За что отвечает помпа: Автословарь: что такое помпа? | Интернет магазин запчастей «Сибаль-Авто»

Содержание

Помпа — Словарь автомеханика

Помпа, она же водяная помпа двигателя автомобиля — это насос создающий принудительную циркуляцию охлаждающей жидкости в системе охлаждения ДВС. Предназначается водяной насос для организации круговорота антифриза или другого состава в системе охлаждения. Неисправность помпы ведет к серьезному нарушению внутреннего теплового режима двигателя, из-за чего он довольно быстро «закипает».

Доводить до этого нельзя, поэтому чтобы удостовериться, что помпа двигателя работает, нужно периодически слушать и осматривать мотор, чтобы вовремя выполнить ремонт или замену вышедшего из строя узла.


Конструкция водяной помпы

Устройство помпы в большинстве автомобилей очень похожее, особенно это касается отечественных машин.

И искать, где находится помпа, долго тоже не придется, так как она приводится в действие ремнем ГРМ и располагается возле радиатора.

Конструктивно помпа выглядит следующим образом: в крышке крепится вал. На него насажена крыльчатка, движение которой инициирует перемещение жидкости в системе. С другой стороны вала монтируется приводной шкив, и в некоторых моделях автомобилей еще вентилятором. Через ремень ГРМ и приводной шкив на вал передается энергия вращения двигателя, вал приводит в действие крыльчатку и вся система работает.

Устройство помпы.

Между корпусом и крыльчаткой монтируется сальник, с износом которого связаны многие проблемы помп. Если этот сальник плохой, антифриз или тосол постепенно просачивается в полость к подшипникам, вымывая их смазку.

Из-за этого подшипники начинают работать гораздо громче и быстро изнашиваются, что ведет к заклиниванию помпы.


Причины и последствия поломки водяной помпы

Поскольку помпа автомобильная является довольно простым механизмом, ломается она не слишком часто, особенно при нормальном уходе за двигателем. Тем не менее, даже самая надежная помпа может выйти из строя. Причин поломки может быть несколько, среди них:

  • износ узлов устройства, в том числе старение сальника;
  • изначально низкое качество помпы;
  • непрофессионально выполненный ремонт.

Если система остается герметичной, но помпа не инициирует циркуляцию по ней жидкости, это приводит к повышению температуры двигателя, о чем будут свидетельствовать показания датчика на приборной панели.

Непродолжительная езда в таком режиме приведет к закипания радиатора или заклиниванию двигателя.

При возникновении течи помпы нужно как можно быстрее предпринять действия по её устранению.

Другим признаком поломки помпы является течь антифриза в зоне ее установки. Если протечка не очень сильна, это не так страшно, поскольку циркулирующая в системе жидкость все равно будет нормально выполнять свои функции, просто ее нужно регулярно доливать. Но все же при обнаружении такой поломки лучше всего сразу ее устранить, ведь течи имеют свойство увеличиваться в интенсивно эксплуатируемых двигателях.


Распространенные поломки водяной помпы

Видов поломок, по которым водяная помпа может выйти из строя, не очень много, что обусловлено относительной простотой ее конструкции. Наиболее распространенными являются:

    Проблемы с крыльчаткой наиболее часто возникаемые, но клин подшипников тоже случается.

  1. поломка крыльчатки;
  2. ухудшение крепления крыльчатки на валу;
  3. заклинивание подшипника;
  4. ухудшение плотности соединений из-за вибраций двигателя, ведущее к просачиванию охлаждающей жидкости.

Ремонт водяной помпы

Помпа двигателя является ремонтопригодным разборным узлом. Здесь есть возможность заменить как весь механизм, так и отдельные его элементы, например подшипники. То, что помпа автомобильная не обязательно должна заменяться полностью, не может не радовать, поскольку это позволяет существенно удешевить ремонт. Правда, доступ к этому узлу для его частичной или полной разборки бывает затруднен.

Так, в некоторых моделях автомобилей для этого необходимо частично откручивать подушки двигателя, работая снизу из смотровой ямы. Очень часто замена помпы производится при каждой второй замене ремня/цепи ГРМ, но при возникновении симптомов неисправности водяного насоса меняют и раньше, все зависит от качества детали и уровня выполнения работы при предыдущей смене привода ГРМ и самой детали.

Часто задаваемые вопросы

  • Где находится помпа в машине?

    Помпа крепится на корпус двигателя, потому что ее вал приводится в движение ремнем ГРМ или ремнем навесного оборудования (очень редко). При этом она находится с той стороны двигателя, который ближе к радиатору. Это позволяет уменьшить длину патрубков, потому что охлаждающая жидкость должна пройти через радиатор, отдать тепло и течь дальше в помпу уже охлажденной.

  • Куда качает помпа?

    Помпа всегда качает от себя, то есть она толкает, но не всасывает. Это обеспечивается, тем что крыльчатка вращаясь, создает центробежную силу, которая проталкивает антифриз дальше. Задача помпы обеспечить движение и давления жидкости от радиатора к двигателю, поэтому она прокачивает охлаждающую жидкость в двигатель. Конструкционно крыльчатка может вращаться как по часовой, так и против часовой стрелки.

  • Когда надо менять помпу?

    Интервалы замены помпы четко указаны в руководстве по эксплуатации вашего автомобиля. Самый распространенный вариант — при каждой второй замене ремня ГРМ либо когда появились симптомы выхода ее из строя (шум подшипника, течь, люфт).

Связанные термины

Что такое помпа в автомобиле и принцип ее работы

Автоликбез6 декабря 2017

В составе системы охлаждения двигателя любого автомобиля есть собственный насос (на жаргоне – помпа). Элемент довольно надежен в эксплуатации, но требует присмотра, поскольку играет важную роль в работе силового агрегата. В случае поломки детали машина не сможет продолжать путь. Отсюда цель данной публикации – разъяснить неопытным автолюбителям, что такое помпа и как она функционирует.

Назначение и расположение элемента

Охлаждающая жидкость неспособна циркулировать через радиатор и водяную рубашку двигателя самостоятельно. Чтобы побудить ее к движению, в системе задействовано перекачивающее устройство – помпа, чье рабочее колесо (крыльчатка) вращается ременным приводом от коленчатого вала. В зависимости от конструкции автомобиля насос располагается в таких местах:

  1. В переднеприводных авто элемент находится на правом торце двигателя (если смотреть по ходу движения). Поскольку помпа входит в состав ременного привода ГРМ, защищенного крышкой, увидеть ее снаружи нельзя.
  2. На машинах, оснащенных задним приводом, насос находится на передней части силового агрегата и приводится в действие ремнем газораспределительного механизма или привода генератора.

Помпа, встроенная в конструкцию двигателя, нужна для эффективного охлаждения блока и головки цилиндров за счет создания принудительной циркуляции. Благодаря ей поток антифриза проходит через 2 радиатора – основной и салонный, где отдает львиную долю теплоты.

Конструкция и принцип действия насоса

Не помешает рассмотреть, из чего состоит и как работает автомобильная помпа. Элемент представляет собой корпус в виде крепежного фланца с отверстиями, изготовленный из алюминиевого сплава. К нему крепятся остальные детали:

  • основной вал с подшипником запрессован в центральном отверстии корпуса;
  • крыльчатка из пластика или металла насажена на внутренний конец вала;
  • ведомый шкив (бывает зубчатый либо ручьевой) установлен на внешнем конце вала;
  • чтобы тосол не вытекал наружу по оси, узел прохода вала сквозь корпус уплотнен специальным сальником.

Фланец водяного насоса прикручивается к блоку цилиндров или переходнику таким образом, что крыльчатка оказывается в потоке охлаждающей жидкости, а ведомый шкив располагается на одной оси с ведущим шкивом коленвала. Для уплотнения соединения под фланец ставится прокладка.

Принцип работы помпы чрезвычайно прост: коленчатый вал двигателя вращает крыльчатку насоса посредством приводного ремня. Чем выше обороты двигателя, тем интенсивнее антифриз перекачивается по системе. Срок службы элемента составляет от 40 до 140 тыс. км пробега в зависимости от марки и модификации автомобиля. На дорогих импортных машинах перекачивающее устройство работает дольше, на отечественных авто – меньше.

В некоторых автомобилях установлена помпа, действующая от собственного электрического привода. Такая новация не нашла широкого применения по причине удорожания конструкции и снижения надежности.

Последствия поломки

Пришедший в негодность насос способен наделать много бед. Величина ущерба зависит от того, как задействована помпа в автомобиле – от ремня ГРМ или привода генератора. Аварийные ситуации выглядят следующим образом:

  1. Начинает протекать прохудившийся сальник либо прокладка. Уровень антифриза в системе уменьшается, что чревато перегревом мотора, если не заметить неполадку вовремя.
  2. Из-за разбитого подшипника заклинивает вал насоса. От рывка приводной ремень слетает или рвется.
  3. Когда подтекает сальник помпы, вращающиеся шкивы разбрасывают жидкость во все стороны. Намокшие ремни проскальзывают и быстрее изнашиваются.

Примечание. Первопричиной утечки антифриза нередко становится изношенный подшипник, а не сальник. Вал со шкивом и крыльчаткой начинает болтаться и перекашивается под давлением приводного ремня. В подобных условиях сальник не способен удержать тосол, отчего водяной насос пропускает жидкость наружу.

Наихудший вариант – разрыв ременного привода ГРМ вследствие заклинивания подшипника. Для многих автомобилей это ведет к дорогостоящему ремонту силового агрегата, поскольку днища поршней ударяют по тарелкам открытых клапанов и загибают их толкатели. В лучшем случае придется снять ГБЦ и поменять клапанную группу, в худшем – выбросить пробитые поршни и треснувшую от удара головку цилиндров.

Слетевший ремень привода генератора не нанесет ущерба, разве что исчезнет подача электроэнергии в бортовую сеть и начнет разряжаться аккумулятор. Но параллельно возникнет перегрев мотора, ведущий к ускоренному износу цилиндропоршневой группы.

Признаки неисправности помпы

В процессе эксплуатации авто водяной насос изнашивается естественным образом. Наибольшую нагрузку испытывают 2 детали – подшипник и сальник, они чаще всего и выходят из строя. Крыльчатка и шкив ломается значительно реже. Неполадки проявляются так:

  1. На месте постоянной дислокации автомобиля возникают пятна антифриза.
  2. Охлаждающей жидкостью забрызгана торцевая стенка мотора и близлежащие агрегаты. Если механизм защищен кожухом, становятся заметны потеки тосола в нижней части.
  3. На работающем двигателе слышен гул или треск со стороны помпы.
  4. Силовой агрегат глохнет на ходу, температура охлаждающей жидкости подскакивает до максимума.

Возникающие под машиной пятна всегда должны настораживать водителя. Если в подкапотном пространстве сухо, а на асфальте заметна протечка, снимите защитную крышку газораспределительного механизма. Обнаружив в районе помпы сырость, выполните простую диагностику: ослабьте приводной ремень и покачайте рукой шкив перекачивающего устройства. Заметный люфт вала – явный признак, что пора менять насос системы охлаждения двигателя.

Если вам удалось уловить шум, издаваемый разбитым подшипником помпы, немедленно диагностируйте его на предмет люфта. Способ проверки идентичен: следует добраться до шкива, ослабить натяжение ременной передачи и покачать его рукой.

Когда мотор заглох в процессе движения, а датчик показывает температуру более 120 °С, значит, худшее уже случилось. Вал насоса заклинил, а ремень ГРМ порвался либо соскочил. Остается надеяться, что клапаны двигателя не встретились с поршнями и не загнулись.

При обрыве ремня привода генератора мотор не заглохнет, но включится индикатор зарядки аккумуляторной батареи, а температура неизбежно подскочит (ведь насос перестал качать жидкость). Сразу выключайте двигатель и принимайте меры по эвакуации автомобиля в гараж или на автосервис.

Можно ли отремонтировать деталь?

На подавляющем большинстве машин устанавливается неремонтируемая помпа охлаждения двигателя. При желании автолюбитель сможет ее снять и разобрать, но поменять сальник и подшипник вряд ли получится, поскольку данных запчастей нет в продаже. Исключение – классические модели «Жигулей» и ряд других моделей авто, для которых производятся ремонтные комплекты.

Справка. Запчасти ремкомплектов не относятся к оригинальным и не блещут качеством. Ресурс помпы после ремонта сократится вдвое против заводской запчасти.

Водяные насосы принято менять в сборе. Причем сама замена не составляет большой сложности – очистили посадочное место от старой прокладки, нанесли герметик и прикрутили новый насос. Наиболее трудоемкая часть процедуры – это разборка узла ГРМ с выставлением меток, снятием шкивов и заливкой / опорожнением системы охлаждения. Если у вас недостаточно опыта в ремонте автомобилей, лучше доверить работу мастерам станции техобслуживания.

Всё про водяной насос (помпу) системы охлаждения


Система охлаждения предназначена для создания двигателю комфортных условий работы: охлаждения до оптимальной температуры, при которой не наступает термического повреждения тонко подогнанных деталей. Чтобы нормально работал мотор, должны нормально работать и все сопутствующие узлы, в том числе и охлаждение.

 

Назначение, принцип работы

Автомобильный водяной насос, он же помпа, предназначен для обеспечения принудительной циркуляции антифриза в системе охлаждения – от двигателя к радиатору и обратно. Для адекватного охлаждения мотора используется не только искусственная конвекция, но и дополнительный обдув радиатора с помощью вентилятора. Остановка водяного насоса замедлит движение антифриза до такой степени, что двигатель перегреется в считаные минуты (особенно если поломка произошла в жару).

Принцип действия водяного насоса – перекачка жидкости за счет использования центробежной силы: в рабочую камеру поступает антифриз и вращающаяся крыльчатка перекачивает его в отводящий патрубок.

Система охлаждения двигателя

Если рассматривать схему движения охлаждающей жидкости, то водяной насос располагается после радиатора перед двигателем. Такое решение позволяет не подвергать механизм насоса высоким температурам: антифриз в него поступает уже охлажденным.

 

Устройство водяного насоса

Насос системы охлаждения имеет достаточно простую конструкцию с минимумом деталей: на валу, закрепленном на двух подшипниках, расположена металлическая или пластиковая крыльчатка, перекачивающая антифриз по кругу. Для герметизации соединения вала и рабочей камеры используется сальник, а для уплотнения стыков патрубков – прокладки из специальной резины. Вся конструкция заключена в прочный металлический корпус из алюминия или чугуна, устойчивый к вибрации и перепадам температур.

Вал насоса приводится в действие от коленвала двигателя через шкив, то есть механическим способом. Таким образом, водяная помпа начинает работать одновременно с двигателем, и чем выше скорость автомобиля (больше обороты вала), тем активней идет движение антифриза в системе.

Устанавливается насос на корпусе двигателя на специальную прокладку, гасящую вибрацию при работе механизмов.

Слабыми местами водяной помпы можно считать детали, подверженные трению и нагрузкам: сальник и подшипники. Как правило, поломка насоса связана именно с ними.

Чаще всего выходит из строя сальник: из-за его износа охлаждающая жидкость попадает на подшипники и смывает с них смазку, после чего они приходят в негодность.

Принципиальная схема торцевого сальника:
1. Вращающееся кольцо. 2. Стационарное кольцо.
3. Уплотнительная манжета. 4. Прижимная пружина.

Пружина в сальнике выполняет функцию подстройки: благодаря ей трущиеся кольца плотно прижаты друг к другу, независимо от степени износа.

Ресурс водяной помпы составляет от 60 до 160 тыс. км (а в некоторых случаях и больше), а выход из строя обусловлен механическим износом.

Регламента замены помпы нет, но чаще всего ее меняют одновременно с каждой второй заменой ремня ГРМ, и тогда же делают профилактическую проверку ремней генератора.

Как правило, водяной насос не ремонтируют: подгонка деталей настолько точная, что разборка и сборка технически нецелесообразны. Поэтому при поломке легче и быстрей поставить новый насос, чем делать трудоемкий и ненадежный ремонт.

 

Признаки неисправности

  • Протечки антифриза. При нарушении герметичности любого из участков системы охлаждения антифриз, находящийся в ней под давлением, начинает подтекать. Это можно обнаружить при осмотре автомобиля или после стоянки по пятнам на асфальте;

Дренажное отверстие, из которого подтекает антифриз
при износе или протечке сальника

  • Понижение уровня антифриза – прямое следствие протечки;
  • Помпа начинает шумно работать – признак износа подшипников;
  • В салоне запах охлаждающей жидкости;
  • При прогретом моторе не работает печка – дует холодный воздух;
  • Перегревается двигатель, о чем сигнализируют датчики и индикаторы. Перегрев двигателя – одна из самых серьезных проблем, способная за считаные минуты привести его в негодность;
  • При осмотре вал насоса имеет люфт: его можно пошатать с заметной амплитудой. Такой люфт – однозначный признак износа подшипников, даже если помпа еще работает.

В крайних случаях износ сальника и подшипников приводит к тому, что вал от нагрузки и перегрева изнашивается, после чего ломается и заклинивает механизм.

 

Причины неисправности водяного насоса

Основной причиной неисправности водяного насоса является механический износ трущихся частей: сальника, подшипников, вала, шкива. При протечке сальника антифриз попадает на подшипники и за короткое время смывает с них смазку, после чего они ломаются и вал насоса заклинивает.

Ускоряют износ насоса грязь и примеси, попадающие в антифриз. Они могут вывести из строя не только трущиеся пары, но и крыльчатку.

Некачественный антифриз без антикоррозийных присадок вызывает окисление металлических поверхностей и портит резиновые прокладки и уплотнители.

Использование воды вместо антифриза вызывает образование накипи, которая откладывается на частях системы охлаждения, в том числе на водяной помпе. Современные автомобили не рассчитаны на применение воды!

Быстрый износ подшипников может быть вызван неправильным натяжением шкива – слишком сильным (больше нагрузка на одну сторону подшипника) или слишком слабым.

Кавитационная эрозия – следствие образования пузырьков в охлаждающей жидкости (низкое качество, выработка антивспенивающих присадок, низкий уровень ОЖ в системе). Лопающиеся мелкие пузырьки со временем портят металлические поверхности, проделывая в них круглые выемки.

Кавитационный износ крыльчатки

В корпусе могут образоваться трещины от перепадов температур, вибрации, нагрузки (охлаждающая жидкость в системе находится под давлением, что повышает температуру ее кипения). Да и просто некачественный насос может не выдержать условий эксплуатации.

И, наконец, починка водяного насоса не гарантирует его долгой и качественной работы. Плохо отремонтированный механизм отказывает в самый неподходящий момент.

 

Профилактика неисправностей

Всем хочется, чтобы любая деталь автомобиля работала как можно дольше. Что влияет на срок службы топливного насоса?

  • Качество антифриза, своевременная его замена и контроль уровня. Это, пожалуй, один из главных факторов нормальной работы всей системы охлаждения: от рубашки двигателя до радиатора;
  • Чистота в системе охлаждения. Отсутствие твердых частиц и примесей замедлит износ помпы;
  • Своевременная замена уплотнительных прокладок патрубков, которые портятся («дубеют» и трескаются) под воздействием охлаждающей жидкости и высоких температур.

Одним из самых тяжелых последствий неисправности водяного насоса – закипание охлаждающей жидкости и перегрев двигателя, особенно на жаре в пробках. Стоя летом в городских заторах, нужно отслеживать температуру мотора и не допускать критического нагрева. А в дальних поездках всегда иметь запас антифриза для долива.

 

 

О том, как выбрать новый водяной насос и каким брендам отдать предпочтение – наш «Гид покупателя».

 

За что отвечает помпа в автомобиле

Жидкостная система охлаждения силовой установки любого авто обеспечивает поддержание оптимального температурного режима за счет жидкости. Перемещаясь по каналам рубашки охлаждения мотора, охлаждающая жидкость омывает разогреваемые элементы, забирая от них часть тепла, а затем отводит его в окружающую среду посредством теплообменных процессов в радиаторе.

Что такое помпа в автомобиле и её назначение

Жидкость по системе охлаждения самостоятельно передвигаться не может, поэтому в конструкцию жидкостной системы входит водяной насос, он же – помпа. Основная задача его – обеспечение циркуляции охлаждающей жидкости по системе, что и обеспечивает забор тепла и отвод его.

Больше помпа ничего не выполняет, но от ее работы зависит нормальное функционирование мотора. Без нее силовая установка очень быстро будет перегреваться, поскольку не будет обеспечиваться отведение тепла.

Видео: Для чего в автомобиле нужна водяная помпа

На автомобилях на данный момент используется водяной насос центробежного типа. Широкое распространение этот тип помпы получил благодаря простоте конструкции, при этом он вполне справляется с поставленной задачей. Для привода его используется усилие, получаемое от коленчатого вала, которое передается за счет ременной передачи.

Циркуляция жидкости по системе обеспечивается за счет крыльчатки. Чтобы она обеспечивала движение жидкости в рубашке охлаждения, насос входит в конструкцию силового агрегата. Причем основная его часть располагается с внешней его стороны, и только крыльчатка располагается внутри рубашки.

Конструкция водяного насоса

Внешний вид водяных насосов может быть разный (сказываются конструктивные особенности силовых установок разных производителей), но все они конструктивно одинаковы и состоят из:

  • корпус;
  • ось;
  • шкив или зубчатое колесо;
  • крыльчатка;
  • сальник;
  • подшипники.

Корпус

Корпус является несущим элементом и в нем располагаются все перечисленные составные части, кроме крыльчатки и шкива, которые располагаются с внешних сторон. Корпус изготавливается чаще всего из алюминия. Также посредством его производится крепление помпы к блоку цилиндров. Чтобы обеспечить герметичность в месте прилегания корпуса к мотору, между ними устанавливается прокладка.

Чтобы антифриз и влага не скапливались в зоне расположения подшипников, в корпусе проделано дренажное отверстие.

Ось, подшипники, сальник

Внутри корпуса располагается стальная ось, посаженная на два подшипника, что обеспечивает ей легкость вращения. Ось обычно изготавливается из стали, что обеспечивает высокую прочность.

Подшипники являются закрытыми, то есть доступа к ним нет. Смазывание их делается за счет заложенной смазки, которой должно хватать на весь ресурс насоса. Но на некоторых старых грузовых авто, в корпусе имелась пресс-масленка, поэтому подшипники у них можно было смазывать.

Видео: Выбор Помпы. Помпа LUZAR.

Для предотвращения контакта рабочей жидкости с подшипниками, со стороны крыльчатки установлен герметизирующий резинотехнический элемент – сальник. Без него антифриз попадал бы в зону работы подшипников, что приводило бы в быстрому их износу.

Шкив, крыльчатка

Шкив или зубчатое колесо являются элементами, которые принимают усилие от коленчатого вала. Шкив используется на авто, у которых привод газораспределительного механизма осуществляется посредством цепной передачи. Из-за такого конструктивного решения организовать передачу усилия на помпу цепью не удалось. Поэтому для обеспечения вращения насоса используется отдельный ременной привод, который дополнительно может обеспечивать и работу другого навесного оборудования мотора – насоса ГУР, компрессора и т. д.

В автомобилях, у которых привод ГРМ обеспечивается зубчатым ремнем, он применяется и для обеспечения работы помпы. То есть одним ремнем задействуется в работу и ГРМ, и насос. А чтобы при передаче усилия не было потерь из-за проскальзывания, в качестве приводного элемента на помпе используется зубчатое колесо.

Шкив или зубчатое колесо имеют жесткое соединение с осью. Для этого используется либо шпоночное соединение, либо болтовое.

С другой стороны на ось посажена крыльчатка – специальный диск с нанесенными на него особым образом крыльями. Изготавливается она чаще из алюминия, хотя встречаются и крыльчатки, изготовленные из пластика. Посадка ее на ось – тоже жесткая.

Принцип работы автомобильной помпы

Принцип работы водяного насоса очень прост: помпа получает вращение от коленчатого вала посредством ременного привода. Это вращение получает шкив или зубчатое колесо, жестко посаженное на ось. А поскольку с другой стороны на ней установлена крыльчатка, то она тоже вращается.

Поскольку крыльчатка помещена в рубашку охлаждения, то она находится в среде охлаждающей жидкости. При вращении, крылья крыльчатки создают центробежную силу, которая выталкивает антифриз и заставляет его двигаться по каналам рубашки охлаждения.

Признаки неисправности помпы

Простота конструкции водяного насоса обеспечивает ему отличные показатели по надежности и длительности срока эксплуатации. Но неисправности с этим узлом все же бывают, поскольку в конструкции используются элементы, которые являются «слабым» местом насоса. Ими являются подшипники и сальник. При эксплуатации нередко подшипники изнашиваются, что приводит к появлению люфтов. Это сразу же сказывается на герметичности сальника. Но и сам резинотехнический элемент в процессе эксплуатации может получить повреждения.

Видео: Признаки неисправности помпы. Выбор помпы ВАЗ. Устройство помпы Ваз НИВА

Основными признаками износа помпы:

  1. Подтекание охлаждающей жидкости со стороны водяного насоса.
  2. Появление сторонних шумов при работе мотора.
  3. Визуально заметный люфт при работающей установке.

Все эти признаки и дают изношенные подшипники и поврежденный сальник. Бывают и другие неисправности, которые встречаются гораздо реже. Среди них – повреждение крыльчатки в результате химических процессов, происходящих в результате постоянного контакта с антифризом, появление трещин на корпусе, чрезмерный износ рабочих поверхностей шкива или зубчатого колеса.

Отметим, что водяная помпа – один из узлов силовой установки, который ремонту не подвергается. Все составные элементы садятся в корпус путем запрессовки, поэтому узел является неразборным, и в случае появления признаков износа, помпа просто заменяется. При этом обязательной замене подлежит также и прокладка. Единственное, можно поменять только шкив, и то, если он крепится к оси при помощи болтового соединения.

Зачем нужен насос в системе охлаждения? Он также известен в кругах автомобилистов как автомобильная помпа, или водяная помпа двигателя. Зачем нужна эта деталь, как она работает, как устроена и как долго служит?

В продолжении изучения системы охлаждения наших с вами машин мы сейчас рассмотрим этот узел, без которого функционирование охлаждающего контура под капотом авто будет крайне осложнено.

Роль насоса в жизни системы охлаждения

Для чего вообще нужна эта деталь? Чтобы ответить на этот вопрос необходимо ещё раз вспомнить строение охлаждающей системы. Если вкратце, то её основными элементами являются: рубашка охлаждения мотора, радиатор, термостат, наш сегодняшний герой насос, вентилятор радиатора, расширительный бачок и всякие трубки и патрубки, по которым бежит жидкость (антифриз или тосол).

Одним из условий, при которых двигатель получается качественно остужать, является постоянная циркуляция в системе – разогретый при прохождении через силовой агрегат антифриз должен поступить в радиатор, где он охладится, а потом вновь в мотор.

Именно за эту работу и отвечает автомобильная помпа – она гоняет жидкость по венам охлаждающей системы двигателя. Вряд ли стоит говорить, что поломка этого насоса ставит под удар работоспособность силового агрегата в целом, потому как, не остывая, он просто-напросто закипит и заглохнет.

Автомобильная помпа: внутри всё просто

Сам по себе водяной насос мотора довольно прост. Возьмём, для примера, отечественный автопром, где помпы имеют очень схожую конструкцию вне зависимости от марки и модели. Обычно этот узел состоит из таких запчастей:

  • корпус;
  • вал;
  • крыльчатка;
  • приводной шкив;
  • сальник;
  • подшипники.

В корпусе специальной формы устанавливается вал – главный элемент. С одной стороны на валу закреплён приводной шкив, который контактирует с ремнём ГРМ и от него получает энергию вращения, а с другой у него – крыльчатка, создающая циркуляцию антифриза по системе.

Отдельного внимания заслуживает сальник. Его задача предотвращать просачивание охлаждающей жидкости в полости, где находятся подшипники. Так как сальник имеет тенденцию к износу, рано или поздно антифриз попадает к подшипникам и находит выход из насоса, и об этом мы поговорим далее…

Поломка насоса: чем сулит и что делать?

Как Вы уже наверняка заметили, автомобильная помпа является очень простым механизмом, без каких-либо хитрых инженерных решений и ухищрений. Тем не менее, и она может поломаться.

Главным образом неисправности водяного насоса связаны с тем самым злополучным сальником, который может прохудиться и дать течь. Вырвавшийся на волю антифриз, размывает смазку подшипников, вытекает из системы, а значит с помпой нужно что-то делать. Помимо течи, на которую до определённого момента можно и не обращать внимания, есть ещё ряд характерных поломок этого узла. Их немного:

  • поломка крыльчатки – в этом случае насос просто перестаёт выполнять свою прямую функцию и охлаждающая жидкость по системе не циркулирует или циркулирует очень плохо. Последствия – постоянный перегрев двигателя автомобиля;
  • заклинивание подшипников вала – эта проблема может проявиться и как следствие подмыва подшипников охлаждающей жидкостью. Ничего хорошего она не сулит, помпа перестаёт качать антифриз, мотор перегревается;
  • разбалтывание крыльчатки на валу, ухудшение плотности крепления вала, люфт – изначально с такими проблемами можно мириться, но рано или поздно они выльются во что-то более серьёзное.

Можно ли отремонтировать помпу системы охлаждения? Конечно, но назвать такой ремонт целесообразным нельзя. Дело в том, что насос является так называемым расходником, и менять его рекомендуется каждые 60 тысяч километров пробега (или каждые 48 месяцев). Как правило, замена узла проходит вместе с заменой ремня ГРМ.

Таким образом, наши уважаемые читатели, мы с вами рассмотрели что такое автомобильная помпа, её устройство и особенности эксплуатациии. Мы рады, что вы изучаете устройство автомобилей вместе с нами, не комментировать и читать наш блог!

При работе ДВС выделяется большое количество тепловой энергии, которую необходимо постоянно отводить во избежание перегрева и выхода двигателя из строя. Даже незначительная неполадка в охлаждающей системе впоследствии может обернуться длительным дорогостоящим ремонтом. Водяная помпа – далеко не самая сложная деталь автомобиля, но именно она является центральным звеном системы охлаждения.

Водяной насос в автомобиле

Помпа охлаждения, водяная помпа, насос охлаждения – под этими терминами подразумевается одна и та же деталь – насос центробежного типа, обеспечивающий принудительную циркуляцию жидкости по охлаждающему контуру. Благодаря постоянной циркуляции происходит эффективное отведение тепла, предотвращающее перегрев двигателя внутреннего сгорания.

Конструкция помпы достаточно проста: внутри литого корпуса из алюминия или чугуна (реже – композиционных материалов) расположена крыльчатка, приводимая в движение вращающимся валом. Герметичность обеспечивают резиновый сальник и прокладка в зоне соединения помпы и рубашки. Охлаждающая жидкость подается по центральному каналу и, попадая на крыльчатку, отбрасывается за счет центробежной силы к стенкам корпуса. Через водораспределительную трубку антифриз попадает к патрубкам выпускных клапанов и далее – в рубашку охлаждения, где происходит нагрев. При достижении определенных значений температуры открывается термостат, и антифриз быстро охлаждается в радиаторе, после чего снова возвращается в помпу.

Выход из строя водяной помпы: факторы риска

Анализ причин выхода помпы из строя свидетельствует о том, что самым «слабым звеном» узла является сальник. Отсутствие должного внимания к его состоянию и несвоевременная замена могут привести к нарушению герметичности со всеми в прямом смысле слова вытекающими последствиями. Не стоит ориентироваться на гарантированный срок службы помпы: из-за неудовлетворительного состояния дорог, сложных погодных условий или сомнительного качества антифриза сальник может выйти из строя гораздо раньше. Опытные водители с профилактической целью регулярно контролируют качество и количество антифриза, что позволяет вовремя заметить неполадки и произвести замену.

Второй причиной является износ подшипников. Неисправность не останется незамеченной, поскольку при движении сразу проявляется характерный шум. Промедление с заменой чревато серьезными последствиями, вплоть до заклинивания вала.

Реже всего в насосе водяного охлаждения ломается крыльчатка. Причиной выхода из строя могут стать коррозионные процессы из-за некачественного антифриза, а для деталей из композиционных материалов – механические повреждения вследствие температурных перепадов.

Замена помпы: без права на ошибку

Охлаждающая помпа представляет собой единый конструкционный узел, безотказную работу которого обеспечивают точно подогнанные детали. Опытные автомеханики не рекомендуют производить частичный ремонт. При проявлении первых признаках неисправность лучше купить помпу в сборе и произвести полную замену. Демонтаж и установка помпы охлаждения – достаточно сложные операции. В сети можно найти немало видеоматериалов и мастер-классов из серии «своими руками», но при отсутствии практических навыков лучше обратиться на станцию технического обслуживания или автосервис.

Рекомендуемая периодичность замены охлаждающего насоса – каждые 80-90 тыс. км пробега, но на практике водяные помпы выдерживают такой срок только при эксплуатации автомобиля в идеальных условиях. Обычно срок службы помпы в 2 раза дольше, чем у ремня ГРМ, поэтому можно взять за правило менять помпу с каждой второй заменой ремня.

Необходимо срочно обратиться в автомастерскую, если замечен хотя бы один из следующих «симптомов»:

  • перегрев двигателя;
  • вытекание антифриза;
  • посторонний звук при движении;
  • появление характерного запаха смазки.

Своевременная диагностика и замена помпы поможет избежать выхода из строя и последующего дорогостоящего ремонта двигателя.

Где купить помпу?

Если нет желания тратить время и деньги на частую замену помпы, не стоит экономить на покупке водяного насоса. Практика показывает, что дешевые предложения выгодны далеко не всегда: в лучшем случае придется обращаться в сервис для внеплановой замены, в худшем – платить немалые деньги за ремонт двигателя.

При выборе помпы специалисты рекомендуют отдавать предпочтение продукции проверенных производителей. Возможно, цена охлаждающего насоса известного бренда покажется завышенной, но в дальнейшем она полностью себя оправдает. Качественные помпы обеспечивают низкий уровень шума и вибрации на протяжении всего срока эксплуатации, обладают повышенным ресурсом (до 200 тыс. км пробега), изготовлены из качественных материалов. Главное правило выбора охлаждающего насоса – соблюдать совместимость с конкретной маркой авто, а где купить помпу – в интернет-магазине, на рынке или у официального дилера – каждый автовладелец решает сам.

Мы работаем каждый день

В будни: с 9-00 до 18-00
Суббота: с 9-00 до 18-00
Воскресенье: Выходной

За что отвечает помпа

Помпа

Помпа, она же водяная помпа двигателя автомобиля — это насос создающий принудительную циркуляцию охлаждающей жидкости в системе охлаждения ДВС. Предназначается водяной насос для организации круговорота антифриза или другого состава в системе охлаждения. Неисправность помпы ведет к серьезному нарушению внутреннего теплового режима двигателя, из-за чего он довольно быстро «закипает».

Доводить до этого нельзя, поэтому чтобы удостовериться, что помпа двигателя работает, нужно периодически слушать и осматривать мотор, чтобы вовремя выполнить ремонт или замену вышедшего из строя узла.

Конструкция водяной помпы

Устройство помпы в большинстве автомобилей очень похожее, особенно это касается отечественных машин. И искать, где находится помпа, долго тоже не придется, так как она приводится в действие ремнем ГРМ и располагается возле радиатора.

Конструктивно помпа выглядит следующим образом: в крышке крепится вал. На него насажена крыльчатка, движение которой инициирует перемещение жидкости в системе. С другой стороны вала монтируется приводной шкив, и в некоторых моделях автомобилей еще вентилятором. Через ремень ГРМ и приводной шкив на вал передается энергия вращения двигателя, вал приводит в действие крыльчатку и вся система работает.

Между корпусом и крыльчаткой монтируется сальник, с износом которого связаны многие проблемы помп. Если этот сальник плохой, антифриз или тосол постепенно просачивается в полость к подшипникам, вымывая их смазку. Из-за этого подшипники начинают работать гораздо громче и быстро изнашиваются, что ведет к заклиниванию помпы.

Причины и последствия поломки водяной помпы

Поскольку помпа автомобильная является довольно простым механизмом, ломается она не слишком часто, особенно при нормальном уходе за двигателем. Тем не менее, даже самая надежная помпа может выйти из строя. Причин поломки может быть несколько, среди них:

  • износ узлов устройства, в том числе старение сальника;
  • изначально низкое качество помпы;
  • непрофессионально выполненный ремонт.

Если система остается герметичной, но помпа не инициирует циркуляцию по ней жидкости, это приводит к повышению температуры двигателя, о чем будут свидетельствовать показания датчика на приборной панели. Непродолжительная езда в таком режиме приведет к закипания радиатора или заклиниванию двигателя.

При возникновении течи помпы нужно как можно быстрее предпринять действия по её устранению.

Другим признаком поломки помпы является течь антифриза в зоне ее установки. Если протечка не очень сильна, это не так страшно, поскольку циркулирующая в системе жидкость все равно будет нормально выполнять свои функции, просто ее нужно регулярно доливать. Но все же при обнаружении такой поломки лучше всего сразу ее устранить, ведь течи имеют свойство увеличиваться в интенсивно эксплуатируемых двигателях.

Распространенные поломки водяной помпы

Видов поломок, по которым водяная помпа может выйти из строя, не очень много, что обусловлено относительной простотой ее конструкции. Наиболее распространенными являются:

Проблемы с крыльчаткой наиболее часто возникаемые, но клин подшипников тоже случается.

Ремонт водяной помпы

Помпа двигателя является ремонтопригодным разборным узлом. Здесь есть возможность заменить как весь механизм, так и отдельные его элементы, например подшипники. То, что помпа автомобильная не обязательно должна заменяться полностью, не может не радовать, поскольку это позволяет существенно удешевить ремонт. Правда, доступ к этому узлу для его частичной или полной разборки бывает затруднен. Так, в некоторых моделях автомобилей для этого необходимо частично откручивать подушки двигателя, работая снизу из смотровой ямы. Очень часто замена помпы производится при каждой второй замене ремня/цепи ГРМ, но при возникновении симптомов неисправности водяного насоса меняют и раньше, все зависит от качества детали и уровня выполнения работы при предыдущей смене привода ГРМ и самой детали.

Подпишись на наш канал в Я ндекс.Дзене

Еще больше полезных советов в удобном формате

Что такое помпа в автомобиле и зачем она нужна, возможные поломки и как их избежать

Добрый день, дорогие друзья. Помпа – водяной насос, установленный в автомобили, предназначенный для циркуляции охлаждающей жидкости в системе охлаждения двигателя. Она качает тосол или антифриз из радиатора (большой круг) и печки салонного отопителя, и закачивает его в рубашку охлаждения мотора. Таким образом, происходит циркуляция жидкости в системе.

Благодаря помпе жидкость «забирает» тепло от двигателя и отдает его сотам радиатора, охлаждаясь и возвращаясь вновь в ДВС, чтобы забрать очередную порцию тепла. Кроме этого, помпа прокачивает тосол через радиатор салонного отопителя, что дает Вам возможность прогревать салон автомобиля.

Где находится помпа

Ее местоположение не сложно определить. К ней подключены шланги системы охлаждения, вращение приводится с помощью ремня ГРМ или навесного оборудования. На разных моделях авто ее месторасположение может отличаться. Например, на ВАЗ 2101-07 она расположена в передней части моторного отсека, в районе термостата. Привод осуществляет ремнем от коленвала двигателя.

Принцип работы помпы автомобиля

Как говорилось выше – это водяной насос, центробежного действия. Он перекачивает рабочую жидкость из теплообменников (радиаторов) в камеру двигателя (рубашку охлаждения). Эта камера устроена так, что огибает все цилиндры, часть ее проходит через головку блока мотора. Жидкость, проходя по ней, отбирает часть тепла из камер сгорания, нагревается и за счет давления, создаваемого помпой, направляется в радиаторы.

Хочется заметить, что именно в такой последовательности циркулирует жидкость. Насос берет охлажденную жидкость и качает ее в двигатель, а не наоборот. Это обусловлено критериями надежности и долговечности. Если горячий тосол будет попадать в помпу, а затем качаться в теплообменники, то срок службы насоса будет минимален. Потому что в его конструкции есть сальники, подшипники, не рассчитанные на такие температуры. Об этом поговорим ниже.

Устройство водяного насоса автомобиля

Его конструкция максимально упрощена. Все простое – гениально и меньше ломается. Он состоит из вала, который держится в корпусе двумя подшипниками. На валу, внутри насоса, закреплена крыльчатка, которая заставляет циркулировать антифриз в системе. Она бывает из металла или пластика. Первая надежнее, вторая – дешевле.

Между рабочей камерой и подшипниками расположен сальник. Он предотвращает попадание ОЖ в подшипники и вытекания ее наружу под капот автомобиля. Корпус вылит из алюминия или чугуна, способного выдерживать перепады температур и вибрацию. Он состоит из двух частей. Между ними установлена резиновая прокладка. Благодаря такой конструкции можно осуществлять замену помпы без ее демонтажа из корпуса двигателя.

На противоположной стороне вала, снаружи, находится приводной шкив. Который прочно закреплен на валу и приводится во вращение ремнями навесного оборудования или ГРМ (все зависит от модели автомобиля). Например, на ВАЗ 2107 – ремень генератора, Опель Кадет – ГРМ. Поэтому, скорость циркуляции жидкости зависит от скорости вращения коленвала двигателя, чем выше обороты, тем быстрее движется ОЖ по системе.

Слабым звеном в конструкции являются сальник и подшипник. Первый начинает пропускать тосол, который, попадая в рабочую полость подшипников, вымывает смазку из них. Как следствие – повышенный шум, а потом заклинивание помпы. Бывают случаи, когда подшипники начинают «выть» раньше, чем изнашивается сальник. Это невысокое качество деталей дает о себе знать. Ресурс механизма от 60 до 100 тыс. км. В некоторых случая он требует замены и на 30 тыс., а некоторые экземпляры выхаживали 160 тыс. км.

Признаки поломки помпы

  1. Лужа антифриза под машиной в районе насоса. Это связано с механическим износом сальника и протечкой охлаждающей жидкости через дренажное отверстие в корпусе насоса.
  2. Повышенный шум, гул при работе двигателя, исходящий от помпы – износ подшипников.
  3. Двигатель перегревается или печка салона дует холодным воздухом. Есть две причины – воздушная пробка в системе, как от нее избавится, я рассказывал в статье про смену охлаждающей жидкости или поломка крыльчатки помпы. Она может рассыпаться от старости или грязи в системе охлаждения.
  4. Повышенный люфт шкива. Его можно ощутить руками, если пошатать за него в разные стороны. В исправной помпе его не должно быть. Люфтить начинает из-за поломки подшипников, когда его обойма ломается и шарики высыпаются в полость подшипника. Как следствие – скорое заклинивание помпы.

Причины выхода из строя автомобильной помпы

Главная причина – механический износ деталей . Часто «вырабатывается» сальник вала. Антифриз из рабочей полости просачивается в места нахождения подшипников. Со временем смазка из них вымывается, они начинают «гудеть» и заклинивать.

Примеси, грязь в системе охлаждения приводят к разрушению и заклиниванию крыльчатки. Поэтому нужно следить за качеством охлаждающей жидкости и вовремя промывать систему охлаждения.

Использование воды в качестве хладагента или некачественного тосола приводит к образованию коррозии в системе. Это тоже прямой путь к клину насоса. По поводу качества жидкости. Она тоже имеет свой срок службы. Со временем ее состав меняется, вымываются специальные присадки. Вследствие чего в ней могут образовываться пузырьки воздуха, который лопаются, и образовывать в металлических частях помпы круглые отверстия.

Кроме негерметичного сальника подшипники могут прийти в негодность из-за повышенного натяга ремня привода шкива. Если его перетянуть, то подшипники разрушаться, появится значительный люфт. Как следствие – заклинивание водяного насоса авто.

Качество литья корпуса помпы или его элементов . В результате могут образовываться трещины, сальник течет через 5-10 тыс. км, подшипник может «загудеть» еще раньше. Ремонт помпы не даст гарантии ее долгой и надежной работы. Рекомендуется не заниматься ее ремонтом, а покупать качественную деталь проверенных производителей.

Устройство и принцип работы насоса системы охлаждения двигателя (помпы)

Для обеспечения циркуляции жидкости в системе охлаждения двигателя автомобиля применяется центробежный насос, или помпа. Он может иметь механический или электрический тип привода. Если помпа неисправна, вся система охлаждения будет находиться в нерабочем состоянии, что приведет к перегреву двигателя.

Устройство насоса системы охлаждения

Конструктивно помпа представляет собой классический центробежный насос для перекачки воды и неагрессивных жидкостей. Она состоит из следующих деталей:

  • Герметичный корпус. Он имеет сложную форму и чаще всего изготавливается из алюминиевых сплавов. Для подключения в систему в корпусе выполнены два патрубка — всасывающий и напорный. Первый подключается к магистрали, идущей от радиатора, а второй к магистрали рубашки охлаждения двигателя.
  • Вал — осуществляет передачу вращения от привода к крыльчатке помпы.
  • Крыльчатка, или рабочее колесо. Имеет лопасти специальной формы, с помощью которых осуществляет нагнетание охлаждающей жидкости в систему.
  • Приводной шкив.
  • Уплотнители (сальники) — предотвращает утечку охлаждающей жидкости в местах крепления насоса к магистралям.
  • Подшипники.

Располагается помпа в системе охлаждения двигателя между радиатором и рубашкой. Чаще всего — это передняя часть мотора.

Изначально в качестве охлаждающей жидкости применялась просто очищенная вода, а потому такой насос нередко называют помпа водяного охлаждения двигателя. Сейчас этот термин неактуален, поскольку для охлаждения применяют не чистую воду, а водные растворы с ингибиторами коррозии (в теплом климате) и антифризы (в зимнее время), в состав которых также входит этиленгликоль.

Принцип работы помпы охлаждения двигателя

Главной задачей насоса системы охлаждения является создание избыточного давления для обеспечения принудительной циркуляции жидкости в контурах. С практической стороны это ускоряет процесс теплообмена между узлами двигателя и охлаждающей жидкостью.

При запуске двигателя автомобиля привод насоса через ременную передачу и вал передает вращательное движение рабочему колесу. В этот момент на входе (всасывающем патрубке) создается разрежение, способствующее всасыванию жидкости в помпу. Жидкость при этом находится в охлажденном состоянии, так как поступает из радиатора системы охлаждения.

Попадая в центральную часть помпы, жидкость движется по лопастям крыльчатки и под действием центробежной силы нагнетается через выходной патрубок в рубашку системы охлаждения двигателя (к головке блока цилиндров). Под действием высокого давления охлаждающая жидкость проходит по контуру через основные узлы и выполняет отвод тепла. После этого она вновь возвращается к радиатору, где остужается и всасывается насосом для нового цикла охлаждения.

Виды насосов охлаждающей системы

Используемые в современном автомобилестроении насосы охлаждающей жидкости не имеют принципиальных конструктивных отличий. Но они могут разделяться в зависимости от типа привода, назначения и конструкции корпуса. Привод насоса может осуществляться двумя способами:

  • Механический — вал помпы соединен при помощи ременной передачи с коленвалом или распредвалом мотора. В этом случае она приводится в движение синхронно с запуском двигателя.
  • Электрический — в такой схеме вал насоса приводится в движение дополнительным электродвигателем, работа которого контролируется электронным блоком управления двигателя (ЭБУ).

По назначению помпа автомобильного двигателя может быть:

  • Основной. Такой насос выполняет непосредственную перекачку жидкости в системе охлаждения.
  • Дополнительной. Устанавливается не на всех автомобилях и может предназначаться для вспомогательного охлаждения в регионах с очень жарким климатом, снижения температуры отработавших газов, охлаждения турбонагнетателя в моторах с турбонаддувом, дополнительного охлаждения двигателя после остановки. В отличие от основного насоса, дополнительный приводится в работу индивидуальным электродвигателем.

Сроки эксплуатации насоса для перекачки охлаждающей жидкости зависят от типа конструкции его корпуса. По этому параметру различают:

  • Разборные. Этот тип применяется в старых и отечественных автомобилях. Такая конструкция позволяет выполнить ремонт и промывку помпы.
  • Неразборные. В большинстве стран помпа двигателя считается недорогой расходной запчастью, а потому многие производители перешли к изготовлению неразборных насосов. Их необходимо полностью заменять каждые 60 тысяч километров пробега автомобиля. При установке нового насоса обязательно выполняется замена приводного ремня.

Помимо описанных выше конструкций, также существуют отключаемые насосы. Они позволяют отключать поступление охлаждающей жидкости, пока она не прогреется до температуры 30°С. Это позволяет обеспечить более быстрый прогрев двигателя и улучшить показатели расхода топлива.

Возможные неисправности помпы системы охлаждения

Поломка насоса охлаждающей жидкости может привести к остановке всей системы. Это может серьезно отразиться на состоянии двигателя. Наиболее частыми проблемами помпы являются:

  • Износ уплотнителя (сальника). В этом случае происходит утечка охлаждающей жидкости.
  • Поломка рабочего колеса. При разрушении крыльчатки нагнетание жидкости становится хуже (падает давление) или вовсе прекращается.
  • Заклинивание подшипников. Если смазка насоса ухудшается, что также может быть следствием подтекания жидкости охлаждения, помпа начинает работать с перебоями.
  • Увеличение люфта между крыльчаткой и валом насоса. В процессе работы рабочее колесо, закрепленное на валу, может разболтаться, что приводит к нестабильной работе помпы и другим поломкам.
  • Химическая коррозия. Чаще всего эта проблема затрагивает рабочее колесо насоса и возникает, если используются жидкости низкого качества.
  • Разрушение под действием кавитации. Пузырьки воздуха, которые могут возникать при работе насоса, интенсивно разрушают его изнутри, что приводит к ломкости деталей и их поражению коррозией.
  • Загрязнение системы. Химические отложения и просто грязь, попадающая внутрь насоса, со временем образуют твердый налет на его деталях, что затрудняет вращение рабочего колеса и прохождение жидкости.
  • Разрушение подшипников. В этом случае при работе насоса появляется характерный свист. Заменить такие подшипники сложно, а потому в этом случае насос просто меняют.
  • Обрыв ремня привода. При использовании некачественного ремня или несвоевременной его замене может произойти разрыв или проскальзывание.

При остановке работы системы охлаждения двигателя всего на 5-6 минут может произойти перегрев двигателя. Действие высоких температур нарушает геометрию головки блока цилиндров и ведет к повреждениям кривошипно-шатунного механизма. Не стоит игнорировать мелкие неисправности системы охлаждения, так как в дальнейшем они могут привести к серьезному ремонту.

Это видео недоступно.

Очередь просмотра

Очередь

  • Удалить все
  • Отключить

YouTube Premium

Для чего в автомобиле нужна водяная помпа

Хотите сохраните это видео?

Пожаловаться на видео?

Выполните вход, чтобы сообщить о неприемлемом контенте.

Понравилось видео?

Не понравилось?

Текст видео

Зачем автомобилю водяной насос?
Когда менять водяную помпу?

Любая циркуляция жидкости в автомобиле осуществляется принудительно.

Помпа или насос служит для обеспечения работы охлаждающей системы.

Помпой автомобилисты называют насос, работающий совместно с двигателем.

Данное устройство предназначается для того, чтобы организовать круговорот антифриза или иной охладительной жидкости в системе охлаждения.

Местоположение помпы не нужно долго искать, так как она приводится в действие посредством ремня ГРМ или гидрораспределительного ремня и располагается непосредственно возле устройства радиатора.

Конструктивно помпа представляет собой корпус, в котором расположена крыльчатка, закрепленная на валу.

Вращаясь, крыльчатка перемещает жидкость в системе, заставляя ее постоянно циркулировать и таким образом охлаждать двигатель.

Вал устанавливается в паре подшипников. Вращение вала осуществляется передачей крутящего момента через ремень от двигателя.

Неисправность помпы ведет к перегреву мотора и дальнейшему его выходу из строя.

Из-за того, что устройство автомобильной помпы является достаточно простым механизмом, ее поломка происходит довольно редко.

Тем не менее, даже самая надежная помпа иногда может выходить из строя.

К счастью, помпа чаще всего предупреждает о своей “кончине” заранее, и у водителя есть время, чтобы отремонтировать ее или купить новую.

Существует несколько признаков поломки водяного насоса:

– индикатор температуры охлаждающей жидкости, находится в красном секторе;

– в салоне ощущается запах охлаждающей жидкости;

– появляются посторонние шумы, чаще всего свист, свидетельствующий о необходимости ремонта или замены помпы;

– под машиной видны капли охлаждающей жидкости, наличие течи можно определить посредством листа бумаги, расстеленного под двигателем и оставленного на ночь.

Небольшая протечка для автомобиля не представляет серьезной опасности и допускает дальнейшую эксплуатацию автомобиля. Жидкость будет циркулировать в системе охлаждения, как и обычно.

Ваша задача в этой ситуации – постоянно контролировать уровень антифриза в радиаторе и своевременно его доливать.

Непосредственно между крыльчаткой и корпусом монтируется сальник, из-за износа которого и возникает множество проблем с помпами.

Тосол или антифриз постепенно просачивается в полость к подшипникам, вследствие чего происходит вымывание их смазки.

Хорошие мастера знают, что для подшипника это очень плохо, практически губительно.

Именно из-за этого подшипники будут работать намного громче, а их изнашивание будет происходить на порядок быстрее, что будет вести к заклиниванию помпы.

Правда, процесс этот достаточно долгий и может растянуться на несколько тысяч километров.

Бывает так, что ломается крыльчатка помпы или крыльчатка плохо держится на валу, расшаталось ее крепление, водяная помпа из-за постоянного дрожания двигателя неплотно прилегает в месте крепления, и охлаждающая жидкость сочится наружу, также может быть производственный брак, вследствие которого помпа изначально была низкого качества.

Не стоит дожидаться полной неработоспособности помпы, следует незамедлительно произвести её замену для того, чтобы избежать больших неприятностей.

Достаточно будет проехать на автомобиле с неработоспособной помпой совсем немного для того, чтобы охлаждающая жидкость в радиаторе закипела.

Об этом вы узнаете не только по поднимающейся стрелке, но и по появлению испарений из-под капота.

Такую ситуацию допускать никак нельзя, иначе двигатель может заклинить. А это уже одна из серьезнейших поломок, которую будет непросто исправить.

Водяная помпа двигателя представляет собой разборный механизм, который подлежит ремонту. При ее неисправности вы можете купить новую или попробовать устранить причину поломки, заменив вышедшую из строя деталь.

Но к сожалению, в большинстве моделей автомобилей водяная помпа расположена в плохо доступном месте, поэтому ее ремонт может быть реальной проблемой.

Признаки неработающей помпы | Assa59.ru

Blog-Mycar.ru

Все о ремонте, тюнинге, устройстве, эксплуатации автомобиля, советы, автоновости, автофакты

Признаки неисправности помпы авто

Чтобы определить признаки неисправности помпы авто необходимо представлять что она собой представляет и как работает. На самом деле все довольно просто. Для охлаждения двигателя в жаркие летние дни нужно чтобы поток теплоносителя постоянно циркулировал в системе, отдавая излишнее тепло радиатору. За поддержание постоянного потока охлаждающей жидкости в автомобиле как раз отвечает помпа или водяной насос. Когда она работает исправно, в системе охлаждения поддерживается оптимальная температура, и машина работает без перебоев и поломок. Когда же водяная помпа для автомобиля изнашивается или выходит из строя — это в некоторых ситуациях приводит к серьезным неисправностям двигателя.

Признаки неисправности помпы авто

Когда изобрели водяное охлаждение для двигателя, то многие специалисты полагали, что циркуляция охлаждающей жидкости для отвода тепла от блока цилиндров также важна, как и моторное масло для мотора. Пока что принципиально новая система охлаждения не разработана, однако постоянно ведутся работы по увеличению эффективности существующей охлаждающей системы.

В настоящий момент водяная помпа – это ключ к работе всей системы. Он представляет собой крыльчатку и обычно спрятан под защитной крышкой ремня ГРМ сбоку двигателя. Помпа включается в работу через ременной привод от коленвала двигателя. Лопасти внутри помпы нагнетают охлаждающую жидкость в каналы блока двигателя, а затем она поступает к радиатору охлаждения, который снижает ее температуру.

Водяные помпы обычно обладают повышенным ресурсом работы и не ломаются резко. Сначала появятся несколько признаков, указывающих на их износ, так что необходимо заранее обратить внимание эти особенности. Вот некоторые признаки износа помпы.

Утечка охлаждающей жидкости

В конструкции водяного насоса используются уплотнительные прокладки, благодаря которым сохраняется герметичность системы и поддерживается определенное давление. Со временем эти прокладки изнашиваются, высыхают, трескаются или ломаются. Когда это происходит, под автомобилем в районе расположения двигателя будут видны подтеки охлаждающей жидкости на дороге. Чаще такие неисправности водяного насоса автомобиля могут быть устранены и узел восстановлен прежде, чем он окончательно выйдет из строя.

Шкив водяного насоса расшатался и издает ноющий звук

Время от времени слышится высоко тональный звук, который исходит из подкапотного пространства. Обычно это вызвано ослабшим или не отрегулированным ремнем привода, который создает гудение или звенящие звуки. Ослабление ремня привода может быть вызвано изношенными подшипниками помпы. Как только подшипники проваливаются внутрь, то помпа уже не подлежит ремонту и его надо менять.

Совет. Если вы заметили громкий ноющий звук из подкапотного пространства, который увеличивается, когда вы ускоряетесь, как можно быстрее займитесь ремонтом помпы.

Причины прогорания прокладки головки блока цилиндров

Когда помпа полностью выйдет из строя он не сможет нагнетать поток охлаждающей жидкости к блоку цилиндров. Это приведет к перегреву двигателя и дополнительному повреждению, трещинам головки блока, прогоранию прокладки головки блока или поршней. Если вы заметили, что температура двигателя регулярно превышает оптимальное значение, то вероятнее всего, проблема связана с водяным насосом.

Идет пар из радиатора

Когда вы заметили пар из-под капота авто, то немедленно остановитесь – это признак перегрева двигателя. Как говорилось выше, в двигателе поддерживается постоянная температура, когда водяная помпа работает без сбоев и обеспечивается равномерная циркуляция жидкости через радиатор. Когда температура резко возрастает, то жидкость превращается в пар, который выходит из клапана расширительного бачка или радиатора. В этом случае на машине передвигаться нельзя и лучше вызвать эвакуатор. Это сэкономит деньги в краткосрочной и долгосрочной перспективе и обойдется дешевле, чем замена двигателя целиком.

Как проверить работу помпы

Во время езды на автомобиле появился посторонний шум? Потекла охлаждающая жидкость? Пора заглянуть под капот и проверить состояние насоса системы охлаждения. Где его найти, и какие неисправности характерны для этой детали?

Назначение и принцип работы помпы системы охладжения

Насос системы охлаждения (помпа) выполняет важную функцию – охлаждение двигателя машины. Во время работы транспортного средства силовой агрегат нагревается, и чтобы не произошло перегрева, помпа под воздействием ремня ГРМ производит принудительную циркуляцию охлаждающей жидкости в системе. ОЖ поступает к водяному насосу из нижнего бачка радиатора. Жидкость, выходящая из помпы, проходит через блок цилиндров и головки цилиндра, после в радиатор и в итоге обратно в помпу.
Без системы охлаждения двигателя невозможна его нормальная и бесперебойная работа.

Неисправность насоса системы охлаждения ведет к закипанию ОЖ и соответственно выходу двигателя из строя. Неисправная помпа может стать причиной необратимых повреждений двигателя.

Общая конструкция помпы

Помпа представляет собой алюминиевый или стальной корпус, внутри которого имеется рабочее колесо (крыльчатка), размещенное на валу со шкивом. Внутри конструкции располагаются специальные каналы, предназначенные для отвода и подвода ОЖ. На приводном валу находится крыльчатка, которая вращаясь, приводит ОЖ в движение. На другом конце вала располагается шкив.

Корпус и крыльчатку изготавливают методом литья магниевых или алюминиевых сплавов, бывают пластиковые крыльчатки. Насос системы охлаждения располагается в передней части блока цилиндров.

Признаки неисправности помпы системы охлаждения

Понять, что помпа отработала свой ресурс можно по следующим признакам:

  • в салоне автомобиля отчетливо ощущается запах охлаждающей жидкости;
  • под транспортным средством видны капли охлаждающей жидкости;
  • появились посторонние шумы (стуки или хрусты) при езде на машине;
  • показания датчика, определяющего температуру ОЖ, находятся в красном секторе;
  • опустился уровень охлаждающей жидкости в расширительном бачке.

Последствия использования дешевых изделий

При покупке дешевого насоса или подделки известной марки высока вероятность его быстрого износа. При производстве таких деталей используются некачественные материалы, что и приводит к поломкам – протечке, заклиниванию подшипников. Такой насос может серьезно навредить автомобилю. В лучшем случае после некачественного насоса автолюбителю придется приобрести новый насос, в худшем – ему грозит дорогостоящий ремонт двигателя. При заклинивании вытечет ОЖ, порвется ремень ГРМ, погнет клапана и продолжать движение будет невозможно, значит, автомобиль придется эвакуировать.

Замена насоса системы охлаждения

Описанный метод позволяет произвести замену помпы на всех моделях ВАЗ: 2101, 2102, 2103, 2104, 2105, 2106, 2107, 2108, 2109, 21099, 2110, 2111, 2112, 2113, 2114, Нива, Лада Приора, Калина, Гранта, Веста и большинства иномарок.

Для осуществления замены насоса системы охлаждения понадобится подготовить инструменты: головка на 10, бита с шестью углами, маленькая трещотка, кусачки, отвертка.

  • Загоняем транспортное средство на эстакаду и освобождаем доступ к двигателю. Для этого откручиваем защиту картера и двигателя. Поднимаем крышку капота и с левой стороны отвинчиваем заглушку, чтобы слить тосол или антифриз.

Если планируется обратно залить эту же охлаждающую жидкость, тогда нужно подставить емкость (например, ведро) под радиатор.

  • Находим болт на лицевой части блока цилиндров и откручиваем его. Из двигателя также сливаем охлаждающую жидкость.
  • Удаляем с двигателя пластиковую накладку. Для этого нужно потянуть ее немного вверх.
  • Отворачиваем болты, держащие переднюю крышку ремня ГРМ с помощью трещотки соединенной с битой.
  • По треугольным выемкам на задней крышке газораспределительного ремня выставляем верхние шкивы.

  • Откручиваем два ролика натяжителя ремня ГРМ и извлекаем его вместе с шестерней.

  • Теперь вытаскиваем два верхних зубчатых шкива. Для этого их понадобится открутить.
  • На задней крышке привода газораспределительного ремня с помощью головки на 10 откручиваем шесть болтов и вытаскиваем ее.
  • Откручиваем трещоткой три винта крепления насоса.

  • Извлекаем помпу. Для этого поддеваем отверткой за отлив на корпусе и вытягиваем ее.

  • Сухой тряпкой очищаем посадочное место насоса от остатков старой прокладки и грязи.
  • На новом насосе небольшим количеством герметика смазываем место посадки прокладки.
  • Надеваем на помпу прокладку, и тоже смазываем.
  • Устанавливаем помпу на двигатель таким образом, чтобы отверстие в ее корпусе было направлено вниз в ближайшее отверстие к фильтру.
  • Прикручиваем болты, держащие насос.

Замену помпы можно считать завершенной. Далее в обратной последовательности собираем все детали и заполняем расширительный бак охлаждающей жидкостью.

В случае если установка или замена насоса системы охлаждения была выполнена неверно, при езде по неровной дороге будут слышны стуки, и в салоне появится запах охлаждающей жидкости.

Возможные неисправности помпы системы охлаждения

В случае обнаружения неисправности рекомендуется в кратчайшие сроки произвести замену насоса системы охлаждения, в противном случае его поломка может привести к перегреву двигателя, обрыву ремня ГРМ и поломке клапанов.

Сбои в работе подшипников – это основная причина поломки насоса системы охлаждения. Условно можно выделить две основные неисправности этих деталей.

  • Люфт подшипника, который может стать причиной не только нарушений в работе системы охлаждения двигателя, но и обрыва ремня ГРМ. Следы охлаждающей жидкости на помпе свидетельствуют об этой неисправности.
  • Заклинивание подшипника происходит в результате нехватки смазки. Он перестает крутиться, что становится причиной обрыва газораспределительного ремня. Причиной заклинивания также может быть попадание мусора в систему охлаждения, в этом случае необходимо произвести очистку системы.

Причинами поломки помпы может стать разрушение:

  • уплотнений и прокладок;
  • корпуса;
  • крыльчатки.

Как правило, причиной этих разрушений становится желание водителей сэкономить на охлаждающей жидкости. Дешевая жидкость может замерзать при минусовых температурах, провоцировать появление коррозии и т. п. При выборе жидкости стоит отдать предпочтение более дорогими известным маркам, что поможет избежать поломок насоса.

Частичный ремонт подшипников вала и замена уплотнений теоретически возможны, но, как правило, автолюбители при выявлении неисправностей сразу меняют насос. Частичный ремонт имеет определенные сложности, а итоговая цена отдельных деталей будет практически равна стоимости насоса в сборе.

Популярные производители и модели

Корейская марка Kortex известна на рынке с 1997 года. Сегодня она занимает ведущие позиции в поставке автозапчастей для транспортных средств азиатского производства. Автомобильные запчасти Kortex соответствуют стандартам и техническим нормам. Детали этой фирмы пользуются популярностью и в России благодаря достойному качеству и адекватной цене.

  • Насос KPW0010 подходит для Chevrolet AveoT200, Lacetti, AveoT250.
  • Насос KPW0008 подходит для Daewoo Nexia.
  • Насос KPW0022 подходит для Hyundai Sonata, Santa Fe.

История компании General Motors началась в 1897 году. Сегодня концерн GM выходит в лидеры по производству и мировым продажам автомобилей и запчастей. Все детали изготавливаются с учетом марки модели автомобиля и соответствуют мировым стандартам.

  • Помпа 1,8 (96499089) подходит для Chevrolet, Motors, Rezzo.
  • Помпа 1334135 подходит для Opel Corsa C, Astra H.

ТЗА функционирует с 1995 года и занимается поставкой компонентов и автозапчастей для автомобилей марки ВАЗ. Вся продукция сертифицирована, защищена средствами защиты от подделок и имеет фирменную упаковку.

  • Насос водяной 2101-130711 подходит для ВАЗ 2101-2107, 2121.
  • Насос 2109-1307010 подходит для ВАЗ 2108-2110
  • Насос 21114-1307010-20 подходит для ВАЗ 2108-09.

Статьи

  • 39572 просмотра
  • 19 комментариев

Водяная помпа может стать причиной перегрева двигателя автомобиля и может стать причиной ее повреждения. Если поврежден приводной ремень или его крыльчатка, то чаще всего неисправен водяной насос, и требуется его осмотр и возможный ремонт.2

Если в автомобиле включить «печку» в салоне авто на всю мощность, то при движении стрелки индикатора температуры будут выше средней отметки. Если вам надо остановить автомобиль, то заранее выберите место и при необходимости перестройтесь. Затем заглушите двигатель и проверьте состояние радиатора. Если его температура значительно выше средней, то наверняка, водяной насос вашей машины окончательно вышел из строя. Чтобы быть уверенным в своей правоте, то потрогайте приводной ремень помпы. Если его температура значительно выше обычной, то можно говорить о том, что ремень помпы неисправен.

Если вы заметили посторонний шум, и почувствовали запах смазочной и охлаждающей жидкости из-под капота автомобиля, то необходимо констатировать, то у вас сломался водяной насос. Кроме того, при поломке водяной помпы можно заметить неполную циркуляцию охлаждающей жидкости. Для быстрой диагностики мы советуем включить двигатель автомобиля на холостые обороты.

Для того, чтобы отпустить верхний шланг радиатора, то вам необходимо просто зажать его пальцем. Если водяная помпа работает, то вы почувствуете небольшой толчок охлаждающей жидкости.

Кроме того, постарайтесь определить на ощупь люфт подшипника помпы. Возьмитесь за вентилятор и слегка покачайте вал. Большой люфт говорит о наличии повреждения подшипников.

Есть более простой способ диагностики неисправности водяной помпы, используя обычную белую бумагу. Разложите под автомобилем листы и оставьте их на некоторое время, например на ночь. С утра обратите внимание на состояние бумаги – если она мокрая, то это служит доказательством протечки насоса. Если пятна на листах зеленоватого оттенка, то произошла утечка охлаждающей жидкости.

Своевременно меняйте помпу автомобиля – примерно через 100 000 километров.

И, наконец, о важном – описание замены помпы ваз:

1. Для начала откручиваем сливную пробку на блоке двигателя и готовим заранее подготовленную емкость, чтобы слить жидкость. Если же, вам потребуется замена охлаждающей жидкости, то вам потребуется сливная пробка на радиаторе охлаждения, которую следует открутить и слить жидкость.

2. Снимаем автомобильный аккумулятор (АКБ) и разъединяем колодку электро-вентилятора. Откручиваем 3 болта крепления кожуха вентилятора к радиатору и извлекаем его.

3. Ключом на 17 отпускаем (не откручивая полностью) гайку натяжки ремня генератора, ослабляем натяжку и снимаем сам ремень. После этого, так же ключом на 17 откручиваем гайку крепежа скобы к помпе и отводим скобу в сторону.

4. Придерживая, отверткой, шкив помпы отвинчиваем 3 крепежных болта. Снимаем шкив.

5. Наконец то остается открутить 4 гайки крепежа помпы к двигателю и демонтировать помпу. После этого, зачистить место посадки помпы от следов старой прокладки и грязи, установить новую прокладку и установить новую помпу на автомобиль. Пользуйтесь герметиками.

В магазинах «АВТОмаркет Интерком» можно заказать помпу для любого автомобиля ваз или иномарку.

Неисправности помпы

Неисправности помпы проявляются в значительном люфте ее вала, нарушении герметичности уплотнения, износе (появлении коррозии или разломе) крыльчатки. Все перечисленные дефекты приводят к тому, что водяной насос автомобиля работает не должным образом, из-за чего в системе охлаждения двигателя не поддерживается необходимое давление, что, в свою очередь, приводит к повышению температуры охлаждающей жидкости вплоть до ее закипания. Приходится покупать новую помпу и устанавливать ее вместо старой.

Признаки неисправности помпы

Существует всего шесть основных признаков «умирающей» помпы, по которым можно судить о том, что насос частично (и даже полностью) вышел из строя и подлежит замене. Так, к таким симптомам относится:

  • Посторонние шумы. Зачастую частично неисправная водяная помпа системы охлаждения при работе издает «нездоровые» шумящие или «подвывающие» звуки. Они могут быть вызваны значительным износом подшипника и/или тем, что крыльчатка помпы при вращении касается ее корпуса. Это также возникает по причине частичного выхода подшипника из строя.
  • Люфт шкива помпы. Он возникает по причине повреждения или естественного износа его подшипника вращения. Диагностику в данном случае можно провести достаточно просто, достаточно пошатать вал помпы из стороны в сторону пальцами. Есть люфт имеет место, то он будет хорошо ощущаться тактильно. Обратите внимание, что образование люфта приближает момент, когда сальник помпы будет негерметичен и будет пропускать охлаждающую жидкость.
  • Появление течи. Так, антифриз может подтекать как из уплотнителя, так и из других мест, например, корпуса и крыльчатки. Тосол или антифриз в данном случае можно увидеть на корпусе помпы, месте ее крепления, некоторых элементах подкапотного пространства под помпой (зависит от конструкции конкретного автомобиля) или же просто на земле под автомобилем.
  • Появление запаха антифриза. В частности, его можно будет ощутить не только в подкапотном пространстве (при открытии капота), но и в салоне, поскольку его испарения будут попадать в салон через систему вентиляции. Тосол имеет сладковатый запах, иногда с привкусом спирта.
  • Несоосность крепления. В частности, в отношении к шестерням привода ГРМ, а также натяжным роликам. Это можно увидеть визуально, либо приложив какой-либо ровный предмет (например, линейку) в одной плоскости с роликами и помпой. В этом случае нередко возникает ситуация, когда подъедает ремень.
  • Значительное повышение температуры двигателя. И не только двигателя, но и охлаждающей жидкости, о чем будет свидетельствовать сигнальная лампа на приборной панели. В критических случаях возникает банальное закипание тосола, и из радиатора будет идти пар. Однако такая является критичной и при ее возникновении пользоваться автомобилем запрещено!

При появлении хотя бы одного из перечисленных выше признаков неисправности водяной помпы автомобиля необходимо выполнить дополнительную диагностику, как помпы, так и неисправностей системы охлаждения. Когда проявились первые признаки умирающей помпы ехать еще можно, но как долго, неизвестно, и лучше не испытывать судьбу. В одних случаях машина может протянуть 500. 1000 километров, а в других не проедет и сотни. В любом случае с системой охлаждения шутки плохи, и нужно выполнять ее диагностику и ремонт вовремя и в полном объеме.

В зависимости от марки и качества водяной помпы системы охлаждения регламентом предписывается ее замена приблизительно через 60 тысяч километров пробега (зависит в каждом конкретном случае, и предписывается автопроизводителем, соответствующую информацию можно найти в мануале).

Причины неисправности помпы

Какие возможные причины неисправности помпы? Этот вопрос интересует не только начинающих, но и достаточно опытных автолюбителей. Далее приведены основные причины, от наиболее распространенных и часто встречающихся до «экзотических». Среди них:

  • Неисправный подшипник. Этот узел изнашивается по естественным причинам по мере его эксплуатации. Однако ускоренный износ возможен вследствие дополнительных негативных факторов. Таковым, например, является неправильная (более сильная) натяжка ремня, из-за чего на подшипник оказывается большее усилие. Другая причина значительного износа — попадание антифриза на трущиеся пары вследствие разгерметизации прокладки и подтеков охлаждающей жидкости.
  • Нарушение уплотнения. У помпы есть два уплотнения — сальник и резиновая манжета. И именно сальник (прокладка) чаще всего выходит из строя. Происходит это по двум причинам — естественный износ (дубление резины) и использование некачественного дешевого антифриза без соответствующих щадящих присадок, а то и вовсе воды. В долгосрочной перспективе эти жидкости «съедают» прокладку, она начинает подтекать, что приводит, во-первых, к снижению уровня охлаждающей жидкости в системе, а во-вторых, попаданию антифриза или воды в подшипник, вымывания из него смазки и описанным выше неприятностям.
  • Несоосность крепления. Это возможно по двум причинам — неправильная установка и заводской брак. Однако неправильная установка — явление достаточно редкое, поскольку на корпусе имеются уже готовые крепежные отверстия, мимо которых очень трудно промахнуться. Другая причина — неравномерное прилегание к блоку двигателя (вследствие грязных, ржавых или искривленных привалочных поверхностей). А вот, к сожалению, заводской брак, особенно у бюджетных помп, — явление не такое уж и редкое. Нарушение соосности приводит к тому, что шкив вращается с перекосом, что, в свою очередь, приводит к ускоренному износу нагруженной части ремня, а также износу подшипника. В самых критических случаях возможен обрыв ремня и возникновение столкновения клапанов и поршней. Иногда несоосность возникает в результате попадания машины в ДТП, в результате которого произошло смещение отдельных элементов кузова и/или двигателя.

Зачастую снижение производительности помпы, и соответственно, снижение давления в системе охлаждения наблюдается после применения герметика, используемого для устранения течи радиатора. Так, его состав смешивается с охлаждающей жидкостью и забивает соты (каналы) радиатора, а также налипает на крыльчатку помпы. Если такая ситуация случилась, то необходимо сливать антифриз, демонтировать помпу, после чего выполнять промывку системы охлаждения при помощи специальных или подручных средств.

Как определить неисправность помпы

Проверить водяную помпу двигателя автомобиля на наличие неисправности достаточно просто. Самый простой метод — попробовать на ощупь, если на валу насоса люфт или его нет. Для этого достаточно взяться пальцами за вал помпы и подергать его из стороны в сторону в направлении, перпендикулярном самому валу (то есть, поперек). Если подшипник в порядке, то люфта быть не должно. Если же даже небольшой люфт имеет место, значит, помпу нужно менять.

Однако более тщательная проверка без снятия помпы выполняется по следующему алгоритму:

  • Прогреть двигатель до рабочей температуры. То есть, чтобы температура охлаждающей жидкости была в районе +90°С.
  • При работающем двигателе рукой пережать толстый патрубок с охлаждающей жидкостью, который идет от радиатора.
  • Если помпа исправна, то в нем должно ощущаться давление. Если же давления нет или оно пульсирующее, то это означает, что помпа частично или полностью вышла из строя. Скорее всего провернулась крыльчатка помпы.

Также чтобы проверить помпу, необходимо визуально осмотреть ее посадочное место. Для этого нужно демонтировать защитный кожух газораспределительного механизма для того, чтобы получить доступ непосредственно к насосу (у различных автомобилей конструкция отличается, поэтому, возможно, кожуха не будет или его не нужно демонтировать). Далее внимательно осмотреть корпус помпы, ее уплотнение и посадочное место.

Обязательно нужно обратить внимание на наличие подтеков антифриза из-под уплотнительной прокладки. Причем, не обязательно, она должна быть влажной в момент проверки. Если посадочное место и уплотнение сухое, но в районе крепления имеются засохшие (причем свежие) следы подтеков, то это означает, что при высоком давлении уплотнение все же пропускает охлаждающую жидкость. Следы подтеков имеют рыжеватый или коричнево-бурый цвет, в некоторых случаях серый (это зависит от того, какого цвета был залит антифриз в систему охлаждения).

Перед тем как демонтировать помпу для дальнейшей диагностики (проверки крыльчатки и подшипника) необходимо убедиться в том, что термостат системы охлаждения работает должным образом, а в самой системе отсутствует воздушная пробка. В противном случае необходимо устранить соответствующие неполадки.

Если же помпа демонтирована, то обязательно нужно осмотреть состояние крыльчатки. В частности, целостность лопастей, а также их форму.

Еще нужно осмотреть место прилегания помпы к блоку двигателя. В идеале там не должно быть подтеков охлаждающей жидкости из дренажного отверстия. Однако если есть незначительные (именно незначительные . ) подтеки, то помпу можно не менять, а временно попробовать избавиться от них при помощи замены уплотнителя и использования герметика.

Чтобы проверить, именно подшипник помпы ли издает соответствующий шум и свист, достаточно снять ремень со шкива насоса и раскрутить его от руки, желательно как можно быстрее.

Если подшипник неисправен — он будет издавать гул, а перекатываться с ощутимым грохотом и неравномерно. Однако такой метод подойдет для тех помп, чей шкив вращается приводным ремнем. Если же он вращается ремнем ГРМ, то для диагностики нужно будет ослаблять его усилие и проверять его работу в таких условиях.

Как шумит неисправная помпа

Многих автолюбителей интересует вопрос о том, ремонтировать ли старую помпу, либо же менять покупать и устанавливать новый насос. Конкретного ответа в данном случае быть не может, и он зависит от состояния помпы, ее износа, качества, торговой марки, цены. Однако, как показывает практика, ремонт возможен лишь при замене резиновой прокладки. В остальных случаях помпу лучше заменить на новую, особенно, если она используется уже давно. При замене помпы также меняется и антифриз.

Избежание поломки при появлении признаков неисправности помпы

Любой автомобиль невозможно представить без системы охлаждения, ведь без нее работающий двигатель будет постоянно перегреваться и закипать. Основным элементом данной системы является помпа, или как ее еще называют – насос. Именно при помощи помпы охлаждающая жидкость получает возможность циркулировать по системе охлаждения двигателя и не давать ему перегреваться.

Но, как любой механизм, эта система также подвержена поломкам и главной задачей водителя является выявление неисправностей на начальной стадии.

Помпа системы охлаждения

Признаки неисправности помпы

Конечно, как и в большинстве случаев, можно предупредить полный выход из строя практически любой детали. Такая же ситуация имеет место быть в случае помпы, не бывает такого, что она просто взяла и сломалась, не давая владельцу автомобиля хоть какие ни будь признаки неисправности. Чтобы заметить эти признаки и избежать тяжелых последствий, нужно всего лишь проявить некоторую бдительность.

Первый и самый явный признак того, что водяной насос (т.е. помпа) скоро сломается – это появление отчетливо видного зазора в приводе шкива, он виднеется настолько хорошо, что даже неопытный водитель, зная куда смотреть, без труда обнаружит этот люфт.

Если игнорировать этот тревожный сигнал, шкив разболтается до такой степени, что из него начнут сыпаться подшипники.

Эти признаки неисправности можно заметить даже не заглядывая под капот, а просто периодически прислушиваясь к звукам исходящим из моторного отсека автомобиля. Так как при разбалтывании шкива начинают выходить из строя подшипники (сыпятся или сходят со своего места) вы можете услышать характерный при “проскакивании” через подшипник стук, это также будет верным сигналом того, что “здоровью” помпы что-то грозит и следует заглянуть под капот.

Неприятность, связанная с износом подшипников – это вероятность зажевывания ремня ГРМ, а в этом случае сломаться может сразу несколько вещей:

  • Сама помпа;
  • Натягивающие ролики;
  • Сальники.

Предосторожности при поломке

Ни в коем случае нельзя заводить двигатель и куда-либо ехать, если насос уже сломан. В противном случае у машины с 90 процентной вероятностью закипит двигатель, а это может привести к очень серьезным последствиям и колоссальным затратам.

Если же вы уже замечали вышеуказанные признаки и собрались ехать в сервисный центр на диагностику и ремонт, но сомневаетесь в состоянии помпы, есть отличный способ проверить, можно ли заводить мотор. Откройте крышку капота, снимите приводной ремень и попробуйте провернуть вращающийся шкив. Если он болтается или легко проворачивается, это значит, что самому ехать на СТО ни в коем случае не следует, лучше вызовите эвакуатор, дешевле выйдет.

Также при поломке помпы, следует обратить внимание еще на одну деталь, это состояние дренажного отверстия.

Ведь не редко бывает, что замечая признаки неисправности насоса, стоит всего лишь просунуть палец в самый низ механизма. Если вы нащупаете там капельки жидкости, значит уплотнитель внутри износился, а дальше ситуация будет только ухудшаться и возникнет риск выхода из строя всего двигателя.

Подтекание охлаждающей жидкости можно выявить еще одним способов, разложив под машиной листы бумаги, желательно белой. Оставьте бумагу на ночь, а утром, если обнаружите на ней мокрые пятна, можете быть уверены, настало время замены помпы. Да и вообще, по правил, этот элемент системы охлаждения следует проверять, а по возможности менять, каждые 70-80 тысяч километров пробега, тогда двигателю вашего авто не грозит перегрев.

Вывод

Исходя из всего написанного выше, можно с легкостью сказать, что от состояния помпы напрямую зависит продолжительность жизни двигателя машины, а также сроки ее эксплуатации. Ведь если данный элемент системы охлаждения двигателя будет находиться в неисправном состоянии и водитель решит выехать из своего гаража, можно с уверенностью сказать, что ни к чему хорошему это не приведет. Мотор, скорее всего, перегреется или закипит, хорошо, если его не придется полностью менять. Так что не будет лишним заглянуть пару раз под капот, прислушаться к исходящим оттуда звукам и проявить немного бдительности, это не раз спасет вас от беды, а также сэкономит немало денег.

Признаки неисправности помпы авто | Blog-Mycar.ru

Чтобы определить признаки неисправности помпы авто необходимо представлять что она собой представляет и как работает. На самом деле все довольно просто. Для охлаждения двигателя в жаркие летние дни нужно чтобы поток теплоносителя постоянно циркулировал в системе, отдавая излишнее тепло радиатору. За поддержание постоянного потока охлаждающей жидкости в автомобиле как раз отвечает помпа  или водяной насос. Когда она работает исправно, в системе охлаждения поддерживается оптимальная температура, и машина работает без перебоев и поломок. Когда же водяная помпа для автомобиля изнашивается или выходит из строя — это в некоторых ситуациях приводит к серьезным неисправностям двигателя.

Признаки неисправности помпы авто

Когда изобрели водяное охлаждение для двигателя, то многие специалисты полагали, что циркуляция охлаждающей жидкости для отвода тепла от блока цилиндров также важна, как и моторное масло для мотора. Пока что принципиально новая система охлаждения не разработана, однако постоянно ведутся работы по увеличению эффективности существующей охлаждающей системы.

В настоящий момент водяная помпа – это ключ к работе всей системы. Он представляет собой крыльчатку и обычно спрятан под защитной крышкой ремня ГРМ сбоку двигателя. Помпа включается в работу через ременной привод от коленвала двигателя. Лопасти внутри помпы нагнетают охлаждающую жидкость в каналы блока двигателя, а затем она поступает к радиатору охлаждения, который снижает ее температуру.

Водяные помпы обычно обладают повышенным ресурсом работы и не ломаются резко. Сначала появятся несколько признаков, указывающих на их износ, так что необходимо заранее обратить внимание эти особенности. Вот некоторые признаки износа помпы.

Утечка охлаждающей жидкости

В конструкции водяного насоса используются уплотнительные прокладки, благодаря которым сохраняется герметичность системы и поддерживается определенное давление. Со временем эти прокладки изнашиваются, высыхают, трескаются или ломаются. Когда это происходит, под автомобилем в районе расположения двигателя будут видны подтеки охлаждающей жидкости на дороге. Чаще такие неисправности водяного насоса автомобиля могут быть устранены и узел восстановлен прежде, чем он окончательно выйдет из строя.

Шкив водяного насоса расшатался и издает ноющий звук

Время от времени слышится высоко тональный звук, который исходит из подкапотного пространства. Обычно это вызвано ослабшим или не отрегулированным ремнем привода, который создает гудение или звенящие звуки. Ослабление ремня привода может быть вызвано изношенными подшипниками помпы. Как только подшипники проваливаются внутрь, то помпа уже не подлежит ремонту и его надо менять.

Совет. Если вы заметили громкий ноющий звук из подкапотного пространства, который увеличивается, когда вы ускоряетесь, как можно быстрее займитесь ремонтом помпы.

Причины прогорания прокладки головки блока цилиндров

Когда помпа полностью выйдет из строя он не сможет нагнетать поток охлаждающей жидкости к блоку цилиндров. Это приведет к перегреву двигателя и дополнительному повреждению, трещинам головки блока, прогоранию прокладки головки блока или поршней. Если вы заметили, что температура двигателя регулярно превышает оптимальное значение, то вероятнее всего, проблема связана с водяным насосом.

Идет пар из радиатора

Когда вы заметили пар из-под капота авто, то немедленно остановитесь – это признак перегрева двигателя. Как говорилось выше, в двигателе поддерживается постоянная температура, когда водяная помпа работает без сбоев и обеспечивается равномерная циркуляция жидкости через радиатор. Когда температура резко возрастает, то жидкость превращается в пар, который выходит из клапана расширительного бачка или радиатора. В этом случае на машине передвигаться нельзя и лучше вызвать эвакуатор. Это сэкономит деньги в краткосрочной и долгосрочной перспективе и обойдется дешевле, чем замена двигателя целиком.

Накачайте его — физиология клетки

Насосы — это механохимические преобразователи , которые используют энергию, получаемую от гидролиза АТФ, для выполнения работы по транспортировке молекул через мембрану в одном направлении. Они ответственны за создание и поддержание неблагоприятных различий концентраций внутри и снаружи клетки или органеллы. Насосы часто называют активными транспортерами , поскольку они являются единственным видом транспорта, который противоречит термодинамическому равновесию.Они также известны как первичные транспортеры , поскольку они создают градиенты, которые впоследствии используются котранспортерами для переноса другой молекулы против градиента или рассеиваются через ионные каналы, чтобы влиять на мембранный потенциал или вызывать экзоцитоз.

Насосы — это внутренние мембранные белки. Они представляют собой многосубъединичные комплексы, очень специфичные для транспортируемого вещества. Они работают по разным механизмам с общей парадигмой инициируемого передачей энергии конформационного изменения, которое позволяет ионам или небольшим молекулам пересекать мембрану независимо от градиента.Насосы — самый медленный вид транспорта. Их скорость составляет порядка 102 ионов / сек (ионные каналы пропускают 107 ионов / сек). Транспорт — это однонаправленный, , как определено их биологической функцией, и , никогда не обратимый, . Насосы не регулируются в быстром масштабе и перекачивают непрерывно, пока в клетке и субстрате есть АТФ, который нужно транспортировать.

Насосов вокруг больше, чем вы думаете, и их можно разделить на три большие группы;

  • Многоблочные комплексные насосы V-образного типа, которые перекачивают исключительно H +
  • Насосы типа P, транспортирующие ионы и работающие как двухтактный двигатель
  • и транспортеры ABC (ATP Binding Cassette), которые выталкивают ионы или гидрофобные вещества внутрь или из клетки.

Насосы устанавливают уклон

Согласно первому закону термодинамики атомы и молекулы всегда движутся, чтобы достичь равновесной концентрации. Если в систему не добавляется новая энергия, все молекулы равномерно распределяются в клетке и, если им разрешено пересекать мембрану, по обе стороны мембраны (как описано в главах, посвященных пассивной и облегченной диффузии). Помпы — это белки, которые добавляют новую энергию в систему. Они не создают энергию; они «высвобождают» химическую энергию, накопленную в органических связях, в основном АТФ, и используют ее, чтобы толкать молекулы в термодинамически неблагоприятном направлении, тем самым создавая разницу в их распределении.

Зачем нужны насосы?

Жизни нужен градиент, упорядоченное распределение молекул по органеллам, удерживаемых внутри или вне клетки. Идентичность органелл — это не что иное, как градиент определенных ферментов внутри этой органеллы, кислый pH — это просто высокая локальная концентрация протонов. Для работы большинства клеточных процессов требуются неравномерные концентрации, такие как кислый pH лизосом или низкая концентрация Na + внутри клетки.

Многие места в камере имеют разный состав; существует более высокая концентрация Na + вне клетки, высокая концентрация Ca 2+ внутри ER, органеллы «хранилища кальция»; и как уже упоминалось выше — высокая концентрация протонов в лизосомах и других кислых везикулах.Существование градиентов непостоянно; на самом деле очень часто он используется как динамический. Поток Na + от высокой концентрации вне клетки к низкой концентрации внутри «приводит в действие» симпортеры и позволяет проходить глюкозе или аминокислотам в клетку независимо от их концентрации (чаще всего против градиента). Приток Ca2 + в цитозоль, лишенный кальция, либо из ER, либо через каналы в клеточной мембране, запускает процессы экзоцитоза или сокращения мышц. Напротив, секвестрация Ca2 + обратно в ER и восстановление градиента завершает сигнальное событие.

Насосы ферментные

Большинство насосов в эукариотических клетках разрывают высокоэнергетическую «накопительную» связь в АТФ в процессе гидролиза и используют высвободившуюся энергию в качестве движущей силы для термодинамически неблагоприятного движения молекулы против равновесного распределения. Насосы, управляемые АТФ, известны как АТФазы, ферменты, которые гидролизуют АТФ, поскольку именно они и делают. Вы можете встретить это имя в других классах или на MCAT. В этом классе мы будем называть их насосами.Насосы также известны как основные активные транспортеры. Кажется, здесь много путаницы в словарном запасе. Когда транспортер создает градиент, он будет называться активным . Транспорт с помощью насосов называется первично активным, потому что одна и та же молекула обладает ферментативной активностью и перекачивает, в отличие от вторичного активного транспорта, где роли разделены между двумя отдельными молекулами; насос, создающий градиент, и симпортер, перемещающий вещество.

Создание и поддержание градиентов требует много энергии, и, конечно же, около одной трети наших основных затрат калорий идет на насосы.Градиенты поддерживаются постоянным притоком вещества. В отсутствие постоянной откачки ионы «вылетают» обратно в состояние равновесия; например — после смерти Ca2 + высвобождается обратно в цитозоль, вызывая трупное окоченение , или в отсутствие АТФ лизосомы теряют градиент H +, которые возвращаются в цитозоль и «переваривают» клетку.

Энергия для насосов в большинстве случаев поступает от гидролиза АТФ, но насосы могут использовать другие источники энергии, такие как фотоны в реакциях фотосинтеза или свободные электроны от окисления при клеточном дыхании.Прямая энергия фотонов солнечного света используется белками фотосистем для перекачки H + через тилакоидные мембраны с последующим образованием связей глюкозы. Во время клеточного дыхания энергия свободных электронов, полученная при разрыве химических связей в пищевых продуктах, используется в митохондриях для перекачки протонов с последующим синтезом АТФ. Археи могут использовать энергию таких экзотических источников, как окисление аммиака, сероводорода или элементарной серы.

V-образный насос и подкисление лизосом

Насосы

V (вакуолярного) типа — это протонных насосов , которые экспрессируются в мембранах кислых органелл, таких как лизосомы или Гольджи, и в клеточных мембранах клеток, которые «секретируют» кислоты.Насосы V-типа представляют собой большие мультипептидные комплексы, которые организованы в два домена: трансмембранный домен (V0), который формирует проход для H +, и цитозольный домен (V1), который обладает ферментативной активностью и гидролизует АТФ. Энергия АТФ вызывает движение центрального вала, который приводит в действие колесоподобную структуру, которая с каждым поворотом толкает протоны на другую сторону мембраны. Протоны связываются между субъединицами домена V0, и когда вал вращается, они отваливаются с другой стороны. Вал слегка наклонен, что помогает выталкивать протон на другую сторону мембраны.3 протона перемещаются на одно полное разрешение домена V1.

Насосы

V-типа отвечают за подкисление везикул в процессе созревания эндосом. После эндоцитоза внутренняя часть эндосомного пузырька имеет в точности pH содержимого, которое он «проглотил», то есть около 7,4. Чтобы начать пищеварение, новообразованная везикула должна получить насосы H + путем слияния с другими везикулами, которые обеспечивают лизосомную идентичность (насосы и ферменты). Недавно приобретенные насосы снижают pH и активируют кислые гидролазы, появившиеся в результате слияния.Антибиотик из группы макролидов, бафиломицин, блокирует насосы V-типа, которые подавляют рост клеток из-за недостатка питательных веществ, которые проникают через рецептор-опосредованный эндоцитоз и перевариваются в лизосомах. Процесс созревания лизосом и функция лизосом описаны в главе самообучения, посвященной органеллам.

Насосы

V-типа также экспрессируются в клеточных мембранах секретирующих кислоту клеток, таких как остеокласты и макрофаги. Здесь бафиломицин подавляет выработку кислоты и отменяет резорбцию костей.К сожалению, это не лекарство-мечта при остеопорозе, так как оно также повреждает остеобласты.

Насосы

V-типа НЕ участвуют в производстве желудочного сока или поддержании цитозольного pH. Эти процессы выполняются различными типами насосов, как описано далее в этой главе.

Близкий гомолог помпы V-типа, который экспрессируется только во внутренней митохондриальной мембране, называемый F-типом, является инверсией помпы и синтезирует АТФ (это АТФ-синтаза). Протоны, протекающие через турбину домена V1, вращают вал, который в трехступенчатом процессе производит АТФ, как описано в главе «Цепь переноса электронов».

Насос Na + / K + является примером насосов типа P Насосы

P-типа (АТФазы) представляют собой большое семейство эволюционно связанных механохимических ферментов, которые используют однонаправленный транспорт ионов для создания электрохимических градиентов, критически важных для многих функций клетки. Эти насосы работают в двухступенчатом режиме, аналогично двухтактному двигателю, и их альтернативно называют E1E2 ATPases. Насос запускается с одной стороны от мембраны, где он обнаруживает сайты связывания с высоким сродством для транспортируемого вещества, в основном катионов.Связывание ионов запускает автофосфорилирование насоса. Насос находится, так сказать, во временном более высоком энергетическом, «возбужденном» состоянии. Это промежуточное фосфорилированное состояние (E1) связано с перемещением ионов на другую сторону мембраны. Гидролиз АТФ следует (E2), «переворачивая» насос к исходной низкоэнергетической конфигурации, где сайты связывания с высоким сродством для транспортируемых ионов снова открываются. Название P-типа насосов указывает на то, что во время цикла откачки белок насоса временно фосфорилируется (разве мы не пишем P- в биологии и биохимии каждый раз, когда к нам присоединяется фосфатная группа?).

Насосы P-типа распространены во всех трех сферах жизни: бактериях, архее и эукарии. Даже если они используют одни и те же рабочие механизмы, насосы P-типа сильно различаются по ионной специфичности и в дополнение к хорошо известным насосам Na + / K + включают насосы для Ca2 +, H +, Mg2 +, Zn2 +, Cu2 +, Mn2 + и других тяжелых металлов, что делает их чрезвычайно важен в гомеостазе микроэлементов. Одно из подсемейств насосов P-типа отвечает за переворачивание фосфолипидов между двумя листками липидных бислоев.

Na + / K + насос перекачивает ионы в обоих направлениях

Na + / K + pump экспрессируется почти во всех клетках. Его функция заключается в установлении и поддержании химического градиента натрия и калия на противоположных участках мембраны (высокое содержание натрия снаружи / высокое содержание калия внутри), что необходимо для симпортерно-опосредованного транспорта и возбудимости клеток. Насос Na + / K + (АТФ-аза) перемещает неравномерное количество «плюсов» в противоположных направлениях, 3 Na + наружу и 2 K + внутрь клетки, и поэтому создает неравномерное распределение электрических зарядов по обеим сторонам клетки. мембрана также известна как поляризация.Результирующий градиент «лишних» плюсов вне клетки создает потенциал покоя клеточной мембраны.

Насос

Na + / K + состоит из 2 субъединиц, α и β. Субъединица α имеет в своей структуре три функциональных домена; проход для обоих ионов, каталитического домена АТФ-азы, а также сайта фосфорилирования. Субъединица β поддерживает ферментативную активность и биогенез.

Насос

Na + / K + работает в следующих этапах:

  1. Низкоэнергетический (без P- группы) насос обращен к цитозолю, обнажая сайты связывания Na + с высоким сродством, сайты связывания K + имеют низкое сродство внутри клетки
  2. Несмотря на низкую внутриклеточную концентрацию Na +, три иона Na + связываются с белком насоса
  3. Связывание Na + вызывает гидролиз АТФ (насосом, тот же белок, см. Каталитический домен, расположенный на субъединице α) и перенос высокоэнергетической фосфатной группы на очень консервативный остаток аспартата в цитоплазматической петле насоса, высвобождается АДФ
  4. Высокоэнергетический насос-протеин изменяет свою форму и открывает сайты связывания Na + за пределами клетки, где ионы Na + немедленно отделяются (внеклеточные условия изменили аффинность связывания)
  5. Теперь сайты связывания K + становятся с высоким сродством, и насос связывает 2 внеклеточных иона K +, несмотря на их низкую концентрацию снаружи, встроенная активность фосфатазы дефосфорилирует альфа-субъединицу, которая возвращается в свою низкоэнергетическую конформацию, обращенную к цитозолю
  6. сайтов связывания K + становятся низкоаффинными, K + уходит, а Na + связывается, начиная новый цикл.

Насосы Na + / K + кодируются многими генами и имеют тканеспецифическое распределение, которое позволяет дифференциальным градиентам соответствовать функциям клеток. Насосы Na + / K +, например, устанавливают электрохимический градиент, известный как мембранный потенциал покоя в нейронах, обеспечивают градиент натрия, критический для абсорбции / реабсорбции глюкозы и аминокислот симпортерами в эпителии кишечника и почек, и устанавливают градиент натрия для Na + / Ca2 +. антипортер, который восстанавливает уровень Ca2 + в сердце после каждого сокращения.

Насосы

Na + / K + блокируются уабаином и дигоксином, препаратами растительного происхождения, долгое время применяемыми при застойной сердечной недостаточности. Strophanthus gratus , источник квабаина, является западноафриканским растением, а Digitalis pupurea, источником дигоксина, является эндемичным для Европы и теперь считается инвазивным сорняком в США. Оба являются смертельными при проглатывании.

Другие насосы, которые по структуре и механизму действия напоминают насос Na + / K +, это насос H + / K +, отвечающий за выработку желудочной кислоты и экспрессируемый в париетальных клетках желудка, и

SERCA1, насос Ca2 + / H + в саркоплазматическом ретикулуме мышечных клеток, отвечающий за очистку Ca2 + из цитозоля после сокращения мышцы.

ABC транспортные белки, да, они тоже насосы

АТФ-связывающая кассета Транспортные белки — это большое семейство насосов, которые используют энергию гидролиза АТФ для проталкивания питательных веществ, ионов и гидрофобных (очень часто токсичных) молекул внутрь и из клетки, иногда даже против очень крутых градиентов. Насосы ABC — самые распространенные транспортеры с разнообразной структурой и функциями, многие из которых имеют важное медицинское значение. Транспортные белки ABC наиболее известны тем, что удаляют гидрофобные цитотоксические вещества, которые проникают через мембрану путем пассивной диффузии, включая пестициды.К сожалению, тот же принцип (откачка цитотоксических препаратов) делает их кошмаром химиотерапевтического лечения и причиной лекарственной устойчивости в рецидивирующих опухолях. Транспортеры ABC отвечают за абсорбцию витамина B12 у людей и бактерий, перенос холестерина и желчных кислот в желчь (ABCB11) или холестерина из клеток (ABCA1). Многие генетические дефекты переносчиков ABC приводят к заболеваниям, таким как муковисцидоз (трансмембранный регулятор муковисцидоза или ABCC7), болезнь Танжера (ABCA1) или метаболический холестаз (отсутствие или затруднение образования желчи, множественные насосы из группы ABCB).Один очень важный насос ABC, называемый TAP (транспортер, связанный с процессингом антигена), связан с презентацией антигена и упоминается в главе о протеасомах.

Устройство и транспортный механизм автовозов ABC

транспортеров ABC представляют собой гликопротеины, которые имеют общую модульную конструкцию из 2 трансмембранных субъединиц и 2 АТФ-связывающих и гидролизующих субъединиц, которые являются цитозольными. Во время транспортировки они претерпевают значительные изменения формы. Две молекулы АТФ-сэндвича между цитозольными субъединицами и их гидролиз обеспечивают энергию для сдвига рамки.В большинстве случаев субстрат перемещается через пространство между двумя трансмембранными субъединицами. Детали все еще четко не выяснены, но включают дополнительные механизмы для предотвращения «утечки» транспортируемого субстрата обратно на сторону с более низкой концентрацией.

транспортеров ABC экспрессируются во всех трех сферах жизни, но здесь мы сосредоточимся в основном на человеческих белках, имеющих медицинское значение.

ABCB1 транспортер, также известный как белок MRP1

Устойчивость к противоопухолевым препаратам, особенно при ремиссии опухоли, является одной из постоянных проблем химиотерапии.Как обсуждалось в главе о пассивной диффузии, большинство противоопухолевых препаратов в природе являются или были разработаны в качестве сильно неполярных молекул, которые могут проникать через мембрану посредством пассивной диффузии. Действительно, вещества, которые могут проникать в клетку неконтролируемым образом, на основе градиентов, оказываются наиболее мощными клеточными токсинами. Белки множественной лекарственной устойчивости экспрессируются во многих клетках и выполняют функцию откачки цитотоксических веществ, которые диффундируют в клетки. Когда дело доходит до химиотерапии, цель прямо противоположная; это достижение максимально возможной концентрации цитотоксических препаратов внутри клеток.Клетки, которые имеют более высокую экспрессию MRP, выживают при химиотерапии и вызывают рецидив опухоли, обычно состоящий из клеток с более высокой способностью вытеснять химиотерапевтические препараты из клетки, что делает их устойчивыми к лекарствам.

Вытяжные транспортеры MRP принадлежат ко многим семействам насосов ABC, но имеют одну необычную характеристику; они относительно неспецифичны для молекулярной формы и химической природы транспортируемого вещества. Они способны выдавливать множество цитотоксических противоопухолевых соединений, что дало им печально известное название — множественная лекарственная устойчивость.Как в поговорке: «Видели, кажутся все», если они слишком выражены, их уже не остановить.

Переносчики

MRP1 расположены в клеточных мембранах в основном эпителиальных и эндотелиальных клеток и играют хорошо известную роль в экструзии клинически важных терапевтических агентов. Примеры включают иммуносупрессоры (циклоспорин A), антибиотики (эритромицин), сердечные гликозиды (вышеупомянутый дигоксин) и несколько противораковых препаратов (винбластин, паклитаксел, доксорубицин, метотрексат).

Мы должны помнить, что на самом деле эти насосы не дают нам убить себя по собственной воле. Они удаляют пестициды (например, ивермектин), а также лекарства и их метаболиты. MRP1 (ABCB1) высоко экспрессируется в клетках, которые образуют гематоэнцефалический и гемато-яичковый барьер, а также интерфейс плода и матери в плаценте, где они ограничивают проникновение токсичных соединений (и, конечно, лекарств). Их очень много в клетках печени, где они играют роль в транспортировке «токсинов» в желчь и выводе из организма.

Существует пять семейств MRP с различным сродством к транспортируемым веществам и различными физиологическими функциями. В то время как у эукариотических организмов большинство насосов ABC функционируют как переносчики оттока, у бактерий они преимущественно импортируют питательные вещества.

Натрий-калиевый насос

: определение, функция и значение — видео и стенограмма урока

Как это работает

Теперь, когда мы обсудили, почему важна помпа NaK, давайте посмотрим, как она работает.Вот иллюстрация, которая может помочь вам в вашем понимании.

Насос NaK

Иллюстрация содержит серию последовательных изображений, демонстрирующих, как работает насос NaK. Обратите внимание, как насос встроен в клеточную мембрану. Здесь вы заметите, как насос открыт внутрь ячейки.

В этом положении насос может связываться с тремя ионами Na (натрия).Это возможно из-за формы насоса. Как только это соединение происходит, клетка использует АТФ (аденозинтрифосфат), чтобы инициировать перекачивающее действие. АТФ — это энергетическая валюта, используемая клетками.

На рисунке 2 АТФ разбивается на его подкомпоненты. Эти подкомпоненты — АДФ (аденозиндифосфат) и Р (фосфат). P подключается к насосу NaK. Это как поместить ключ в запертую дверь: как только вставлен ключ (P), дверь открывается. В случае нашего насоса NaK, как только P (фосфат) связывается, насос меняет форму и открывается наружу из ячейки.Это позволяет ионам Na выходить за пределы клетки.

На этом завершается первая половина работы насоса NaK: удаление Na (натрия) из ячейки. Теперь нам нужно переместить K (калий) в ячейку.

Для этого насос NaK должен сначала соединиться с двумя ионами K. К счастью, насос уже открыт наружу камеры. Ионы K можно найти здесь. Как только два из них соединяются с насосом, ключ P (фосфор), который был связан с внутренней частью насоса, отпускается.

Думайте об этом как об удалении ключа от нашей теоретической двери.Без этого ключа дверь закрывается, и ионы K попадают внутрь ячейки. При этом насос возвращается в исходную конфигурацию. Затем процесс повторяется и создает градиент, о котором говорилось ранее. Биохимия того, как эти градиенты на самом деле вызывают передачу нервных клеток, выходит за рамки этого урока. Однако важно понимать, что эти жизненно важные градиенты создаются насосом NaK.

Краткое содержание урока

Натриево-калиевый насос (насос NaK) жизненно важен для многих процессов в организме, таких как передача сигналов нервными клетками, сердечные сокращения и функции почек.Насос NaK — это особый тип транспортного белка, который содержится в клеточных мембранах. Насосы NaK создают градиент между ионами Na и K. Градиент образуется, когда у вас есть область высокой концентрации рядом с областью низкой концентрации.

Так обстоит дело, когда большое количество K находится внутри элемента, а небольшое количество K находится вне элемента. Насос NaK использует АТФ, чтобы помочь вывести три иона Na из клетки на каждые два иона K, перемещенные в клетку. АТФ — это энергетическая валюта клеток.

нервная система | Определение, функция, структура и факты

Простейшим типом реакции является прямая индивидуальная реакция на стимул-ответ. Стимулом является изменение окружающей среды; реакция организма на это есть ответ. У одноклеточных организмов реакция является результатом свойства клеточной жидкости, называемого раздражительностью. У простых организмов, таких как водоросли, простейшие и грибы, реакция, при которой организм движется к раздражителю или от него, называется таксисом.В более крупных и сложных организмах — тех, в которых реакция включает синхронизацию и интеграцию событий в различных частях тела, — контрольный механизм, или контроллер, расположен между стимулом и реакцией. В многоклеточных организмах этот контроллер состоит из двух основных механизмов, с помощью которых достигается интеграция — химической регуляции и нервной регуляции.

В химической регуляции вещества, называемые гормонами, вырабатываются четко определенными группами клеток и либо диффундируют, либо переносятся кровью в другие области тела, где они действуют на клетки-мишени и влияют на метаболизм или индуцируют синтез других веществ.Изменения, возникающие в результате гормонального воздействия, выражаются в организме как влияние или изменения в форме, росте, воспроизводстве и поведении.

Растения реагируют на различные внешние раздражители, используя гормоны в качестве регуляторов системы «стимул-реакция». Направленные реакции движения известны как тропизмы и являются положительными, когда движение направлено к стимулу, и отрицательными, когда оно направлено в сторону от стимула. Когда семя прорастает, растущий стебель поворачивается вверх к свету, а корни поворачиваются вниз от света.Таким образом, стебель показывает положительный фототропизм и отрицательный геотропизм, в то время как корни показывают отрицательный фототропизм и положительный геотропизм. В этом примере свет и гравитация — это стимулы, а направленный рост — это реакция. Контроллерами являются определенные гормоны, синтезируемые клетками на кончиках стеблей растений. Эти гормоны, известные как ауксины, диффундируют через ткани под верхушкой стебля и концентрируются по направлению к затемненной стороне, вызывая удлинение этих клеток и, таким образом, изгиб кончика к свету.Конечным результатом является поддержание растения в оптимальном состоянии с точки зрения освещения.

У животных, помимо химической регуляции через эндокринную систему, существует еще одна интегративная система, называемая нервной системой. Нервную систему можно определить как организованную группу клеток, называемых нейронами, специализирующихся на передаче импульса — возбужденного состояния — от сенсорного рецептора через нервную сеть к эффектору, участку, в котором происходит ответ.

Организмы, обладающие нервной системой, способны к гораздо более сложному поведению, чем организмы, у которых ее нет.Нервная система, специализирующаяся на проведении импульсов, позволяет быстро реагировать на раздражители окружающей среды. Многие реакции, опосредованные нервной системой, направлены на сохранение статус-кво или гомеостаза животного. Стимулы, которые имеют тенденцию смещать или разрушать какую-либо часть организма, вызывают реакцию, которая приводит к уменьшению побочных эффектов и возвращению к более нормальному состоянию. Организмы с нервной системой также способны выполнять вторую группу функций, которые запускают различные модели поведения.Животные могут проходить периоды исследовательского или аппетитного поведения, строительства гнезд и миграции. Хотя эти действия полезны для выживания вида, они не всегда выполняются человеком в ответ на индивидуальную потребность или стимул. Наконец, выученное поведение может быть наложено как на гомеостатические, так и на инициирующие функции нервной системы.

Внутриклеточные системы

Все живые клетки обладают свойством раздражительности или отзывчивости на раздражители окружающей среды, которые могут влиять на клетку по-разному, вызывая, например, электрические, химические или механические изменения.Эти изменения выражаются в ответной реакции, которая может быть высвобождением секреторных продуктов клетками железы, сокращением мышечных клеток, изгибом растительной стволовой клетки или ударами ресничек ресничных клеток. .

Отзывчивость отдельной клетки может быть проиллюстрирована поведением относительно простой амебы. В отличие от некоторых других простейших, у амебы отсутствуют высокоразвитые структуры, которые участвуют в приеме стимулов и в производстве или проведении реакции.Однако амеба ведет себя так, как если бы у нее была нервная система, потому что общая отзывчивость ее цитоплазмы служит функциям нервной системы. Возбуждение, производимое стимулом, передается другим частям клетки и вызывает реакцию животного. Амеба переместится в область с определенным уровнем света. Он будет привлекаться химическими веществами, выделяемыми пищей, и проявлять реакцию при кормлении. Он также удаляется из области с ядовитыми химическими веществами и проявляет реакцию избегания при контакте с другими объектами.

Центробежный насос — оборудование для энергетической зоны

1.0 Назначение

Power Zone Equipment, Inc. Политика конфиденциальности данных

Политика, изложенная ниже, описывает личные данные, которые может собирать Power Zone Equipment, то, как Power Zone Equipment использует и защищает эти данные, и кому мы можем их передавать. Эта политика предназначена для уведомления отдельных лиц о личных данных в целях соблюдения законов и нормативных актов о конфиденциальности данных юрисдикций, в которых работает Power Zone Equipment.

Power Zone Equipment призывает наших сотрудников, независимых подрядчиков, клиентов, поставщиков, коммерческих посетителей, деловых партнеров и другие заинтересованные стороны ознакомиться с этой политикой. Используя наш веб-сайт или отправляя личные данные в Power Zone Equipment любыми другими способами, вы подтверждаете, что понимаете и соглашаетесь соблюдать эту политику, а также соглашаетесь с тем, что Power Zone Equipment может собирать, обрабатывать, передавать, использовать и раскрывать ваши личные данные. как описано в этой политике.

2.0 Персональные данные

Power Zone Equipment обязуется соблюдать все разумные меры предосторожности для обеспечения конфиденциальности и безопасности личных данных, собранных Power Zone Equipment. Во время использования вами нашего веб-сайта или посредством других коммуникаций с Power Zone Equipment, персональные данные могут собираться и обрабатываться Power Zone Equipment. Как правило, Power Zone Equipment собирает личную контактную информацию (например, имя, компания, адрес, номер телефона и адрес электронной почты), которую вы сознательно предоставляете при регистрации, запросе котировок, ответах на вопросы или иным образом для использования в наших коммерческих отношениях.Иногда мы можем собирать дополнительные персональные данные, которые вы добровольно предоставляете, включая, помимо прочего, название должности, дополнительную контактную информацию, дату рождения, хобби, области интересов и профессиональную принадлежность.

3.0 Использование личных данных

Веб-сайт

Power Zone Equipment предназначен для использования клиентами Power Zone Equipment, коммерческими посетителями, деловыми партнерами и другими заинтересованными сторонами в деловых целях. Персональные данные, собранные Power Zone Equipment через свой веб-сайт или другими способами, используются для поддержки наших коммерческих отношений с вами, включая, помимо прочего, обработку заказов клиентов, заказов от поставщиков, управление учетными записями, изучение потребностей клиентов. , отвечая на запросы и предоставляя доступ к информации.Кроме того, в соответствии с законами и постановлениями соответствующей юрисдикции для поддержки наших отношений с вами:

  • мы можем передавать личные данные нашим аффилированным лицам, чтобы лучше понять потребности вашего бизнеса и способы улучшения наших продуктов и услуг;
  • мы можем использовать сторонних поставщиков услуг, чтобы помочь нам в сборе, сборке или обработке личных данных в связи с услугами, связанными с нашими деловыми отношениями;
  • мы (или третье лицо от нашего имени) можем использовать личные данные, чтобы связаться с вами по поводу предложения оборудования Power Zone для поддержки вашего бизнеса или для проведения онлайн-опросов, чтобы лучше понять потребности наших клиентов; и
  • мы можем использовать личные данные для маркетинговой и рекламной деятельности.

Если вы решите не использовать свои личные данные для поддержки наших отношений с клиентами (особенно для прямого маркетинга или исследования рынка), мы будем уважать ваш выбор. Мы не продаем ваши личные данные третьим лицам и не передаем их третьим лицам, за исключением случаев, указанных в настоящей политике. Power Zone Equipment будет хранить ваши персональные данные до тех пор, пока вы поддерживаете отношения с клиентами с Power Zone Equipment и / или если вы зарегистрировались для получения маркетинговых или иных сообщений от Power Zone Equipment, до тех пор, пока вы не потребуете, чтобы мы удалили такие персональные данные. .

4.0 Сторонние поставщики услуг

Power Zone Equipment является коммерческим оператором своего веб-сайта и использует поставщиков услуг для оказания помощи в размещении или иным образом выступая в качестве обработчиков данных, для предоставления программного обеспечения и контента для наших сайтов, а также для предоставления других услуг. Power Zone Equipment может раскрывать предоставленные вами персональные данные этим третьим сторонам, которые предоставляют такие услуги по контракту для защиты ваших персональных данных. Кроме того, в соответствии с законами и нормативными актами соответствующей юрисдикции Power Zone Equipment может раскрывать личные данные, если такое раскрытие:

  • — использование персональных данных для дополнительной цели, которая напрямую связана с первоначальной целью, для которой персональные данные были собраны;
  • необходим для подготовки, согласования и исполнения договора с вами;
  • требуется законом, компетентными государственными или судебными органами;
  • необходим для обоснования или сохранения судебного иска или защиты;
  • является частью корпоративной реструктуризации, продажи активов, слияния или продажи; или,
  • Код
  • необходим для предотвращения мошенничества или других незаконных действий, таких как умышленные атаки на информационные системы Power Zone Equipment.

5.0 Международная передача данных

Для наших клиентов в Швейцарии и Европейском союзе (ЕС) обратите внимание, что компания Power Zone Equipment находится в США. Если вы используете наши веб-сайты или веб-порталы, либо вся информация, включая личную информацию, может быть передана в Power Zone Equipment (включая субподрядчиков, которые могут поддерживать и / или управлять нашим веб-сайтом) в США и других странах и может быть передана третьим лицам. вечеринки, которые могут быть расположены в любой точке мира.Хотя сюда могут входить получатели информации, находящиеся в странах, где уровень правовой защиты вашей личной информации может быть ниже, чем в стране вашего местонахождения, мы будем защищать вашу информацию в соответствии с требованиями, применимыми к вашей информации и / или местоположению. В частности, для передачи данных за пределы ЕС, Power Zone Equipment будет использовать соглашения о передаче данных, содержащие Стандартные договорные положения. Используя наши веб-сайты или веб-порталы, вы недвусмысленно соглашаетесь на передачу вашей личной информации и другой информации в США и другие страны для целей и использования, описанных в настоящем документе.

6.0 Автоматический сбор неличных данных

Когда вы заходите на веб-сайты или веб-порталы Power Zone Equipment, мы можем автоматически (т. Е. Не путем регистрации) собирать неличные данные (например, тип используемого интернет-браузера и операционной системы, доменное имя веб-сайта, с которого вы пришли, количество посещения, среднее время нахождения на сайте, просмотренные страницы). Мы можем использовать эти данные и делиться ими с нашими филиалами по всему миру и поставщиками соответствующих услуг для мониторинга привлекательности наших веб-сайтов и улучшения их производительности или содержания.В этом случае обработка выполняется анонимно и по усмотрению Power Zone Equipment.

7.0 Прочие онлайн-данные

Кроме того, для некоторых технических онлайн-приложений или других взаимодействий с оборудованием Power Zone может потребоваться ввод коммерческих и технических данных. Предоставляя запрошенную информацию, вы даете согласие на обработку и хранение такой информации компанией Power Zone Equipment. Если в Power Zone Equipment не указано, что вы хотите удалить эту информацию с сервера Power Zone Equipment, такая информация может быть сохранена Power Zone Equipment и использована для будущих коммерческих коммуникаций.Запрос на удаление этой информации может быть сделан по контактной информации, указанной ниже. Power Zone Equipment будет принимать все разумные меры предосторожности, чтобы гарантировать, что никакая такая информация не будет предоставлена ​​или разглашена другим третьим лицам, за исключением, если применимо, тех третьих сторон, которые выполняют хостинг, обслуживание и связанные с этим услуги сайта.

8.0 «Файлы cookie» — информация, автоматически сохраняемая на вашем компьютере

Файлы cookie — это информация, которая автоматически сохраняется на компьютере пользователя веб-сайта.Когда пользователь просматривает веб-сайт (-ы) Power Zone Equipment, Power Zone Equipment может сохранять некоторые данные на компьютере пользователя в форме «файлов cookie», чтобы автоматически распознавать пользователя при будущих посещениях веб-сайта (-ов) Power Zone Equipment. Power Zone Equipment приложит разумные усилия для обеспечения соблюдения законов и постановлений соответствующих юрисдикций в отношении файлов cookie.

9,0 Дети

Power Zone Equipment не будет сознательно собирать персональные данные от детей младше 18 лет.Веб-сайт (-ы) Power Zone Equipment не предназначен для лиц младше 18 лет

10.0 Безопасность и целостность данных

Power Zone Equipment будет принимать разумные меры предосторожности для защиты личных данных, находящихся в его распоряжении, от риска потери, неправильного использования, несанкционированного доступа, раскрытия, изменения и уничтожения. Power Zone Equipment периодически пересматривает свои меры безопасности, чтобы обеспечить конфиденциальность личных данных.

Power Zone Equipment будет использовать личные данные только способами, совместимыми с целями, для которых они были собраны или впоследствии разрешены вами.Хотя Power Zone Equipment будет принимать разумные меры для обеспечения того, чтобы личные данные соответствовали его предполагаемому использованию, были точными, полными и актуальными, Power Zone Equipment также полагается на каждого человека, чтобы помочь в предоставлении точных обновлений его или ее личных данных.

11.0 Ссылки на другие веб-сайты

Веб-сайты

Power Zone Equipment могут содержать «ссылки» на веб-сайты, принадлежащие третьим сторонам и управляемые ими. Получив доступ к этим ссылкам, которые предоставлены для вашего удобства, вы покинете наш сайт и будете подчиняться политике конфиденциальности другого веб-сайта.Эта политика не распространяется на любую личную информацию, которую вы предоставляете посторонним третьим лицам.

12.0 Сохранение данных

В целом, Power Zone Equipment будет хранить персональные данные только до тех пор, пока это необходимо для конкретной цели обработки и в соответствии с политикой управления записями Power Zone Equipment, или в соответствии с другими требованиями законов и постановлений конкретной юрисдикции. Например, данные будут храниться в течение периода времени, в течение которого вы имеете право использовать веб-сайты с оборудованием Power Zone, включая любые инструменты для оборудования Power Zone, доступные через наши веб-сайты.После прекращения действия такой авторизации ваши личные данные, связанные с использованием веб-сайтов Power Zone Equipment, будут удалены.

13.0 Доступ к данным и исправление

По запросу Power Zone Equipment предоставит физическим лицам разумный доступ к личным данным, которые она хранит о них. Кроме того, Power Zone Equipment будет принимать разумные меры, чтобы позволить отдельным лицам исправлять, изменять или удалять информацию, которая, как доказано, является неточной или неполной. Power Zone Equipment также полагается на каждого человека, чтобы помочь в предоставлении точных обновлений его или ее личных данных.Чтобы получить доступ, исправить, изменить или удалить личные данные Power Zone Equipment о человеке, физическое лицо должно связаться со следующим:

ТЕЛЕФОН: + 1-719-754-1981 | ЭЛЕКТРОННАЯ ПОЧТА: [email protected]

14.0 Права ЕС на конфиденциальность данных

Если ваши персональные данные обрабатываются в ЕС или вы являетесь резидентом ЕС, Общий регламент ЕС по защите данных предоставляет вам определенные права в соответствии с законом. В частности, право на доступ, исправление или удаление ваших личных данных Power Zone Equipment.

В той степени, в которой это требуется действующим законодательством, Power Zone Equipment будет предоставлять физическим лицам разумный доступ к личным данным, которые Power Zone Equipment хранит о них, и будет принимать разумные меры, чтобы позволить таким лицам исправлять, изменять или удалять информацию, которую Power Zone имеет в отношении их. Power Zone Equipment также полагается на каждого человека, чтобы помочь в предоставлении точных обновлений его или ее личных данных. Чтобы получить доступ, исправить, изменить или удалить персональные данные, которые Power Zone Equipment хранит о физическом лице, физическое лицо должно связаться со своим коммерческим представителем Power Zone Equipment или связаться с нами по следующему адресу электронной почты: sales @ powerzone.com.

Если у вас есть комментарий, вопрос или жалоба относительно того, как Power Zone Equipment обрабатывает ваши личные данные, мы приглашаем вас связаться с нами, чтобы мы могли решить этот вопрос. Кроме того, лица, находящиеся в ЕС, могут подать жалобу на обработку своих личных данных в органы по защите данных ЕС (DPA). Следующая ссылка может помочь вам найти подходящий DPA: http://ec.europa.eu/justice/data-protection/bodies/authorities/index_en.htm.

15.0 Изменения в этой Политике

Power Zone Equipment оставляет за собой право время от времени изменять эту политику, чтобы она точно отражала правовую и нормативную среду и наши принципы сбора данных. Когда в эту политику будут внесены существенные изменения, Power Zone Equipment разместит пересмотренную политику на нашем веб-сайте.

16.0 Вопросы и комментарии

Если у вас есть какие-либо вопросы или комментарии по поводу этой политики (например, для просмотра и обновления или удаления ваших личных данных из нашей базы данных), пожалуйста, свяжитесь с + 1-719-754-1981 или sales @ powerzone.com

Proton Pump — обзор

PPs и рак

Интерес к PPs при раке возник в 1993 году, когда их присутствие было обнаружено в клеточных мембранах многих опухолей человека. 24 Сравнивая различные клеточные линии рака груди, Sennoune et al. 25 обнаружили, что те, которые были высоко метастатическими, имели значительное увеличение экспрессии протонной помпы. Многие раковые клетки сверхэкспрессируют V-АТФазу по сравнению с их нормальными аналогами. Это было подтверждено для гепатобластомы, 26 рака поджелудочной железы, 27 плоскоклеточного рака полости рта, 28 лекарственно-устойчивого немелкоклеточного рака легкого, 29 рака груди, 30–33 и рака яичников 34 среди другие.Кроме того, сверхэкспрессия V-АТФазы плазматической мембраны дрожжей, трансфицированной в нормальные фибробласты мыши, увеличивала внутриклеточный pH и индуцировала онкогенный фенотип. 35,36

Было также обнаружено, что ингибирование опухолевой вакуолярной V-АТФазы вызывает более низкий внутриклеточный pH и индуцирует апоптоз в устойчивых к цисплатину раковых клетках яичников 37 и увеличивает цитотоксичность паклитаксела. 38

Бафиломицин A1, экспериментальный и специфический ингибитор PPs, значительно снижал внутриклеточный pH (pHi) опухолевых клеток, которые имели высокую экспрессию PP. 39,40 Этот ингибитор РР также показал явные противораковые эффекты. 41

Capecci и Forgac 42 показали, что инвазия высокометастатических клеток рака молочной железы MCF10CA1a, но не родительских неметастатических клеток MCF10A, ингибируется конканамицином (мощным ингибитором V-АТФазы). Высокометастатические клетки экспрессировали повышенную V-АТФазу на плазматической мембране по сравнению с неметастатическими клетками. Высокоинвазивные клетки также сверхэкспрессируют субъединицу V-АТФазы, известную как a3, которая отвечает за расположение протонной помпы на плазматической мембране и высокоинвазивный фенотип клеток.Ингибирование a3 устраняет способность клеток вторгаться.

McGuire et al., 43 писали: «… , что клетки опухоли груди (неизвестным механизмом) активируют изоформу a3, что приводит к увеличению доставки комплексов V-ATPase к плазматической мембране, где они увеличивают опухоль. клеточная инвазия ».

Di Cristofori et al. 44 показали, что содержание секретируемых микровезикул в глиобластоме регулируется V-АТФазой. Эти микровезикулы играют важную роль во взаимодействии между опухолевыми клетками и неопухолевой паренхимой и играют роль в росте глиобластомы.Важно отметить, что подавление V-АТФаз снижает активность секретируемых микровезикул.

Помимо их активности в отношении внутриклеточного и внеклеточного pH, где они играют важную роль в инверсии градиента pH, 45 V-ATPases проявляют множество других проопухолевых эффектов, часть из которых упоминалась выше в неканонических функциях. Они также регулируют передачу сигналов Notch при тройном отрицательном раке молочной железы, 46 модулируют изоформы металлопротеиназы в клетках рака поджелудочной железы, 47 иммуномодулируют нейтрофилы, связанные с опухолями 48 и необходимы для инвазии рака. 49 V-АТФазы также играют важную роль в качестве медиаторов воспаления, связанного с раком, 50 ангиогенеза, 51 аутофагии, 52 pH-опосредованной устойчивости к лекарствам, 53 и миграции. 54 Резюме этих исследований можно увидеть на рис. 5.

Рис. 5. Функции PP в нормальных клетках и раке.

Как работает тепловой насос | Как работают тепловые насосы

Основные сведения о тепловом насосе

Один очень важный момент, который следует понимать, отвечая на вопрос «как работают тепловые насосы?» в том, что тепловые насосы не производят тепло — они перемещают тепло из одного места в другое.Печь создает тепло, которое распространяется по всему дому, но тепловой насос поглощает тепловую энергию из наружного воздуха (даже при низких температурах) и передает ее воздуху в помещении. В режиме охлаждения тепловой насос и кондиционер функционально идентичны, они поглощают тепло из воздуха в помещении и отводят его через наружный блок. Щелкните здесь, чтобы узнать больше о тепловых насосах и кондиционерах.

При рассмотрении того, какой тип системы лучше всего подходит для вашего дома, следует учитывать несколько важных факторов, включая размер дома и местный климат.У местного дилера Carrier есть опыт, чтобы должным образом оценить ваши конкретные потребности и помочь вам принять правильное решение.

Важные компоненты системы теплового насоса

Типичная система теплового насоса с источником воздуха состоит из двух основных компонентов: наружного блока (который выглядит так же, как наружный блок сплит-системы кондиционирования воздуха) и внутреннего блока обработки воздуха. Как внутренний, так и внешний блок содержат различные важные компоненты.

Наружный блок

Наружный блок содержит змеевик и вентилятор.Змеевик работает либо как конденсатор (в режиме охлаждения), либо как испаритель (в режиме нагрева). Вентилятор обдувает змеевик наружным воздухом для облегчения теплообмена.

Внутренний блок

Как и наружный блок, внутренний блок, обычно называемый блоком обработки воздуха, содержит змеевик и вентилятор. Змеевик действует как испаритель (в режиме охлаждения) или конденсатор (в режиме нагрева). Вентилятор отвечает за перемещение воздуха через змеевик и воздуховоды в доме.

Хладагент

Хладагент — это вещество, которое поглощает и отводит тепло при циркуляции в системе теплового насоса.

Компрессор

Компрессор нагнетает хладагент и перемещает его по системе.

Реверсивный клапан

Часть системы теплового насоса, которая меняет направление потока хладагента, позволяя системе работать в противоположном направлении и переключаться между нагревом и охлаждением.

Расширительный клапан

Расширительный клапан действует как дозирующее устройство, регулируя поток хладагента, когда он проходит через систему, что позволяет снизить давление и температуру хладагента.

Как работает тепловой насос — режим охлаждения

Одна из наиболее важных вещей, которые нужно понять о работе теплового насоса и процессе передачи тепла, заключается в том, что тепловая энергия естественным образом стремится переместиться в области с более низкими температурами и меньшим давлением. Тепловые насосы полагаются на это физическое свойство, позволяя теплу контактировать с более прохладной средой с более низким давлением, чтобы тепло могло передаваться естественным образом. Так работает тепловой насос.

Тепловой насос в режиме охлаждения.

Шаг 1

Жидкий хладагент перекачивается через расширительное устройство на внутреннем змеевике, которое функционирует как испаритель.Воздух из помещения проходит через змеевики, где тепловая энергия поглощается хладагентом. Получающийся в результате прохладный воздух обдувается воздуховодами дома. Процесс поглощения тепловой энергии приводит к нагреванию жидкого хладагента и его испарению в газообразную форму.

Шаг 2

Теперь газообразный хладагент проходит через компрессор, который сжимает газ. В процессе сжатия газа он нагревается (физическое свойство сжатых газов). Горячий хладагент под давлением проходит через систему к змеевику наружного блока.

Шаг 3

Вентилятор наружного блока перемещает наружный воздух через змеевики, которые служат змеевиками конденсатора в режиме охлаждения. Поскольку воздух снаружи дома холоднее, чем горячий сжатый газовый хладагент в змеевике, тепло передается от хладагента к наружному воздуху. Во время этого процесса хладагент снова конденсируется до жидкого состояния при охлаждении. Теплый жидкий хладагент перекачивается через систему к расширительному клапану внутренних блоков.

Шаг 4

Расширительный клапан снижает давление теплого жидкого хладагента, что значительно его охлаждает.В этот момент хладагент находится в холодном жидком состоянии и готов к перекачке обратно в змеевик испарителя внутреннего блока, чтобы снова начать цикл.

Как работает тепловой насос — режим отопления

Тепловой насос в режиме обогрева работает так же, как и в режиме охлаждения, за исключением того, что поток хладагента реверсируется с помощью реверсивного клапана, названного так же удачно. Реверсирование потока означает, что источником тепла становится наружный воздух (даже при низких температурах наружного воздуха), а тепловая энергия выделяется внутри дома.Внешний змеевик теперь выполняет функцию испарителя, а внутренний змеевик выполняет роль конденсатора.

Физика процесса такая же. Тепловая энергия поглощается в наружном блоке холодным жидким хладагентом, превращая его в холодный газ. Затем к холодному газу прикладывают давление, превращая его в горячий газ. Горячий газ охлаждается во внутреннем блоке за счет прохождения воздуха, нагрева воздуха и конденсации газа до теплой жидкости. Теплая жидкость сбрасывается под давлением, когда она входит в наружный блок, превращая ее в охлаждающую жидкость и возобновляя цикл.

Как работает тепловой насос — Обзор

Тепловой насос — это универсальная и эффективная система охлаждения и обогрева. Благодаря реверсивному клапану тепловой насос может изменять поток хладагента и либо обогревать, либо охлаждать дом. Воздух обдувается змеевиком испарителя, передавая тепловую энергию от воздуха хладагенту. Эта тепловая энергия циркулирует в хладагенте в змеевике конденсатора, где она высвобождается, когда вентилятор продувает воздух через змеевик. Благодаря этому процессу тепло перекачивается из одного места в другое.

Местный эксперт Carrier HVAC может помочь оценить ваши потребности в отоплении и охлаждении и порекомендовать подходящую систему теплового насоса.

Консультации — Инженер по подбору | NFPA 20: Изменения в стандарте пожарного насоса

Цели обучения:

  • Знать основы NFPA 20: Стандарт по установке стационарных насосов для противопожарной защиты.
  • Ознакомьтесь с изменениями в NFPA 20 издания 2016 г., включая все типы пожарных насосов и электрические аспекты NFPA 20.

NFPA 20: Стандарт по установке стационарных насосов для противопожарной защиты, издание 2016 г., включает новые правила, которые конкретно касаются пожарных насосов, устанавливаемых в высотных зданиях, а также введение многоступенчатого многопортового насоса. Общая цель состоит в том, чтобы стандартизировать конструкцию пожарных насосов в высотных зданиях для обеспечения надлежащего уровня надежности.

Пожарный насос — важная часть системы пожаротушения здания. Он отвечает за забор воды из определенного источника — либо подземного водопровода, либо источника воды, такого как колодец, резервуар для воды, озеро или другой водоем — в здание в случае пожара. .Пожарный насос становится необходимым, когда водоснабжения недостаточно для обеспечения надлежащего давления воды для работы системы пожаротушения в соответствии с проектом.

Пожарные насосы

служат критически важными и важными компонентами многих систем противопожарной защиты на водной основе, таких как спринклерные, напорные, пенные, водяные системы распыления и водяного тумана для коммерческого и промышленного применения. В случае необходимости установка пожарного насоса обеспечивает необходимое давление воды, которое имеет жизненно важное значение для работы системы противопожарной защиты.

Крайне важно тщательно выбирать насос, чтобы он работал должным образом при обращении в сервисный центр. В дополнение к правильному размеру насос должен быть правильно установлен и регулярно обслуживаться в соответствии с требованиями NFPA 25: Стандарт по проверке, тестированию и техническому обслуживанию систем противопожарной защиты на водной основе. Стандартный насос, используемый для противопожарной защиты, обычно представляет собой центробежный горизонтальный или вертикальный раздельный, одноступенчатый или многоступенчатый насос. Однако насос также может быть поршневым насосом или турбинным насосом с вертикальным валом.

Типы пожарных насосов

Центробежные насосы — самые популярные пожарные насосы и классифицируются как насосы неположительного вытеснения, поскольку они не перекачивают определенное количество воды за каждый оборот. Скорее, этот тип насоса сообщает скорость воде и преобразует ее в давление внутри самого насоса. Почти все современные пожарные устройства используют центробежный насос в качестве основного пожарного насоса. Центробежные насосы могут быть установлены вертикально или горизонтально и обычно приводятся в действие дизельными двигателями или электродвигателями.Горизонтальные насосы используются в ситуациях с избыточным давлением, например, при подаче воды из приподнятого резервуара или городской водопроводной сети. С другой стороны, вертикальные насосы используются там, где отсутствует положительное давление. Обычно это происходит с резервуарами, прудами, подземными резервуарами для хранения и системами колодцев.

Встроенные насосы (экономия места) устанавливаются внутри всасывающего и нагнетательного трубопроводов и поддерживаются ими. Эти насосы хорошо работают в компактных помещениях из-за меньшей занимаемой площади.Они разработаны для легкого обслуживания; Двигатель и вращающийся узел насоса легко снимаются сверху, не снимая кожух насоса с трубопровода.

Поршневые насосы перемещают воду, улавливая определенное количество воды перед тем, как вытолкнуть ее через нагнетательную линию. Эти насосы имеют расширяющуюся полость на стороне всасывания и уменьшающуюся полость на стороне нагнетания, позволяя жидкости течь в насос, когда полость на стороне всасывания расширяется, а затем вытекать из нагнетания при сжатии полости.Эти насосы делятся на две основные категории: поршневые и роторные, причем последние чаще всего используются в пожарных насосах. Поршневые насосы по-прежнему являются необходимой частью общей насосной системы современных пожарных устройств, потому что, в отличие от центробежных насосов, они могут перекачивать воздух. Благодаря этой особенности поршневые насосы обычно устанавливаются в системах противопожарной защиты с особой опасностью, таких как системы пены и водяного тумана.

Турбинные насосы с вертикальным валом — это центробежные насосы с одним или несколькими рабочими колесами, установленными на вертикальном валу.Они уникальны тем, что рабочие колеса предназначены для погружения в источник воды. Они используются в установках, где источник воды находится ниже рабочих колес насоса. Эти насосы имеют чашу в сборе, которая часто содержит несколько рабочих колес на вертикальном валу, при этом выпускное отверстие каждого рабочего колеса непосредственно питает всасывающее усилие следующего рабочего колеса. Рабочие колеса устанавливаются на колонну определенной длины. Узел нагнетательной головки удерживает двигатель или угловой редуктор. В помещении для пожарных насосов узел нагнетательной головки типичного вертикального турбинного насоса является единственной видимой частью насоса.

Многоступенчатые многопортовые (многопортовые) насосы состоят из нескольких насосных агрегатов, соединенных последовательно, с выпускными отверстиями между рабочими колесами, приводимыми в действие одним двигателем. Доступное давление увеличивается с каждой ступенью рабочего колеса. Эти насосы преимущественно используются для обслуживания нескольких зон с различными требованиями к давлению в высотных зданиях. Один контроллер пожарного насоса может быть снабжен несколькими устройствами измерения давления, так что каждое выпускное отверстие может быть оборудовано собственной измерительной линией.Для каждого нагнетательного патрубка требуется собственный насос поддержания давления или подпорный насос, а также контроллер подпиточного насоса.

Многоступенчатые многопортовые насосы

Многоступенчатые многопортовые насосы

были введены в NFPA 20 в редакции 2016 года в качестве альтернативы последовательному размещению отдельных пожарных насосов для обслуживания высотных зданий, имеющих системные зоны с сильно различающимися требованиями к давлению. Многоступенчатые многопортовые насосы работают аналогично отдельным насосам, установленным последовательно, за исключением того, что все их ступени приводятся в действие одним двигателем, и между последовательными ступенями нет запорных клапанов (3.3.44.11, 4.8.2).

Многоступенчатые многопортовые пожарные насосы

должны иметь байпас, установленный между входным и первым выходным портами, а также между последовательными выходными портами, если такой байпас может обеспечить значение давления материала без помощи крыльчатки в байпасе (4.15.4.2). Это требование перекликается с аналогичным требованием для отдельных пожарных насосов или пожарных насосов, установленных последовательно. Он предназначен для обеспечения подачи воды в систему противопожарной защиты при пониженном давлении, если рабочее колесо выйдет из строя.

Автоматический циркуляционный предохранительный клапан для многоступенчатого многопортового пожарного насоса должен быть установлен между выпускным отверстием последней ступени и его обратным клапаном на выпуске и установлен ниже давления перекачки или давления отключения первого порта (4.12.1.3.1). Цель этого требования — гарантировать, что ограниченный поток охлаждающей воды будет проходить через последние ступени насоса, выходя через предохранительный клапан циркуляции, чтобы поддерживать охлаждение рабочих колес.

Каждое выпускное отверстие должно иметь свою собственную линию измерения давления, подключенную к контроллеру пожарного насоса и к контроллеру насоса поддержания давления (4.31.1.1).

Устройство агрегатов пожарных насосов серии

Подраздел 4.20.2 «Устройства серийных пожарных насосов» был существенно реструктурирован в редакции 2016 г. с учетом ряда новых требований. Последовательные пожарные насосные агрегаты — это все пожарные насосные агрегаты, которые работают последовательно, где первый насос принимает всасывание из водопровода, а каждый последующий насос принимает всасывание из выходного отверстия предыдущего насоса. Насосы, заполняющие резервуары, не считаются включенными последовательно с насосами, питающимися от этих резервуаров.

Агрегаты пожарного насоса серии

должны располагаться в одном помещении, если установка не отвечает определенному набору требований. Размещение серийных насосов в одном помещении дает значительные преимущества:

  • Расположение насосов близко друг к другу и на одинаковой высоте позволит поддерживать более высокое давление всасывания на нижних насосах, когда вышестоящий насос не работает. Это снизит вероятность кавитации и последующего повреждения рабочего колеса в случае выхода из строя насоса, расположенного выше по потоку.
  • Размещение серийных пожарных насосов позволяет легко оценить состояние и работу насоса во время пожара.

Для последовательной установки пожарных насосов с агрегатами более чем в одном помещении должны быть выполнены следующие требования (4.20.2.2):

  • Каждый насос может быть остановлен или запущен вручную из любого помещения, где установлен любой насос в последовательной схеме.
  • Давления всасывания и нагнетания для каждого насоса, работающего последовательно, отображаются во всех насосных отделениях.
  • Все аварийные сигналы и сигналы для всех насосов должны подаваться в каждом насосном отделении. Требования к аварийным сигналам и сигналам перечислены в 4.20.2.8 и 4.20.2.9.
  • Межблочная управляющая проводка между контроллерами в разных насосных отделениях должна соответствовать особым требованиям, перечисленным в 4.20.2.7 и 4.20.2.8.

Между насосными отделениями предусмотрена система связи, соответствующая особым требованиям, указанным в 4.20.2.9 и 4.20.2.10. В частности, эта система должна соответствовать требованиям живучести NFPA 72: Национальный кодекс пожарной сигнализации и сигнализации.В состав серийных пожарных насосных агрегатов может входить не более трех насосов (4.20.2.3), из которых не более двух могут быть насосами с регулируемой скоростью (4.20.2.4).

Требования к электричеству

Глава 5 описывает требования к пожарным насосам, устанавливаемым в высотных зданиях. В подразделе 5.5 издания 2016 года содержится призыв к надежному аварийному источнику энергии или резервному пожарному насосу, если в этих зданиях используются электрические пожарные насосы. В редакции 2013 г. также требовался аварийный источник, но это требование применялось только к зданиям, высота которых превышала возможности насосного аппарата пожарной части.Это изменение было введено для согласования требований NFPA 20 с требованиями NFPA 101: Кодекс безопасности жизнедеятельности и типовые строительные нормы. Эти нормы содержат требования к резервному питанию для зданий, которые считаются высотными, включая подключение пожарного насоса с приводом от электродвигателя.

Устройство защиты от перегрузки по току (OCPD) в обычном источнике питания контроллера пожарного насоса специально разрешено обеспечивать только мгновенную защиту цепи без какой-либо долговременной или кратковременной защиты от перегрузки по току (9.2.3.4.2). Такое расположение разрешено из-за особых требований к OCPD нормальной мощности для цепей пожарных насосов: они должны выдерживать ток заторможенного ротора двигателей пожарных насосов плюс ток полной нагрузки других подключенных нагрузок — примерно в шесть раз больше текущий ток — бесконечно. Защита от перегрузки, предусмотренная в контроллере пожарного насоса, является единственной защитой от перегрузки, разрешенной при нормальном питании пожарного насоса, и единственным устройством, разрешенным для размыкания цепи двигателя в условиях блокировки ротора (10.4.4), поэтому OCPD схемы обеспечивает защиту только от короткого замыкания или замыкания на землю.

OCPD в цепи альтернативного источника к контроллеру пожарного насоса должен контролироваться и дистанционно контролироваться (9.6.5.2). Это требование является новым для издания 2016 года. Цель состоит в том, чтобы гарантировать, что альтернативное питание не будет неожиданно недоступно в случае сбоя обычного питания из-за неправильного положения выключателя. Подраздел 10.4.7 «Сигнальные устройства на контроллере» не требует какого-либо контроля целостности альтернативного источника.Поскольку в типовой установке используется дизельный генератор, который не работает до тех пор, пока нормальная мощность не перестанет работать на одной из его нагрузок, контроллер пожарного насоса не имеет возможности определить, открыт или закрыт вышестоящий выключатель во время нормальной работы.

Нет соответствующих требований к автоматическому выключателю нормальной мощности. Источник, обслуживающий контроллер, контролируется дистанционно (10.4.7.2.4.1), и контроллер должен запускаться и переключаться на альтернативный источник всякий раз, когда нормальное питание становится недоступным.Срабатывание автоматического выключателя нормальной мощности побудит контроллер запустить генераторы и переключиться на альтернативный источник, и это состояние будет сообщаться дистанционно.

Требуется, чтобы

OCPD в цепи альтернативного источника выборочно согласовывались с вышестоящими устройствами максимального тока (9.6.5.1). В редакции 2016 г. особо указано, что выключатель пожарного насоса не нужно согласовывать с одним вышестоящим устройством, которое не обслуживает другие нагрузки (9.6.5.3). Это исключение для последовательных автоматических выключателей перекликается с аналогичными исключениями в NFPA 70: National Electrical Code (NEC) в отношении избирательной координации OCPD резервной системы.

Предыдущие версии NFPA 20 запрещали использование контроллера пожарного насоса или переключателя в качестве распределительной коробки для обслуживания другого оборудования, такого как контроллеры поддержания давления или насосы (9.7.7 (6)). Издание 2016 года также запрещает использование этих устройств в качестве распределительных коробок для сращивания проводов.

2017 NEC требует защиты от перенапряжения в контроллере пожарного насоса или на нем. Это требование является новым для NEC 2017 года. Версия NFPA 20 2016 года, как и предыдущие версии, требует наличия в контроллере ограничителя перенапряжения, но описывает исключения для контроллеров, рассчитанных либо на напряжение менее 600 В, либо на выдерживание 10 кВ без повреждений в соответствии с конкретными стандартами (10.4.1). NEC 2017 не предусматривает таких исключений и, по всей видимости, в целом охватывает все пожарные насосные установки, независимо от их характеристик.

Требования к контроллеру

Запрещается устанавливать устройства для блокировки или дистанционного отключения контроллеров пожарных насосов, кроме как с разрешения компетентного органа (10.3.4.5.3). Этот запрет был добавлен в редакцию 2016 года, чтобы прояснить цель кодекса. Возможность удаленного выключения запрещена, поскольку пожарные события не всегда можно определить из удаленных мест.Блокировки запрещены, чтобы избежать отказа насоса при запуске из-за отказа блокировки или случайного включения.

Контроллер многоступенчатого многопортового пожарного насоса должен иметь специальный датчик давления в виде переключателя или электронного датчика для каждого из выпускных отверстий пожарного насоса (10.5.1.1.2). Он также должен иметь специальный регистратор давления для каждой ступени насоса (10.5.1.1.3). Требуются отдельные датчики и регистраторы, потому что система может видеть падение давления только на одном из портов во время пожара.Эти положения были добавлены для поддержки добавления в код многоступенчатых многопортовых насосов.

Издание 2016 г. содержит новые требования к мониторингу и оповещению для систем, использующих электронные системы давления для автоматического управления работой пожарного насоса (10.5.2.1.3). Эти датчики необходимо контролировать во время автоматического тестирования, и необходимо сообщать об определенных условиях тестирования. Электронные датчики давления могут проявлять температурную чувствительность, а их ноль и диапазон могут дрейфовать со временем.Когда автоматический запуск инициируется срабатыванием соленоидного дренажного клапана, фактическое измеренное давление будет близко к нулю; если датчик давления показывает более 10 фунтов на квадратный дюйм во время автоматического запуска, инициированного соленоидным сливом, контроллер должен активировать визуальный и звуковой сигнал тревоги. Контроллер также должен подавать сигнал всякий раз, когда датчик показывает значение ниже 10% от его номинального диапазона, ниже его номинального выходного сигнала при нулевом давлении или более чем на 10% выше его номинального выходного значения полной шкалы.


Том Дивайн — старший инженер-электрик и руководитель проекта в Smith Seckman Reid Inc.Он является членом редакционно-консультативного совета «Инженер-консультант».

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *