Последствия детонации: Детонация двигателя: причины, способы устранения | SUPROTEC

Содержание

Причины и последствия детонации двигателя

Согласитесь, очень неприятно слышать громкие «раздирающие мотор» стуки под капотом при каждом нажатии на педаль акселератора, а также при подъеме в гору на высокой (прямой) передаче.

Резкий металлический стук двигателя следует отличать от сдавленного еле слышного, поскольку, в первом случае, это явление детонации — неспецифически высокой скорости горения бензовоздушной смеси в цилиндрах блока двигателя, а во втором, – халатное отношение к двигателю при движении на малой скорости на неадекватно высокой передаче.

Что это?

Теоретически, оптимальная скорость горения топливовоздушной смеси в цилиндрах блока двигателя должна быть не более 250 м/с (норма около 20). Сгорание бензина со скоростью более 2000 м/с. принято называть детонацией, точнее сказать, – фактически микровзрывом. Происходит неравномерное, несвоевременное, ударное возгорание воздушно-топливной смеси, при более высокой температуре и скорости, сопровождающееся характерным звонким металлическим стуком.

Такое возгорание происходит не в области свечи и не от нее, и распространяется на поступающую порцию воздушно-топливной смеси.

Возгорание под высоким давлением происходит в дизельных движках, зажигание же смеси паров бензина и воздуха под давлением не нормально для бензинового мотора.

И если движение на высокой передаче с низкой скоростью — это едва ли не осознанное нанесение вреда двигателю, то детонация может принести весьма печальные последствия для двигателя вплоть до его поломки.

Причины происхождения:

  1. Одна из самых распространенных причин появления детонационных стуков — это использование некачественного или низкооктанового бензина. Все дело в том, что для бензина октановое число является показателем его детонационной стойкости, точнее, его способности сгорать равномерно при любых условиях. Так например, у бензина марки АИ-92 эта стойкость будет ниже, чем у АИ-95 или АИ-98. Современные двигатели имеют сравнительно высокую степень сжатия, которая в этом случае является одним из главных ключевых факторов образования этого негативного явления. Фактически, степень сжатия определяется объемом камеры сгорания. Для двигателей с малой степенью сжатия вполне подойдет низкооктановый бензин. Но, этот же бензин при более высоком сжатии неизбежно потеряет свою детонационную стойкость. Его горение в цилиндрах будет взрывообразным, что может привести к, в полном смысле, разрушительным для мотора последствиям. Поэтому, заправка современного двигателя низкооктановым или низкокачественным топливом может стать для него фатальной.
  2. В другом случае, может возникать как следствие перегрева двигателя. Причины перечислять не будем, их довольно много.
  3. В ряде случаев в возникновении детонации виноваты неисправные свечи, благодаря которым происходят пропуски моментов зажигания, либо дизелинг — самопроизвольное воспламенение топливовоздушной смеси, когда поршень еще движется в направлении верхней мертвой точки. Такие свечи необходимо заменять.
  4. Четвертая и самая распространенная причина данного явления — неисправность системы зажигания. В данном случае, причиной детонации будет слишком раннее зажигание – это когда подается искра прежде, чем поршень подошел к верхней мертвой точке. В этом случае, топливовоздушная смесь, сгорая начинает расширяться, но поршень продолжает совершать поступательное движение вверх. В результате, давление в цилиндре нарастает и возникает детонация. Особенно явно это явление заметно при движении под нагрузкой. Последствия неправильной регулировки зажигания могут вылиться в аналогичные, что и при использовании некачественного низкооктанового топлива.

Последствия.

При таком «неправильном» сгорании топлива температура в цилиндрах резко повышается, что пагубно сказывается на свечах зажигания, клапанах и поршневых кольцах. Резкая температура способствует выгоранию масляной пленки на цилиндрах, что в свою очередь, неизбежно приводит к более интенсивному износу цилиндропоршневой группы вплоть до залегания колец и появления задиров на стенках цилиндров. Выгорание электродов свечей, трещины, зазубрины и оплавления на поршнях, клапанах и цилиндрах, – это далеко не полный список последствий детонационных стуков в двигателе.

Наряду с высокой температурой возникает и ударная нагрузка на все движущиеся части механизмов двигателя. В первую очередь страдает кривошипно-шатунный механизм.

Сильные ударные нагрузки негативно сказываются на состоянии поршня, шатуна, а также коренных и шатунных вкладышей и коленчатого вала. Другими словами, ни один механизм двигателя не приспособлен к детонационным нагрузкам.

Как избежать?

Чтобы избежать последствий данной проблемы, рекомендуется:

  1. Заправлять автомобиль только бензином с октановым числом, отмеченным в руководстве по эксплуатации машины и только на сертифицированных АЗС.
  2. Важно следить за состоянием элементов системы охлаждения, регулярно проверять уровень охлаждающей жидкости, при необходимости заменять ее. Также рекомендуется регулярно осматривать радиатор, при необходимости очищать его, а также следить за работоспособностью охлаждающего вентилятора. Выполнение этих несложных условий поможет избежать внезапного перегрева двигателя и как его следствия, детонации.
  3. Также верным избавлением от этой дисфункции двигателя служит регулировка угла опережения зажигания. После регулировки зажигания желательно сделать пробный заезд, на котором следует разогнать автомобиль до 40-50 км/ч и резко нажать педаль акселератора. Если при этом характерные звуки под капотом несильные и непродолжительные, то зажигание можно считать отрегулированным. Если же нет, процедуру регулировки необходимо повторить.
  4. Ну и, разумеется, свечи и проводка должны быть чистыми и исправными.

Зная, что такое детонация и методы ее устранения, можно обеспечить двигателю своего автомобиля долгую и безаварийную жизнь.

Причины и последствия детонации в двигателе

14.03.2019, Просмотров: 735

Детонацией называют неправильное горение топливовоздушной смеси, при котором на детали цилиндропоршневой группы, ГБЦ и блока цилиндров оказывается разрушительное воздействие. Нередко водители путают это явление с выработкой пальца и его посадочного места в поршне, а поэтому предполагают, что возникающий при резком нажатии на газ звон – следствие естественного износа. Давайте рассмотрим, почему возникает детонация и как можно избежать дорогостоящего капитального ремонта мотора.

Характеристика и последствия детонации

Топливовоздушная смесь за определенное количество градусов до верхней мертвой точки поршня (ВМТ) поджигается искрой от свечи зажигания. Вокруг дугового разряда возникает очаг горения, от которого фронт пламени равномерно направляется к стенкам камеры сгорания. Угол опережения зажигания (УОЗ) для каждого из цилиндров рассчитывается по углу поворота кривошипа и нагрузке на двигатель. На исправном двигателе УОЗ подбирается таким образом, чтобы пиковая энергия от воспламенения ТПВС давила на поршень примерно на 10° после ВМТ. Именно так происходит нормальный процесс горения смеси, при котором заряд выполняет максимум полезной работы, а детали кривошипно-шатунного механизма (КШМ) не испытывают ударных нагрузок.

В случае детонации происходит самопроизвольное воспламенение ТПВС, при котором возникает ударная волна со сверхзвуковой скоростью. Нормальная скорость распространения фронта пламени не превышает 30-40 м/с, тогда как при детонации скорость ударной волны может достигать 2000 м/с.

Последствия детонации:

  • Переламывание, оплавление перегородок поршней. Отломанные частицы нередко задирают зеркало цилиндра.
  • Прогар днища, трещины, разломы поршней.

Природа явления

С внедрением даунсайзинговых технологий и выявления такого эффекта как LSPI, изучению проблемы детонации стали уделять больше внимания, но знания еще далеко не исчерпывающие.

На сегодняшний день специалисты выделяют 2 основные фактора, которые приводят к детонации в двигателе.

  1. Высокое давление в цилиндре в конце такта сжатия. Давление зависит от фактической степени сжатия. В современном бензиновом двигателе давление на подходе поршня к ВМТ достигает порядка 12 Атм. По мере распространения фронта пламени давление в цилиндре повышается, что создает благоприятные условия для возникновения детонации. Если степень сжатия не будет соответствовать октановому числу топлива, топливо начнет самовспламенятся до подачи искры (преимущественно в жаркое время года). Причина может быть в неподходящей прокладке ГБЦ или появлению на поршнях и стенках ГБЦ большого количества нагара. Раскаленные частицы сажи также могут стать очагом самопроизвольного воспламенения смеси.
  2. Слишком бедная смесь. Для стехиометрического горения ТПВС должно соблюдаться условие, при котором на 14,7 порций воздуха приходится 1 порция топлива. Допускается незначительное обеднение или обогащение смеси. Обедненная смесь опасна большой долей окислителя (кислорода), из-за чего вблизи разгоряченных стенок камеры сгорания начинаются предпламенные реакции, перерастающие в детонацию.

LSPI

Аббревиатура LSPI (Low Speed Pre-Ignation) обозначает преждевременное зажигание ТПВС, которое характерно для бензиновых турбированных ДВС с непосредственным впрыском. Проблема проявляет себя при движении с постоянной скоростью и невысокими оборотами. У владельцев авто, столкнувшихся с LSPI, при движении по трассе ни с того не сего разламываются, прогорают поршни и трескаются перегородок между кольцами.

Производители присадочных пакетов к моторным маслам после проведения ряда экспериментов пришли к тому, что LSPI возникает в определенных режимах работы двигателя из-за частиц масла. Мелкодисперсные капли при высоком давлении в камере сгорания легко самовоспламеняются, провоцируя детонацию. Тем не менее незначительность принятых изменений в составе моторных масел заставляет усомниться в верности гипотезы. А не очередной ли это маркетинговый ход, направленный на увеличение продаж масел?

Несколько простых советов, которые помогут уберечь турбированный бензиновый ДВС с непосредственным впрыском от LSPI:

  • заправляйте автомобиль на проверенных АЗС бензином с октановым числом не ниже АИ-98. Езда на АИ-95 допустима только в зимнее время и при условии спокойного стиля вождения;
  • следите за расходом масла. Неэффективная работа маслосъемных колец, задубелые сальники клапанов и неисправная система вентиляции картера способствуют прогару и оплавлению поршней;
  • периодически проводите капельный тест масла, период замены рассчитывайте по моточасам, а не по пройденным километрам;
  • владельцам авто с МКПП стоит научиться правильно педалировать.
    К примеру, вовремя переходить на пониженную ступень и не нажимать педаль газа в пол с низких оборотов.

Как уберечь двигатель?

Владельцу современного авто для предотвращения детонации достаточно заливать бензин с рекомендованным октановым числом. Чем технологичнее и более форсирован двигатель, тем большие требования выдвигаются к качеству бензина. В случае фрезеровки ГБЦ, БЦ следует правильно подобрать толщину прокладки блока цилиндров. Иначе объем камеры сгорания уменьшится и придется переходить на бензин с большим октановым числом. К аналогичным последствиям ведет обрастание стенок плотным слоем нагара. Происходит это при постоянной эксплуатации автомобиля в зоне низких оборотов. Поэтому периодически двигателю нужно давать продышаться – поднимайте на разгоне обороты выше 2,5-3 тыс./мин.

В остальном система управления двигателя (ECM) с распределительным впрыском через обратную связь по датчику детонации (ДД) способна предотвращать разрушительные процессы. ЭБУ при фиксации детонирования топлива откатывает УОЗ, делая его максимально безопасным.

В случае обнаружения обрыва цепи ДД ECM превентивно откатывает углы зажигания, заставляя двигатель работать в аварийном, но максимально безопасном режиме.

Детонация двигателя: последствия и пути устранения

Категория: Полезная информация.

Детонация смеси характеризуется ударной волной, повышением температуры в камере, а также повышенным коксованием. Часто в такие моменты можно услышать металлический стук в цилиндрах. В данной статье разбираются причины, последствия и пути устранения детонации двигателя.

 В статье:

Среди множества причин особое внимание уделяется таким, как:

  • низкое цетановое число топлива;
  • неполадки системы зажигания, приводящие к раннему или позднему воспламенению смеси;
  • повышение уровня сжатия мотора из-за обильного нагара или внешнего воздействия на силовую конструкцию;
  • перегрев мотора из-за нарушения работы охлаждающей системы;
  • повышенное обогащение смеси из-за сбоя в процессе смесеобразования;
  • особенности конструкции и эксплуатации двигателя.

Обычно горючее нагнетается за счет давления в цилиндре в момент такта сжатия. Однако при детонации смесь частично воспламеняется уже на непосредственном такте сжатия. После этого моментально создается ударная волна, охватывающая всю камеру сгорания, и образуется участок высокого давления.

Важно: детонация обычно делится на допустимую (кратковременную) и критическую (постоянную). Причем вторая может возникать при повышении нагрузки на двигатель при работе и даже на холостом ходу.

 Возможные последствия 

Детонация в цилиндрах часто происходит при воздействии 4 факторов: раннее зажигание, перегрев мотора, нагар в камере сгорания, а также обильная закоксовка ДВС.

К возможным последствиям детонации двигателя относят:

  • повреждение кривошипно-шатунного механизма и ГБЦ;
  • разрушение масляной защитной пленки;
  • нарушение теплоотдачи раскаленных газов в цилиндрах;
  • износ и уменьшение ресурса за счет постоянных ударных и термических нагрузок.

 Способы устранения 

Для устранения детонации инженерами были придуманы следующие решения, направленные на оптимально быстрое сгорание топлива и замедление окисления:

  • увеличение оборотов двигателя — сократит время окислительного процесса и снизит вероятность непроизвольного воспламенения топливной смеси;
  • турбулизация — смесь приобретает оптимальное вращение, за счет чего пламя в камере распространяется быстрее;
  • уменьшение фронта пламени — обеспечивается за счет цилиндра меньшего диаметра и установки дополнительной свечи;
  • форкамерно-факельное зажигание — детонация устраняется за счет воспламенения сначала обогащенной смеси в предкамере, а после обедненной в основной;
  • использование ЭБУ — позволяет автоматически менять угол опережения и менять состав горючей смеси.

О том, как увеличить ресурс ДВС, можно узнать из этой статьи. 

Запчасти для дизеля найдёте в нашем каталоге

Посмотреть запчасти в наличии

Метки: Эксплуатация дизеля, Ресурс дизельного ДВС

Причины детонации двигателя и их устранение

Одной из важнейших и опаснейших проблем автомобилистов является детонация двигателя. Понятие детонации появилось вместе с двигателем внутреннего сгорания. Сегодня существует множество способов предотвратить самопроизвольный процесс воспламенения горючей смеси но, тем не менее ни один производитель не может дать полную гарантию отсутствия подобной проблемы.

Описание понятия и механизма детонации

Детонация возникает, когда давление на топливно-воздушную смесь (ТВС) выше нормы. В результате большего воздействия на педаль акселератора, в цилиндре повышается давление, и поршень не может достичь верхней точки своего движения. ТВС воспламеняется значительно раньше, создавая эффект ударной волны.

Выделяемое тепло распределяется по камере сгорания и поршню, создавая перегрев. Несгоревшая топливная смесь вступает в реакцию с деталями двигателя и может осаживаться на стенках в виде альдегидов или спиртов, провоцируя коррозию. В дальнейшем эти химические соединения могут усугублять детонацию.

Волна от взрыва в условиях высокой температуры распространяется по пространству камеры со скоростью до 1000–3000 м/с. В нормальных условиях сгорания топливно-воздушной смеси скорость волны достигает 20–30 м/с.

Причины детонации двигателя

Существует несколько основных причин, которые способствуют детонации:

  1. Состав топливно-горючей смеси. Чрезмерно обогащенная ТВС при воспламенении может создавать на стенках и углах камеры окислительные соединения, которые ведут к дальнейшей детонации двигателя. Чаще всего это случается с ТВС, у которой соотношение воздух/топливо равняется 9,0.
  2. Угол опережения зажигания. Если было произведено вмешательство в систему работы зажигания, есть большая вероятность повышения ударной нагрузки на поршни. Давление, оказываемое на смесь, вызывает ее самопроизвольное воспламенение.
  3. Октановое число. Вероятность «заработать» детонацию ДВС возрастает, если использовать бензин с низким октановым числом. Таким образом, автомобили, которые ездят на 75 бензине, вместо рекомендованного 92, больше подвержены детонации.
  4. Уровень сжатия. Сжатие – соотношение между объемами камеры сгорания и поршня. Увеличение показателя повышает температуру в цилиндрах и приводит к детонации. Чтобы избежать подобной проблемы, для автомобилей с высоким сжатием лучше использовать бензин с высоким содержанием октана. Проблемы топливного фильтра или топливный насос работает с перебоями.
  5. Недостатки в работе кислородного датчика из-за чего ТВС смешивается в неправильных пропорциях.
  6. Проблемы с охлаждением.

Последствия детонации

Когда технология сгорания топлива нарушается, в цилиндрах постоянно повышается температура. В результате первыми под удар попадают свечи зажигания, а затем клапаны и поршневые кольца.

Во время детонации на двигателе выгорает масляная пленка, которая должна защищать детали от чрезмерного износа. При долгосрочном отсутствии смазывающего вещества элементы цилиндропоршневой группы подвергаются излишнему механическому воздействию, что чревато залеганием колец и задирам на стенках камеры сгорания.

Помимо температурной нагрузки возникает постоянное давление от ударной волны, которая настигает все активные элементы двигателя. В первую очередь это отражается на кривошипно-шатунном механизме.

Сильнее всего от детонации страдают вкладыши коленчатого вала и шатуна.

Детонация двигателя после выключения зажигания

Помимо того, что ДВС детонирует после работы свеч и других механизмов, детонация может происходить при выключении замка зажигания. Это процесс происходит в среднем за несколько секунд, однако в редких случаях может достигать 20–30 секунд.

Чаще всего двигатель детонирует после отключения зажигания при неправильно подобранном топливе. Разное октановое число бензина предназначается для разных уровней сжатия. В таком случае, если бензин не соответствует требованиям автомобиля, то качества ТВС может быть недостаточно для обеспечения нормального механизма сгорания.

При активном воспламенении выделяется излишек тепла и энергии, который направлен в сторону двигателя.

Другой причиной детонации при отключении зажигания считается излишне раннее зажигание. Некоторые механики устанавливают его из побуждений повысить чувствительность к движению дроссельной заслонки. Однако часто не учитывают факт, что при такой настройке воспламенение ТВС происходит раньше в момент движения поршня к верхней точке. Отсутствие продуманной системы охлаждения усложняет отвод тепла от двигателя и вызывает перегрев.

Третьей причиной подобной проблемы считается неправильно подобранные свечи, или же их перебойная работа.

Конструктивные способы устранения детонации двигателя

Чтобы правильно устранить детонацию ДВС необходимо четко очертить причины проблемы. Если сразу после заправки нового топлива двигатель начал вибрировать и шуметь, можно определенно сказать, что причина детонации кроется в неподходящем октановом числе.

Лучше не экспериментировать и не доливать подходящий бензин к тому, что есть. Правильнее будет слить прежний и заправить тот вид топлива, который подходит к двигателю автомобиля.

Если же детонацию спровоцировал нагар в камерах сгорания, можно дать несколько минут проехать автомобилю на высоких оборотах. В качестве профилактики специалисты рекомендуют раз в неделю давать двигателю максимальную нагрузку.

В случае детонации дизельного мотора, автомобилист может обнаружить грязный зеленый или черный выхлоп. В таком случае проводить «спасение» уже бессмысленно, поскольку поршни полностью разрушены.

Если причина скрыта в неправильной работе свечей зажигания, необходимо полностью поменять комплект. В целом, детонация из-за свечей происходит достаточно редко но, тем не менее не стоит пренебрегать их своевременной диагностикой.

Кроме всего, необходимо следить за системой охлаждения двигателя и вовремя регулировать угол опережения зажигания.

Использование датчика детонации двигателя

С целью уменьшения вероятности возникновения детонации, на современных автомобилях устанавливают специальные датчики. Они крепятся около блоков цилиндров силового узла, и преобразовывают механическую энергию.

Внутри каждого датчика размещается пьезоэлектрическая пластинка, которая передает колебания к электронному блоку. После достижения показателя, близкого к детонации, контроллер изменяет угол опережения зажигания.

Датчик постоянно передает сигналы и следит за составом топливной смеси. В результате правильной настройки, он также помогает достичь более экономного расхода топлива.

Чтобы правильно оценить работу двигателя своего автомобиля и предостеречь его от детонации лучше советоваться с профессиональными мотористами, или ознакомиться с некоторыми роликами в сети:

Несмотря на то что детонация – крайне губительное понятие для двигателя, ее легко контролировать. Если не пренебрегать своевременным техническим осмотром и не экспериментировать с топливом – проблемы не возникнет. Необходимо всегда обращать внимание на «лишние» шумы и посторонние звуки в автомобиле, поскольку они являются индикатором работы узлов транспортного средства.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Мой мир

К чему приводит детонация двигателя

Процесс, при котором происходит неконтролируемое самовозгорание топливовоздушной смеси в цилиндрах, называется детонация двигателя. Данный дефект является взрывом, он производит разрушительные действия на узлы и детали силовых агрегатов любого вида. В физическом смысле детонация представляет из себя разрушительную взрывную волну, созданную при избыточном давлении и сверхвысокой температуре топлива.

Описание детонации и ее последствий

Во время разгона автомобиля водитель давит на педаль акселератора, топливная смесь, попадая в цилиндры, испытывает воздействие очень высокого давления и температуры. Давление возрастает от перемещения поршня вверх и возгорания топлива от свечи накаливания. Пламя, расползаясь по камере сгорания, генерирует добавочное давление.

Под воздействием сверхвысокой температуры и возросшего давления остатки горючей смеси самовоспламеняются, создавая одну за другой взрывные волны со стремительным возрастанием амплитуды.

Возникает эффект неконтролируемой цепной реакции, в ходе которой пламя на огромной скорости давит на гильзу, обороты двигателя растут до бесконечности — движок идет вразнос, раскручиваясь самопроизвольно. Такую ситуацию трудно взять под контроль.

Последствия детонации двигателя выражены появлением следующих поломок:

  1. Срыв кромок поршней.
  2. Повреждение стенок цилиндров.
  3. Разрыв прокладки головки цилиндров.
  4. Поломка датчика дроссельной заслонки.

При стабильной работе мотора происходит равномерное сгорание топливной смеси с последующей передачей энергии на поршни.

Причины возникновения детонации при включении мотора на холодную

Детонация при запуске двигателя возникает при поступлении в один или несколько цилиндров обедненных топливовоздушных смесей. Причиной обеднения смеси является засоренность специальных распылителей — форсунок.

При появлении засоров, нарушается расчетная величина объема подаваемого топлива. Чтобы установить причину появления засорения, необходимо произвести проверку фильтра грубой очистки, а также фильтров каждой форсунки.

Холодный мотор после прогрева часто восстанавливает свою работу, и детонация двигателя прекращается.

Корректировка работы двигателя при помощи электронного управления

Электронный блок управления (ЭБУ), установленный в автомобилях с инжекторным двигателем, регулирует параметры топливной смеси. При помощи ЭБУ производится коррекция угла опережения зажигания с вынужденным снижением объема впрыскиваемой топливной смеси.

Причины детонации частично исчезают, но в результате подобного регулирования мощность силового агрегата существенно снижается. При высоком уровне засоренности форсунок ЭБУ не всегда может осуществлять компенсирующие функции.

Детонация мотора после прогрева

Причины детонации прогретого мотора:

  • поломан датчик заслонки;
  • использование топлива, имеющего низкое октановое число;
  • неисправность и засор форсунок.

После восстановления или замены датчика заслонки двигатель готов к эксплуатации на любых, в том числе и на повышенных режимах. Узнать, есть ли детонация двигателя, причины ее возникновения на прогретом моторе, можно только под нагрузкой при включенной передаче.

Низкое качество топлива, пониженное значение его октанового числа является одной из основных причин, которые способствуют повышению температуры в камере сгорания и увеличению давления в топливных цилиндрах, приводящих к возникновению взрывов.

Чем выше данный показатель топлива, тем лучше оно противостоит самовоспламенению и детонации. Высокое значение октанового числа бензина — это антидетонационный индекс.

Влияние качества топлива и свечей зажигания

Детонация двигателя также может быть вызвана нарушением хрупкого баланса между двумя факторами:

  • качество свеч зажигания;
  • сила сжатия топлива.

Применение неверно подобранных свечей зажигания, может явиться причиной возникновения детонации в двигателе. Назначение данных приборов состоит в контроле внутренней среды двигателя, от точности срабатывания свечей зависит своевременность и качество сгорания топлива.

При нарушении режима сжигания топлива происходит наращивание температуры в камере сгорания и перегреву элементов силового агрегата, приводящее к детонации. Чтобы устранить появившийся дефект, необходимо сменить имеющиеся свечи зажигания на другой рекомендуемый вид.

Недостаточное сжатие топлива в цилиндрах приводит к неполному сгоранию смеси и прилипанию оставшихся компонентов к стенкам цилиндров в виде нагара. В зависимости от качества бензина и уровня очистки топлива происходит образование отложений нагара, что существенно уменьшает объем цилиндра и вызывает детонацию.

Для уничтожения вредных отложений применяются специальные присадки или производится замена марки топлива на другую.

Устранение детонации мотора

На появление детонации инжекторного двигателя влияют следующие параметры:

  1. Угол опережения зажигания.
  2. Обеднение топливной смеси.

Многих автовладельцев интересует, как устранить детонацию двигателя своими руками. Для того чтобы избавиться от взрывного горения горючих смесей, умельцы часто используют следующие приемы:

  1. Эксплуатация движка на более высоких передачах. При работе на высокой скорости сокращается время сгорания топлива на фоне максимального давления. Разгон автомобиля приводит к снижению вероятности появления детонации.
  2. Замена свечей зажигания.
  3. Увеличение влажности воздуха. Более влажный воздух существенно снижает температуру в камере сгорания.
  4. Использование охладителя воздуха интеркулера для снижения температуры воздуха перед нагнетанием его в цилиндры.
  5. Замена бензина на топливо, имеющее более высокое октановое число.
  6. Перемещение трамблера для изменения угла опережения зажигания в сторону уменьшения для стабильной работы карбюраторного двигателя на холостых оборотах.
  7. Торможение двигателя для опережения момента зажигания.

Применение метода корректировки положения трамблера используется на короткое время, чтобы добраться до ближайшей автозаправки и сменить топливо на более высокооктановый бензин. После этого трамблер необходимо установить в прежнее положение для обеспечения оптимального значения угла опережения.

Бывают случаи, когда автовладельцы осознанно производят корректировку угла опережения зажигания в сторону увеличения, обедняя горючую смесь. В результате происходит повышение динамических характеристик автомобиля, увеличивается крутящий момент. При проведении данной операции существенно возрастает вероятность появления детонации двигателя.

Устранение или уменьшение детонации двигателя является сложной задачей. Чтобы выявить настоящую причину возникновения взрывов внутри мотора, необходимо тщательно изучить принцип работы силового агрегата и понять, что способствует их появлению.

Признаки появления детонации движка

В результате ударных нагрузок, возникающих при взрывах, появляются характерные звуки в виде звонкого стука, изменяется состав и цвет выхлопных газов, детали двигателя получают серьезные дефекты. Кроме ярких шумовых эффектов, имеются внешние признаки появления детонации:

  • кратковременный выход черного дыма из выхлопной трубы;
  • уменьшение температуры отработавших газов;
  • кратковременная потеря мощности двигателя;
  • потеря управления работой двигателя вследствие ее неустойчивости;
  • критический перегрев элементов движка.

Элементы, входящие в состав силового агрегата, изготовлены с расчетом на работу при определенных значениях температуры и давления. Ударные нагрузки, возникающие при детонации, превышают все допустимые значения.

Детонационный эффект является наиболее опасным для транспортного средства. Он может возникнуть при неравномерном распределении воздуха и топлива внутри цилиндров, что приводит к внезапным неконтролируемым взрывам.

Для своевременного выявления данного дефекта нужно регулярно контролировать появление посторонних звуков и постукиваний, исходящих со стороны силового агрегата транспортного средства. Именно источники этих звонких сигналов нужно выявить и немедленно убрать причину их возникновения.

Детонация является потенциальной опасностью для движка, поэтому ее нужно постоянно держать под контролем. Она не должна присутствовать при нормальной работе двигателя. Даже небольшой шум в двигателе необходимо постоянно исследовать и убирать причины, вызвавшие его.

Детонация двигателя, что это такое, причины, методы диагностики

С детонацией двигателя сталкивался каждый автовладелец. Чаще всего она возникает сразу же после выключения зажигания. Почему это происходит и как устранить детонацию?

Что такое детонация двигателя

По своей сути, это микро удары внутри двигателя, которые приводят к резкому увеличению нагрузки на цилиндры и поршни мотора.

Поэтому детонация является нежелательным явлением, приводящим к дополнительным нагрузкам на двигатель. В ходе данного явления топливо сгорает не контролировано и это негативно влияет на всю работу двигателя.

Температура в камере сгорания в этот момент может достигать до 3500 градусов.

Причины детонации

Причин может быть много, но к основным можно отнести следующие:

  1. Некачественное топливо;
  2. Ранее зажигание;
  3. Перегрев мотора;
  4. Образование большого нагара в цилиндрах;
  5. Не правильный стиль вождения автомобиля;
  6. Продолжительные холостые обороты двигателя под нагрузкой;
  7. Обедненная топливная смесь (характерно для карбюраторных автомобилей).

К чему может привести детонация

  1. Резкий перегрев двигателя;
  2. Снижению мощности мотора;
  3. Повышенный расход топлива;
  4. Выход из строя цилиндропоршневой группы;
  5. Коррозии цилиндров и поршней двигателя;
  6. Прогорание прокладки головки блока цилиндров;
  7. Трещины поршня;
  8. Пробитие головки БЦ;
  9. Повреждение вкладышей.

Некачественное топливо

Если показатель октанового числа залитого топлива меньше, чем необходимо для данного двигателя, то процесс детонации неизбежен.

При несоответствии октанового числа топлива (как правило, оно меньше чем нужно), происходит процесс его активного сгорания, этот процесс настолько быстрый, что сгорание напоминает небольшой взрыв внутри камер.

К примеру, по инструкции положено заливать в бак бензин АИ-98, а водитель заливает АИ-95.

Происходит выделение большого объема тепловой энергии, и под давлением выброс энергии приводит к детонации, т. е. внутреннему микровзрыву, который ощущается водителем в виде детонационных толчков.

Кроме несоответствия октанового числа топлива, детонацию может вызвать просто некачественное топливо, которое произведено с нарушением всех требований и норм.

Некоторые водителя, чтобы не использовать более дорогое высокооктановое топливо, но при этом не допустить детонации двигателя, устанавливают более позднее зажигание.

По отзывам экспериментаторов, данное действие спасает ситуацию, так как топливная смесь начинает воспламеняться вовремя, полностью сгорает без выделения лишнего тепла и создания большего давления в цилиндрах.

Но каждый водитель делает это на свой страх и риск.

Читайте также:

Ранее зажигание

Другая причина, по которой может происходить детонация может являться ранее зажигание.

Настройки зажигания таковы, что происходит слишком раннее возгорание воздушно-топливной смеси, что ведет к перегреву и провоцирует внутренний перегрев двигателя и деталей, приводя тем самым к процессу детонации.

Для устранения такой детонации, нужно отрегулировать зажигание, проверить его угол. Причина детонации может быть в свечах зажигания.

Если они не соответствуют по своим техническим характеристикам, рекомендованным производителем двигателя, либо просто являются некачественными.

Для этого необходима их проверка и при необходимости замена.

Перегрев мотора

Третья причина, которая может вызывать детонацию – перегрев мотора. При соответствии топлива и нормально выставленном зажигании, проверьте уровень охлаждающей жидкости в расширительном бачке, работу термостата, радиатор.

Образование большого нагара в цилиндрах

Причиной образования нагара на стенках цилиндра двигателя является использование не качественного масла и топлива.

Если это произошло, то проводится раскоксовка двигателя.

Не правильный стиль вождения автомобиля

Игнорирование переключением передач с повышенной на пониженную при выходе из поворота.

При преодолении подъема средней продолжительности, когда в начале подъема 5-й передачи вроде бы как хватает, а в конце подъема нет, но водитель все равно продолжает выжимать из двигателя последние силы, не удосужившись перейти на 4-ю или 3-ю передачи.

Вот и получите стук металла об метал (похож на стук металлических шариков) внутри двигателя, именно так в основном проявляется детонация последнего.

В некоторых моделях авто устанавливаются специальные датчики, которые информируют водителя через электронные устройства об самом этом явлении и его частоте.

Холостой режим работы двигателя

Многие водителя совершают ошибку, двигаясь на автомобиле, при этом держа обороты двигателя в пределах холостого хода.

Это же происходит зимой, с целью прогрева двигателя и трансмиссии.

Причина этого лежит либо по незнанию, что так делать нельзя, либо по стремлению таким образом сэкономить топливо.

Именно в этот момент увеличивается вероятность возникновения детонации двигателя.

Детонация или самовоспламенение смеси

По неопытности можно перепутать эти два явления.

Самовоспламенение смеси происходит в результате сильного перегрева двигателя. При этом в конце такта сжатия температура топливной смеси становиться выше нормы, и она не контролировано вспыхивает.

Так же если двигатель сильно закоксован, то горячий нагар на его стенках в результате соприкосновения с топливной смесью может воспламенить ее.

Чтобы разделить эти два явления нужно заглушить двигатель отключив зажигание. Если мотор глохнет не сразу, то скорее всего внутри него происходит такое явление, как детонация.

Подводим итог

Нет никаких сомнений, детонация двигателя, это вредное явление, которое требует комплексного подхода для его устранения.

Но в первую очередь следует выяснить его причины, которых может быть несколько.

Но все же для начала идите от простого к сложному и попробуйте заменить тип использованного топлива.

В большинстве случаев это снижает вероятность возникновения детонации двигателя и продлеваем его работу.

голос

Рейтинг статьи

причины, как устранить, последствия, видео

Неконтролируемое воспламенение топливно-воздушной смеси способно привести к разрушению деталей цилиндропоршневой группы. В статье рассмотрим, что такое детонация двигателя, причины, которые ее провоцируют, и последствия.

Горение топливно-воздушной смеси

Невозможно понять, почему происходит детонация, без представления о нормальном воспламенении топливно-воздушной смеси (далее ТПВС):

  • за несколько градусов до ВМТ свеча подает искру, воспламеняя ТПВС;
  • фронт пламени начинает расходиться от электрода, где был первоначальный очаг, к стенкам камеры сгорания;
  • если угол опережения зажигания (далее УОЗ) был подобран верно, то примерно к 10º после ВМТ в камере сгорания образуется максимальное давление горения. В этот момент поршень занимает позицию, при которой воздействие энергии на плечо сформирует максимальную вращательную силу кривошипа.

Несмотря на то что поджигание смеси происходит до ВМТ, следовательно, на поршень действует замедляющая его энергия, положительная сторона гораздо более значительна. Ведь самый важный момент – приложить усилие к поршню в момент, когда рычаг позволит получить максимальный крутящий момент. Именно плавное возгорание смеси позволяет достигнуть такого эффекта.

Определение

Детонация двигателя – самопроизвольное воспламенение ТПВС, характеризующееся высокой скоростью распространения фронта пламени. Как вы можете теперь увидеть, «детон» имеет противоположную нормальному горению природу.

Основная характеристика детонационного воспламенения – скорость распространения волны (в этом случае очень удачно сравнение со взрывной волной). После подачи искры средняя скорость розростания горения 20-30 м/с. Скорость взрывной волны в момент, когда топливо детонирует, достигает 2000 тыс. м/с.

Разумеется, ничем хорошим для двигателя это не кончиться. Ударная волна «сносит» очаг воспламенения, спровоцированный свечей зажигания, ударяясь о стенки камеры сгорания. Взрывная волна создает резонирующее воздействие, которое проявляет себя звонким звуком во время работы двигателя. Именно по этому звуку можно понять, что в одном либо сразу нескольких цилиндрах происходит детонирование.

Природа возникновения

С тем, что такое детонация двигателя, мы разобрались. Но что служит предпосылкой для ее возникновения?

Детонирует в камере сгорание не только топливо, но и масло, которые при неполном сгорании топливно-воздушной смеси остаются в камере сгорания. Вернемся к процессу горения. Во время начала воспламенения топливно-воздушной смеси от искры, пропорционально распространению фронта пламени, происходит повышение давления в камере сгорания. Также неминуемо повышается температура. В этот момент на периферии, то есть в полости камеры сгорания, куда еще не дошла волна горения смеси, начинаются предпламенные реакции. Иными словами, молекулы бензина начинают распадаться под действием температуры и давления. Распавшиеся частицы топлива очень легко поджечь. Поэтому, если в каком-то месте камеры сгорания температура слишком высока, это провоцирует самопроизвольное воспламенение частиц топлива.

Теперь нам ясны причины детонации двигателя. Но почему скорость ударной волны в процессе детонации намного больше той, что мы имеем после подачи искры? В гражданском двигателе давление в надпоршневом пространстве в момент достижения поршнем ВМТ – порядка 12 атм. Распространяющийся от искры фронт пламени, приводит к увеличению давления оставшейся полости. Поэтому давление, к примеру, около верхней стенки цилиндра может достигать 50-60 Атм. Именно поэтому скорость самовоспламеняющихся частиц гораздо больше тех, которые поджигаются искрой.

Причины

Факторы, провоцирующие появление детонации:

  • несоответствие октанового числа топлива;
  • несоответствие степени сжатия. Если вследствие проведения ремонтных работ, была увеличена степень сжатия, то заправка прежней маркой бензина может привести к детонации. Допустить такую оплошность очень легко, если шлифовать ГБЦ либо сам блок, а затем установить прежнюю по толщине прокладку ГБЦ. Если вы не хотите «умертвить» мотор, к вопросу степени сжатия стоит подходить очень серьезно. Учтите, что детонация двигателя может проявляться в жаркую погоду либо в определенном диапазоне оборотов;
  • УОЗ. Слишком ранний угол может привести к «паразитному» давлению в некоторых местах камеры сгорания, что приведет к самопроизвольным взрывам;
  • неправильное соотношение топлива и воздуха. Детонация мотора может возникнуть как в случае обедненной смеси, так и при переобогащении;
  • нагар в камере сгорания. Образование отложений способствует закреплению частиц, которые после такта выпуска не покидают камеру сгорания. Сохраняя высокую температуру, они способствуют появлению в цилиндре детонации. Большое количество нагара приводит к заполнению полезного объема камеры сгорания, что может привести к появлению детонации.

Методы борьбы

Учитывая приведенные выше причины детонации, вам нужно следить за состоянием систем питания и зажигания. А также помнить о правилах выбора бензина.

Важнейшие составляющие топлива: изооктан и гептан. Изооктан, на противовес гептану, чрезвычайно устойчив к детонации. Именно соотношение изооктана к гептану и называют октановым числом бензина. Для большинства водителей выбор топлива стоит между АИ 92 либо АИ 95. Так вот 95 либо 92 и есть тем самым соотношением (к примеру, 92% изооктана и 8% гептана). Заправлять автомобиль нужно лишь той маркой бензина, которая рекомендована заводом-изготовителем. На рынке вы можете найти «Октан-корректор» либо «Октан-Бустер». Предназначение этих средств – повысить детонационную устойчивость топлива.

Среди прочих рекомендаций – периодически крутить двигатель до высоких оборотов. Постоянная езда «внатяг» либо работа двигателя  в диапазоне до 2 тыс. км приводит к ускоренному образованию нагара.

Последствия

К основным поломкам можно отнести:

  • прогорание либо частичное оплавление поршня, вследствие аномально большой температуры. Также может произойти поломка перегородок между кольцами. Устранить неисправность поможет дорогостоящая капиталка;
  • ускоренный износ ЦПГ. Детонация разрушает масляную пленку на стенках цилиндра, что приводит к сухому трению поршней;
  • прогорание выпускных клапанов;
  • перегрев двигателя;
  • повышение температуры турбины, что может привести к ее поломке;
  • высокая температура стенок цилиндра и поршня требует от колец проводить через себя большее количество тепла. Слишком высокая температура пагубно влияет на эластичность колец;
  • оплавление электрода. Ситуация редкая и случается лишь в крайне запущенном состоянии.

Любителям экономить

Если вы заправляете современный автомобиль 92 бензином, в надежде сэкономить, то вас приятно удивит информация о системе зажигания инжекторного двигателя. Регистрируя возникновение детонации, ЭБУ «отодвигает» УОЗ. Такие меры помогают устранить детонацию, но приводят к потере динамических характеристик автомобиля. Соответственно, повышается расход, что сводит на нет все попытки экономии.

Тюнерам

Также будьте аккуратны с расчетами при форсировании мотора. В особенности детонации подвержены неправильно построенные турбированные моторы. Но не обходит стороной эта проблема и атмосферные ДВС. На отечественных просторах есть любители устанавливать 16-клапанные ГБЦ в моторы с поршневой от 8-клапанных двигателей. Многие даже не подозревают, что 16-клапанные Вазовские моторы имеют масляное охлаждение поршней. Поэтому установка одной лишь ГБЦ чревата увеличением температуры в цилиндре.

Езда внатяг

Движение внатяг – езда под нагрузкой на повышенной передаче. Случается такое, когда водитель резко добавляет газ, будучи на повышенной передаче, когда обороты двигателя не превышают 2500 тыс. Спровоцировать такую ситуацию может затяжной подъем, при котором водитель не сбрасывает скорость, а сильнее нажимает на педаль.

Езда внатяг, особенно на турбированном ДВС с малым объемом, создает благоприятные условия для возникновения детонации. Именно поэтому от такого способа вождения лучше отказаться.

Датчик детонации

Именно этот сенсор регистрирует посторонние резонансные частоты в цилиндре. Ориентируясь на показания датчика детонации, ЭБУ принимает решение о корректировании УОЗ. Если двигатель в исправном состоянии, а в баке правильный вид топлива, то поломка датчика не приведет к появлению детонации. Просто теперь ЭБУ не сможет адекватно реагировать на появление столь негативного явления.

Детонация | lycoming.com

Что такое детонация?

Детонация - это резкое сгорание или взрыв топливного заряда внутри цилиндра. Во время нормального сгорания свечи зажигания воспламеняют топливный заряд, и топливо имеет постоянное и равномерное горение, поскольку поршень проходит рабочий такт, и химическая энергия эффективно преобразуется в механическую. Говоря упрощенно, когда происходит детонация, топливный заряд быстро воспламеняется в результате неконтролируемого взрыва, вызывая ударную силу на поршень, а не постоянный толчок.Легкая детонация не может иметь никаких признаков в салоне самолета. От умеренной до сильной детонации можно было заметить неровность двигателя, вибрацию или потерю мощности и, в конечном итоге, повреждение двигателя. Пилоту всегда следует искать неожиданно высокие температуры головки цилиндров (CHT) или выхлопных газов (EGT), которые могут быть признаком того, что происходит детонация.

Что вызывает детонацию и как ее предотвратить?

Процесс сгорания внутри поршневого двигателя довольно динамичный, и есть много факторов, которые могут способствовать детонации.В этой статье мы коснемся нескольких наиболее распространенных причин, а не краткого списка.

Во-первых, давайте предположим, что самолет и двигатель заправлены топливом правильно и что октановое число топлива соответствует или превышает октановое число, требуемое двигателем. Инструкция по обслуживанию Lycoming 1070 предоставляет исчерпывающий перечень одобренных видов топлива для наших двигателей, а также другую важную информацию.

Учитывая, что топливо является правильным выбором для двигателя, для пилота причиной номер один детонации является чрезмерная обедненная смесь при высоких настройках мощности.Пилот всегда должен придерживаться указаний в утвержденном руководстве по эксплуатации для правильных настроек наклона и мощности. Чтобы ознакомиться с рекомендациями Lycoming, обратитесь к текущим редакциям соответствующего руководства оператора Lycoming и инструкции по обслуживанию 1094. Если пилот считает, что двигатель может взорваться, он или она может предпринять следующие действия.

  • Увеличить моторную смесь.
  • Уменьшите мощность до более низкого значения.
  • Уменьшите или прекратите набор высоты и увеличьте скорость движения для лучшего охлаждения.

Для механика причиной номер один детонации будет любая проблема, которая может привести к неожиданной обедненной работе цилиндра. Чаще всего это вызвано частичным засорением форсунки впрыска топлива или утечкой всасываемого воздуха. Каждый раз, когда топливные форсунки снимаются, их следует прочистить и проверить поток. Во время осмотра механик должен искать признаки утечки на входе; обычно отмечается синим пятном топлива на впускных трубах. Перед дальнейшим полетом следует исправить любые аномалии.

Мы также видели случаи, когда треснувшие или иным образом поврежденные свечи зажигания создавали «горячую точку» в двигателе, и происходила детонация. Вот почему никогда не стоит использовать вилку, которая упала на твердый пол или была повреждена иным образом.

Двигатели

Lycoming соответствуют требованиям FAA по запасу детонации или превосходят их. Следовательно, если двигатель обслуживается и эксплуатируется в соответствии с нашими опубликованными инструкциями, двигатель никогда не должен взрываться.

Как мой механик или мастерская по ремонту двигателей узнает о детонации?

Детонация оказывает негативное воздействие на двигатель.Легкая детонация может вызвать преждевременный износ подшипников и втулок. Сильная или продолжительная детонация может вызвать повреждение головки блока цилиндров и поршней. В некоторых крайних случаях шатун может погнуться или сломаться, головка блока цилиндров может треснуть или выйти из строя, или могут сломаться опорные площадки поршневого кольца.

Каждый раз, когда цилиндр снимается, ваш механик должен воспользоваться возможностью, чтобы проверить цилиндр и поршни на наличие признаков неисправности. Вот некоторые вещи, которые можно проверить.

  • Хотя это может выглядеть не лучшим образом, накопление свинца или отложения сгорания являются нормальным явлением для двигателей Lycoming. Отсутствие этих депозитов - тоже не всегда хорошо. Необходимо проверить головку цилиндров и поршень на предмет «пескоструйной обработки». Отсутствие отложений или чистая головка и поверхность поршня могут указывать на детонацию. При использовании неэтилированного топлива отложения должны быть…
  • Повреждения от детонации обычно проявляются на краях поршней и на головке цилиндров между портами свечи зажигания и клапанами.

С дополнительными вопросами об уходе и техническом обслуживании вашего двигателя Lycoming, пожалуйста, свяжитесь с нашей группой технической поддержки по адресу: [email protected] или по телефону + 1-800-258-3279.

Взрывная волна

Ядерные взрывы вызывают как немедленные, так и замедленные разрушительные эффекты. Взрыв, тепловое излучение и быстрое ионизирующее излучение вызывают значительные разрушения в течение секунд или минут после ядерного взрыва.Отсроченные эффекты, такие как выпадение радиоактивных осадков и другие возможные воздействия на окружающую среду, наносят ущерб в течение длительного периода, от часов до лет. Каждый из этих эффектов рассчитывается от точки взрыва.

Граунд Зиро

Термин «нулевой уровень» относится к точке на поверхности земли непосредственно ниже (или выше) точки взрыва. Для прорыва над (или под) водой соответствующую точку обычно называют «нулевой поверхностью». Термин «ноль на поверхности» или «ноль на поверхности» также обычно используется для наземных и подземных взрывов.В некоторых публикациях наземный (или поверхностный) ноль называют «гипоцентром» взрыва.

Взрывные эффекты

Наибольший урон наносит взрывной взрыв. Ударная волна воздуха излучается наружу, вызывая резкие изменения давления воздуха, которые могут раздавить объекты, и сильный ветер, который может сбивать объекты. Как правило, большие здания разрушаются из-за изменения давления воздуха, а люди и объекты, такие как деревья и опоры, разрушаются ветром.

Величина воздействия взрыва связана с высотой взрыва над уровнем земли.Для любого заданного расстояния от центра взрыва существует оптимальная высота взрыва, которая вызовет наибольшее изменение давления воздуха, называемое избыточным давлением, и чем больше расстояние, тем больше оптимальная высота взрыва. В результате взрыв на поверхности создает наибольшее избыточное давление на очень близких расстояниях, но меньшее избыточное давление, чем взрыв воздуха на несколько больших расстояниях.

Когда ядерное оружие взрывается на поверхности Земли или вблизи нее, взрыв выкапывает большую воронку.Часть материала, который использовался в кратере, откладывается на краю кратера; остальное уносится в воздух и возвращается на Землю в виде радиоактивных осадков. Взрыв, который находится над поверхностью Земли дальше, чем радиус огненного шара, не вырывает кратера и вызывает незначительные немедленные осадки. По большей части ядерный взрыв убивает людей косвенными средствами, а не прямым давлением.

Эффекты теплового излучения

Приблизительно 35 процентов энергии ядерного взрыва - это интенсивный выброс теплового излучения, т.е.э., тепло. Эффект похож на эффект двухсекундной вспышки огромного солнечного фонаря. Поскольку тепловое излучение распространяется примерно со скоростью света, вспышка света и тепла опережает взрывную волну на несколько секунд, точно так же, как молния видна до того, как слышен гром.

Видимый свет вызывает «слепоту вспышки» у людей, смотрящих в направлении взрыва. Слепота может длиться несколько минут, после чего полностью выздоравливает. Если вспышка сфокусирована через хрусталик глаза, это приведет к необратимому ожогу сетчатки.В Хиросиме и Нагасаки было много случаев слепоты, но только один случай ожога сетчатки у выживших. С другой стороны, любой человек, ослепший во время вождения автомобиля, легко может нанести непоправимый вред себе и другим.

Ожоги кожи возникают в результате воздействия более интенсивного света и, следовательно, происходят ближе к точке взрыва. Ожоги первой, второй и третьей степени могут возникнуть на расстоянии пяти миль от места взрыва и более. Ожоги третьей степени более 24 процентов тела или ожоги второй степени более 30 процентов тела приведут к серьезному шоку и, вероятно, будут смертельными, если не будет оказана своевременная специализированная медицинская помощь.Во всех Соединенных Штатах есть учреждения для лечения от 1000 до 2000 случаев тяжелых ожогов. Одно ядерное оружие могло произвести более 10 000 единиц.

Тепловое излучение ядерного взрыва может напрямую воспламенить растопочные материалы. Как правило, воспламеняющиеся материалы вне дома, такие как листья или газеты, не окружены достаточным количеством горючего материала, чтобы вызвать самоподдерживающийся пожар. С большей вероятностью распространятся пожары, вызванные прохождением теплового излучения через окна, которое воспламеняет кровати и мягкую мебель внутри домов.Другой возможный источник пожаров, который может быть более разрушительным в городских районах, является косвенным. Повреждение складов, водонагревателей, печей, электрических цепей или газовых линий взрывом приведет к возгоранию там, где много топлива.

Прямое воздействие ядерной радиации

Во время взрыва возникает прямое излучение. Он может быть очень интенсивным, но его диапазон ограничен. Для крупного ядерного оружия диапазон интенсивного прямого излучения меньше, чем диапазон смертоносного взрыва и воздействия теплового излучения. Однако в случае оружия меньшего размера прямое излучение может оказаться смертельным эффектом с наибольшей дальностью действия. Прямая радиация нанесла существенный ущерб жителям Хиросимы и Нагасаки. Реакция человека на ионизирующее излучение является предметом большой научной неопределенности и интенсивных споров. Кажется вероятным, что даже небольшие дозы радиации приносят вред.

Fallout

Излучение Fallout получают от частиц, которые становятся радиоактивными в результате взрыва и впоследствии распространяются на различных расстояниях от места взрыва.В то время как любой ядерный взрыв в атмосфере вызывает некоторые осадки, выпадение осадков намного больше, если взрыв находится на поверхности, или, по крайней мере, достаточно низко, чтобы огненный шар коснулся земли. Значительную опасность представляют частицы, поднятые с земли и облученные ядерным взрывом. Радиоактивные частицы, которые поднимаются только на небольшое расстояние (те, что находятся на «стволе» знакомого грибовидного облака), упадут обратно на землю в течение нескольких минут, приземлившись близко к центру взрыва. Такие частицы вряд ли вызовут много смертей, потому что они упадут в места, где уже погибло большинство людей. Однако радиоактивность затруднит спасательные работы или возможную реконструкцию. Радиоактивные частицы, которые поднимаются выше, будут унесены ветром на некоторое расстояние, прежде чем вернуться на Землю, и, следовательно, площадь и интенсивность выпадения осадков сильно зависят от местных погодных условий. Большая часть материала просто уносится по ветру длинным шлейфом. Дождь также может иметь значительное влияние на способы осаждения радиации от меньшего оружия, поскольку дождь переносит загрязненные частицы на землю.Районы, получающие такие загрязненные дожди, станут «горячими точками» с большей интенсивностью излучения, чем их окрестности.


6 Воздействие на человека и окружающую среду | Действие ядерной бомбы и другого оружия

при взрыве намного меньше, чем количество, произведенное в реакторе, проработавшем несколько лет.

Однако потребление продуктов питания, загрязненных радиоактивными осадками в результате ядерного испытания, оказалось серьезной проблемой как на НТС 20 , 21 , так и на Семипалатинском полигоне, ядерном полигоне в Советском Союзе. 22 Природа этой проблемы не была полностью оценена до 1963 года - примерно в то время, когда заканчивались атмосферные испытания в Соединенных Штатах и ​​бывшем Советском Союзе. Наибольшее беспокойство вызывает йод-131, период полураспада которого составляет 8 дней. Именно благодаря сочетанию нескольких довольно уникальных обстоятельств этот радионуклид стал основным радионуклидом, вызывающим озабоченность с точки зрения загрязнения пищевых продуктов как при испытаниях ядерного оружия, так и при авариях на реакторах.

Значительные объемы активности 131 I возникают в результате ядерных взрывов; этот радионуклид также является летучим и не конденсируется на частицах до позднего времени, после чего он становится ассоциированным с поверхностью выпадающих частиц. 23 Большая часть общей поверхностной активности приходится на более мелкие частицы, поэтому 131 I обычно транспортируется дальше. Более мелкие частицы также предпочтительно задерживаются растительностью, 24 , из которых они теряются с периодом полувыведения около 10 дней.Дойная корова, если она получает свою полную норму корма со свежего пастбища, будет потреблять в день количество 131 I, которое содержится примерно на 50 квадратных метрах, 25 , и будет выделять до 1 процента этого количества. суточная доза на литр молока. 26 Как правило, человек, потребляющий молоко, концентрирует 30 процентов потребляемого им молока в щитовидной железе. Щитовидная железа - это очень маленькая железа, она весит около 20 граммов у взрослых и всего около 2 граммов у младенцев. Таким образом, йод преимущественно задерживается на растительности, которую корова эффективно отбирает и быстро выделяет в молоко; Затем младенец концентрирует большую часть этого йода в молоке в чрезвычайно маленькой железе, таким образом производя относительно большую дозу.

«Коровы на заднем дворе» вызывают большее беспокойство, поскольку такие коровы обычно потребляют больше пастбищ, чем хранимых кормов, и владельцы часто выпивают больше, чем среднее количество молока. Козы также вызывают большее беспокойство; они пасут меньше территории, но выделяют в 1 литр молока примерно в 10 раз больше дневной нормы йода. При ядерных взрывах за пределами США следует учитывать потребление молока других животных, таких как овцы, лошади и верблюды. Факторы передачи молока для этих животных не очень хорошо известны.Ученые Национального института рака проводят исследовательскую программу по определению таких факторов, но результаты еще не опубликованы. 27 Часто молоко таких животных не потребляется сразу, а превращается в другие продукты, что дает некоторую возможность для 131 I разлагаться перед употреблением.

Для гипотетического устройства (с приблизительно 50-процентной долей деления, т. Е. 50 процентов взрывной мощности от термоядерного синтеза), которое производит интегрированную внешнюю дозу в 1 рад, доза на щитовидную железу младенца будет составлять около 16 рад от потребления молока. с 131 I и несколькими другими радионуклидами ( 132 Te, 132 I, 133 I и 135 I).Эти результаты основаны на опубликованных расчетах, сделанных для снимков NTS. 28

Другими радионуклидами, вызывающими озабоченность с точки зрения загрязненных пищевых продуктов, являются 89 Sr, 90 Sr и 137 Cs. Они имеют общие характеристики: высокий выход деления (доля делений, которые производят радионуклид или его прекурсоры), летучесть (радионуклида или его предшественников) и эффективное выделение в молоко. Другие органы, вызывающие беспокойство, - пищеварительный тракт, красный костный мозг и поверхности костей.

До сих пор для этого обсуждения предполагалось, что люди и молочные животные находятся вместе. Часто это не так. Реконструкция дозы на щитовидную железу по прошлым событиям включала в себя тщательно продуманные попытки восстановить источники молока или движение молока из одного региона в другой. 29 , 30 Если бы этот тип прогнозной оценки был включен в анализ эффектов, необходимо было бы иметь базу данных, которая дает плотность населения, а также дойных животных.

Важно отметить, что этот путь, потребление зараженной пищи, может быть относительно более важным для радиоактивных осадков в результате ядерных взрывов за пределами города в том смысле, что дойные животные с большей вероятностью будут находиться в сельской местности. Проблема зараженного молока после аварии

Что произойдет, если ядерная боеголовка мощностью 800 килотонн взорвется над центром Манхэттена?

Что произойдет, если ядерная боеголовка мощностью 800 килотонн взорвется над центром Манхэттена?

Российские межконтинентальные баллистические ракеты, как полагают, несут в общей сложности около 1000 стратегических ядерных боеголовок, которые могут поразить США менее чем через 30 минут после запуска.Из этого общего количества около 700 боеголовок рассчитаны на 800 килотонн; то есть каждая имеет взрывную мощность 800 000 тонн в тротиловом эквиваленте. Далее следует описание последствий детонации одной такой боеголовки над центром Манхэттена, в самом центре Нью-Йорка.

Первоначальный огненный шар. Боеголовка, вероятно, будет взорвана чуть выше мили над городом, чтобы максимизировать урон, нанесенный ее взрывной волной. В течение нескольких десятых миллионных долей секунды после взрыва центр боеголовки достигнет температуры примерно 200 миллионов градусов по Фаренгейту (около 100 миллионов градусов по Цельсию), что примерно в четыре-пять раз выше температуры в центре Солнца.

Сформируется шар из перегретого воздуха, первоначально расширяющийся наружу со скоростью миллионы миль в час. Он действовал бы как быстро движущийся поршень в окружающем воздухе, сжимая его на краю огненного шара и создавая ударную волну огромных размеров и мощности.

Через секунду огненный шар будет примерно в милю в диаметре. Он бы охладился от своей начальной температуры в несколько миллионов градусов до примерно 16 000 градусов по Фаренгейту, что примерно на 4 000 градусов горячее, чем поверхность Солнца.

В ясный день со средними погодными условиями огромное количество тепла и света от огненного шара почти мгновенно воспламенило бы пожары на общей площади около 100 квадратных миль.

Ураган огня. Через несколько секунд после взрыва костры, возникшие в пределах нескольких миль от огненного шара, сильно воспламенились. Эти пожары заставили бы подняться гигантские массы нагретого воздуха, втягивая более холодный воздух из окружающих областей к центру зоны пожара со всех сторон.

Поскольку сильные ветры разгоняли пламя в области, где пожары еще не полностью развились, огни, вызванные взрывом, начинали сливаться. Через несколько десятков минут после взрыва пожары из ближнего и дальнего света соединятся, образуя единый гигантский огонь. Энергия, выделяемая этим массовым пожаром, будет в 15-50 раз больше, чем энергия, произведенная ядерным взрывом.

Массовый пожар, или огненная буря, быстро нарастал бы по интенсивности, нагревая огромные объемы воздуха, которые поднимались бы со скоростью, приближающейся к 300 милям в час. Этот эффект дымохода будет притягивать холодный воздух из-за пределов зоны пожара к центру пожара со скоростью сотни миль в час. Эти перегретые наземные ветры более чем ураганной силы еще больше усилили бы пожар. На краю зоны пожара ветер будет достаточно сильным, чтобы вырвать с корнем деревья диаметром три фута и затянуть в него людей, находящихся за пределами очага огня.

Порыв ветра заставлял пламя горящих зданий гнать горизонтально по земле, заполняя городские улицы огнем и головами, ломая двери и окна и заставляя огонь прыгать, иногда на сотни футов, поглощая все, что еще не горело.

У этих наземных ветров выше ураганной силы средняя температура воздуха будет намного выше точки кипения воды. Целевая область будет преобразована в огромный ураган огня, создавая смертельную среду по всей зоне пожара.

Граунд-ноль: Мидтаун Манхэттен. Огненный шар испарит конструкции прямо под ним и вызовет огромную взрывную волну и высокоскоростной ветер, раздавив даже тяжелые бетонные конструкции в пределах пары миль от нулевой точки. Взрыв разрушит высотные здания и подвергнет их содержимое воздействию солнечных температур; он распространял бы огонь, обнажая воспламеняющиеся поверхности, выделяя горючие материалы и рассеивая горящие материалы.

В Эмпайр-стейт-билдинг, Гранд-Сентрал, Крайслер-билдинг и Соборе Святого Патрика, примерно в полутора-трех четвертях мили от нулевой точки, свет от огненного шара растапливал асфальт на улицах, сжигал краску со стен, и расплавить металлические поверхности в течение полсекунды после взрыва.Примерно через секунду прибудет взрывная волна и ветер со скоростью 750 миль в час, снесет здания и подбрасывает горящие автомобили в воздух, как листья во время урагана. Повсюду в Мидтауне интерьеры транспортных средств и зданий в пределах прямой видимости огненного шара взорвались бы пламенем.

Чуть более мили от эпицентра земли находятся районы Челси, Мидтаун-Ист и Ленокс-Хилл, а также ООН; на таком расстоянии в течение доли секунды огненный шар будет сиять в 10 000 раз ярче, чем солнце пустыни в полдень. Все горючие материалы, освещенные огненным шаром, будут извергать огонь и черный дым.

Трава, растительность и листья на деревьях воспламенились бы; поверхность земли взорвалась бы перегретой пылью. Любой легковоспламеняющийся материал внутри зданий (бумага, шторы, обивка), который подвергался прямому воздействию огненного шара, загорелся. Поверхности бронзовых статуй перед зданием ООН плавятся; мраморные поверхности, подвергшиеся воздействию огненного шара, треснут, лопнут и, возможно, испарятся.

На таком расстоянии от огненного шара взрывная волна достигнет примерно четырех секунд. Когда он пройдет, взрывная волна охватит все конструкции и раздавит их; он будет генерировать сильный ветер со скоростью от 400 до 500 миль в час, который будет сохраняться в течение нескольких секунд

Сильный ветер срывал структурные элементы зданий и заставлял их взрывоопасно распадаться на более мелкие части. Некоторые из этих осколков станут разрушительными снарядами, вызывая дальнейшие повреждения. Перегретый, пыльный ветер будет достаточно сильным, чтобы перевернуть грузовики и автобусы.

В двух милях от эпицентра искусства Метрополитен-музей со всеми его великолепными историческими сокровищами будет уничтожен. В двух с половиной милях от эпицентра, в Нижнем Манхэттене, Ист-Виллидж и Стуйвесант-Тауне, огненный шар в полдень выглядел в 2700 раз ярче, чем солнце пустыни. Там тепловое излучение расплавит и деформирует алюминиевые поверхности, воспламенит шины автомобилей и превратит открытую кожу в древесный уголь, прежде чем придет взрывная волна и разорвет здания.

От трех до девяти миль от нуля. Мидтаун граничит с относительно широкими реками Гудзон и Восток, и пожары начнутся одновременно на больших территориях по обе стороны этих водных путей (то есть в Квинсе и Бруклине, а также в Джерси-Сити и Западном Нью-Йорке). Хотя направление огненных ветров в регионах около реки будет изменено водой, общая картина ветра из этих огромных соседних зон пожара будет похожа на характер одиночного массового пожара с центром в Мидтауне, Манхэттен.

В трех милях от эпицентра в Юнион-Сити, штат Нью-Джерси, и Астории, штат Квинс, огненный шар будет ярким, как 1900 солнц, и доставить более чем в пять раз тепловую энергию, выделяемую по периметру массового пожара в Хиросиме. В Гринпойнте, Бруклин, и в административном центре Нижнего Манхэттена одежда, которую носят люди, находящиеся в прямой видимости огненного шара, загорается или плавится, а непокрытая кожа обугливается, вызывая ожоги третьей и четвертой степени. .

Взрывной волне потребуется от 12 до 14 секунд, чтобы пройти три мили после первоначальной вспышки света от огненного шара.На таком расстоянии взрывная волна будет длиться около трех секунд и будет сопровождаться ветром от 200 до 300 миль в час. Жилые постройки будут разрушены; многоэтажки будут как минимум сильно повреждены.

Пожары будут бушевать повсюду в пределах пяти миль от эпицентра. На расстоянии 5,35 миль от места взрыва световая вспышка огненного шара доставит вдвое больше тепловой энергии, чем было на границе массового пожара в Хиросиме. В Джерси-Сити и Клиффсайд-парке, а также в Вудсайде в Квинсе, на Губернаторском острове и в Гарлеме свет и тепло поверхностей будут примерно такими же, как от 600 солнц пустыни в полдень.

Скорость ветра на этом расстоянии будет от 70 до 100 миль в час. Здания тяжелой конструкции понесут незначительные структурные повреждения, но все внешние окна будут разбиты, а не поддерживающие внутренние стены и двери будут серьезно повреждены или взорваны. Черный дым выходил из деревянных домов, когда краска выгорала с поверхностей и загоралась мебель.

В шести-семи милях от эпицентра, от Муначи, штат Нью-Джерси, до Краун-Хайтс, Бруклин, от стадиона Янки до Короны, Квинс и Краун-Хайтс, Бруклин, огненный шар в полдень казался в 300 раз ярче, чем солнце пустыни.Любой, кто попадет под прямой свет огненного шара, получит ожоги третьей степени открытой кожи. Огненная буря может охватить районы на расстоянии до семи миль от эпицентра земли, поскольку эти отдаленные районы получат такое же количество тепла, как и районы на краю массового пожара в Хиросиме.

В девяти милях от эпицентра в Хакенсаке, Байонне и Энглвуде, Нью-Джерси, а также в Ричмонд-Хилле, Квинс и Флэтлендс, Бруклин, огненный шар был бы примерно в 100 раз ярче, чем солнце, и был бы достаточно ярким, чтобы вызвать первое - ожоги второй степени - для находящихся в зоне прямой видимости.Примерно через 36 секунд после огненного шара, ударная волна прибудет и выбьет все окна, а также многие внутренние стены здания и некоторые двери.

Выживших нет. Через несколько десятков минут все в пределах пяти-семи миль от Среднего Манхэттена охватит гигантская огненная буря. Зона пожара будет охватывать общую площадь от 90 до 152 квадратных миль (от 230 до 389 квадратных километров). Огненная буря будет бушевать от трех до шести часов. Температура воздуха в зоне пожара, вероятно, составит от 400 до 500 градусов по Фаренгейту (от 200 до 260 по Цельсию).

После того, как пожар потухнет, тротуар будет настолько горячим, что даже гусеничный транспорт не сможет проехать по нему в течение нескольких дней. Захороненный несгоревший материал из обрушившихся зданий по всей зоне пожара мог загореться при контакте с воздухом - через несколько месяцев после окончания огненной бури.

Те, кто пытался бежать по улицам, были бы сожжены ураганным ветром, наполненным головешками и пламенем. Даже те, кто сможет найти укрытие в нижних подвалах массивных зданий, скорее всего, задохнутся от газов, образующихся при пожаре, или будут заживо приготовлены, поскольку их убежища нагреваются до печных условий.

Огонь погасит все живое и уничтожит почти все остальное. В десятках миль с подветренной стороны от зоны немедленного разрушения радиоактивные осадки начнут приходить в течение нескольких часов после взрыва.

Но это уже другая история.

Примечание редактора: эта статья адаптирована из книги Линн Иден «Город в огне», первоначально опубликованной в январском выпуске бюллетеня ученых-атомщиков за 2004 год.

Физические эффекты детонации в закрытой цилиндрической камере

Версия PDF также доступна для скачивания.

Кто

Люди и организации, связанные либо с созданием этого отчета, либо с его содержанием.

Что

Описательная информация, помогающая идентифицировать этот отчет.Перейдите по ссылкам ниже, чтобы найти похожие предметы в цифровой библиотеке.

Когда

Даты и периоды времени, связанные с этим отчетом.

Статистика использования

Когда последний раз использовался этот отчет?

Взаимодействовать с этим отчетом

Вот несколько советов, что делать дальше.

Версия PDF также доступна для скачивания.

Ссылки, права, повторное использование

Международная структура взаимодействия изображений

Распечатать / Поделиться


Печать
Электронная почта
Твиттер
Facebook
Tumblr
Reddit

Ссылки для роботов

Полезные ссылки в машиночитаемых форматах.

Ключ архивных ресурсов (ARK)

Международная структура взаимодействия изображений (IIIF)

Форматы метаданных

Картинки

URL-адреса

Статистика

Дрейпер, К. С. Физические эффекты детонации в замкнутой цилиндрической камере, отчет Октябрь 1933 г .; (https://digital.library.unt.edu/ark:/67531/metadc66150/: по состоянию на 2 февраля 2021 г.), Библиотеки Университета Северного Техаса, Цифровая библиотека UNT, https://digital.library.unt.edu; кредитование Департамента государственных документов библиотек ЕНТ.

«Влияние воды на симпатическую детонацию и мертвое нажатие dy» Адам Майкл Дёрфлер

Ключевые слова и фразы

Мертвый пресс; Расстояние разделения отверстий; Насыщенный грунт; Симпатическая детонация

Аннотация

Динамит и эмульсии - очень эффективные взрывчатые вещества при взрывных работах; однако у них есть некоторые недостатки.Динамит склонен к симпатической детонации, тогда как эмульсии склонны к мертвому давлению. Хотя это не происходит постоянно, условия, в которых используются взрывчатые вещества, действительно влияют на то, будут ли они сочувственно взорваться или будут давить.

Многочисленные исследователи исследовали симпатическую детонацию на предмет взаимосвязи между расстоянием между зарядами, расстоянием разделения отверстий и размером взрывчатого вещества. Это исследование было направлено на изучение того, как изменилось расстояние разделения скважин, когда в скважины была введена вода для детонации динамита.Также в этом исследовании рассматривалась та же установка для полного прессования эмульсий.

Чтобы исследовать симпатическую детонацию, заряды акцептора динамита были размещены на разном расстоянии от заряда донора. Эти расстояния использовались для сухих и влажных лунок. На этой же установке исследовали глухое прессование в эмульсиях.

Что касается симпатической детонации, автор обнаружил, что расстояние между скважинами почти удвоилось, когда скважины были заполнены водой, по сравнению с тем, когда скважины были сухими.Аналогичная зависимость была обнаружена для использованной эмульсии. Диапазон, в котором происходило глухое прессование, увеличился почти вдвое, когда скважины были заполнены водой, по сравнению с тем, когда скважины были сухими.

Это важно, потому что условия, в которых используется взрывчатое вещество, должны приниматься во внимание при загрузке скважин. Например, когда земля насыщена, может потребоваться переработать схему, чтобы предотвратить возникновение симпатической детонации или мертвого нажатия.

Член (а) комитета

Бэрд, Джейсон, 1955-
Герч, Лесли С.

Рекомендуемое цитирование

Дёрфлер, Адам Майкл, «Влияние воды на симпатическую детонацию и мертвое давление динамита и эмульсий» (2012). Магистерские диссертации . 6948.
https://scholarsmine.mst.edu/masters_theses/6948

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или уточнить у системного администратора.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файлах cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *