Виды усилителей – Электронный усилитель — Википедия

Содержание

Электронный усилитель — Википедия

Материал из Википедии — свободной энциклопедии

Электронный усилитель — прибор, способный усиливать электрическую мощность. Приборы, усиливающие только ток или напряжение (например, трансформаторы) к числу усилителей не относятся. Принцип работы электронного усилителя основан на изменении его активного или реактивного сопротивления электрической проводимости в газах, вакууме и полупроводниках под воздействием сигнала малой мощности[1]. Электронный усилитель может представлять собой как самостоятельное устройство, так и блок (функциональный узел) в составе какой-либо аппаратуры — радиоприёмника, магнитофона, измерительного прибора и т. д.

  • 1904 год — Ли де Форест на основе созданной им электронной лампы — триода — разработал устройство усиления электрических сигналов (усилитель), состоящее из нелинейного элемента (лампы) и статического сопротивления Ra, включенного в анодную цепь.
  • 1932 год — Гарри Найквист определил условия устойчивости (способности работать без самовозбуждения) усилителей, охваченных отрицательной обратной связью.
  • 1942 год — в США построен первый операционный усилитель — усилитель постоянного тока с симметричным (дифференциальным) входом и значительным собственным коэффициентом усиления (более 1000) как самостоятельное изделие. Основным назначением данного класса усилителей стало его использование в аналоговых вычислительных устройствах для выполнения математических операций над электрическими сигналами. Отсюда его первоначальное название — решающий.
УНЧ с обратной связью. Типичная схема

Структура усилителя[править | править код]

  • Усилитель представляет собой в общем случае последовательность каскадов усиления (бывают и однокаскадные усилители), соединённых между собой прямыми связями
  • В большинстве усилителей, кроме прямых, присутствуют и обратные связи (межкаскадные и внутрикаскадные). Отрицательные обратные связи позволяют улучшить стабильность работы усилителя и уменьшить частотные и нелинейные искажения сигнала. В некоторых случаях обратные связи включают термозависимые элементы (термисторы, позисторы) — для температурной стабилизации усилителя или частотнозависимые элементы — для выравнивания частотной характеристики
  • Некоторые усилители (обычно УВЧ радиоприёмных и радиопередающих устройств) оснащены системами автоматической регулировки усиления (АРУ) или автоматической регулировки мощности (АРМ). Эти системы позволяют поддерживать приблизительно постоянный средний уровень выходного сигнала при изменениях уровня входного сигнала.
  • Между каскадами усилителя, а также в его входных и выходных цепях, могут включаться аттенюаторы или потенциометры — для регулировки усиления, фильтры — для формирования заданной частотной характеристики и различные функциональные устройства — нелинейные и др.
  • Как и в любом активном устройстве, в усилителе также присутствует источник первичного или вторичного электропитания (если усилитель представляет собой самостоятельное устройство) или цепи, через которые питающие напряжения подаются с отдельного блока питания.

Каскады усиления[править | править код]

  • Каскад усиления — ступень усилителя, содержащая один или несколько усилительных элементов, цепи нагрузки и связи с предыдущими или последующими ступенями.
  • В качестве усилительных элементов обычно используются электронные лампы или транзисторы (биполярные, полевые), иногда, в некоторых особых случаях, могут применяться и двухполюсники, например, туннельные диоды (используется свойство отрицательного сопротивления) и др. Полупроводниковые усилительные элементы (а иногда и вакуумные) могут быть не только дискретными (отдельными) но и интегральными (в составе микросхем), часто в одной микросхеме реализуется полностью законченный усилитель.
  • В зависимости от способа включения усилительного элемента различаются каскады с общей базой, общим эмиттером, общим коллектором (эмиттерный повторитель) (у биполярного транзистора), с общим затвором, общим истоком, общим стоком (истоковый повторитель) (у полевого транзистора) и с общей сеткой, общим катодом, общим анодом (у ламп)
    • Каскад с общим эмиттером (истоком, катодом) — наиболее распространённый способ включения, позволяет усиливать сигнал по току и напряжению одновременно, сдвигает фазу на 180°, то есть является инвертирующим.
    • Каскад с общей базой (затвором, сеткой) — усиливает только по напряжению, применяется редко, является наиболее высокочастотным, фазу не сдвигает.
    • Каскад с общим коллектором (стоком, анодом) — называется также повторителем (эмиттерным, истоковым, катодным), усиливает ток, оставляя напряжение сигнала . Применяется в качестве буферного усилителя. Важными свойствами повторителя являются его высокое входное и низкое выходное сопротивления, фазу не сдвигает.
    • Каскад с распределенной нагрузкой — каскад, занимающий промежуточное положение между схемой включения с общим эмиттером и общим коллектором. Как вариант каскада с распределенной нагрузкой, выходной каскад усилителя мощности «двухподвес». Важными свойствами являются задаваемый элементами схемы фиксированный коэффициент усиления по напряжению и низкие нелинейные искажения. Выходной сигнал дифференциальный.
  •  — усилитель, содержащий два активных элемента, первый из которых включен по схеме с общим эмиттером (истоком, катодом), а второй — по схеме с общей базой (затвором, сеткой). Каскодный усилитель обладает повышенной стабильностью работы и малой входной ёмкостью. Название усилителя произошло от словосочетания «КАСКад через катОД» (англ. CASCade to cathODE)[2]
  • Каскады усиления могут быть однотактными и двухтактными.
    • Однотактный усилитель — усилитель, в котором входной сигнал поступает во входную цепь одного усилительного элемента или одной группы элементов, соединённых параллельно.
    • Двухтактный усилитель — усилитель, в котором входной сигнал поступает одновременно во входные цепи двух усилительных элементов или двух групп усилительных элементов, соединённых параллельно, со сдвигом по фазе на 180°.

Режимы (классы) мощных усилительных каскадов[править | править код]

  • Особенности выбора режима мощных каскадов связаны с задачами повышения экономичности питания и уменьшения нелинейных искажений.
  • В зависимости от способа размещения начальной рабочей точки усилительного прибора на статических и динамических характеристиках различают следующие режимы усиления
  • Режим B, двухтактный каскад

  • Углы отсечки полуволны сигнала в различных режимах

Аналоговые усилители и цифровые усилители[править | править код]

  • В аналоговых усилителях аналоговый входной сигнал без цифрового преобразования усиливается аналоговыми усилительными каскадами. Выходной аналоговый сигнал без цифрового преобразования подаётся на аналоговую нагрузку.
  • В цифровых усилителях, после аналогового усиления входного аналогового сигнала аналоговыми усилительными каскадами до величины, достаточной для аналого-цифрового преобразования аналого-цифровым преобразователем (АЦП, ADC), происходит аналого-цифровое преобразование аналоговой величины (напряжения) в цифровую величину — число (код), соответствующий величине напряжения входного аналогового сигнала. Цифровая величина (число, код) либо непосредственно подаётся через буферные управляющие усилительные каскады на цифровое выходное исполнительное устройство, либо подаётся на мощный цифро-аналоговый преобразователь (ЦАП, DAC), мощный аналоговый выходной сигнал которого подаётся на аналоговое выходное исполнительное устройство.

Виды усилителей по элементной базе[править | править код]

  • Ламповый усилитель — усилитель, усилительными элементами которого служат электронные лампы
  • Полупроводниковый усилитель — усилитель, усилительными элементами которого служат полупроводниковые приборы (транзисторы, микросхемы и др.)
  • Гибридный усилитель — усилитель, часть каскадов которого собрана на лампах, часть — на полупроводниках
  • Квантовый усилитель — устройство для усиления электромагнитных волн за счёт вынужденного излучения возбуждённых атомов, молекул или ионов.

Виды усилителей по диапазону частот[править | править код]

  • Усилитель постоянного тока (УПТ) — усилитель входных напряжений или токов, нижняя граничная частота которых равна нулю. Применяется в автоматике, измерительной и аналоговой вычислительной технике.
  • Усилитель низкой частоты (УНЧ, усилитель звуковой частоты, УЗЧ) — усилитель, предназначенный для работы в области звукового диапазона частот (иногда также и нижней части ультразвукового, до 200 кГц). Используется преимущественно в технике звукозаписи, звуковоспроизведения, а также в автоматике, измерительной и аналоговой вычислительной технике.
  • Усилитель высокой частоты (УВЧ, усилитель радиочастоты, УРЧ) — усилитель сигналов на частотах радиодиапазона. Применяется преимущественно в радиоприёмных и радиопередающих устройствах в радиосвязи, радио- и телевизионного вещания, радиолокации, радионавигации и радиоастрономии, а также в измерительной технике и автоматике
  • Импульсный усилитель — усилитель, предназначенный для усиления импульсов тока или напряжения с минимальными искажениями их формы. Входной сигнал изменяется настолько быстро, что переходные процессы в усилителе являются определяющими при нахождении формы сигнала на выходе. Основной характеристикой является импульсная передаточная характеристика усилителя. Импульсные усилители имеют очень большую полосу пропускания: верхняя граничная частота нескольких сотен килогерц — нескольких мегагерц, нижняя граничная частота обычно от нуля герц, но иногда от нескольких десятков герц, в этом случае постоянная составляющая на выходе усилителя восстанавливается искусственно. Для точной передачи формы импульсов усилители должны иметь очень малые фазовые и динамические искажения. Поскольку, как правило, входное напряжение в таких усилителях снимается с широтно-импульсных модуляторов (ШИМ), выходная мощность которых составляет десятки милливатт, то они должны иметь очень большой коэффициент усиления по мощности. Применяются в импульсных устройствах радиолокации, радионавигации, автоматики и измерительной техники.

Виды усилителей по полосе частот[править | править код]

  • Широкополосный (апериодический) усилитель — усилитель, дающий одинаковое усиление в широком диапазоне частот
  • Полосовой усилитель — усилитель, работающий при фиксированной средней частоте спектра сигнала и приблизительно одинаково усиливающий сигнал в заданной полосе частот
  • Селективный усилитель — усилитель, у которого коэффициент усиления максимален в узком диапазоне частот и минимален за его пределами

Виды усилителей по типу нагрузки[править | править код]

  • с резистивной;
  • с емкостной;
  • с индуктивной;
  • с резонансной;
  • с выходным трансформатором;
  • с активной нагрузкой[3].

Специальные виды усилителей[править | править код]

  • Дифференциальный усилитель — усилитель, выходной сигнал которого пропорционален разности двух входных сигналов, имеет два входа и, как правило, симметричный выход.
  • Операционный усилитель — многокаскадный усилитель постоянного тока с большими коэффициентом усиления и входным сопротивлением, дифференциальным входом и несимметричным выходом с малым выходным сопротивлением, предназначенный для работы в устройствах с глубокой отрицательной обратной связью.
  • Инструментальный усилитель — предназначен для задач, требующих прецизионного усиления с высокой точностью передачи сигнала
  • Масштабный усилитель — усилитель, изменяющий уровень аналогового сигнала в заданное число раз с высокой точностью
  • Логарифмический усилитель — усилитель, выходной сигнал которого приблизительно пропорционален логарифму входного сигнала
  • Квадратичный усилитель — усилитель, выходной сигнал которого приблизительно пропорционален квадрату входного сигнала
  • Интегрирующий усилитель — усилитель, сигнал на выходе которого пропорционален интегралу от входного сигнала
  • Инвертирующий усилитель — усилитель, изменяющий фазу гармонического сигнала на 180° или полярность импульсного сигнала на противоположную (инвертор)
  • Парафазный (фазоинверсный) усилитель — усилитель, применяемый для формирования двух противофазных напряжений
  • Малошумящий усилитель — усилитель, в котором приняты специальные меры для снижения уровня собственных шумов, способных вуалировать усиливаемый слабый сигнал
  • Изолирующий усилитель — усилитель, в котором входные и выходные цепи гальванически изолированы. Служит для защиты от высокого напряжения, которое может быть подано на входные цепи, и для защиты от помех, распространяющихся по цепям заземления

Некоторые функциональные виды усилителей[править | править код]

  • Предварительный усилитель (предусилитель) — усилитель, предназначенный для усиления сигнала до величины, необходимой для нормальной работы оконечного усилителя.
  • Оконечный усилитель (усилитель мощности) — усилитель, обеспечивающий при определённой внешней нагрузке усиление мощности электромагнитных колебаний до заданного значения.
  • Усилитель промежуточный частоты (УПЧ) — узкополосный усилитель сигнала определённой частоты (456 кГц, 465 кГц, 4 МГц, 5,5 МГц, 6,5 МГц, 10,7 МГц и др.), поступающего с преобразователя частоты радиоприёмника.
  • Резонансный усилитель — усилитель сигналов с узким спектром частот, лежащих в полосе пропускания резонансной цепи, являющейся его нагрузкой.
  • Видеоусилитель — импульсный усилитель, предназначенный для усиления видеоимпульсов сложной формы (см. Видеосигнал), широкого спектрального состава. Несмотря на название, применяется не только в видео- и телевизионной технике, но и в радиолокации, обработке сигналов с различных детекторов, модемах, и др. Принципиальной особенностью данного усилителя является работоспособность вплоть до 0 Гц (постоянный ток). Также сигнал данного спектра обычно называют видеосигналом, даже если он не имеет никакого отношения к передаче изображения.
  • Усилитель магнитной записи — усилитель, нагруженный на записывающую магнитную головку.
  • Усилитель воспроизведения — малошумящий усилитель электрических сигналов, поступающих с воспроизводящей магнитной головки магнитофона, видеомагнитофона, флоппи-дисковода, жёсткого диска, либо с фотодиода в системах воспроизведения оптической сигналограммы (звукочитающая система кинопроектора, оптические диски). Как и усилитель записи, содержит цепи частотной коррекции, чтобы обеспечить максимально возможную линейность АЧХ тракта записи-воспроизведения.
  • Микрофонный усилитель — усилитель электрических сигналов звуковых частот, поступающих с микрофона, до значения, при котором их можно обрабатывать и регулировать. Профессиональные микрофонные усилители имеют дифференциальный вход (балансное подключение, разъёмы XLR) для снижения наводок и помех.
  • Усилитель-корректор (корректирующий усилитель) — электронное устройство для изменения параметров видео- или аудиосигнала. Усилитель-корректор видеосигнала, например, даёт возможность регулировки насыщенности цвета, цветового тона, яркости, контрастности и разрешения, усилитель-корректор аудиосигнала предназначен для усиления и коррекции сигналов от звукоснимателя проигрывателя граммофонных пластинок (см. Фонокорректор), бывают и другие виды усилителей-корректоров.

Усилители в качестве самостоятельных устройств[править | править код]

  • Усилители звуковой частоты
    • Усилители звуковой частоты для систем проводного вещания.
    • Усилители звуковой частоты для озвучивания открытых и закрытых пространств.
    • Бытовые усилители звуковой частоты. В этой группе устройств наибольший интерес представляют усилители высокой верности воспроизведения Ні-Fi и наивысшей верности High-end. Различаются усилители предварительные, оконечные (усилители мощности) и полные, сочетающие в себе свойства предварительных и оконечных.
  • Измерительные усилители — предназначены для усиления сигналов в измерительных целях.
  • Антенные усилители — предназначены для усиления слабых сигналов с антенны перед подачей их на вход радиоприёмника, бывают двунаправленные усилители (для приёмопередающих устройств), они усиливают также сигнал, поступающий с оконечного каскада передатчика на антенну. Антенный усилитель устанавливается обычно непосредственно на антенне или поблизости от неё.
  • Предварительный усилитель

  • Hi-Fi УНЧ McIntosh MA6800

  • Усилитель мощности Aleph 3

  1. Митрофанов О. В., Симонов Б. М., Коледов Л. А. Физические основы функционирования изделий микроэлектроники // М. Высшая школа. — 1987. — C. 110
  2. ↑ Hickman, R. W. and Hunt, F. V., «On Electronic Voltage Stabilizers, » Review of Scientific Instruments, vol. 10, p. 6-21 (January 1939)
  3. ↑ Подробности см., например, в статье Токовое зеркало, Операционный усилитель 741#Дифференциальный входной каскад.
  • Симонов Ю. Л. Усилители промежуточной частоты. — М.: Советское радио, 1973
  • Букреев С. С. Транзисторные усилители низкой частоты с обратной связью. — М.: Советское радио, 1972
  • Войшвилло Г. В. Усилительные устройства: Учебник для вузов. 2-е изд. — М.: Радио и связь. 1983
  • Справочник по радиоэлектронным устройствам: Т. 1 / Под ред. Д. П. Линде — М.: Энергия, 1978
  • Рамм Г. С. Электронные усилители.
  • Шамшин В. Г. История технических средств коммуникации, 2003.
  • Кулешов В.Н., Удалов Н.Н., Богачев В.М. и др. Генерирование колебаний и формирование радиосигналов. — М.: МЭИ, 2008. — 416 с. — ISBN 978-5-383-00224-7.
Нормативно-техническая документация
  • ГОСТ 23849-87. Аппаратура радиоэлектронная бытовая. Методы измерения электрических параметров усилителей сигналов звуковой частоты.
  • ГОСТ 24388-88. Усилители сигналов звуковой частоты бытовые. Общие технические условия.
  • ГОСТ 29180-91. Совместимость технических средств электромагнитная. Приборы СВЧ. Усилители малошумящие. Параметры и характеристики. Методы измерений.
  • ОСТ4-203.007-84. Аппаратура для озвучивания открытых и закрытых пространств. Усилители звуковой частоты. Общие технические условия.
  • ОСТ45-138-99. Усилители оконечные звуковой частоты станций проводного вещания. Основные параметры. Методы измерений.
  • IEC 60527(1975). Усилители постоянного тока. Характеристики и методы испытаний.
  • IEC 60581-6(1979). Акустическая аппаратура и системы высокой верности воспроизведения (Ні-Fi). Минимальные требования к параметрам. Часть 6. Усилители.
  • IEC 61305-3(1995). Аудиоаппаратура и аудиосистемы с высокой верностью воспроизведения бытовые. Методы измерения и установления рабочих характеристик. Часть 3: Усилители.
  • IEC 60268-3(2000). Оборудование звуковых систем. Часть 3. Усилители.

ru.wikipedia.org

Усилитель | Описание, предназначение, виды усилителей.

Электронный усилитель – это усилитель, задача которого состоит в том, чтобы увеличить сигнал по мощности, при этом сохраняя форму усиливаемого сигнала. Более подробно это определение можно прочесть в Википедии. В этой статье мы поверхностно пробежимся по основам теории усилителей.

Что из себя представляет усилитель?

В электрических схемах очень часто встречаются сигналы малой мощности. Например, это может быть звуковой сигнал с динамического микрофона

слабый радиосигнал, который ловит из эфира ваш китайский радиоприемник

Либо отраженный сигнал от ракеты противника, который уже потом ловит, усиливает и отслеживает радиолокационная установка. Для примера: зенитно-ракетный комплекс ТОР:

Как вы видите, в электронике абсолютно везде требуется усиление слабых сигналов. Для того, чтобы их усиливать, как раз нужны усилители сигналов. Усилители широко применяются в радиолокации, телевидении, радиовещании, телеметрии, в вычислительной технике, авторегулировании, в системах автоматики и тд.

Усилитель в образе черного ящика

В общем виде усилитель можно рассматривать как черный ящик. Что представляет из себя этот черный ящик? Это ящик. Он черный). А так как он черный, то абсолютно никто не знает, что находится в нем. Остается только предполагать. Но возможен и такой вариант, что мы можем предпринять какие-либо действия и ждать ответной реакции. После ответной реакции этого черного бокса,  можно предположить, что находится у него внутри.

То есть по сути черный ящик должен иметь какие-либо “сенсоры” для восприятия информации извне, некий “вход”, а также некий “выход” для ответной реакции. То есть подавая на вход какое-либо воздействие, мы ждем ответной реакции черного ящика на выходе.

Пусть в черном ящике будет кот или кошка, но пока никто не знает, что он(а) там есть. Что мы сделаем в первую очередь? Потрясем ящик или пнем по нему, так ведь? Если там кто-то мяукнет, значит однозначно или кошка, или кот). То есть последовала ответная реакция. Как определить дальше кошка или кот? Открываем ящик, и из него вылазит лохматое чудо. Если побежала – значит кошка. Если побежал – значит кот).

Но также в черном ящике может быть абсолютно любое тело или вещество. Для таких ситуаций мы должны провести как можно больше опытов, то есть произвести как можно больше входных воздействий для более точного определения содержимого черного ящика.

Четырехполюсники

В электронике черным ящиком является четырехполюсник. Что вообще такое четырехполюсник? Четырехполюсник – это черный ящик, внутри которого имеется неизвестная электрическая цепь. Здесь мы видим две клеммы на вход, через которые подается входное воздействие и две клеммы на выход, с которых мы уже будем снимать отклик нашего “электрического черного ящика”.

Пассивный четырехполюсник

Например, RC-цепь является пассивным четырехполюсником, так как она имеет четыре вывода: два на вход и два на выход, и как мы видим, она не содержит в себе какой-либо источник питания. Эта RC цепочка является пассивным фильтром низкой частоты (ФНЧ).

В пассивных четырехполюсниках напряжение или ток на выходе могут быть больше, чем на входе, но мощность при этом не увеличивается. Как же напряжение или ток на выходе могут быть больше, чем на входе? Здесь достаточно вспомнить трансформатор, а также последовательный и параллельный колебательные контура. Для них точнее было бы определение преобразователи напряжения, но никак не усилитель, так как усилитель должен иметь в своем составе обязательно источник питания, у которого он будет брать энергию для усиления слабого входного сигнала.

Также в пассивном четырехполюснике мощность на выходе никак не будет больше мощности, чем на входе. Если вы этого добьетесь, то сразу же получите вечный источник энергии и Нобелевскую премию в придачу. Но помните, что закон сохранения энергии, который впервые был еще сформулирован Лейбницем в 17 веке, никто не отменял.

Активный четырехполюсник

А вот этот четырехполюсник мы будем уже называть активным, так как он имеет в своем составе источник питания +Uпит , которое требуется для того, чтобы усиливать сигнал.

То есть мы здесь видим две клеммы на вход, на которые загоняется сигнал Uвх , а также видим две клеммы на выход, где снимается напряжение Uвых . Питается наш четырехполюсник через +Uпит , в результате чего, в данном случае, сигнал на выходе будет больше, чем сигнал на входе.

Загоняя на вход такой схемы синусоиду, на выходе мы получим ту же самую синусоиду, но ее амплитуда будет в разы больше.

Это, конечно же, верно для идеального усилителя, т.е. абсолютно линейного и без ограничения на амплитуду входного и выходного сигнала. В реальных усилителях, требуется чтобы амплитуда не превышала допустимую и усилитель был правильно спроектирован. Кроме того, любой реальный усилитель вносит искажения и характеризуется коэффициентом нелинейных искажений (КНИ) и еще многими другими параметрами, которые мы рассмотрим в следующей статье.

В активном четырехполюснике, одним из которых является усилитель мощности, мощность на выходе будет больше, чем на входе. Естественно, при этом не нарушается закон сохранения энергии, так как мощность, которая выделяется на нагрузке – это преобразованная мощность источника питания. Входной слабый сигнал просто управляет этой мощностью. Более подробно можно прочитать в статье про принцип усиления транзистора.

В электронике мы будем рассматривать усилитель, как активный четырехполюсник, на вход которого подается маломощный сигнал Uвх, а к выходу цепляется нагрузка Rн .

Обобщенная схема усилителя

Она  выглядит примерно вот так:

Как мы можем видеть на схеме, ко входу усилительного каскада  через клеммы 1 и 2 подсоединяется какой-либо источник слабого сигнала  с ЭДС  EИ   и внутренним сопротивлением RИ . Именно этот слабый сигнал с этого источника мы будем усиливать. Далее, как и полагается, каждый усилитель обладает своим каким-либо входным сопротивлением Rвх . Сила тока Iвх в цепи  EИ —>RИ—>Rвх , как ни трудно догадаться, будет зависеть от  входного сопротивления усилительного каскада Rвх .

Как вы уже знаете, источник питания играет главную роль в усилительном каскаде. Маломощный слабый сигнал управляет расходом энергии источника питания. В результате на выходе мы получаем умощненную копию входного слабого сигнала. Усиление произошло благодаря тому, что источник питания давал свою мощность для усиления входного сигнала. Ну как-то вот так).

В выходной цепи усилителя мы получаем усиленный сигнал с ЭДС Eвых и выходным сопротивлением Rвых . Через клеммники 3 и 4 мы цепляем нагрузку Rн , которая уже будет потреблять энергию усиленного сигнала. Сила тока в цепи Eвых —> Rвых —> Rн  будет зависеть от сопротивления нагрузки Rн .

Типы усилителей

Усилители можно разделить на три группы:

Усилитель напряжения

Усилитель напряжения (УН) усиливает входное напряжение в заданное число раз. Этот коэффициент называется коэффициентом усиления по напряжению и вычисляется по формуле:

где

KU – это коэффициент усиления по напряжению

Uвых – напряжение на выходе усилителя, В

Uвх – напряжение на входе усилителя, В

Выходное усиленное напряжение не должно меняться от тока нагрузки, а следовательно, и от сопротивления нагрузки. В идеале, выходное сопротивление Rвых должно быть равно нулю, что недостижимо на практике. Поэтому, УН стараются проектировать так, чтобы минимизировать выходное сопротивление Rвых .

В таком режиме усилитель работает, если выполняются условия, что Rвх намного больше, чем Rвых т. е.  Rвх >>Rи  и Rн намного больше, чем Rвых    (Rн >>Rвых ). Чем больше номинал Rн , тем лучше для усилителя напряжения, так как нагрузка не будет просаживать выходное напряжение Uвых.  Здесь все просто: чем меньше сопротивление нагрузки, тем бОльшая сила тока будет течь по цепи Eвых —> Rвых —> Rн , тем больше будет падение напряжения на выходном сопротивлении Rвых , исходя из формулы ЭДС: Eвых =IвыхRвых +IвыхRн . Об этом можно более подробно прочитать в статье Закон Ома для полной цепи.

Усилитель тока

Усилитель тока (УТ) усиливает входной ток в заданное число раз. Этот коэффициент называется коэффициентом усиления по току и вычисляется по формуле:

где KI   – коэффициент усиления по току

Iвых  – сила тока в цепи нагрузки, А

Iвх  – сила тока во входной цепи Eи —>Rи —>Rвх , А

Смысл работы усилителя тока такой:  при определенной силе тока во входной цепи, на выходе в цепи нагрузки мы получаем силу тока, бОльшую в KI раз, независимо от того, какое значение принимает номинал нагрузки. Здесь уже работает простой закон Ома I=U/R.

Если сила тока должна быть постоянной, а  значение сопротивления у нас может быть плавающим, то для поддержания постоянной силы тока в цепи нагрузки у нас усилитель автоматически изменяет напряжение Uвых на нагрузке. В результате, ток как был постоянной величиной, так и остался. Или буквами: Rн =var, Iвых= const.

Объяснение выше вы будете рассказывать своему преподу по электронике, а теперь объяснение для полных чайников. Итак, во входной цепи Eи —>Rи —>Rвх  пусть у нас течет сила тока в 10 мА. Коэффициент KI =100, следовательно, на выходе в цепи нагрузки Eвых —>Rвых —> Rн будет течь ток с силой в 1 А (10мА х 100). Но сам по себе такой ток не будет ведь гулять по этой цепи. Ему надо создать условия для протекания. Допустим,  у нас нагрузка 10 Ом. Какое тогда напряжение должно быть в этой цепи для получения силы тока в этой цепи в 1 А? Вспоминаем дядюшку Ома: I=U/R. 1=Uвых /10, получаем U=10 В. Вот такое напряжение нам будет выдавать усилитель тока на выходе.

Но что, если нагрузка поменяет свое значение? Ток должен остаться таким же, не забывайте, то есть 1 А, так как это у нас усилитель тока. В этом случае, чтобы сила тока в цепи оставалась 1 А  усилитель автоматически поменяет свое значение напряжения на выходе Uвых на 1=Uвых /5. Uвых =5/1=5 В. То есть на выходе у нас уже будет 5 Вольт.

Но также не забываем еще об одном параметре, который у нас находится в выходной цепи усилителя тока. Это выходное сопротивление Rвых . Поэтому, нам необходимо, чтобы выполнялось условие: Rвх << Rи и Rн << Rвых  при которых обеспечивается заданный ток в нагрузке при малом значении напряжения.

Усилитель мощности

Раньше было очень круто и модно собирать усилители мощности (УН) своими руками, включить Ласковый Май и вывернуть громкость на всю катушку. Сейчас же УМ может собрать или купить каждый, благо интернет и Алиэкпресс всегда под рукой.

Чем же УМ отличается от УН и УТ?

Если в УТ  мы увеличивали только силу тока, в УН – напряжение, то в УМ мы увеличиваем в кратное число раз ток и напряжение.

Формула мощности для постоянного и переменного тока при активной нагрузке выглядит вот так:

где

P – мощность, Вт

I – сила тока, А

U – напряжение, В

Следовательно, коэффициент усиления по мощности запишется как:

где

KP – коэффициент усиления по мощности

Pвых  – мощность на выходе усилителя, Вт

Pвх  – мощность на входе усилителя, Вт

Для усилителя мощности условия согласования входной цепи с источником входного сигнала и выходной цепи с нагрузкой для передачи максимальной мощности имеют вид: Rвх ≈ Rи и Rн ≈ Rвых .

Также не забывайте, что нагрузки могут быть как чисто активными (типа лампочки накаливания, резистора, различных нагревашек), так и иметь реактивную составляющую (катушки индуктивности, конденсаторы, двигатели и тд).

Выходная мощность усилителя

Выходная мощность усилителя, отдаваемая в активную нагрузку, будет выражаться формулой:

где

Pвых – выходная мощность усилителя, Вт

Iвых – сила тока в цепи нагрузки, А

UВых  – напряжение на нагрузке, В

Мощность на нагрузку с реактивной составляющей будет уже выражаться через формулу:

где

Pвых – выходная мощность усилителя, Вт

Iвых – сила тока в цепи нагрузки, А

Uвых  – напряжение на нагрузке, В

cosφ  – где φ – это разность фаз между осциллограммой тока и напряжения

Например, разность фаз между током и напряжением в активной нагрузке равна нулю, следовательно, cos0=1. Поэтому формула для активной нагрузки принимает вид

Более подробно про это можно прочитать в статье про активное и реактивное сопротивление.

Максимальная выходная мощность, при которой искажение сигнала на выходе не превышает качественных значений усилителя, называют номинальной мощностью усилителя.

Ну и обобщенное правило, для того, чтобы было проще запомнить все эти три вида усилителя:

В УН KU > 1, KI = 1;       в УТ KI > 1, KU = 1;          в УМ KU > 1 и KI > 1.

 

Виды усилителей по полосе пропускания

По ширине полосы пропускания усилители делятся на:

Усилители низкой частоты

Также их еще называют усилители звуковой частоты (УЗЧ). Они предназначенные для усиления сигналов с частотой от десятков Герц и до 20 кГц. 20 кГц – это предел частоты, которая может быть воспринята человеческим ухом. Поэтому, такой тип усилителей очень любят меломаны и радиолюбители.

Усилители высокой частоты

Они предназначены для усиления сигналов во всем диапазоне частот, используемых электроникой.

Широкополосные усилители

Они позволяют  усиливать широкую полосу частот (например, от десятков герц до нескольких мегагерц). Здесь, думаю, все понятно.

Узкополосные усилители

Они усиливают узкую полосу частот. Это могут быть  резонансные фильтры, а также фильтры, которые строятся на основе УВЧ и УНЧ.

Усилители постоянного тока

Усиливают сколь угодно медленные электрические колебания, начиная с частоты, равной нулю герц (постоянный ток).

В следующей статье мы с вами разберем основные параметры усилителя, а пока вот вам видео, который говорит о вреде чрезмерного усиления)

www.ruselectronic.com

Типы Усилителей

В зависимости от используемых усилительных элементов, усилители мощности звуковой частоты подразделяются на:

  1. Ламповые.
  2. Транзисторные.
  3. Интегральные.
  4. Гибридные.
Ламповые.

На электронных, электровакуумных лампах. Составляли основу всего парка УНЧ до 70-х годов. В 60-х годах выпускались ламповые усилители очень большой мощности (до десятков киловатт). С конца XX века наблюдается повышение интереса к ламповой звукотехнике в среде аудиофилов, многие, из которых считают, что только ламповый усилитель способен передать максимально чистый и верный звук. В настоящее время ламповые УМЗЧ выпускаются за рубежом небольшими партиями для аудиофилов, стоить такой усилитель может крайне дорого. Ламповые УМЗЧ обладают значительными габаритами и весом, низким к.п.д. и высоким тепловыделением.

Транзисторные.

На биполярных или полевых транзисторах. Такая конструкция оконечного каскада усилителя является достаточно популярной, благодаря своей простоте и возможности достижения большой выходной мощности, хотя в последнее время активно вытесняется интегральными даже в мощных усилителях.

Интегральные.

На интегральных микросхемах (ИМС). Существуют микросхемы, содержащие на одном кристалле, как предварительные усилители, так и оконечные усилители мощности, построенные по различным схемам и работающие в различных классах. Из преимуществ — минимальное количество элементов и, соответственно, малые габариты.

Гибридные.

Часть каскадов собрана на полупроводниковых элементах, а часть на электронных лампах. Иногда гибридными также называют усилители, которые частично собраны на интегральных микросхемах, а частично на транзисторах или электронных лампах.

По количеству независимых каналов звукоусиления можно выделить:

  1. Моноусилители (одноканальные).
  2. Стереоусилители (двухканальные).
  3. Усилители систем объемного звука (многоканальные).

 

Подавляющее большинство усилителей имеют 2 канала, то есть, рассчитаны на применение в стерео-системах звуковоспроизведения. Однако многие из них имеют мостовой режим подключения к нагрузке и могут использоваться как одноканальные. Выходная мощность при этом увеличивается примерно в 2 раза.

Моноусилители используются в стереосистемах высокого класса или, например, в многоканальных системах для воспроизведения отдельных сигналов.

Многоканальная звуковая технология делает доступной реализацию собственного домашнего кинотеатра, даёт возможность построить по своему усмотрению систему объёмного высококачественного звука. Это позволяет ощутить тончайшие детали звуковой картины разных концертных залов при прослушивании аудиозаписей выполненных в многоканальном формате. Главной трудностью проектирования таких систем является сложность обеспечения одинаково точной локализации источников звука воспринимаемых слушателем во время воспроизведения по отношению к реальному расположению этих источников звука при записи. Данный эффект проявляется тем сильнее, чем дальше от центра зоны прослушивания удаляется слушатель.

Многоканальные системы используются не только для реализации звуковых эффектов и расширения стереобазы. Многие театры и концертные комплексы строились без учета современных требований к архитектурной акустике и имеют сложную многоярусную структуру, объемом более 10 куб.м на человека. Реализация стереосистемы в таких помещениях неизбежно приведет к тому, что отраженные от ярусных перекрытий, потолка и стен волны будут действовать локально, появятся участки с неравномерным распределением звукового поля. Дополнительная неприятность заключается в том, что на разных частотах эта неравномерность проявляется по-разному.

Решить подобную задачу способна только многоканальная система. Сигнал с помощью кроссоверов, входящих в состав оборудования профессиональной системы, разделяется на несколько частотных диапазонов, которые отдельно усиливаются и воспроизводятся. Добиться ровного звукового поля во всем диапазоне воспроизводимых частот удается только при использовании множества правильно подобранных и расположенных узкополосных акустических систем. Направленное действие акустических систем приводит к существенному уменьшению реверберации, увеличению звукового давления и минимизации фазовых искажений в озвучиваемом участке помещения. Следует отметить, что ошибка в 1 градус при ориентировании акустических систем линейного массива (вследствие низкого качества проекта и/или монтажа) может свести на нет все преимущества многоканальной системы. Как правило, каждый элемент устанавливаемых кластеров питается от собственного цифрового усилителя D или T класса, который настраивается для получения оптимальных характеристик звукового поля с учетом типа применяемых динамиков и твиттеров, объема и материала корпуса. Цифровой усилитель может содержать звуковой процессор, способный вносить в сигнал частотные и временные предыскажения.

Многоканальные системы также могут использоваться при необходимости разделить помещения на несколько независимых зон, в которых воспроизводятся различные музыкальные программы. Этот прием используется, например, в развлекательных комплексах, состоящих из множества залов. Достоинство такой системы заключается в возможности централизованного управления.

www.hifiaudio-spb.ru

A, B, AB, C и другие

В данной статье мы подробно рассмотрим классификации усилителей: A, B, AB, C и от D до T. В конце статьи таблица классов усилителей по углу проводимости.

Классификация

Усилители классифицируются по классам в зависимости от их конструкции и эксплуатационных характеристик.

Не все усилители одинаковы, и существует четкое различие между настройкой и работой их выходных каскадов. Основными рабочими характеристиками идеального усилителя являются линейность, усиление сигнала, эффективность и выходная мощность, но в реальных усилителях всегда существует компромисс между этими различными характеристиками.

Как правило, большие усилители сигнала или мощности используются на выходных каскадах аудиоусилителей для управления нагрузкой громкоговорителя. Типичный громкоговоритель имеет импеданс от 4 Ом до 8 Ом, поэтому усилитель мощности должен быть способен подавать высокие пиковые токи, необходимые для возбуждения низкоомного динамика.

Один метод, используемый для различения электрических характеристик усилителей разных типов, относится к «классу», и в качестве таких усилителей классифицируются в соответствии с их схемотехнической конфигурацией и методом работы. Тогда Классы усилителей — это термин, используемый для различения разных типов усилителей.

Классы усилителя представляют величину выходного сигнала, которая изменяется в схеме усилителя в течение одного цикла работы при возбуждении синусоидальным входным сигналом. Классификация усилителей варьируется от полностью линейного режима (для использования при усилении сигнала высокой точности) с очень низкой эффективностью до полностью нелинейного (где точное воспроизведение сигнала не так важно), но с гораздо более высоким КПД, в то время как другие являются компромиссом между двумя.

Классы усилителей в основном объединены в две основные группы. Первыми являются классически управляемые усилители угла проводимости, формирующие более распространенные классы усилителей A, B, AB и C , которые определяются длиной их состояния проводимости на некоторой части выходного сигнала, так что работа транзистора выходного каскада лежит где-то между «полностью включен» и «полностью выключен».

Второй набор усилителей — это более новые так называемые «переключающие» классы усилителей D, E, F, G, S, T и т.д., Которые используют цифровые схемы и широтно-импульсную модуляцию (ШИМ) для постоянного переключения сигнала между «полностью ВКЛ.» и «полностью ВЫКЛ.», приводящие к сильному выходу в области насыщения и обрезания транзисторов.

Наиболее часто создаваемые классы усилителей — это классы, которые используются в качестве аудиоусилителей, в основном, классы A, B, AB и C, и, для простоты, именно эти типы классов усилителей мы рассмотрим здесь более подробно.

Усилитель класса А

Усилители класса А являются наиболее распространенным типом усилителей класса в основном благодаря их простой конструкции. Класс A буквально означает «лучший класс» усилителя, в основном из-за их низких уровней искажения сигнала и, вероятно, является лучшим звучанием из всех классов усилителей, упомянутых здесь. Усилитель класса А имеет самую высокую линейность по сравнению с другими классами усилителей и, как таковой, работает в линейной части кривой характеристик.

Обычно усилители класса A используют один и тот же транзистор (биполярный, полевой транзистор, IGBT и т.д.), подключенный в общей конфигурации эмиттера для обеих половин сигнала, причем транзистор всегда проходит через него, даже если у него нет базового сигнала. Это означает, что выходной каскад, будь то биполярное устройство, устройство MOSFET или IGBT, никогда не приводится полностью в свои области отсечки или насыщения, а вместо этого имеет базовую точку смещения Q в середине линии нагрузки. Тогда транзистор никогда не выключается, что является одним из его основных недостатков.

Для достижения высокой линейности и усиления выходного каскада усилителя класса A постоянно смещен в положение «ВКЛ» (проводящий). Затем для того, чтобы усилитель был классифицирован как «класс A», нулевой ток холостого хода на выходном каскаде должен быть равен или превышать максимальный ток нагрузки (обычно громкоговоритель), необходимый для получения наибольшего выходного сигнала.

Поскольку усилитель класса А работает в линейной части своих характеристических кривых, одно выходное устройство проходит через полные 360 градусов выходного сигнала. Тогда усилитель класса А эквивалентен источнику тока.

Поскольку усилитель класса A работает в линейной области, напряжение смещения постоянного тока (или затвора) базы транзисторов должно быть выбрано правильно, чтобы обеспечить правильную работу и низкий уровень искажений. Однако, поскольку выходное устройство постоянно включено, оно постоянно проводит ток, который представляет собой постоянную потерю мощности в усилителе.

Из-за этой постоянной потери мощности усилители класса A создают огромное количество тепла, добавляя к их очень низкому КПД около 30%, что делает их непрактичными для мощных усилителей. Кроме того, из-за высокого тока холостого хода усилителя, источник питания должен иметь соответствующие размеры и быть хорошо отфильтрованными, чтобы избежать любого гула и шума усилителя. Поэтому из-за низкой эффективности и проблем перегрева усилителей класса A были разработаны более эффективные классы усилителей.

Усилитель класса B

Усилители класса B были изобретены как решение проблем эффективности и нагрева, связанных с предыдущим усилителем класса A. Усилитель базового класса B использует два дополнительных транзистора, либо биполярные из полевых транзисторов, для каждой половины формы сигнала, а его выходной каскад сконфигурирован по схеме «двухтактный», так что каждое транзисторное устройство усиливает только половину выходного сигнала.

В усилителе класса B отсутствует базовый ток смещения постоянного тока, поскольку его ток покоя равен нулю, так что мощность постоянного тока мала, и, следовательно, его эффективность намного выше, чем у усилителя класса А. Однако цена, уплачиваемая за повышение эффективности, заключается в линейности коммутационного устройства.

Когда входной сигнал становится положительным, транзистор с положительным смещением проводит, а отрицательный транзистор выключен. Аналогично, когда входной сигнал становится отрицательным, положительный транзистор выключается, а отрицательный смещенный транзистор включается и проводит отрицательную часть сигнала. Таким образом, транзистор проводит только половину времени либо в положительном, либо в отрицательном полупериоде входного сигнала.

Затем мы можем видеть, что каждое транзисторное устройство усилителя класса B проводит только через половину или 180 градусов выходного сигнала в строгом временном чередовании, но поскольку выходной каскад имеет устройства для обеих половин сигнала, эти две половины объединяются вместе для получения полного линейного выходного сигнала.

Эта двухтактная конструкция усилителя, очевидно, более эффективна, чем класс A, примерно на 50%, но проблема с конструкцией усилителя класса B заключается в том, что она может создавать искажения в точке пересечения нуля сигнала из-за мертвой зоны транзисторов входных базовых напряжений от -0,7 В до +0,7.

Мы помним из учебника по транзисторам, что требуется напряжение базового эмиттера около 0,7 вольт, чтобы заставить биполярный транзистор начать проводку. Затем в усилителе класса B выходной транзистор не «смещен» до состояния «ВКЛ», пока не будет превышено это напряжение.

Это означает, что та часть сигнала, которая попадает в это окно 0,7 В, не будет воспроизводиться точно, что делает усилитель класса B непригодным для применения в прецизионных усилителях звука.

Чтобы преодолеть это искажение при пересечении нуля (также известное как перекрёстное искажение), были разработаны усилители класса AB.

Усилитель класса AB

Как следует из названия, усилитель класса AB представляет собой комбинацию усилителей типа «класс A» и «класс B», которые мы рассмотрели выше. Классификация усилителя AB в настоящее время является одним из наиболее распространенных типов конструкции усилителя мощности звука. Усилитель класса AB является разновидностью усилителя класса B, как описано выше, за исключением того, что обоим устройствам разрешено проводить в одно и то же время вокруг точки пересечения осциллограмм, что устраняет проблемы искажения кроссовера предыдущего усилителя класса B.

Два транзистора имеют очень небольшое напряжение смещения, обычно от 5 до 10% от тока покоя, чтобы сместить транзисторы чуть выше его точки отсечки. Тогда проводящее устройство, либо биполярное из полевого транзистора, будет включено в течение более одного полупериода, но намного меньше, чем один полный цикл входного сигнала. Следовательно, в конструкции усилителя класса AB каждый из двухтактных транзисторов проводит чуть больше, чем половину цикла проводимости в классе B, но намного меньше, чем полный цикл проводимости класса A.

Другими словами, угол проводимости усилителя класса AB находится где-то между 180 o и 360 o в зависимости от выбранной точки смещения.

Преимущество этого небольшого напряжения смещения, обеспечиваемого последовательными диодами или резисторами, состоит в том, что перекрестное искажение, создаваемое характеристиками усилителя класса B, преодолевается без неэффективности конструкции усилителя класса A. Таким образом, усилитель класса AB является хорошим компромиссом между классом A и классом B с точки зрения эффективности и линейности, при этом эффективность преобразования достигает примерно от 50% до 60%.

Усилитель класса C

Конструкция усилителя класса C обладает наибольшей эффективностью, но самой плохой линейностью среди классов усилителей, упомянутых здесь. Предыдущие классы A, B и AB считаются линейными усилителями, поскольку амплитуда и фаза выходных сигналов линейно связаны с амплитудой и фазой входных сигналов.

Однако усилитель класса C сильно смещен, так что выходной ток равен нулю в течение более половины цикла синусоидального входного сигнала, когда транзистор находится в режиме ожидания в точке его отключения. Другими словами, угол проводимости для транзистора значительно меньше 180 градусов и, как правило, составляет около 90 градусов.

Хотя эта форма смещения транзистора дает значительно улучшенную эффективность усилителя, составляющую примерно 80%, она вносит очень сильные искажения в выходной сигнал. Поэтому усилители класса C не подходят для использования в качестве усилителей звука.

Из-за сильного искажения звука усилители класса C обычно используются в высокочастотных синусоидальных генераторах и некоторых типах радиочастотных усилителей, где импульсы тока, генерируемые на выходе усилителей, могут быть преобразованы в синусоидальные волны определенной частоты использование LC резонансных цепей в его коллекторной цепи.

Другие распространенные классы усилителей

  • Усилитель класса D — это нелинейный импульсный усилитель или ШИМ-усилитель. Усилители класса D теоретически могут достигать 100% эффективности, так как в течение цикла не существует периода, когда формы напряжения и тока перекрываются, так как ток подается только через включенный транзистор.
  • Усилитель класса F повышают как эффективность, так и выходную мощность благодаря использованию гармонических резонаторов в выходной сети для преобразования формы выходного сигнала в прямоугольную волну. Усилители класса F способны обеспечить высокую эффективность более 90%, если используется бесконечная гармоническая настройка.
  • Усилитель класса G предлагает усовершенствования конструкции усилителя базового класса AB. Класс G использует несколько шин питания различных напряжений и автоматически переключается между этими линиями питания при изменении входного сигнала. Такое постоянное переключение снижает среднее энергопотребление и, следовательно, потери мощности, вызванные потерей тепла.
  • Усилитель класса I имеет два набора дополнительных выходных переключающих устройств, расположенных в параллельной двухтактной конфигурации, причем оба набора переключающих устройств дискретизируют один и тот же входной сигнал. Одно устройство переключает положительную половину сигнала, а другое переключает отрицательную половину, как усилитель класса B. При отсутствии входного сигнала или когда сигнал достигает точки пересечения нуля, переключающие устройства включаются и выключаются одновременно с рабочим циклом ШИМ 50%, что отменяет любые высокочастотные сигналы. Для получения положительной половины выходного сигнала выходной сигнал положительного переключающего устройства увеличивается в рабочем цикле, тогда как отрицательное переключающее устройство уменьшается на то же самое, и наоборот. Считается, что два токовых сигнала переключения чередуются на выходе, давая усилителю класса I имя: «чередующийся ШИМ-усилитель», работающий на частотах переключения более 250 кГц.
  • Усилитель класса S — это усилитель нелинейного режима переключения, аналогичный по своему действию усилителю класса D. Усилитель класса S преобразует аналоговые входные сигналы в цифровые прямоугольные импульсы с помощью дельта-сигма-модулятора и усиливает их, чтобы увеличить выходную мощность, прежде чем окончательно демодулировать с помощью полосового фильтра. Поскольку цифровой сигнал этого переключающего усилителя всегда либо полностью включен, либо выключен (теоретически нулевое рассеивание мощности), возможны коэффициенты полезного действия, достигающие 100%.
  • Усилитель класса T — это еще один тип цифрового усилителя с коммутацией. Усилители класса T в наши дни становятся все более популярными в качестве конструкции усилителя звука из-за наличия микросхем цифровой обработки сигналов (DSP) и многоканальных усилителей объемного звука, поскольку он преобразует аналоговые сигналы в сигналы с цифровой широтно-импульсной модуляцией (ШИМ) для усиление, увеличивающее эффективность усилителей. Конструкции усилителей класса T сочетают в себе уровни сигнала с низким уровнем искажений усилителя класса AB и коэффициент полезного действия усилителя класса D.

Мы видели здесь ряд классификаций усилителей, начиная от линейных усилителей мощности до нелинейных переключающих усилителей, и видели, как класс усилителей отличается вдоль линии нагрузки усилителей.

Краткое описание классов усилителей

Мы увидели, что рабочая точка постоянного тока Q усилителя определяет классификацию усилителя. Устанавливая положение точки Q наполовину на линии нагрузки кривой характеристик усилителей, усилитель будет работать как усилитель класса А. Перемещая Q вниз по линии нагрузки изменит усилитель в классе АВ, В или С.

Тогда класс работы усилителя относительно его рабочей точки постоянного тока может быть задан как:

Мы рассмотрели здесь ряд классификаций усилителей, начиная от линейных усилителей мощности до нелинейных переключающих усилителей, и видели, как класс усилителей отличается вдоль линии нагрузки усилителей.

Таблица классов усилителей по углу проводимости

Усилители класса АВ, В и С могут быть определены в терминах угла проводимости θ следующим образом:

Классы усилителейОписаниеУгол проводимости
Класс АПолный цикл 360 o проводимостиθ = 2π
Класс ВПоловина цикла 180 o проводимостиθ = π
Класс ABЧуть более 180 o проводимостиπ <θ <2π
Класс СЧуть менее 180 o проводимостиθ <π
От класса D до TВКЛ-ВЫКЛ нелинейное переключениеθ = 0

meanders.ru

Усилитель — Википедия

Усилитель — устройство для усиления входного сигнала (например, напряжения, тока или механического перемещения, колебания звуковых частот, давления жидкости или потока света), но без изменения вида самой величины и сигнала, до уровня достаточного для срабатывания исполнительного механизма (или регистрирующих элементов), за счёт энергии вспомогательного источника. Элемент системы управления (или регистрации и контроля).

Существуют также понятие «усилитель», которое применяется для обозначения устройств управления мощными электрическими нагрузками, например, «релейный усилитель» и «магнитный усилитель».

  • Активный усилитель — усилитель, в котором усиление сигнала осуществляется за счёт энергии внешнего источника. В сервоприводах (как то: гидро-, электро-, пневмоусилители) усиливается исходное механическое движение (как правило, оператора), за счёт внешней энергии. В электрических усилителях увеличивается амплитуда исходного сигнала (по напряжению и силе тока). В фотоумножителях усиливается интенсивность исходного светового потока. В активных усилителях часто используется обратная связь: положительная — для повышения чувствительности; отрицательная — для улучшения точности/стабильности.
  • Пассивный усилитель — усилитель, в котором усиление одной (необходимой) характеристики сигнала осуществляется за счёт уменьшения других характеристик. Например, домкрат (а также тисы, ручная таль, рычаг) является усилителем движения (силы) руки за счёт скорости (скорость (характеристика сигнала) уменьшается). Мухобойка и теннисная ракетка для сравнения являются усилителями скорости (за счёт уменьшения силы и/или времени воздействия). Виды пассивных уситилелей:
    • резонаторы и экраны — усилители, применяемые для усиления периодических (гармонических) колебаний в приёмниках и передатчиках звуковых и радиоволн, выполняющие усиление рабочей полосы в выбранном направлении за счёт уменьшения общей полосы и других направлений приёма/излучения;
    • зеркала и линзы — усилители для оптики, выполняющие усиление для выбранного участка (угла) наблюдения/освещения в ущерб остальным (участкам, углам). К таким усилителям относятся все оптические системы от лупы до телескопа;
    • системы с накоплением энергии — усилители, в которых большую часть времени происходит только накопление энергии сигнала (подаваемой относительно равномерно), и меньшую часть времени (чаще — импульсно) происходит отдача накопленного и усиленного сигнала на выходе. К таким усилителям относят молоток, преодоление крутой горки автомобилем «с разгона», систему зажигания (катушку зажигания) бензиновых двигателей, рубиновые лазеры, гидротаранный насос.

Смежные понятия[править | править код]

  • Увеличитель — практически полный синоним слова «усилитель», однако чаще употребляется для обозначения устройств, увеличивающих линейные размеры сигнала, что характерно для оптики (фотоувеличитель, увеличительное стекло). Устоявшиеся термины: «увеличитель сцепного веса», «увеличитель крутящего момента».
  • Ускоритель — устройство, увеличивающее скорость совершения процесса или движения частиц.
  • Умножитель — вид усилителя, в котором увеличение характеристики сигнала происходит в кратное число раз (соответственно числу ступеней). Примеры: умножитель напряжения, умножитель частоты, фотоэлектронный умножитель.

Электронный усилитель — усилитель электрических сигналов, в усилительных элементах которого используется явление электрической проводимости в газах, вакууме и полупроводниках. Электронный усилитель может представлять собой как самостоятельное устройство, так и блок (функциональный узел) в составе какой-либо аппаратуры — радиоприёмника, магнитофона, измерительного прибора и т. д.

Усилитель звуковых частот[править | править код]

Усилитель звуковых частот (УЗЧ), усилитель низких частот (УНЧ), усилитель мощности звуковой частоты (УМЗЧ) — прибор (электронный усилитель) для усиления электрических колебаний, соответствующих слышимому человеком звуковому диапазону частот (обычно от 16 до 20 000 Гц, в специальных случаях — до 200 кГц). Может быть выполнен в виде самостоятельного устройства, или использоваться в составе более сложных устройств — телевизоров, музыкальных центров, радиоприёмников, радиопередатчиков, радиотрансляционной сети и т. д.

Операционный усилитель[править | править код]

Операционный усилитель — (ОУ, OpAmp) — усилитель постоянного тока с дифференциальным входом и, как правило, единственным выходом, имеющий высокий коэффициент усиления. ОУ почти всегда используются в схемах с глубокой отрицательной обратной связью, которая, благодаря высокому коэффициенту усиления ОУ, полностью определяет коэффициент усиления/передачи полученной схемы.

В настоящее время ОУ получили широкое применение как в виде отдельных чипов, так и в виде функциональных блоков в составе более сложных интегральных схем. Такая популярность обусловлена тем, что ОУ является универсальным блоком с характеристиками, близкими к идеальным, на основе которого можно построить множество различных электронных узлов.

Измерительный усилитель (средство измерений)[править | править код]

Измерительный усилитель (средство измерений) — электронный усилитель, применяемый в процессе измерений и обеспечивающий точную передачу электрического сигнала в заданном масштабе.

Измерительный усилитель[править | править код]

Измерительный усилитель (иначе инструментальный усилитель, электрометрический вычитатель[1]) — это тип дифференциального усилителя с характеристиками, подходящими для использования в измерениях и тестирующем оборудовании. Такие характеристики включают: очень малое смещение постоянного тока, малый дрейф, малый шум, очень высокий коэффициент усиления при разомкнутой обратной связи, очень высокий коэффициент ослабления синфазного сигнала, и очень высокие входные сопротивления. Такие усилители применяются, когда требуются большая точность и высокая стабильность схемы, как кратковременно, так и долговременно.

Следящий гидропривод — это регулируемый гидропривод, в котором закон движения выходного звена (вала гидромотора или штока (в некоторых случаях корпуса) гидроцилиндра) изменяется в зависимости от управляющего воздействия. Как правило к функциям слежения в следящем гидроприводе добавляются функции усиления управляющего сигнала по мощности. Поэтому синонимом термина «следящий гидропривод» считается термин «гидравлический усилитель».

Магнитный усилитель — это статический аппарат, предназначенный для управления величиной переменного тока посредством слабого постоянного тока. Применяется в схемах автоматического регулирования электродвигателей переменного тока. Основное назначение — управление силовым электроприводом (распространены в строительной технике), также применялись в бытовых стабилизаторах переменного тока, в регуляторах освещения киноконцертных залов, в двоичной ЭВМ ЛЭМ-1 Л. И. Гутенмахера и в троичных ЭВМ «Сетунь (компьютер)» и «Сетунь-70» Н. П. Брусенцов а также в цепях управления тепловоза[2][3][4]. По-прежнему магнитные усилители используются в системах, измеряющих постоянные токи от тензодатчиков. Гибридные схемы, сочетающие в себе миниатюрный магнитный усилитель с полупроводниковым, легко решают проблему дрейфа нуля и обладают высокой точностью.

Реле исторически появилось как усилитель сигнала (напряжения) в телеграфной связи, где на протяжённых линиях связи сигнал ослабевал и промежуточные реле восстанавливали (усиливали) сигнал (напряжение) для следующего участка линии. Сигнал был дискретным (включено-выключено), соответственно, и реле использовалось в качестве дискретного усилителя.

В настоящее время непосредственно для усиления сигналов реле практически не используется, а применяется для разгрузки контактов, многоконтактного переключения и гальванической развязки электроцепей, то есть, как устройство управления и защиты.

Вероятно, по аналогии с реле, устройства управления (силовой) нагрузкой, которые ничего не усиливают, также традиционно называют усилителями, к примеру, магнитный усилитель.[источник не указан 3222 дня]

Существуют также оптические усилители и электромеханические усилители.

Уменьшение сигнала:

  1. ↑ Титце У., Шенк К. Полупроводниковая схемотехника. Москва, «МИР», 1982. Стр.466, рис.25.3.
  2. ↑ Международная конференция SORUCOM.2006, Сборник материалов, Брусенцов Николай Петрович, МГУ, ВМиК, Троичные ЭВМ «Сетунь» и «Сетунь 70»
  3. ↑ Академия тринитаризма Дмитрий Румянцев, Долой биты! (Интервью с конструктором троичной ЭВМ)
  4. ↑ ГОСТ 17561-84 МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ. УСИЛИТЕЛИ МАГНИТНЫЕ. Термины и определения

ru.wikipedia.org

Усилитель низкой частоты — Википедия

Материал из Википедии — свободной энциклопедии

Усили́тель звуково́й частоты́ (УЗЧ)[1], усилитель ни́зкой частоты (УНЧ)[2][3][4][5], усилитель мо́щности звуковой частоты (УМЗЧ) — электронный прибор (электронный усилитель), предназначенный для усиления электрических колебаний, соответствующих слышимому человеком звуковому диапазону частот, таким образом к данным усилителям предъявляется требование усиления в диапазоне частот от 20 до 20 000 Гц по уровню −3 дБ, лучшие образцы УЗЧ имеют диапазон от 0 Гц до 200 кГц, простейшие УЗЧ имеют более узкий диапазон воспроизводимых частот. Может быть выполнен в виде самостоятельного устройства, или использоваться в составе более сложных устройств — телевизоров, музыкальных центров, активных акустических систем, радиоприёмников, радиопередатчиков, радиотрансляционной сети и т. д.

Ламповый усилитель звуковой частоты для стереонаушников Усилитель мощности отдельным блоком, предназначенный для установки в автомобиль Предварительный усилитель Technics

Усилители низкой частоты наиболее широко применяются для усиления сигналов, несущих звуковую информацию, в этих случаях они называются также усилителями звуковой частоты. Кроме этого УНЧ используются для усиления информационного сигнала в различных сферах: измерительной технике и дефектоскопии; автоматике, телемеханике и аналоговой вычислительной технике; в других отраслях электроники.

Усилитель звуковых частот обычно состоит из предварительного усилителя и усилителя мощности (УМ). Предварительный усилитель предназначен для повышения мощности и напряжения и доведения их до величин, нужных для работы оконечного усилителя мощности, зачастую включает в себя регуляторы громкости, тембра или эквалайзер, иногда может быть конструктивно выполнен как отдельное устройство. Усилитель мощности должен отдавать в цепь нагрузки (потребителя) заданную мощность электрических колебаний. Его нагрузкой могут являться излучатели звука: акустические системы (колонки), наушники; радиотрансляционная сеть или модулятор радиопередатчика. Усилитель низких частот является неотъемлемой частью всей звуковоспроизводящей, звукозаписывающей и радиотранслирующей аппаратуры. Усилители низких частот широко используют в сфере автозвука и автоакустики.

По схемотехнике выходного каскада[править | править код]

По режиму работы выходного каскада[править | править код]

Углы отсечки полуволны сигнала в различных режимах

В зависимости от режима работы выходного каскада усилители делятся на:

  • класс, или режим «A» — режим работы, в котором каждый активный прибор (лампа или транзистор) выходного каскада всегда работает в линейном режиме. При воспроизведении гармонических сигналов угол отсечки активного прибора равен 360°: прибор никогда не закрывается и, как правило, никогда не переходит в режим насыщения или ограничения тока. Все линейные однотактные усилители работают в режиме А.
  • класс «AB» — режим работы двухтактного каскада, промежуточный между режимами А и В. Угол отсечки каждого активного прибора существенно больше 180°, но меньше 360°.
  • класс «B» — режим работы двухтактного каскада, в котором каждый активный прибор воспроизводит с минимальными искажениями сигнал одной полярности (либо только положительные, либо только отрицательные значения входного напряжения). При воспроизведении гармонических сигналов угол отсечки активного прибора равен 180° или несколько превышает это значение. Для уменьшения нелинейных искажений при переходе сигнала через ноль выходные лампы или транзисторы работают с небольшими, но не нулевыми токами покоя. Установка нулевого тока покоя переводит каскад из режима B в режим С: угол отсечки уменьшается до менее 180°, при переходе через ноль оба плеча двухтактной схемы находятся в отсечке. Режим С в звуковой технике не применяется из-за недопустимо высоких искажений.
Структурная схема усилителя класса D. Входной звуковой сигнал и сигнал дополнительного генератора пилообразного напряжения подаются на аналоговый компаратор (С), формирующий ШИМ прямоугольное колебание, далее усиливаемое силовыми ключами и подаваемое на громкоговоритель через LC-фильтр нижних частот. Частота пилообразного сигнала выбирается много больше самой верхней частоты в спектре звукового сигнала.
  • класс «D» — режим работы каскада, в котором активный прибор работает в ключевом режиме. Управляющая схема преобразует входной аналоговый сигнал в последовательность импульсов промодулированных по ширине (ШИМ), управляющих мощными выходным ключом (ключами). Выходной LC-фильтр, включённый между ключами и нагрузкой, усредняет импульсный сигнал от ключей, восстанавливая звуковой сигнал.

Режиму А свойственны наилучшая линейность при наибольших потерях энергии, режиму D — наименьшие потери при удовлетворительной линейности. Совершенствование базовых схем в режимах А, AB, B и D породило целый ряд новых «классов», от «класса АА» до «класса Z». Одни из них, например, конструктивно схожие усилители звуковых частот «класса S» и «класса АА», подробно описаны в литературе, другие («класс W», «класс Z») известны только по рекламе производителей.

По конструктивным признакам[править | править код]

ИМС для применения в усилителях мощности

По типу применения в конструкции усилителя активных элементов:

  • ламповые — на электронных лампах. Составляли основу всего парка УНЧ до 70-х годов. В 60-х годах выпускались ламповые усилители очень большой мощности (до десятков киловатт). В настоящее время используются в качестве инструментальных усилителей и в качестве звуковоспроизводящих усилителей. Составляют львиную долю аппаратуры класса HI-END (см. статью Ламповый звук). А также занимают большую долю рынка профессиональной и полупрофессиональной гитарной усилительной аппаратуры.
  • транзисторные — на биполярных или полевых транзисторах. Такая конструкция оконечного каскада усилителя является достаточно популярной, благодаря своей простоте и возможности достижения большой выходной мощности, хотя в последнее время активно вытесняется усилителями на базе интегральных микросхем.
  • интегральные — на интегральных микросхемах (ИМС). Существуют микросхемы, содержащие на одном кристалле как предварительные усилители, так и оконечные усилители мощности, построенные по различным схемам и работающие в различных классах. Из преимуществ — минимальное количество элементов и, соответственно, малые габариты.
  • гибридные — часть каскадов собрана на полупроводниковых элементах, а часть на электронных лампах. Иногда гибридными также называют усилители, которые частично собраны на интегральных микросхемах, а частично на транзисторах или электронных лампах.
  • на магнитных усилителях. В качестве усилителей звуковых частот большой мощности предлагались, как альтернатива электронным лампам в 30 — 50 годы американскими[6] и немецкими[источник не указан 2361 день] инженерами. В настоящее время являются «забытой» технологией[7].
  • микротелефонные (англ. carbon amplifier). Такой усилитель представляет собой сочетание электромагнитного звукоизлучателя и угольного микрофона, объединённых общей мембраной. В прошлом усилители этого типа находили применение в слуховых аппаратах.
  • пневматические (en:compressed air gramophone). В таком усилителе источник колебаний (например, маломощный громкоговоритель, граммофонная игла) приводит в движение модулятор интенсивности потока воздуха от компрессора, за счёт чего происходит усиление амплитуды колебаний по мощности.
По виду согласования выходного каскада с нагрузкой[править | править код]
Трансформаторное согласование с нагрузкой

По виду согласования выходного каскада усилителя с нагрузкой их можно разделить на два основных типа:

  • трансформаторные — в основном такая схема согласования применяется в ламповых усилителях. Обусловлено это необходимостью согласования большого выходного сопротивления лампы с малым сопротивлением нагрузки, а также необходимостью гальванической развязки выходных ламп и нагрузки. Некоторые транзисторные усилители (например, трансляционные усилители, обслуживающие сеть абонентских громкоговорителей (см. Проводное вещание), двухтактные усилители многих радиоприёмников на германиевых транзисторах, некоторые Hi-End аудиоусилители) также имеют трансформаторное согласование с нагрузкой.
  • бестрансформаторные — в силу дешевизны, малого веса и большой полосы частот бестрансформаторные усилители получили наибольшее распространение. Бестрансформаторные двухтактные схемы легко реализуются на транзисторах. Обусловлено это низким выходным сопротивлением транзисторов в схеме эмиттерного (истокового) повторителя, возможностью применения комплементарных пар транзисторов. Мощные бестрансформаторные УМЗЧ имеют двухполярное питание, и позволяют подключать акустические системы непосредственно к выходу усилителя без разделительного конденсатора. Однако такие схемы обязательно имеют систему защиты АС от аварийного появления постоянного напряжения на выходе УМЗЧ (например, из-за пробоя одного из выходных транзисторов или пропадания одного из питающих напряжений). На лампах бестрансформаторные схемы реализовать сложнее, это либо схемы, работающие на высокоомную нагрузку, либо сложные схемы с большим количеством параллельно работающих выходных ламп.
По типу согласования выходного каскада с нагрузкой[править | править код]
  • Согласование по напряжению — выходное сопротивление УМ много меньше омического сопротивления нагрузки. В настоящее время является наиболее распространённым. Позволяет передать в нагрузку форму напряжения с минимальными искажениями и получить хорошую АЧХ. УМЗЧ хорошо подавляют резонанс низкочастотных громкоговорителей и хорошо работают с пассивными разделительными фильтрами многополосных акустических систем, рассчитанными на источник сигнала с нулевым выходным сопротивлением. В настоящее время используется повсеместно.
  • Согласование по мощности — выходное сопротивление УМ равно или близко сопротивлению нагрузки. Позволяет передать в нагрузку максимум мощности от усилителя, из-за чего в прошлом было весьма распространённым в маломощных простых устройствах. Сейчас является основным типом для работы на линию с известным волновым сопротивлением (например, LAN), и иногда в выходных каскадах ламповых усилителей. По сравнению с предыдущим типом, обеспечивает лучшее использование усилительного прибора по мощности (требуется меньшее число усилительных каскадов, что важно для ламповых усилителей) однако ухудшает АЧХ и приводит к недостаточному демпфированию резонансов акустической системы, в результате чего форма сигнала искажается.
  • Согласование по току — выходное сопротивление УМ много больше сопротивления нагрузки. В основе такого согласования — следствие из закона Лоренца, согласно которому звуковое давление пропорционально току в катушке ГД. Позволяет сильно (на два порядка) уменьшить интермодуляционные искажения в ГД и их ГВЗ (групповое время задержки). УМЗЧ слабо подавляют резонанс низкочастотных громкоговорителей и плохо работают с пассивными разделительными фильтрами многополосных акустических систем, которые обычно рассчитаны на источник сигнала с нулевым выходным сопротивлением. В настоящее время используется крайне редко.
  1. ↑ ГОСТ 24388-88 Усилители сигналов звуковой частоты бытовые. Общие технические условия.
  2. ↑ Войшвилло Г. В. Усилители низкой частоты на электронных лампах. — М.: Связьиздат, 1959 г.
  3. ↑ Малинин Р. М. Усилители низкой частоты. Массовая радиобиблиотека, вып. 183. 1953 г.
  4. ↑ Будинский Я. — Усилители низкой частоты на транзисторах. — М.: Связьиздат, 1963 г.
  5. ↑ Адаменко М. В. Секреты ламповых усилителей низкой частоты. — М.: НТ Пресс, 2007, — 384 с.
  6. ↑ J.J.Suozzy, E.T.Hooper. An All Magnetic Audio-Amplifier System. Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics, vol.74, 1955, p.297-301.
  7. ↑ Trinkaus, George, «The Magnetic Amplifier: A Lost Technology of the 1950s, » Nuts & Volts, February 2006, pp. 68-71.

ru.wikipedia.org

Характеристики усилителей: классификация, формулы, схемы, параметры

Усилитель — это электронное устройство, управляющее потоком энергии, идущей от источника питания к нагрузке. Причем мощность, требующаяся для управления, как правило, намного меньше мощности, отдаваемой в нагрузку, а формы входного (усиливаемого) и выходного (на нагрузке) сигналов совпадают (рис. 2.1).

Классификация усилителей

Все усилители можно классифицировать по следующим признакам:

по частоте усиливаемого сигнала:

• усилители низкой частоты (УНЧ) для усиления сигналов от десятков герц до десятков или сотен килогерц;

• широкополосные усилители, усиливающие сигналы в единицы и десятки мегагерц;

• избирательные усилители, усиливающие сигналы узкой полосы частот;

по роду усиливаемого сигнала:

• усилители постоянного тока (УПТ), усиливающие электрические сигналы с частотой от нуля герц и выше;

• усилители переменного тока, усиливающие электрические сигналы с частотой, отличной от нуля;

по функциональному назначению:

• усилители напряжения, усилители тока и усилители мощности в зависимости от того, какой из параметров усилитель усиливает. Основным количественным параметром усилителя является коэффициент усиления.

В зависимости от функционального назначения усилителя различают коэффициенты усиления по напряжению КU, току Кi или мощности КР

КU = Uвх / Uвых

КI= Iвх/ Iвых

КP= Pвх / Pвых

где Uвх, Iвх — амплитудные значения переменных составляющих соответственно напряжения и тока на входе;

Uвых , Iвых — амплитудные значения переменных составляющих соответственно напряжения и тока на выходе;

Рвх, Рвых— мощности сигналов соответственно на входе и выходе. Коэффициенты усиления часто выражают в логарифмических единицах — децибелах:

КU (дБ) = 20LgKu

КI(дБ) = 20LgKi

КР (дБ) = 10LgKp

Усилитель может состоять из одного или нескольких каскадов. Для многокаскадных усилителей его коэффициент усиления равен произведению коэффициентов усиления отдельных его каскадов: К = К1 · К2 · … · Кn

Если коэффициенты усиления каскадов выражены в децибелах, то общий коэффициент усиления равен сумме коэффициентов усиления отдельных каскадов:

К (дБ) = К1 (дБ) + К2 (дБ) +… + Кn(дБ).

Обычно в усилителе содержатся реактивные элементы, в том числе и «паразитные», а используемые усилительные элементы обладают инерционностью. В силу этого коэффициент усиления является комплексной величиной:

ЌU = КU · e

КU = Uвых / Uвх

где КU— модуль коэффициента усиления; φ — сдвиг фаз между входным и выходным напряжениями с амплитудами Uвх и Uвых.

Помимо коэффициента усиления важным количественным показателем является коэффициент полезного действия:

η = Pвых / Pист

где Рист — мощность, потребляемая усилителем от источника питания.

Роль этого показателя особенно возрастает для мощных, как правило, выходных каскадов усилителя.

К количественным показателям усилителя относятся также входное Rвх и выходное Rвых сопротивления усилителя:

Rвх = Uвх / Iвх

Rвых = |∆ Uвых | / |∆ Iвых |

где Uвх и Iвх — амплитудные значения напряжения и тока на входе усилителя;

∆Uвых и ∆Iвых — приращения аплитудных значений напряжения и тока на выходе усилителя, вызванные изменением сопротивления нагрузки. Рассмотрим теперь основные характеристики усилителей.

Интересное видео о параметрах усилителя смотрите ниже:

Амплитудная характеристика усилителя

Амплитудная характеристика — это зависимость амплитуды выходного напряжения (тока) от амплитуды входного напряжения (тока) (рис. 2.2).

Точка 1 соответствует напряжению шумов, измеряемому при Uвx = 0, точка 2 — минимальному входному напряжению, при котором на выходе усилителя можно различать сигнал на фоне шумов.

Участок 2 − 3 — это рабочий участок, на котором сохраняется пропорциональность между входным и выходным напряжениями усилителя.

После точки 3 наблюдаются нелинейные искажения входного сигнала. Степень нелинейных искажений оценивается коэффициентом нелинейных искажений (или коэффициентом гармоник):

КГ = √( U22m + U23m + … + U2nm) / Ulm

где Ulm, U2m, U3m, Unm — амплитуды 1-й (основной), 2, 3 и n-й гармоник выходного напряжения соответственно. Величина D = Uвх max / Uвх minхарактеризует динамический диапазон усилителя. Рассмотрим пример возникновения нелинейных искажений (рис. 2.3). При подаче на базу транзистора относительно эмиттера напряжения синусоидальной формы uбэ в силу нелинейности входной характеристики транзистора iб = f(uбэ) входной ток транзистора iб (а следовательно, и выходной — ток коллектора) отличен от синусоиды, т. е. в нем появляется ряд высших гармоник.

Из приведенного примера видно, что нелинейные искажения зависят от амплитуды входного сигнала и положения рабочей точки транзистора и не связаны с частотой входного сигнала, т. е. для уменьшения искажения формы выходного сигнала входной должен быть низкоуровневым.

Поэтому в многокаскадных усилителях нелинейные искажения в основном появляются в оконечных каскадах, на вход которых поступают сигналы с большой амплитудой.

Амплитудно-частотная характеристика (АЧХ) и фазо-частотная характеристика (ФЧХ) усилителя.

АЧХ — это зависимость модуля коэффициента усиления от частоты, а ФЧХ — это зависимость угла сдвига фаз между входным и выходным напряжениями от частоты. Типовая АЧХ приведена на рис. 2.4.

Частоты fн и fв называются нижней и верхней граничными частотами, а их разность (fн − fв) — полосой пропускания усилителя.

При усилении гармонического сигнала достаточно малой амплитуды искажения формы усиленного сигнала не возникает.

При усилении сложного входного сигнала, содержащего ряд гармоник, эти гармоники усиливаются усилителем неодинаково, так как реактивные сопротивления схемы по-разному зависят от частоты, и в результате это приводит к искажению формы усиленного сигнала.

Такие искажения называются частотными и характеризуются коэффициентом частотных искажений: М = K0 / Kf где Kf — модуль коэффициента усиления усилителя на заданной частоте.

Коэффициенты частотных искажений МН = K0 / KН и МВ = K0 / KВ называются соответственно коэффициентами искажений на нижней и верхней граничных частотах. АЧХ может быть построена и в логарифмическом масштабе. В этом случае она называется ЛАЧХ (рис. 2.5), коэффициент усиления усилителя выражают в децибелах, а по оси абсцисс откладывают частоты через декаду (интервал частот между 10f и f). Обычно в качестве точек отсчета выбирают частоты, соответствующие f = 10n. Кривые ЛАЧХ имеют в каждой частотной области определенный наклон. Его измеряют в децибелах на декаду. Типовая ФЧХ приведена на рис. 2.6. Она также может быть построена в логарифмическом масштабе. В области средних частот дополнительные фазовые искажения минимальны.

ФЧХ позволяет оценить фазовые искажения, возникающие в усилителях по тем же причинам, что и частотные.

 Пример возникновения фазовых искажений приведен на рис. 2.7, где показано усиление входного сигнала, состоящего из двух гармоник (пунктир), которые при усилении претерпевают фазовые сдвиги.

Переходная характеристика усилителя

Переходная характеристика усилителя— это зависимость выходного сигнала (тока, напряжения) от времени при скачкообразном входном воздействии (рис. 2.8).

Частотная, фазовая и переходная характеристики усилителя однозначно связаны друг с другом. Области верхних частот соответствует переходная характеристика в области малых времен, области нижних частот — переходная характеристика в области больших времен.

Ещё одно интересное видео по теме смотрите ниже:

pue8.ru

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *