.

 

 

 

Классификация систем охлаждения

В автомобильных и тракторных двигателях, в зависимости от рабочего тела, применяют системы жидкостного и воздушного охлаждения. Наибольшее распространение получило жидкостное охлаждение.

При жидкостном охлаждении циркулирующая в системе охлаждения двигателя жидкость воспринимает тепло от стенок цилиндров и камер сгорания и передает затем это тепло при помощи радиатора окружающей среде.

По принципу отвода тепла в окружающую среду системы охлаждения могут быть замкнутыми и незамкнутыми (проточными).

Жидкостные системы охлаждения автотракторных двигателей имеют замкнутую систему охлаждения, т. е. постоянное количество жидкости циркулирует в системе. В проточной системе охлаждения нагретая жидкость после прохождения через нее выбрасывается в окружающую среду, а новая забирается для подачи в двигатель. Применение таких систем ограничивается судовыми и стационарными двигателями.

Воздушные системы охлаждения являются незамкнутыми. Охлаждающий воздух после прохождения через систему охлаждения выводится в окружающую среду.

Классификация систем охлаждения приведена на рис. 3.1.

По способу осуществления циркуляции жидкости системы охлаждения могут быть:

  • принудительными, в которых циркуляция обеспечивается специальным насосом, расположенным на двигателе (или в силовой установке), или давлением, под которым жидкость подводится в силовую установку из внешней среды;

  • термосифонными, в которых циркуляция жидкости происходит за счет разницы гравитационных сил, возникающих в результате различной плотности жидкости, нагретой около поверхностей деталей двигателя и охлаждаемой в охладителе;

  • комбинированными, в которых наиболее нагретые детали (головки блоков цилиндров, поршни) охлаждаются принудительно, а блоки цилиндров – по термосифонному принципу

    .

Рис. 3.1. Классификация систем охлаждения

Системы жидкостного охлаждения могут быть открытыми и закрытыми.

Открытые системы – системы, сообщающиеся с окружающей средой при помощи пароотводной трубки.

В большинстве автомобильных и тракторных двигателей в настоящее время применяют закрытые системы охлаждения, т. е. системы, разобщенные от окружающей среды установленным в пробке радиатора паровоздушным клапаном.

Давление и соответственно допустимая температура охлаждающей жидкости (100–105 °С) в этих системах выше, чем в открытых системах (90–95 °С), вследствие чего разность между температурами жидкости и просасываемого через радиатор воздуха и теплоотдача радиатора увеличиваются. Это позволяет уменьшить размеры радиатора и затрату мощности на привод вентилятора и водяного насоса. В закрытых системах почти отсутствует испарение воды через пароотводный патрубок и закипание ее при работе двигателя в высокогорных условиях.

 

 

Жидкостная система охлаждения

На рис. 3.2 показана схема жидкостной системы охлаждения с принудительной циркуляцией охлаждающей жидкости.

Рубашка охлаждения блока цилиндров 2 и головки блока 3, радиатор и патрубки через заливную горловину заполнены охлаждающей жидкостью. Жидкость омывает стенки цилиндров и камер сгорания работающего двигателя и, нагреваясь, охлаждает их. Центробежный насос 1 нагнетает жидкость в рубашку блока цилиндров, из которой нагретая жидкость поступает в рубашку головки блока и затем по верхнему патрубку вытесняется в радиатор. Охлажденная в радиаторе жидкость по нижнему патрубку возвращается к насосу.

Рис. 3.2. Схема жидкостной системы охлаждения

Циркуляция жидкости в зависимости от теплового состояния двигателя изменяется с помощью термостата 4. При температуре охлаждающей жидкости ниже 70–75 °С основной клапан термостата закрыт. В этом случае жидкость не поступает в радиатор 5, а циркулирует по малому контуру через патрубок 6, что способствует быстрому прогреву двигателя до оптимального теплового режима. При нагревании термочувствительного элемента термостата до 70–75 °С основной клапан термостата начинает открываться и пропускать воду в радиатор, где она охлаждается. Полностью термостат открывается при 83–90 °С. С этого момента вода циркулирует по радиаторному, т. е. большому, контуру. Температурный режим двигателя регулируется также с помощью поворотныхжалюзей, путем изменения воздушного потока, создаваемого вентилятором 7 и проходящего через радиатор.

В последние годы наиболее эффективным и рациональным способом автоматического регулирования температурного режима двигателя является изменение производительности самого вентилятора.

Элементы жидкостной системы

Термостат предназначен для обеспечения автоматического регулирования температуры охлаждающей жидкости во время работы двигателя.

Для быстрого прогрева двигателя при его пуске устанавливают термостат в выходном патрубке рубашки головки блока цилиндров. Он поддерживает желательную температуру охлажда-ющей жидкости путем изменения интенсивности ее циркуляции через радиатор.

На рис. 3.3 представлен термостат сильфонного типа. Он состоит из корпуса 2, гофрированного цилиндра (сильфона), клапана 1 и штока, соединяющего сильфон с клапаном. Сильфон изготовлен из тонкой латуни и заполнен легкоиспаряющейся жидкостью (например, эфиром или смесью этилового спирта и воды). Расположенные в корпусе термостата окна 3 в зависимости от температуры охлаждающей жидкости могут или оставаться открытыми, или быть закрытыми клапанами.

При температуре охлаждающей жидкости, омывающей сильфон, ниже 70 °С клапан 1 закрыт, а окна 3 открыты. Вследствие этого охлаждающая жидкость в радиатор не поступает, а циркулирует внутри рубашки двигателя. При повышении температуры охлаждающей жидкости выше 70 °С сильфон под давлением паров испаряющейся в нем жидкости удлиняется и начинает открывать клапан 1 и постепенно прикрывать окна клапанами 3. При температуре охлаждающей жидкости выше 80–85 °С клапан 1 полностью открывается, окна же полностью закрываются, вследствие чего вся охлаждающая жидкость циркулирует через радиатор. В настоящее время данный тип термостатов применяется очень редко.

Рис. 3.3. Термостат сильфонного типа

Сейчас в двигателях устанавливают термостаты, в которых заслонка 1 открывается при расширении твердого наполнителя – церезина (рис. 3.4). Это вещество расширяется при повышении температуры и открывает заслонку 1, обеспечивая поступление охлаждающей жидкости в радиатор.

Рис. 3.4. Термостат с твердым наполнителем

Радиатор является теплорассеивающим устройством, предназначенным для передачи тепла охлаждающей жидкости окружающему воздуху.

Радиаторы автомобильных и тракторных двигателей состоят из верхнего и нижнего резервуаров, соединенных между собой большим количеством тонких трубок.

Для усиления передачи тепла от охлаждающей жидкости воздуху поток жидкости в радиаторе направляют через ряд обдуваемых воздухом узких трубок или каналов. Радиаторы изготовляют из материалов, хорошо проводящих и отдающих тепло (латуни и алюминия).

В зависимости от конструкции охлаждающей решетки радиаторы делят на трубчатые, пластинчатые и сотовые.

В настоящее время наибольшее распространение получили трубчатые радиаторы. Охлаждающая решетка таких радиаторов (рис. 3.5а) состоит из вертикальных трубок овального или круглого сечения, проходящих через ряд тонких горизонтальных пластин и припаянных к верхнему и нижнему резервуарам радиатора. Наличие пластин улучшает теплопередачу и повышает жесткость радиатора. Трубки овального (плоского) сечения предпочтительнее, так как при одинаковом сечении струи поверхность охлаждения их больше, чем поверхность охлаждения круглых трубок; кроме того, при замерзании воды в радиаторе плоские трубки не разрываются, а лишь изменяют форму поперечного сечения.

а б в

Рис. 3.5. Радиаторы

В пластинчатых радиаторах охлаждающая решетка (рис. 3.5б) устроена так, что охлаждающая жидкость циркулирует в пространстве, образованном каждой парой спаянных между собой по краям пластин. Верхние и нижние концы пластин, кроме того, впаяны в отверстия верхнего и нижнего резервуаров радиатора. Воздух, охлаждающий радиатор, просасывается вентилятором через проходы между спаянными пластинами. Для увеличения поверхности охлаждения пластины обычно выполняют волнистыми. Пластинчатые радиаторы имеют большую охлаждающую поверхность, чем трубчатые, но вследствие ряда недостатков (быстрое загрязнение, большое количество паяных швов, необходимость более тщательного ухода) применяются сравнительно редко.

Сотовый радиатор относится к радиаторам с воздушными трубками (рис. 3.5в). В решетке сотового радиатора воздух проходит по горизонтальным, круглого сечения трубкам, омываемым снаружи водой или охлаждающей жидкостью. Чтобы сделать возможной спайку концов трубок, края их развальцовывают так, что в сечении они имеют форму правильного шестиугольника.

Достоинством сотовых радиаторов является большая, чем в радиаторах других типов, поверхность охлаждения. Из-за ряда недостатков, большинство из которых те же, что и у пластинчатых радиаторов, сотовые радиаторы в настоящее время встречаются крайне редко.

В пробке заливной горловины радиатора установлен паровой клапан 2 и воздушный клапан 1, которые служат для поддержания давления в заданных пределах (рис. 3.6).

Рис. 3.6. Пробка радиатора

Водяной насос обеспечивает циркуляцию охлаждающей жидкости в системе. Как правило, в системах охлаждения устанавливают малогабаритные одноступенчатые центробежные насосы низкого давления производительностью до 13 м3/ч, создающие давление 0.05–0.2 МПа. Такие насосы конструктивно просты, надежны и обеспечивают высокую производительность (рис. 3.7).

Корпус и крыльчатку насосов отливают из магниевых, алюминиевых сплавов, крыльчатку, кроме того, – из пластмасс. В водяных насосах автомобильных двигателей обыкновенно применяют полузакрытые крыльчатки, т. е. крыльчатки с одним диском.

Крыльчатки центробежных водяных насосов часто монтируют на одном валике с вентилятором. В этом случае насос устанавливают в верхней передней части двигателя, приводится он в движение от коленчатого вала при помощи клиноременной передачи.

Рис. 3.7. Водяной насос

Ременную передачу можно применять и при установке центробежного насоса отдельно от вентилятора. В некоторых двигателях грузовых автомобилей и тракторов привод водяного насоса осуществляется от коленчатого вала шестеренчатой передачей. Вал центробежного водяного насоса устанавливают обычно на подшипниках качения и снабжают для уплотнения рабочей поверхности простыми или саморегулирующимися сальниками.

Вентилятор в жидкостных системах охлаждения устанавливают для создания искусственного потока воздуха, проходящего через радиатор. Вентиляторы автомобильных и тракторных двигателей делят на два типа: а) со штампованными из листовой стали лопастями, прикрепленными к ступице; б) с лопастями, которые отлиты за одно целое со ступицей.

Число лопастей вентилятора изменяется в пределах четырех – шести. Увеличение числа лопастей выше шести нецелесообразно, так как производительность вентилятора при этом увеличивается крайне незначительно. Лопасти вентилятора можно выполнять плоскими и выпуклыми.

studfile.net

Система охлаждения двигателя | Системы охлаждения автомобиля

Система охлаждения — это совокупность устройств, обеспечивающих принудительный отвод теплоты от нагревающихся деталей двигателя.

Потребность в системах охлаждения для современных двигателей вызвана тем, что естественное рассеивание теплоты наружными поверхностями двигателя и теплоотвод в циркулирующее моторное масло не обеспечивают оптимального температурного режима работы двигателя и некоторых его систем. Перегрев двигателя связан с ухудшением процесса наполнения цилиндров свежим зарядом, пригоранием масла, увеличением потерь на трение и даже заклиниванием поршня. На бензиновых двигателях возникает также опасность калильного зажигания (не от искры свечи, а вследствие высокой температуры камеры сгорания).

Система охлаждения должна обеспечивать автоматическое поддержание оптимального теплового режима двигателя на всех скоростных и нагрузочных режимах его работы при температуре окружающего воздуха -45…+45 °С, быстрый прогрев двигателя до рабочей температуры, минимальный расход мощности на приведение в действие агрегатов системы, малую массу и небольшие габаритные размеры, эксплуатационную надежность, определяемую сроком службы, простотой и удобством обслуживания и ремонта.

На современных колесных и гусеничных машинах применяются воздушная и жидкостная системы охлаждения.

При использовании воздушной системы охлаждения (рис. а) теплота от головки и блока цилиндров передается непосредственно обдувающему их воздуху. Через воздушную рубашку, образов ванную кожухом 3, охлаждающий воздух прогоняется с помощью вентилятора 2, приводимого в действие от коленчатого вала с использованием ременной передачи. Для улучшения теплоотвода цилиндры 5 и их головки снабжены ребрами 4. Интенсивность охлаждения регулируется специальными воздушными заслонками 6, управляемыми автоматически с помощью воздушных термостатов.

Большинство современных двигателей имеет жидкостную систему охлаждения (рис. б). В систему входят рубашки охлаждения 11 и 13 соответственно головки и блока цилиндров, радиатор 18, верхний 8 и нижний 16 соединительные патрубки со шлангами 7 и 15, жидкостный насос 14, распределительная труба 72, термостат 9, расширительный (компенсационный) бачок 10 и вентилятор 77. В рубашке охлаждения, радиаторе и патрубках находится охлаждающая жидкость (вода или антифриз — незамерзающая жидкость).

Рис. Схемы воздушной (а) и жидкостной (б) систем охлаждения двигателя:
1 — ременная передача; 2, 17 — вентиляторы; 3 — кожух; 4 — ребра цилиндра; 5 — цилиндр; 6 — воздушная заслонка; 7, 15 — шланги; 8, 16 — верхний и нижний соединительные патрубки; 9 — термостат; 10 — расширительный бачок; 77, — рубашки охлаждения головки и блока цилиндров; 12 — распределительная труба; 14 — жидкостный насос; 18 — радиатор

При работе двигателя приводимый в действие от коленчатого вала жидкостный насос создает в системе циркуляцию охлаждающей жидкости. По распределительной трубе 12 жидкость направляется сначала к наиболее нагретым деталям (цилиндры, головка блока), охлаждает их и по патрубку 8 поступает в радиатор 18. В радиаторе поток жидкости разветвляется по трубкам на тонкие струйки и охлаждается воздухом, продуваемым через радиатор. Охлажденная жидкость из нижнего бачка радиатора по патрубку 16 и шлангу 15 снова поступает в жидкостный насос. Поток воздуха через радиатор обычно создает вентилятор 77, приводимый в действие от коленчатого вала или специального электродвигателя. На некоторых гусеничных машинах для ,обеспечения потока воздуха применяется эжекционное устройство. Принцип действия этого устройства заключается в использовании энергии отработавших газов, вытекающих с большой скоростью из выпускной трубы и увлекающих за собой воздух.

Регулирует циркуляцию жидкости в радиаторе, поддерживая оптимальную температуру двигателя, термостат 9. Чем выше температура жидкости в рубашке, тем значительнее открыт клапан термостата и больше жидкости поступает в радиатор. При низкой температуре двигателя (например, непосредственно после его пуска) клапан термостата закрыт, и жидкость направляется не в радиатор (по большому кругу циркуляции), а сразу в приемную полость насоса (по малому кругу). Этим достигается быстрый прогрев двигателя после пуска. Интенсивность охлаждения регулируется также с помощью жалюзи, установленных на входе воздушного тракта или выходе из него. Чем больше степень закрытия жалюзи, тем меньше воздуха проходит через радиатор и хуже охлаждение жидкости.

В расширительном бачке 10, расположенном выше радиатора, имеется запас жидкости для компенсации ее убыли в контуре из-за испарения и утечек. В верхнюю полость расширительного бачка часто отводят образовавшийся в системе пар из верхнего коллектора радиатора и рубашки охлаждения.

Жидкостное охлаждение по сравнению с воздушным имеет следующие преимущества: более легкий пуск двигателя в условиях низкой температуры окружающего воздуха, более равномерное охлаждение двигателя, возможность применения блочных конструкций цилиндров, упрощение компоновки и возможность

изоляции воздушного тракта, меньший шум от двигателя и более низкие механические напряжения в его деталях. Вместе с тем жидкостная система охлаждения, имеет ряд недостатков, таких, как более сложная конструкция двигателя и системы, потребность в охлаждающей жидкости и более частой смене масла, опасность подтекания и замерзания жидкости, повышенный коррозионный износ, значительный расход топлива, более сложное обслуживание и ремонт, а также (в ряде случаев) повышенная чувствительность к изменению температуры окружающего воздуха.

Жидкостный насос 14 (см. рис. б) обеспечивает циркуляцию охлаждающей жидкости в системе. Обычно применяются центробежные крыльчатые насосы, но иногда используются шестеренные и поршневые насосы. Термостат 9 может быть одно- и двухклапанным с жидкостным термосиловым элементом или элементом, содержащим твердый наполнитель (церезин). В любом случае материал для термосилового элемента должен иметь очень большой коэффициент объемного расширения, чтобы при нагреве стержень клапана термостата мог перемещаться на довольно большое расстояние.

Практически, все двигатели наземных ТС с жидкостным охлаждением снабжены так называемыми закрытыми системами охлаждения, которые не имеют постоянной связи с атмосферой. При этом в системе образуется избыточное давление, что приводит к повышению температуры кипения жидкости (до 105… 110°С), увеличению эффективности охлаждения и уменьшению потерь, а также снижению вероятности появления в потоке жидкости пузырьков воздуха и пара.

Поддержание необходимого избыточного давления в системе и обеспечение доступа в нее атмосферного воздуха при разрежении осуществляется с помощью двойного паровоздушного клапана, который устанавливается в самой высокой точке жидкостной системы (обычно в крышке наливной горловины расширительного бачка или радиатора). Паровой клапан открывается, позволяя избытку пара уйти в атмосферу, если давление в системе превышает атмосферное на 20… 60 кПа. Воздушный клапан открывается, когда давление в системе снижается на 1… 4 кПа по сравнению с атмосферным (после остановки двигателя охлаждающая жидкость остывает, и ее объем уменьшается). Перепады давления, при которых открываются клапаны, обеспечиваются подбором параметров клапанных пружин.

В жидкостной вентиляционной системе охлаждения радиатор омывается потоком воздуха, создаваемым вентилятором. В зависимости от взаимного расположения радиатора и вентилятора могут применяться следующие типы вентиляторов: осевые, центробежные и комбинированные, создающие как осевой, так и радиальный потоки воздуха. Осевые вентиляторы устанавливают перед радиатором или за ним в специальном воздухоподводящем канале. К центробежному вентилятору воздух подводится по оси его вращения, а отводится — по радиусу (или наоборот). При нахождении радиатора перед вентилятором (в области всасывания) поток воздуха в радиаторе более равномерный, а температура воздуха не повышена из-за его перемешивания вентилятором. При нахождении радиатора за вентилятором (в области нагнетания) поток воздуха в радиаторе турбулентный, что повышает интенсивность охлаждения.

На тяжелых колесных и гусеничных ТС приведение вентилятора в действие обычно осуществляется от коленчатого вала двигателя. Могут использоваться карданные, ременные и зубчатые (цилиндрические и конические) передачи. В целях снижения динамических нагрузок на вентилятор в его приводе от коленчатого вала часто применяются разгружающие и демпфирующие устройства в виде торсионных валиков, резиновых, фрикционных и вязкостных муфт, а также гидромуфт. Для привода вентилятора относительно маломощных двигателей широко используются специальные электродвигатели, питание которых осуществляется от бортовой электросистемы. Это, как правило, уменьшает массу силовой установки и упрощает ее компоновку. Кроме того, применение электродвигателя для привода вентилятора позволяет регулировать частоту его вращения, а следовательно, и интенсивность охлаждения. При низкой температуре охлаждающей жидкости возможно автоматическое отключение вентилятора.

Радиаторы связывают друг с другом воздушный и жидкостный тракты системы охлаждения. Назначение радиаторов — передача теплоты от охлаждающей жидкости атмосферному воздуху. Основные части радиатора — входной и выходной коллекторы, а также сердцевина (охлаждающая решетка). Сердцевина изготавливается из меди, латуни или алюминиевых сплавов. По типу сердцевины различают следующие виды радиаторов: трубчатые, трубчато-пластинчатые, трубчато-ленточные, пластинчатые и сотовые.

В системах охлаждения колесных и гусеничных машин наибольшее распространение получили трубчато-пластинчатые и трубчато-ленточные радиаторы. Они жестки, прочны, технологичны в производстве и обладают высокой тепловой эффективностью. Трубки таких радиаторов имеют, как правило, плоскоовальное сечение. Трубчато-пластинчатые радиаторы могут также состоять из трубок круглого или овального сечения. Иногда трубки плоскоовального сечения располагают под углом 10… 15° к воздушному потоку, что способствует турбулизации (завихрению) воздуха и повышает теплоотдачу радиатора. Пластины (ленты) могут быть гладкими или гофрированными, с пирамидальными выступами или отогнутыми просечками. Гофрирование пластин, нанесение просечек и выступов увеличивают охлаждающую поверхность и обеспечивают турбулентное течение потока воздуха между трубками.

Рис. Решетки трубчато-пластинчатого (а) и трубчато-ленточного (б) радиаторов

Видео-урок: Система охлаждения двигателя

ustroistvo-avtomobilya.ru

Шесть мифов о «воздушниках»: чем воздушное охлаждение круче жидкостного

                  Моторы-«воздушники» получили отставку совершенно зря. Достоинств у них столько, что любой новомодный турболитр с даунсайзингом в придачу позавидуют. И о многих плюсах воздушного охлаждения некоторые сегодня даже не догадываются.

На первый взгляд – взгляд потребителя, владельца семейной легковушки или целого коммерческого автопредприятия – преимущества двигателей с воздушным охлаждением лежат на поверхности:

  • «воздушник» конструктивно проще мотора с жидкостным охлаждением
  • он надежнее;
  • он дешевле в эксплуатации.

О минусах воздушного охлаждения все тоже как будто наслышаны, и напомнить о них здесь стоило бы лишь для соблюдения баланса аргументов. Но на самом деле есть только один значимый для потребителя недостаток мотора с воздушным охлаждением:

  • «воздушник» более шумный.

Все остальные минусы или давно потеряли актуальность, или всегда были досужими сказками. Так что есть повод поговорить об этих незаслуженно подзабытых агрегатах подробнее.

Из истории «воздуха»

Двигатель Porsche 911 Carrera 4


Да, было время, когда автомобильные моторы с воздушным охлаждением проигрывали собратьям с охлаждением жидкостным (тогда говорили – водяным, поскольку антифризы были понятием чисто теоретическим). Двигатели-«воздушники» получались менее мощными, перегревались летом и не прогревались зимой. Из-за температурных проблем ресурс такого двигателя был меньше, часто случались отказы. Но все эти вопросы были решены к 1950-м годам, когда воспрянувшая после Второй мировой Европа начала пересаживаться с велосипедов на компактные автомобильчики. Дешевые и неприхотливые «воздушники» начали массово применять не только на VW Beetle, но и на Citroen 2CV, Fiat 500, NSU Prinz и прочих автомобилях. И это мы еще не говорим о целой плеяде серийных заднемоторных спорткаров Porsche, 4-, 6- и 8-цилиндровые моторы которых вплоть до 1998 года охлаждались воздухом!


Двигатель ЗАЗ-968А «Запорожец»


В то время как немецкий «Жук» с его обдуваемым воздухом оппозитником во всем мире мигом стал образцом простоты и безотказности, в нашей стране сложилось устойчивое и по сей день не искорененное предубеждение против моторов воздушного охлаждения. Дескать, они и греются безбожно, и ломаются через день, да и силенок у них маловато. Виноват во всем бедолага «Запорожец», которому пришлось отдуваться за честь всех «воздушников» перед лицом целого СССР. Вместе с сомнительным качеством сборки ЗАЗикам досталась мизерная по масштабам СССР сервисная сеть. Сам по себе мелитопольский силовой агрегат МеМЗ был неплох, но обслуживаемый в кустарных условиях, заправляемый «автолом» и ремонтируемый «на коленке», он в самом деле не был примером надежности. Поэтому прежде чем продолжить повествование, хочу попросить читателя ассоциировать понятие «воздушник» не с «Запором», а с «Жуком» или хотя бы с «Ситроен де шво». Так будет честнее.


Двигатель «Запорожец» МеМЗ-968


1. Он греется – неправда

На самом деле, температурные особенности моторов-«воздушников» можно отнести не к минусам, а к плюсам. Да, из-за меньшей теплоемкости и теплопроводности воздух не может так быстро отобрать тепло, как вода или антифриз. Но с другой стороны разница температур между стенками цилиндров и забортным воздухом больше, чем между теми же стенками и циркулирующей в системе охлаждающей жидкостью. Поэтому тепловой режим «воздушника» меньше зависит от погоды – то есть вероятность перегрева двигателя-«водянки» даже с самым большим радиатором в жару намного выше.


Схемы систем воздушного охлаждения


Еще одно очень важное преимущество «воздушника» – в три-четыре раза более быстрый прогрев после холодного пуска. Отсюда – и экономия топлива, и продление ресурса, и лучшая экология, и, наконец, удобство для водителя. Только у самых сложных «жидкостных» моторов образца 2010-х годов, имеющих три контура системы охлаждения, получается достигнуть подобных показателей прогрева.

2. Он громоздкий – неправда

Внешне «воздушник» может казаться более массивным, поскольку его цилиндры и головки со всех сторон окружены кожухами-воздуховодами, да и вентилятор обдува с дефлектором обычно выглядит более чем внушительно. Но предметное сравнение габаритов двух моторов с одинаковыми диаметром цилиндров и ходом поршня, но разными системами охлаждения, говорит о том, что габариты если и отличаются, то как раз в пользу «воздушника» – зачастую он оказывается чуть компактнее. Но главное даже не это.


Двигатель VW Beetle


Что касается размеров, справедливо будет принимать во внимание габариты не одного только двигателя, но и тех его неотъемлемых компонентов, которые крепятся отдельно, на кузове. Вот тут и проявляется неопровержимое преимущество «воздушника»: говоря современным языком, он выполнен в форм-факторе «моноблок», в то время как «водянка» имеет вынесенный на кузов громоздкий радиатор с вентилятором и системой шлангов. Которые, естественно, компактности силовому агрегату не добавляют.

3. Он ненадежный – неправда

На самом деле надежность двигателя с воздушным охлаждением существенно выше, ведь по статистике система жидкостного охлаждения служит причиной 20% всех отказов двигателя. А у «воздушника» как раз отсутствуют компоненты, обладающие низкой отказоустойчивостью: радиатор, термостат, помпа, трубопроводы, сальники и прочие уплотнения. Вентилятор и дефлекторы для обдува цилиндров воздухом устроены существенно проще, поэтому вероятность их отказа мизерна. Кстати, по этой же причине затраты на обслуживание «воздушников» также ниже.


Двигатель Porsche 911


4. Он шумный – правда

Что есть, то есть – шумит. И поделать с этим ничего нельзя. Точнее, идеи есть, но воплотить все их очень сложно. Беда в том, что у «воздушника» нет такой эффективной шумоизоляции, как двойные стенки рубашки охлаждения, заполненной водой или антифризом. И более того, все шумы мотора (механические, газообмена, горения) порой усиливаются ребрами цилиндров и головок. Поэтому конструкторы борются в первую очередь с источниками шумов, повышая жесткость деталей и применяя подпружиненные разрезные шестерни приводов, гидрокомпенсаторы клапанов, материалы с точно подобранным коэффициентом температурного расширения. Аэродинамические шумы вентилятора можно значительно уменьшить, но это дело нелегкое – нужны серьезные усилия конструкторов и технологов.


Двигатель Fiat 500


5. Малый ресурс – неправда

В первые 50 лет автомобильной эры к воздушному охлаждению конструкторы относились легкомысленно – дует мощный вентилятор на оребренные цилиндры, да и ладно. Но такое охлаждение часто было неравномерным, с застойными зонами и местными перегревами. Цилиндры деформировались, нарушались установленные зазоры цилиндропоршневой группы, масло коксовалось и выгорало. В результате детали изнашивались более интенсивно, чем у моторов с водяной "рубашкой", которая более равномерно распределяла выделяемое через стенки цилиндров тепло и отбирала его. Но организовать ровный обдув воздухом всех горячих зон двигателя оказалось не так уж сложно, и со временем двигатели-«воздушники» получили рациональное распределение тепла.

Еще один нюанс, уже из области высоких материй: при воздушном охлаждении проще организовать более высокую температуру стенок цилиндров (независимо от их головок). «Лишние» 15-20 °C снижают потери на трение колец о цилиндры (масло-то на стенках более жидкое!), а также уменьшают их износ (в том числе и коррозионный) и замедляют старение масла за счет его меньшего окисления. Выше уже было сказано о том, что мотор с воздушным охлаждением работает в холодном состоянии в несколько раз меньшее время, чем мотор с водяным – а значит, и время интенсивного износа трущихся пар намного меньше.


Двигатель Porsche 911 GT2


6. Он хилый – неправда

Причина для подобного обвинения есть, но суть проблемы такова, что ею можно пренебречь. Дело в том, что при увеличении нагрузки температура охлаждаемых воздухом цилиндров и их головок быстро повышается, а значит, повышается температура воздуха, поступающего в цилиндры. Отсюда – худшее весовое наполнение цилиндров рабочей смесью и кратковременное падение отдачи двигателя. Но исследования ученых-моторостроителей показывают, что разница коэффициента наполнения цилиндров у «воздушников» и «водянок» не превышает 3,5%. И это при 2 000 об/мин, а с ростом оборотов разница вообще стремится к нулю. Таким образом, теоретически существующую особенность эффективного наполнения цилиндров конструкторы решают за счет повышения рабочих оборотов двигателя. И, разумеется, данный вопрос вообще не касается наддувных двигателей воздушного охлаждения.

Так почему же?

Каждый, кто дочитал эту не самую простую статью до конца, вслух или мысленно уже задался вопросом: и по какой же причине от такого замечательного типа охлаждения отказались даже спецы из Porsche, которые одних только 911-х с «воздушниками» выпустили более 400 000 экземпляров? Причин много, и мы их рассмотрим в следующей статье. Но сразу скажем: мотор не виноват. Не все ведь в этом мире зависит от технарей и техники...


Читайте также:


www.kolesa.ru

Система охлаждения двигателя автомобиля | Системы охлаждения автомобиля

Назначение системы охлаждения

Большая часть серьёзных неисправностей автомобиля связана с перегревом двигателя. Температура газов в цилиндре достигает 2000 гр. При сгорании топлива в цилиндре образуется большое количество тепла, которое необходимо отвести и тем самым не допустить перегрева деталей двигателя.

Принципы построения систем охлаждения

Снижение эффективности работы системы охлаждения приводит к увеличению температуры поршней, уменьшению зазоров между поршнем и цилиндром. Тепловые зазоры уменьшаются до нуля. Поршень задевает за стенки цилиндра, образуются задиры, перегретое масло теряет смазочные свойства и масляная плёнка разрывается. Такой режим работы может привести к заклиниванию двигателя. Перегрев сопровождается неравномерным расширением головки блока, болтов крепления, блока двигателя и пр. В дальнейшем разрушение двигателя неизбежно: трещины в головке блока, деформация плоскостей стыка головки и самого блока цилиндров, образуются трещины сёдел клапанов и т.п. — неприятно даже перечислял, всё это, поэтому лучше до этого не доводить!

Система охлаждения двигателя и масла призвана не допустить подобного развития событий, но для того, чтобы система справилась с поставленными задачами, необходимо использовать качественную охлаждающую жидкость (ОЖ). Низкозамерзающие ОЖ называют антифризами — от английского слова «antifreeze». Ранее ОЖ приготовляли на основе водных растворов одноатомных спиртов, гликолей, глицерина и неорганических солей. В настоящее время предпочтение отдано моноэтиленгликолю — бесцветной сиропообразной жидкости с плотностью примерно 1,112 г\см2 и температурой кипения 198 гр. Задача ОЖ не только охлаждать двигатель, но и не кипеть во всём диапазоне температур работы двигателя и его компонентов, иметь высокую теплоёмкость и теплопроводность, не пениться, не оказывать вредного воздействия на патрубки и уплотнения, обладать смазывающими и антикоррозийными свойствами.

В 70 х годах выпускался антифриз на основе водного раствора моноэтиленгликоля с температурой начала кристаллизации — 40 гр. Он не требовал разбавление водой при добавлении в систему охлаждения. Этот препарат получил название ТОСОЛ — по названию лаборатории «Технология Органического Синтеза». Т.к. название не запатентовано, то ТОСОЛом называют готовый к применению продукт, а «антифризом» — концентрированный раствор (хотя ТОСОЛ тоже антифриз).

Готовые антифризы окрашивают для безопасности и выбирают броские цвета: синий, зелёный, красный. В процессе эксплуатации антифриз теряет полезные свойства — снижаются антикоррозийные свойства, возрастает склонность к пенообразованию. Срок службы отечественных ОЖ от 2 до 5 лет, импортных 5-7 лет.

На рисунке, приведённом ниже, изображена схема системы охлаждения автомобиля. Ничего особенного или сложного в системе охлаждения нет и тем не менее…

Рис. 1 — двигатель, 2 — радиатор, 3 — отопитель, 4 — термостат, 5 — расширительный бачок, 6 — пробка радиатора, 7 — верхний патрубок, 8 — нижний патрубок, 9 — вентилятор радиатора, 10 — датчик включения вентилятора, 11 — датчик температуры, 12 — помпа.

При пуске двигателя начинает вращаться помпа (водяной насос). Привод помпы может иметь свой шкивок, приводимый во вращение ремнем вспомогательного оборудования или приводиться вращением ремня ГРМ. В системе охлаждения находится крыльчатка, которая вращаясь, приводит в движение охлаждающую жидкость. Для быстрого прогрева двигателя система «закорочена», т.е. термостат закрыт и не пропускает жидкость в радиатор охлаждения. По мере роста температуры охлаждающей жидкости открывается термостат, переводя систему в другое состояние, когда охлаждающая жидкость проходит по длинному пути — через радиатор системы охлаждения (короткий путь перекрыт термостатом). Термостаты имеют различные характеристики открытия. Обычно на кромке нанесена температура открытия. Наверное не стоит объяснять устройство радиатора. В нижней части радиатора установлен датчик включения вентилятора. Если температура охлаждающей жидкости достигнет определённой величины — датчик замкнётся, а т.к. электрически он соединён на разрыв цепи питания электровентилятора, то при замыкании — должен включиться вентилятор системы охлаждения. По мере остывания охлаждающей жидкости — вентилятор выключается, а термостат перекрывает длинный путь на короткий. Всё просто, но не очень…

Такая схема является основой, но жизнь не стоит на месте и различные производители усовершенствуют системы охлаждения. На некоторых автомобилях Вы не найдёте датчика включения вентилятора системы охлаждения, т.к. вентилятор включается от ЭБУ двигателем в зависимости от показаний датчика температуры охлаждающей жидкости. Стоит обратить внимание на ситуацию, при которой при вклинении зажигания — сразу включается вентилятор системы охлаждения. Или неисправен датчик температуры, или повреждены его цепи, или неисправен сам ЭБУ двигателем — он «не видит» температуру двигателя и на всякий случай включает сразу вентилятор.

На некоторых а\м на пути к отопителю установлены специальные электроклапана, разрешающие или перекрывающие путь охлаждающей жидкости (БМВ, МЕРСЕДЕС). Такие клапана иногда «помогают» системе охлаждения выйти из строя.

Поиск и устранение неисправностей в системе охлаждения

Специалистами фирмы «АБ-Инжиниринг» под руководством Хрулева А.Э. разработала таблица причин и последствий перегрева двигателя. Сам перегрев двигателя — это температурный режим его работы, характеризуемый закипанием охлаждающей жидкости. Но не только перегрев является неисправностью. Работа двигателя при постоянно пониженной температуре тоже считаем неисправностью, т.к. при этом двигатель работает при несвойственном ему температурном режиме. Выход из строя термостата, электровентилятора или вязкостной муфты, термовыключателей и пр. приведет к нештатной работе системы охлаждения. Если водитель вовремя обнаружит признаки нарушения теплового режима работы двигателя и не допустит необратимых процессов, то ремонт системы охлаждения не будет дорогим и долгим. Поэтому настоятельно рекомендуем обратить Ваше (и Ваших клиентов) внимание на температурные режимы двигателя.

Поиск неисправности рекомендуем проводить с «холодного» двигателя до установления рабочего режима.

А. Первым делом необходимо проверить схему соединения патрубков системы охлаждения, если автомобиль не новый или поступил в ремонт после ремонта на другом сервисе.

Кому-то такое предложение покажется смешным, но жизнь показала обратное, примеры:

  • собранный после капремонта автомобиль имел соединение патрубка системы вентиляции картера с расширительным бачком системы охлаждения;
  • установленный нештатный вентилятор с лопастями, направляющими воздушный поток не в ту сторону;
  • лопасти электровентилятора свободно вращаются на валу выключенного двигателя;
  • разъёмы электровентилятора разболтаны или оборваны и т.п.

Осмотреть радиатор на предмет внешнего засорения. Осмотреть зоны и пути естественного охлаждения двигателя. Отрицательным примером может служить мощная защита нижней части двигателя, которая преграждает путь воздушному потоку, охлаждающему двигатель снизу. Иногда поломка бампера, нижняя часть которого имеет направляющие воздушного потока на двигатель, приводит к перегреву (VW «Пассат» Б3).

Б. После осмотра необходимо проверить уровень охлаждающей жидкости в системе, наличие и исправность клапанов крышек радиатора и расширительного бачка, целостность патрубков и шлангов. Уточнить, какой антифриз или просто вода залиты в систему, т.к. температура кипения у каждой жидкости своя.

Если первые два пункта (А или Б) выявили какие-то неисправности, их необходимо устранить или принять к сведению при вынесении «приговора». При добавлении охлаждающей жидкости необходимо помнить, что не все автомобили спроектированы по принципу «просто добавь воды». К примеру на автомобиле БМВ (М20, Е34) при добавлении охлаждающей жидкости необходимо включить зажигание и установить регуляторы температуры печки в режим «максимально тепло», чтобы включились клапана печки и открылись для движения охлаждающей жидкости по системе, к тому же необходимо поднять радиатор вверх, т.к. расширительный бачок, встроенный в радиатор «чудо-проектировщиками» Германии, расположен ниже уровня печки салона и она часто завоздушивается.

Если есть подозрение на то, что двигатель завоздушен (в системе находится воздух, который препятствует движению жидкости), необходимо выкрутить специальные заглушки системы охлаждения для выпуска воздуха. Расположены они обычно в верхней части системы охлаждения двигателя. Запустить двигатель, включить отопители салона, включит вентилятор. Наблюдать за прогревом двигателя, узлов и агрегатов. Если в системе есть расширительный бачок, то проверить циркуляцию жидкости, т.е. её движение по системе. При добавлении оборотов двигателя до 2 500 — 3 000 в бачок должна поступать мощная струя охлаждающей жидкости. Из выкрученных (не полностью!) заглушек может некоторое время выходить воздух и как только польётся жидкость — заглушки необходимо закрутить. По мере прогрева двигателя из отопителя салона должен идти прогревающийся воздух. Если двигатель прогревается, а воздух из отопителя холодный, то это является первым признаком «завоздушивания» системы охлаждения. Необходимо заглушить двигатель и принять меры по поиску и устранению этой неисправности.

При исправном термостате (температура открытия может быть разной от 80 до 95 градусов) после прогрева нижний патрубок радиатора должен иметь примерно такую же температуру, как и верхний. Если это не так, значит плохая прокачка охлаждающей жидкости через радиатор.

При исправном термостате через некоторое время после его открытия должен включиться вентилятор системы охлаждения. Если в системе установлен не электровентилятор, то необходимо проверить датчик включения цепи электромагнитной муфты или работу вязкостной муфты. При неисправности вязкостной муфты вентилятор системы охлаждения на разогретом двигателе можно остановить и удерживать рукой (при остановке соблюдать осторожность — останавливать мягким предметом, чтобы не повредить крыльчатку вентилятора или руку). Необходимо проверить напор воздуха и его температуру — горячий воздух должен быть направлен на двигатель.

Давление в системе охлаждения должно медленно возрастать по мере прогрева двигателя и медленно опускаться после выключения двигателя. Если верхний патрубок, идущий к радиатору раздувается при повышении оборотов двигателя, необходимо проверить, не попадают ли в систему охлаждения часть отработанных газов. Обычно это заметно по масляной плёнке в расширительном бачке или пузырению охлаждающей жидкости. При этом из глушителя обычно интенсивно идёт белый дым от разогретой и испаряющейся охлаждающей жидкости, попадающей в цилиндры двигателя. В таком случае необходимо проверить маслозаливную горловину двигателя и сели на ней белая эмульсия, то охлаждающая жидкость не только в цилиндрах двигателя, но и в системе смазки (необходимо прекратить движение). Приведём несколько примеров из практики различных сервисов, которые «говорят» о том, что диагностика Двигателя неотделима от диагностики всех систем автомобиля, в том числе и системы охлаждения.

А\м МАЗДА 626 — хозяин жалуется на неравномерность оборотов двигателя или повышенные обороты холостого хода. Проверка системы управления (и самодиагностика) не выявили неисправности. Обратили внимание на повышенное напряжение на температурном датчике охлаждающей жидкости.

Система управления добавляет количество топлива, т.к. реагирует на высокое напряжение на датчике (двигатель холодный). Оказалось, что в системе охлаждения мало жидкости, датчик «оголён». Просто добавлен до нормального уровень охлаждающей жидкости и обороты нормализуются.

А\м ФОРД — охлаждающая жидкость попадала в масло нетрадиционным путём — через систему охлаждения масла, расположенную вокруг масляного фильтра.

А\м ФОРД — после прогрева двигателя переставал работать один цилиндр. Замена свечи и другие работы приводили к положительному результату (к определению неисправности это не имело отношения, просто за время проведения работ двигатель остывал) — цилиндр начинал работать и клиент уезжал. На следующий день он снова у нас. Оказалось — трещина в головке блока в районе выпускного клапана неработающего цилиндра. Пока двигатель холодный — всё в норме. При прогреве — трещина увеличивалась и начинала пропускать охлаждающую жидкость в цилиндр. Смесь обеднялась и начинались перебои в работе, а затем полностью отключался цилиндр.

Таких примеров можно приводить много, они есть в практике каждого авторемонтника. Главный вывод должен сделать себе каждый, кто серьёзно занят авторемонтом — замечать и анализировать всё значительное и незначительное, т.к. эти позиции могут резко поменяться местами.

ustroistvo-avtomobilya.ru

Охлаждение промышленных электродвигателей

Нагрев любой электрической машины обусловлен преобразованием части электроэнергии в тепловую, трением отдельных конструктивных элементов, величиной нагрузки на валу. Учитывая то, что обмотки большинства промышленных электродвигателей могут работать при температуре, не превышающей 90-95 градусов, становится актуальным вопрос выбора эффективных систем охлаждения.

На практике применяют несколько конструктивных решений, способных обеспечить снижение температуры ЭД различных типов до нормируемых значений. Наибольшее распространение в промышленных электродвигателях средней и большой мощности получили следующие варианты.

Принципы самовентиляции электродвигателей

Самый простейший способ — естественное охлаждение двигателя, обеспеченное за счет передачи накопленного тепла в окружающий воздух через корпус электродвигателя. Но такой вариант приемлем только для маломощных модификаций, в промышленных установок подобного отвода тепла уже недостаточно.

В большинстве электродвигателей реализована схема охлаждения за счет самовентиляции. Благодаря созданию воздушных потоков скорость отвода тепла от нагретых деталей повышается на порядок. Для этой цели на вал двигателя с нерабочей стороны устанавливается крыльчатка, действующая по принципу обычного вентилятора. В отдельных случаях создание устойчивых воздушных потоков обеспечено конструкцией самого ротора. Различают два основных типа системы охлаждения:

  • Наружная самовентиляция — поток охлаждающего воздуха проходит вдоль поверхности корпуса электродвигателя, который для увеличения теплоотдачи имеет специальное оребрение. Увеличение площади соприкосновения позволяет обеспечить более эффективный отвод тепловой энергии.

  • Внутренняя самовентиляция — воздушный поток циркулирует между основными конструктивными элементами по специальным каналам. Благодаря такому решению тепловая энергия отбирается непосредственно с нагретых обмоток и деталей двигателя, что позволяет поддерживать требуемую температуру даже при работе с максимально допустимой мощностью.

Для большинства электродвигателей, работающих с постоянной частотой вращения ротора, этот вариант считается наиболее простым. Но, при в системах для которых требуется регулировка скорости, такой вариант уже неэффективен, и требуется применение принудительного охлаждения.

Принудительное охлаждение

Принцип системы заключается в том, что частота вращения крыльчатки вентилятора не зависит от режима работы самого двигателя. Вентилятор обеспечен отдельным двигателем. Поэтому, при работе в режимах с небольшим количеством оборотов ротора производительность системы охлаждения не снижается.

Особенно актуален такой тип охлаждения для электродвигателей с частотными преобразователями и другими регуляторами частоты вращения ротора. Практически все ЭД постоянного тока комплектуются охлаждающими устройствами такого же типа. При этом наиболее эффективным считают замкнутые системы охлаждения, в том числе и с жидкостными воздухоохладителями. Воздух при этом циркулирует по замкнутой системе между электродвигателем и воздухоохладителями, благодаря чему отпадает необходимость в его постоянной очистке.

Особенности систем охлаждения синхронных электродвигателей

В синхронных электродвигателях различной мощности чаще всего реализована проточного (продуваемого) типа. Воздух, необходимый для отвода тепла, забирается из машинного зала, проходит через ЭД, нагревается и удаляется за пределы рабочей зоны. В отдельных случаях применяют схемы, при которых охлаждающий воздух забирается непосредственно у места установки электродвигателя и отводится из рабочей зоны по вентиляционной сети. В отдельных случаях тепловую энергию воздуха используют в системах рекуперации, позволяющих организовать обогрев других производственных и бытовых помещений.

Системы охлаждения асинхронных двигателей

При небольшой мощности двигателей (обычно до 15 кВт) используется схема с наружным охлаждением, причем могут применяться системы как с самовентиляцией, так и с принудительным охлаждением. Для более мощных электродвигателей характерна схема с внутренним охлаждением.

Для асинхронных двигателей большой мощности чаще всего реализованы системы охлаждения с замкнутым циклом. При этом воздухоохладители могут монтироваться как в опорном фундаменте электрической машины, так и на ее корпусе.

Альтернативные способы охлаждения электродвигателей

Повысить эффективность работы систем можно за счет применения хладагентов с большей теплопроводностью. Так, в электрических машинах большой мощности реализованы системы замкнутого цикла с применением водорода, теплоемкость которого по сравнению с воздухом больше в 7,1 раз. Благодаря такому решению эффективность отвода тепла поднимается практически на порядок. Но, к сожалению, для промышленных электродвигателей средней и малой мощности такой поход нецелесообразен из-за больших эксплуатационных расходов. Большего внимания может заслуживать схема с принудительным охлаждением отведенного воздуха в теплообменниках типа «воздух – вода».

www.ttaars.ru

Устройство системы охлаждения двигателя. Основные части

Система охлаждения двигателя состоит из следующих основных частей:

  • радиатора
  • расширительного бачка
  • насоса охлаждающей жидкости
  • вентилятора
  • термостата
  • подающих магистралей

Система охлаждения двигателя дает возможность быстрого прогрева двигателя и предохраняет его от перегрева, поддерживая оптимальную температуру. Радиатор соединен трубкой с расширительным бачком. Горловину радиатора закрывает пробка, оснащенная предохранительным клапаном, сбрасывающем излишек нагретой жидкости из радиатора в расширительный бачок, а также впускной клапан, дающий возможность возврата жидкости в радиатор в случае снижения температуры двигателя.

У пробки в положении «закрыто» выступы должны прилегать к бачку. Уровень жидкости проверяется на расширительном бачке. В случае снижения уровня жидкости ниже метки «LOW», необходимо ее долить столько, чтобы уровень поднялся до отметки «FULL».

Насос охлаждающей жидкости, установленный в передней части корпуса двигателя, приводится в движение зубчатым ремнем механизма газораспределения.

Рис. Составные части системы охлаждения в машине (радиатор, расширительный бачок, вентилятор): 1 — радиатор, 2 — пробка радиатора, 3,4,5 — элементы крепления, 6 — кожух вентилятора, 7 — крыльчатка вентилятора, 8 — двигатель вентилятора, 9 — расширительный бачок, 10 — трубка, соединяющая радиатор с расширительным бачком

Рис. Составные части системы охлаждения (магистрали подачи жидкости): 1 — крышка термостата, 2 — прокладка крышки, 3 — термостат, 4 — подводящий шланг радиатора, 5 — отводящий шланг радиатора, 6 — подводящий шланг двигателя, 7 — приемный патрубок двигателя, 8 — прокладка, 9 — подводящий шланг радиатора обогревающего устройства, 10 — отводящий подводящий шланг радиатора обогревающего устройства.

Основные элементы жидкостной системы охлаждения и их назначение

В жидкостных системах охлаждения поршневых двигателей охлаждающая жидкость циркулирует по замкнутому контуру, а тепло рассеивается в окружающую среду с помощью обдуваемого воздухом радиатора.

Основные части жидкостной системы охлаждения:

  • Рубашка охлаждения (1) представляет собой полость, огибающую части двигателя, требующие охлаждения. Циркулирующая по рубашке охлаждения жидкость отбирает у них тепло и переносит его к радиатору.
  • Насос охлаждающей жидкости, или помпа (5) — обеспечивает циркуляцию жидкости по контуру охлаждения. В некоторых двигателях, например мини-тракторов, может применяться термосифонная система охлаждения — то есть система с естественной циркуляцией охлаждающей жидкости, в которой этот насос отсутствует. Может приводиться в движение либо через ременную передачу от вала двигателя, либо от отдельного электродвигателя.
  • Термостат (2) — предназначен для поддержания рабочей температуры двигателя. Термостат перенаправляет охлаждающую жидкость по малому кругу — в обход радиатора, если температура не достигла рабочей.
  • Радиатор системы охлаждения (3) обычно имеет пластинчатую структуру, которая обдувается снаружи потоком воздуха. Обычно для изготовления радиатора используют алюминий, но могут применить и другие материалы хорошо проводящие тепло. К примеру, для изготовления масляных радиаторов не редко применяют медь.
  • Вентилятор (4) необходим для нагнетания дополнительного воздуха для обдува радиатора, в том числе во время остановок и при движении на малой скорости. В старых моделях автомобилей вентилятор приводили в движение от вала двигателя с помощью ременной передачи, но в современных автомобилях, за исключением крупных грузовиков, он работает от электродвигателя.
  • Расширительный бак содержит запас охлаждающей жидкости. С атмосферой расширительный бак сообщается через клапан, поддерживающий избыточное давление охлаждающей жидкости при работе, что позволяет двигателю работать при большей температуре, не допуская кипения охлаждающей жидкости. В старых моделях автомобилей часто расширительные бачки отсутствовали и запас охлаждающей жидкости находился в верхнем бачке радиатора. С распространением антифризов на основе этиленгликоля использование расширительного бака стало обязательным, т.к. при нагреве специальная жидкость имеет свойство расширяться.

Видео: Система охлаждения

ustroistvo-avtomobilya.ru

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *