Режимы работы двс – Режимы работы двигателя.

Содержание

Основные режимы работы ДВС.

При эксплуатации автомобиля характерны следующие основные режимы работы двигателя.

Режим запуска холодного двигателя. Этот режим характеризуется плохой испаряемостью топлива, в результате чего воспламеняемость смеси определяется не количеством поданного в двигатель топлива, а количеством той ее части, которая испарилась. Поэтому при запуске холодного двигателя системы запуска должны подавать избыточное количество топлива (l = 0,3-0,4), но фактически воспламеняющаяся смесь соответствует l = 0,9-1,1, а остальное топливо остается в жидком виде. Для компенсации дополнительных потерь на трение из-за повышенной вязкости масла в цилиндры должно подаваться дополнительное количество воздуха. Все это вместе повышает обороты холостого хода холодного двигателя и облегчает его запуск.

Режим работы двигателя на холостом ходу. Этот режим характеризуется малой частотой вращения коленчатого вала, малой скоростью воздушного потока и ухудшением перемешивания смеси. Кроме того этот режим характеризуется значительным содержанием в цилиндрах отработавших газов, что ухудшает процесс сгорания. При применении карбюраторного способа смесеобразования или моновпрыска к указанным факторам добавляется неравномерность распределения смеси по цилиндрам. Все это требует приготовления несколько обогащенного состава смеси (l = 0,8-0,85 ) с тем, чтобы в любом цилиндре оказалась смесь воспламеняющегося состава.

Режим частичных нагрузок ( 20 –80% от номинальной мощности ). Это основной режим работы двигателя при равномерном движении автомобиля. Для этого режима целесообразен экономный режим состава топливно-воздушной смеси, т.е. смесь должна быть обедненной. Этот режим характеризуется удовлетворительными условиями испаряемости топлива и перемешивания смеси, этот режим не требует максимальной скорости сгорания. При любой системе питания двигателя этот режим обеспечивается главной дозирующей системой.

Режим максимальной мощности ( более 80% ). Этот режим используется сравнительно редко, при резком разгоне, на подъемах и т.д.. При работе на этом режиме нужна смесь, обеспечивающая наибольшую скорость сгорания (l =0,8-0,9). С переходом на этот режим необходимо обеспечить обогащение смеси.

Режим ускорения. Этот режим характеризуется быстрым переходом от режима частичных нагрузок к режиму увеличенной или максимальной мощности. Быстрое увеличение частоты коленчатого вала требует обеспечить кратковременное обогащение смеси на этом переходном режиме.

Характер изменений состава смеси на различных режимах работы двигателя показан на рисунке 4

Рис 4. Зависимость состава топливно-воздушной смеси от режимов работы двигателя.

 

Реализация этой сложной зависимости при постоянном изменении режимов работы двигателя требует сложных и совершенных систем управления, которые постоянно совершенствуются от простейших карбюраторов пульверизационного типа до современных электронных систем непосредственного впрыска.

Поскольку, как уже отмечалось во ВВЕДЕНИИ в эксплуатации находятся и те и другие, рассмотрим принципы построения этих систем в порядке их появления.


Похожие статьи:

poznayka.org

Крутить или не крутить. Оптимальный режим работы двигателя — DRIVE2

С "клинышком"
Не перевелись в автошколах инструкторы, которые учат ездить "внатяг", на минимальных оборотах — дескать, так меньше износится двигатель. Кое-кто из них даже подгибает педаль или подкладывает под нее деревянный упор — тогда при всем желании полностью газ не откроешь. Так и ездит потом иной водитель — с "клинышком", пугаясь, едва стрелка тахометра переваливает отметку 2000. Оправдывают такой стиль экономией топлива, заботой о двигателе.
Что касается экономии топлива, это верно лишь отчасти. На низких оборотах двигатель не тянет, поэтому при обгоне или на мало-мальски заметном подъеме приверженец такого стиля езды вынужден "топтать" педаль газа, дополнительно обогащая смесь и сжигая сэкономленное топливо.

Так, может быть, выигрываем в ресурсе? На первый взгляд, ответ очевиден: меньше обороты двигателя — ниже относительные скорости перемещения деталей, соответственно уменьшается и износ. Но не все так просто. Наиболее ответственные подшипники скольжения (распределительного вала, коренных и шатунных шеек коленчатого вала) рассчитаны на работу в режиме гидродинамической смазки. Масло под давлением подается в зазор между валом и вкладышем и воспринимает возникающие нагрузки, не допуская непосредственного соприкосновения деталей — те просто "всплывают" на так называемом масляном клине. Коэффициент трения при гидродинамической смазке крайне мал — всего 0,002-0,01 (у смазанных поверхностей при граничном трении он в десятки раз выше), поэтому в таком режиме вкладыши выдерживают сотни тысяч километров.

Но давление масла зависит от оборотов двигателя: масляный насос приводится от коленчатого вала. Если нагрузка на двигатель велика, а обороты — низкие, масляный клин может продавливаться до металла, и вкладыш начнет разбиваться, причем износ быстро прогрессирует по мере роста зазоров: создать "клин" все сложнее, подачи масла не хватает.

К тому же при езде на низких оборотах возникают ударные нагрузки в двигателе и трансмиссии. Инерция вращающихся деталей уже недостаточна, чтобы сгладить возникающие колебания. То же происходит и при троганье. Вспомним автошколу: стоит резко отпустить сцепление при малом газе, как машина начинает прыгать. Иногда это кончается поломкой сцепления: не выдерживают упругие пластины крепления ведомого диска к кожуху, лопаются, выскакивают из окон пружины. Лучше уж немного потерять на износе, но избежать досрочной поломки.

Итак, чем больше требуем от мотора (резкое ускорение, подъем, груженый автомобиль), тем выше должны быть обороты. И наоборот, при спокойной езде, когда двигатель нагружен слабо, нет смысла загонять стрелку тахометра в конец шкалы.

Золотая Середина
Ускоренный износ вкладышей — не единственное зло от увлечения низкими оборотами. При коротких поездках на таких режимах в двигателе накапливаются низкотемпературные отложения, в первую очередь в системе смазки. Стоит "прохватить" по шоссе — и горячее масло под напором хорошенько промоет систему, заодно выгорит лишний нагар в камерах сгорания и канавках поршня. Иногда так удается восстановить понизившуюся из-за залегания колец компрессию в цилиндрах.
Разбирая "жигулевский" мотор, многие обращали внимание на стертые выемки на торце клапанов — следы рычагов. Эти отметины означают: клапаны не вращались, а работали все время в одном положении. Между тем вращение клапана продлевает срок его службы, только возможно это при оборотах свыше 4000-4500 об/мин. Немногие выводят мотор на эти режимы, вот и появляется выемка на клапанах. А дальше она сама станет препятствовать их вращению.

Этот график хорошо показывает зависимость износа от рабочих оборотов

Но долгая работа вблизи красной зоны двигателю тоже не на пользу. Системы охлаждения и смазки работают на пределе, без запаса. Малейший дефект первой — забитый пухом спереди или герметиком изнутри радиатор, неисправный термостат — и стрелка указателя температуры окажется в красной зоне. Плохое масло или забитые грязью смазочные каналы могут вызвать задиры на деталях или даже "прихват" вкладышей или поршней, поломку распредвала. Поэтому "гонщикам" не стоит упускать из виду манометр и указатель температуры. Исправный же двигатель, заправленный хорошим маслом, без проблем переносит максимальные обороты. Конечно, в таком режиме его ресурс снижается, но отнюдь не катастрофически — лишь бы запчасти не оказались "левыми"!

Между этими двумя крайностями и лежит золотая середина. В зависимости от конкретных условий оптимальный режим — 1/3-3/4 оборотов максимальной мощности. В режиме обкатки тоже недопустимы слишком низкие обороты, а верхнюю границу стоит опустить до 2/3 "максималки". Но главный принцип остается незыблемым — чем выше нагрузка, тем выше должны быть обороты.

Холодный Пуск
Пуск на морозе мотору не на пользу. Сконденсировавшийся на холодных стенках цилин

www.drive2.ru

Режимы работы двигателя

При определенных условиях работы двигателя потребности его в топливе могут в значительной мере отличаться от тех, что имеют место в условиях установившегося режима работы при нормальной рабочей температуре. Для этих условий необходимо производить корректировку процесса смесеобразования.

Режим пуска двигателя

При пуске двигателя осуществляется специальный расчет изменений по моменту зажигания, количеству поступающего воздуха и впрыскиваемого топлива. Увеличенное количество впрыскиваемого топлива, скорректированное на изменение температурного режима, способствует образованию пленки топлива на стенках впускного трубопровода и камеры сгорания, которое затем используется при переходе двигателя к нормальному послепусковому рабочему режиму. Момент зажигания также адаптируется к режиму пуска двигателя. Дроссельная заслонка на заряд воздуха при пуске двигателя не влияет, однако несколько приоткрывается перед входом двигателя в послепусковой режим работы.

Послепусковой режим

При этом режиме повышенное количество подаваемого воздушного заряда и впрыскиваемого топлива начинает снижаться в зависимости от температуры двигателя и времени, прошедшего с момента окончания режима пуска. Также к этому режиму адаптируется и момент зажигания.

Режим прогрева двигателя

После пуска двигателя при низкой температуре увеличение потребного крутящего момента, лимитируемого этой температурой, может быть достигнуто изменением количества заряда воздуха и впрыскиваемого топлива и корректировкой момента зажигания.

Нагрев каталитического нейтрализатора отработавших газов

При установке очень поздних углов опережения зажигания повышается температура отработавших газов, что позволяет быстро нагреть каталитический нейтрализатор до его рабочей температуры.

Режим холостого хода

При работе двигателя на холостом ходу создаваемый им крутящий момент должен быть достаточен лишь для поддержания его работы и функционирования вспомогательных систем. При использовании системы регулирования частоты вращения коленчатого вала на холостом ходу эта частота при всех условиях остается неизменной.

Работа при полной нагрузке

В режиме работы при полной нагрузке дроссельная заслонка полностью открыта (режим WOT), при этом потери на дросселирование отсутствуют. Двигатель вырабатывает максимальный крутящий момент для заданной частоты вращения коленчатого вала.

Режимы ускорения и замедления

При резких ускорениях и замедлениях происходят быстрые изменения давления во впускном трубопроводе двигателя. Следовательно, изменяются и условия образования пленки топлива на стенках впускного трубопровода. Для предотвращения обеднения смеси при ускорении режима работы двигателя необходима подача дополнительного топлива, что служит для образования на стенках топливной пленки. При замедлении, соответственно, количество впрыскиваемого топлива снижается.

Режим принудительного холостого хода (ПХХ) с отключением подачи топлива, повторный пуск

При переходе в режим принудительного холостого хода (ПХХ) с отключением подачи топлива, характеризуемого прекращением сгорания, система ME-Motronic обеспечивает плавное снижение крутящего момента двигателя, а также производит плавное включение подачи топлива при повторном пуске двигателя.

Другие статьи по рабочим процессам в двигателе

carspec.info

Типы работы судовых двигателей

Режимы работы двигателя на судне определяются величиной крутящего момента на коленчатом валу и частотой вращения.

К установившимся режимам относится работа на гребной винт или генератор при постоянной частоте вращения и неизменной нагрузке. Характер этих режимов зависит во многом от сопротивления воды движению судна.

Особыми установившимися режимами являются работа двигателя при увеличенных температурах наружного воздуха, повышенном сопротивлении в выпускном тракте вследствие засорения его сажей и осадками масла, работа с неполным числом цилиндров или при неисправном турбокомпрессоре, работа при плавании в битом льду, с ненормальным дифферентом, с поврежденным гребным винтом.

К неустановившимся режимам работы двигателя относятся работа при пусках, прогреве и остановках, работа при переходе с одного скоростного режима на другой (постановка и выборка орудий лова), работа на винт при разгоне судна, работа во время реверсирования судна или его циркуляции, работа на заднем ходу, работа на генератор при изменении электрической нагрузки.

 

Работа дизеля при увеличенном сопротивлении движению судна

Если сопротивление движению судна по каким-либо причинам увеличилось, например вследствие обрастания корпуса, плохой погоды, влияния мелководья или при буксировке трала, гребной винт становится более «тяжелым». Иначе говоря, он потребляет от двигателя при той же частоте вращения мощности, большую, чем при обычных условиях.

В установке с обычным гребным винтом фиксированного шага во избежание перегрузки двигателя снижают частоту вращения. На сколько нужно понизить частоту вращения, определяют в каждом конкретном случае в соответствии с инструкцией завода-изготовителя, в которой указываются предельные значения температуры выпускных газов, расхода топлива или максимального давления сгорания для каждого значения частоты вращения (ограничительная характеристика).

В установке с ВРШ нет необходимости снижать частоту вращения - можно лишь уменьшить шаг винта с таким расчетом, чтобы параметры двигателя, контролируемые по приборам, соответствовали номинальному режиму.

Наиболее тяжелым установившимся режимом является работа на швартовах. В этом случае сопротивление движению корпуса бесконечно велико.

В практике эксплуатации возможны случаи уменьшения сопротивления движению судна, например при плавании в балласте или при сильном попутном ветре. Гребной винт при этом становится «легче», т. е. несколько недогружает главный двигатель при номинальной частоте вращения.

Выбор режима при увеличении сопротивления движению судна диктуется необходимостью сохранения тепловой и механической напряженности двигателя в нужных пределах. Показателем теплонапряженности является величина и характер изменения температуры в стенках поршней, цилиндровых втулок и крышек.
Так, температура зеркала цилиндра в районе первого поршневого кольца (при положении поршня в в. м. т.) не должна превышать 175° С во избежание разрушения масляной пленки и возникновения сухого трения. Температура поршней лимитируется в районе первого поршневого кольца из условий предотвращения его закоксовывания, на днище поршня из условий сохранения допускаемых тепловых напряжений и отсутствия коксо- и лакообразования со стороны, омываемой охлаждающим маслом.

Показателем механической напряженности является напряжения и деформации, возникающие в деталях от действия сил давления газов и сил инерции движущихся частей. Косвенно о механической напряженности можно судить по величине максимального давления сгорания и жесткости работы двигателя, под которой понимают интенсивность повышения давления в цилиндре во время сгорания топлива.

Большое влияние на механическую напряженность коленчатого вала оказывают крутильные колебания. Коленчатый вал вместе с другими присоединенными к нему движущимися поступательно и вращающимися деталями представляет собой упругую систему, отдельные участки которой при работе двигателя закручиваются и раскручиваются в разных направлениях. Такие «вынужденные» крутильные колебания наблюдаются на всех режимах, и вызываются они главным образом периодическим действием сил давления газов в цилиндрах. Иногда оказывает влияние и неравномерный крутящий момент гребного винта, периодичность изменения которого зависит от числа лопастей.

Упругая вращающаяся система валов обладает собственными колебательными свойствами - частотой свободных колебаний и их формой. Эти свойства зависят только от расположения масс деталей и упругости соединяющих их участков вала. Свободные колебания не развиваются при работе двигателя, их можно лишь возбудить искусственно, если кратковременно приложить крутящий момент.

После прекращения действия момента система начинает колебаться с определенной частотой, но колебания быстро затухают благодаря внутреннему трению в материале валов. В зависимости от того, в каком месте вала приложить момент, могут возникнуть колебания разных форм. При одной из форм - одноузловой - концы валовой линии закручиваются в разных направлениях, а в средней части одно из сечений не участвует в колебаниях (узел).

При двухузловой форме оба конца валовой линии закручиваются в одну сторону, а ее средняя часть - в другую; таким образом образуются два узла. Возможны также трехузловая, четырехузловая и другие формы колебаний. Чем выше форма колебаний, тем больше частота свободных колебаний. В обычных установках практическое значение могут иметь одноузловые и двухузловые колебания; их частота соответственно составляет 200 - 3000 и 900 - 10000 колебаний в минуту.

При увеличении или уменьшении частоты вращения вала двигателя соответственно изменяется и частота вынужденных колебаний от сил давления газов в цилиндрах. На некоторых режимах она совпадает с частотой свободных колебаний одно- или двухузловой формы. В результате развиваются резонансные колебания. Степень их опасности определяется расчетом еще при проектировании установки и проверяется специальным прибором (торсиографом) на одном из судов каждой серии. В случае, если напряжения не превышают допускаемой величины, никаких ограничений не накладывается.

Некоторое превышение напряжений говорит о необходимости назначить запретную зону. Продолжительная работа двигателя в этой зоне недопустима, так как может привести к разрушению валовой линии в одном из сечений из-за усталости материала вала. Возможно также повреждение зубьев шестерен редуктора. Внешне работа двигателя в запретной зоне может сопровождаться заметной вибрацией и шумами, но эти признаки обнаруживаются не всегда.

Запретные зоны отмечаются на тахометре красным сектором. Проход через запретную зону при увеличении или уменьшении частоты вращения осуществляется плавно, но быстро.

Значительное превышение напряжений при резонансах над допускаемыми напряжениями представляет опасность даже при кратковременной работе. В таких случаях дизелестроительным или судостроительным заводом принимаются меры борьбы с крутильными колебаниями. Можно, например, уменьшить ширину или диаметр маховика, и тогда запретная зона сместится в зону выше номинальной частоты вращения. Применяют и специальные устройства - демпферы и антивибраторы.

Общим показателем тепловой и механической напряженности дизеля является степень форсирования. Наиболее удобно оценивать степень форсирования величиной удельной поршневой мощности показывающей, сколько эффективных лошадиных сил приходится на 1 дм2 площади поршня.

На долевых режимах удельная поршневая мощность, а следовательно, и тепловая и механическая напряженности резко снижаются. Но это не значит, что малые частота вращения и нагрузки являются наиболее благоприятными для двигателя. На таких режимах ухудшаются условия охлаждения и смазки, происходят забросы масла в выпускной коллектор. Поэтому продолжительная работа на малых нагрузках нежелательна. Некоторые заводы ограничивают минимальную нагрузку на дизель при разных значениях частоты вращения определенными величинами. Такое ограничение, например, введено для распространенного на флоте рыбной промышленности дизеля 8ДР43/61.

 

Работа двигателя при повышенной температуре наружного воздуха

На режимах, близких к предельно допустимой в эксплуатации мощности, двигатель чувствителен к параметрам наружного воздуха. Повышение температуры и влажности воздуха и снижение атмосферного давления приводят к уменьшению весового заряда воздуха, поступающего в цилиндры. В результате снижается мощность и экономичность, ухудшается тепловая и механическая напряженность. Наибольшее влияние оказывает температура воздуха.

По указанной причине дизелестроительные заводы гарантируют номинальную мощность при определенных внешних условиях. В СССР нормальными условиями, согласно ГОСТ 5733 - 51, считаются температура воздуха на впуске +15° С, барометрическое давление (760 мм рт. ст.) и относительная влажность 0,6. Некоторые заводы, например «Русский дизель», гарантируют номинальную мощность и при менее благоприятных условиях, в частности при температуре до +25° С (двигатель 8ДР43/61).

Каждый дизелестроительный завод в инструкции по эксплуатации двигателя регламентирует величину снижения мощности при изменении внешних условий. При отсутствии в инструкции соответствующих указаний можно руководствоваться следующими ориентировочными данными: мощность двигателя следует снижать на 3 - 5% при увеличении температуры наружного воздуха на каждые 10° С свыше 20° С.

 

Работа двигателя при выключенном цилиндре

При невозможности быстро устранить неисправность в одном из цилиндров допускается временная работа двигателя с отключенным цилиндром. Отключение неисправного цилиндра может сопровождаться только прекращением подачи в него топлива или демонтажем деталей движения. В последнем случае у двухтактного двигателя выпускные и продувочные окна закрывают либо специальными приспособлениями, либо путем подвешивания поршня на талях.

Эффективная мощность главных двигателей, работающих при постоянной частоте вращения (в установках с ВРШ), и дизель-генераторов снижается на величину индикаторной мощности отключенного цилиндра.

В установке с обычным винтом фиксированного шага необходимо снизить частоту вращения (об/мин) до значения

где nн - номинальное число оборотов; N - индикаторная мощность отключенного цилиндра; N - номинальная эффективная мощность дизеля.

Следует иметь в виду, что при отключенном цилиндре изменяется расположение запретной зоны от крутильных колебаний. Поэтому при работе дизеля следует особенно тщательно следить за его шумом и вибрацией.

 

Работа при трогании с места и разгоне судна

При трогании с места и разгоне судна, кроме сопротивления воды, необходимо преодолеть еще силу инерции массы судна. Следовательно, движущая сила и момент винта могут быть больше, чем при равномерном движении судна с заданной скоростью.

Если при трогании судна с места скорость вращения вала двигателя будет больше, то последний окажется перегруженным.

Быстрый разгон, позволяя быстрее достигнуть скорости полного хода судна, вызывает более высокую нагрузку двигателя или даже его перегрузку. При медленном разгоне судна вращающий момент постепенно достигает значения момента полного хода, и разгон судна совершается без перегрузки двигателя.

 

Работа на задний ход и при реверсировании винта

При работе двигателя на задний ход необходимо, чтобы углы открытия и закрытия клапанов газораспределительного механизмы и углы опережения подачи топлива в цилиндры были равны соответствующим углам при работе на передний ход.

Если предохранительные клапаны «стреляют» только при работе двигателя «Назад», то это указывает на увеличение угла опережения подачи топлива по сравнению с работой двигателя «Вперед».

При частоте вращения заднего хода, равной частоте вращения полного хода вперед, момент сопротивления может значительно превысить номинальный момент на валу двигателя, что приведет к перегрузке двигателя.

Большую опасность представляет увеличение напряжений в коленчатом валу на маневрах при торможении движения сжатым воздухом для ускорения процесса реверсирования, а также при разгоне двигателя на задний ход при продолжающемся движении судна вперед.

При движении судна полным ходом двигатель в процессе реверсирования должен остановить гребной винт (при выключенном двигателе судно по инерции продолжает движение и гребной винт вращается под действием потока воды за судном), удержать его в неподвижном положении и начать вращать в нужном направлении.
При этом на коленчатом валу создается крутящий момент значительно больше номинального, что может привести к поломке коленчатого вала. Для предотвращения перегрузки двигателя реверсирование необходимо осуществлять при возможно меньшей скорости судна.

seaman-sea.ru

6. Режимы работы электродвигателей

Двигатель выбирают, исходя из условий работы, на основе нагрузочной диаграммы, под которой понимают графически выраженную зависимость мощности Р, момента М или тока I от времени t:

, ,.

Различают три основные режима работы, длительный, кратковременный и повторно- кратковременный.

6.1 Длительный режим.

Это режим, при котором двигатель работает под нагрузкой в течение времени, достаточного для нагрева его до установившейся температуры (рис.1а). Установившаяся температура определяется нагрузкой двигателя. Двигатель используется полностью, если установившаяся температура равна максимально допустимой для класса изоляции двигателя . В длительном режиме на судах работают электроприводы вентиляторов, насосов и других механизмов.

6.2 Кратковременный режим.

В этом режиме двигатель, работая под нагрузкой не успевает нагреться до установившейся температуры, а в период остановки остывает до температуры окружающей среды (рис.1б). Работать двигатель всегда начинает в холодном состоянии . В таком режиме на судах работают электроприводы якорно-швартовых устройств. Завод-изготовитель двигателей указывает номинальные мощности двигателя для стандартных длительностей работы – 10, 30 и 60 мин.

6.3 Повторно-кратковременный режим.

Этот режим состоит из периодов работы и пауз, причём за время работы двигатель успевает нагреться до установившейся температуры, а за время паузы не успевает остыть до температуры окружающей среды (рис.1в). Суммарная продолжительность рабочего периода . И паузы(время цикла) не должна превышать 10 мин. Этот режим характеризуется относительной продолжительностью включения – отношением продолжительности рабочего периодак продолжительности, выраженной в процентах:

Стандартные значения ПВ – 15, 25 ,40 ,60%.

Повторно-кратковременный режим характерен для грузоподъёмных механизмов.

7. Нагрев и охлаждение электродвигателей

7.1 Нагрев двигателя.

Работая с некоторой постоянной мощностью на валу , двигатель потребляет из сети мощность, превышающую мощностьна значение потерь, которые выражают через к.п.д. двигателя:

Потери мощности в двигателе превращаются в теплоту, вызывая нагрев до некоторой температуры, определяемую его нагрузкой. Количество теплоты , выделяемое в двигателе:

При расчёте тепловых процессов принимают следующие допущения:

- двигатель представляют в виде однородного твёрдого тела, равномерно нагревающегося по всему объёму;

- считают, что двигатель охлаждается только благодаря теплопроводности и конвекции.

При этих условиях количество теплоты, выделяемой двигателем в окружающую среду, пропорционально повышению его температурынад температурой окружающей среды.

Введём обозначения: С – теплоёмкость двигателя – количество теплоты, необходимое для нагревания двигателя на 1oС, ; А – теплоотдача двигателя – количество теплоты, отдаваемое в окружающую среду в течение 1с при разности температур двигателя и среды 1oС, oС. Уравнение теплового баланса имеет вид [1]:

,

где - количество теплоты, выделяющейся в двигателе за время dt;

- количество теплоты, идущей на нагрев двигателя;

- количество теплоты, отдаваемой двигателем в окружающую среду за время dt.

Решив дифференциальное уравнение относительно , можно определить температуру двигателя в любой момент времени его работы (при условии, что температура двигателя в момент пуска равна температуре окружающей среды).

[1]

где - постоянная времени нагрева,;

- установившееся превышение температуры, которое будет достигнуто за время . В реальных условиях черездвигатель достигает температуры.

Исходя из реальных условий нагрева двигателя, постоянную нагрева Т определяют как время, в течение которого нагревается до . Действительно:

Для двигателей малой и средней мощности постоянная времени нагрева находится в пределах 10-20 мин.

studfile.net

Двигатель внутреннего сгорания (ДВС): Общие сведения

Автомобильные двигатели работают в широком диапазоне изменения скоростных и нагрузочных режимов.

Режим работы двигателя — это его состояние, характеризующееся совокупностью показателей.

Основными показателями, определяющими рабочий режим, являются частота вращения коленчатого вала, нагрузка на двигатель и температура. Если значения этих показателей в процессе работы двигателя остаются неизменными, режим называется установившимся. В случае изменения хотя бы одного из них режим считается неустановившимся.

Характеристикой двигателя называется совокупность зависимостей основных показателей его работы от эксплуатационных, конструктивных и других факторов.

Характеристики двигателя определяют его эксплуатационные качества, уровень технического совершенства, правильность регулировок, а также его назначение.

Характеристики двигателя определяются, как правило, на установившихся режимах, несмотря на то, что в реальных условиях двигатели работают при их непрерывном изменении, так как учесть одновременное влияние всех факторов на работу двигателя затруднительно. Поэтому характеристики получают на специально оборудованных испытательных стендах, где возможно исследование различных показателей в зависимости от изменения одного фактора. Основными показателями работы двигателя являются эффективная мощность Ne, крутящий момент Мk, часовой расход топлива Gт и удельный эффективный расход топлива ge.

В зависимости от параметра, принимаемого в качестве независимой переменной, различают три основные группы характеристик:

  • скоростные
  • нагрузочные
  • регулировочные

Наиболее значимыми являются нагрузочные и скоростные характеристики, позволяющие оценить экономические и мощностные качества двигателей на различных режимах работы.

Так как основные показатели работы двигателей зависят от одних и тех же параметров цикла, то характеристики являются наиболее наглядным средством анализа рабочего процесса двигателя.

Общая методика исследования рабочих характеристик двигателя предусматривает следующие направления работы:

  • определение цели получения характеристики;
  • определение условий получения характеристики;
  • изменение основных параметров цикла в зависимости от аргумента характеристики;
  • изменение показателей работы двигателя;
  • практическое использование полученной характеристики.

ustroistvo-avtomobilya.ru

Режимы работы электродвигателей и их характеристики

Режимы работы электродвигателей – это определенный порядок чередования периодов, который характеризуется:

  • продолжительностью и величиной нагрузки;
  • условиями охлаждения;
  • частотой пуска и отключений;
  • частотой реверса;
  • соотношениями потерь в периоды установившегося движения и пуска.

Так как существует множество режимов, выпуск двигателей для каждого из них нецелесообразен, поэтому серийные двигатели проектируются согласно ГОСТ для работы в восьми номинальных режимах. Номинальные данные содержатся в паспорте электродвигателя. Оптимальное функционирование агрегата гарантируется при его эксплуатации при номинальной нагрузке и в номинальном режиме.

Основные режимы работы электродвигателей

Существуют три основных (продолжительный, кратковременный, повторно-кратковременный) и пять дополнительных режимов работы, условно маркированных согласно международной классификации S1-S8. Отечественные электромашиностроительные заводы в обязательном порядке включают номинальные данные на основные режимы в каталоги и паспорт агрегата.

Продолжительный режим (S1) предусматривает длительный и беспрерывный рабочий период, во время которого двигатель нагревается до установившейся температуры. Он может «подразделяться» на два вида:

  • Режим с постоянной нагрузкой (без изменения температуры в период работы). В нем функционируют двигатели конвейеров, электроприводы вентиляторов и насосов.
  • Режим с изменяющейся нагрузкой (температура поднимается или падает с изменением нагрузки). Он используется при работе металлорежущих, деревообрабатывающих и прокатных станков.

Кратковременный режим работы электродвигателя (S2) характеризуется непродолжительным рабочим периодом (по стандартам 10, 30, 60, 90 минут) без нагрева двигателя до установившейся температуры с последующим его охлаждением во время паузы до температуры окружающей среды. В этом режиме действуют электроприводы запорных устройств (вентилей, шлюзов, заслонок и т.д.). В паспорте двигателя указывается продолжительность рабочего периода (например, S2 – 60 мин.).

Повторно-кратковременный режим работы электродвигателя (S3) – режим, при котором в течение рабочего периода нагрев двигателя не достигает установившейся температуры, а во время паузы не происходит охлаждения до температуры окружающей среды. Он характеризуется непрерывным чередованием периодов работы под нагрузкой и вхолостую. Так функционируют электроприводы подъемных кранов, экскаваторов и лифтов, то есть устройств, действующих циклично.

Дополнительные режимы работы электродвигателей

Дополнительные режимы обозначены маркерами S4-S8. Они введены для более удобного эквивалентирования произвольных режимов и расширения номенклатуры номинальных режимов.

S4 – повторно-кратковременный режим с влиянием пусковых процессов. Каждый цикл работы включает в себя:

  • длительный период пуска, в течение которого пусковые потери оказывают влияние на температуру узлов агрегата;
  • период функционирования при постоянной нагрузке без нагрева до устоявшейся температуры;
  • паузу, во время которой не предусмотрено охлаждение двигателя до температуры окружающей среды.

S5 – повторно-кратковременный режим с электрическим торможением. В цикл работы входят:

  • долгое время пуска;
  • время работы при постоянной нагрузке без нагрева до устоявшейся температуры;
  • период быстрого электрического торможения;
  • период работы вхолостую без охлаждения до температуры окружающей среды.

S6 – перемежающийся режим работы. Цикл работы состоит из:

  • периода функционирования с постоянной нагрузкой;
  • паузы.

В течение обоих периодов температура двигателя не достигает установившегося значения.

S7 – перемежающийся режим с электрическим торможением и влиянием пусковых процессов. В каждый цикл включены:

  • длительный период пуска;
  • время действия машины с постоянной нагрузкой;
  • быстрое электрическое торможение.

Паузы данным режимом не предусмотрены.

S8 – перемежающийся режим с разными частотами вращения (2 или более). В цикл входят периоды:

  • работы с неизменной частотой вращения и постоянной нагрузкой;
  • работы при других неизменных нагрузках, причем каждой из них соответствует определенная частота вращения.

Как и предыдущий, этот режим не содержит пауз.

Если вы знаете характеристики работы электродвигателей, вам не составит труда выбрать агрегат, оптимально подходящий для ваших целей. Указанная в каталогах мощность двигателя предусматривает его эксплуатацию в нормальных условиях в режиме S1 (если это не двигатель с повышенным скольжением). Превышение мощности при режиме S2 допустимо не более чем на 50% в течение 10 минут, 25% в течение 30 минут и 10% в течение 90 минут.


www.szemo.ru

Автор: admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *