Давление в цилиндре двигателя: Компрессия двигателя автомобиля — Автосканеры.РУ

Содержание

Проверка компрессии в цилиндрах двигателя

Современные автомобильные двигатели весьма надежны и в заботливых руках способны отработать не одну сотню тысяч километров без крупного ремонта. Но рано или поздно работа силового агрегата перестает быть безупречной, возникают проблемы с запуском, падает мощность, растет расход горючего и смазки. Подошло время капремонта? Или, может, всё не настолько серьезно? Самое время измерить компрессию в цилиндрах мотора. Это позволит оценить состояние здоровья вашего движка без его разборки и даже определить наиболее вероятные болячки. И тогда, возможно, удастся обойтись без капитального ремонта, ограничившись раскоксовкой или заменой отдельных деталей.

Что называют компрессией

Компрессия — это максимальное значение давления в цилиндре во время движения поршня к ВМТ в такте сжатия. Ее замер производится в процессе холостого прокручивания двигателя стартером.

Сразу отметим, что компрессия вовсе не тождественна степени сжатия.

Это совершенно разные понятия. Степенью сжатия именуют отношение полного объема одного цилиндра к объему камеры сгорания, то есть той части цилиндра, которая остается над поверхностью поршня, когда тот достигает ВМТ. Детальнее о том, что такое степень сжатия, можно почитать в отдельной статье.

Поскольку компрессия — это давление, то ее величина измеряется в соответствующих единицах. Автомеханики обычно пользуются такими единицами, как техническая атмосфера (ат), бар и мегапаскаль (МПа). Их соотношение таково:

1 ат = 0,98 бар;

1 бар = 0,1 МПа

Информацию о том, какова должна быть нормальная компрессия в моторе вашей машины, ищите в техдокументации. Ее ориентировочное численное значение можно получить, умножив величину степени сжатия на коэффициент 1,2…1,3. То есть для агрегатов, имеющих степень сжатия от 10 и выше, компрессия в норме должна составлять 12…14 бар (1,2…1,4 МПа), а для моторов со степенью сжатия 8.

..9 — приблизительно 10…11 бар.

Для дизелей нужно применять коэффициент 1,7…2,0, а значение компрессии может находиться в диапазоне от 30…35 бар у старых агрегатов до 40…45 бар у современных.

Чем измерять

Владельцы автомобилей с бензиновым двигателем вполне могут измерить компрессию самостоятельно. Измерения проводятся с помощью прибора, который называется компрессометр. Он представляет собой манометр со специальным наконечником и обратным клапаном, позволяющим зафиксировать измеренное значение давления.

Наконечник может быть жестким либо иметь дополнительный гибкий шланг, рассчитанный на высокое давление. Наконечники бывают двух типов — резьбовые и прижимные. Резьбовой вкручивается вместо свечи и позволяет обойтись без помощника в процессе измерений. Резиновый при проведении замера придется плотно прижимать к свечному отверстию. В комплекте с компрессометром может идти один из них или оба. Это нужно учесть, если решите приобрести подобный прибор.


Простой компрессометр можно купить по вполне доступной цене. Более дорогие импортные приборы комплектуются целым набором переходников, позволяющих производить измерения в любом моторе любого производителя.

Значительно дороже стоят компрессографы, позволяющие не только делать замеры, но и осуществлять запись полученных результатов для дальнейшего анализа состояния цилиндропоршневой группы (ЦПГ) по характеру изменения давления. Такие устройства предназначены в основном для профессионального использования.

Кроме того, существуют электронные приборы для комплексной диагностики двигателя — так называемые мотор-тестеры. Их также можно применять для косвенной оценки компрессии, фиксируя изменения тока стартера во время холостой прокрутки мотора.

Наконец, можно и вовсе обойтись без измерительных приборов и приблизительно оценить компрессию вручную путем сравнения необходимых для проворачивания коленвала усилий.

Для использования в дизельных агрегатах понадобится компрессометр, рассчитанный на более высокое давление, поскольку компрессия у них значительно выше, чем у бензиновых. Такие приборы имеются в продаже, однако для проведения измерений понадобится демонтировать свечи накала либо форсунки. Это не всегда простая операция, требующая специальных инструментов и навыков. Владельцам дизелей, вероятно, проще и дешевле предоставить проведение измерений сервисным специалистам.

Ручное (ориентировочное) определение компрессии

Потребуется снять колесо и удалить все свечи, оставив лишь в первом цилиндре. Затем нужно вручную крутить коленвал до завершения такта сжатия в 1-м цилиндре, когда его поршень окажется в ВМТ.

Произведите ту же операцию с остальными цилиндрами.  Каждый раз вкрученной должна быть только свеча, относящаяся к проверяемому цилиндру. Если в каком-то случае усилия, необходимые для проворачивания, окажутся меньше, значит именно этот цилиндр является проблемным, так как компрессия в нем ниже, чем в других.

Понятно, что такой метод очень субъективен и целиком полагаться на него не стоит. Применение компрессометра даст более объективные результаты и к тому же позволит сузить круг подозреваемых.

Подготовка к измерению

Убедитесь, что аккумулятор в исправном состоянии и полностью заряжен. Севшая АКБ способна снизить компрессию на 1…2 бар.

Забитый воздушный фильтр также может существенно повлиять на результаты измерений, поэтому проверьте его и при необходимости замените.

Мотор следует прогреть до достижения рабочего режима.

Перекройте любым способом подачу горючего в цилиндры, например, снимите питание с форсунок, отключите топливный насос, вынув соответствующие предохранители или реле. У механического бензонасоса отсоедините и заглушите патрубок, по которому осуществляется поступление в него топлива.

Извлеките все свечи. Некоторые откручивают лишь одну, но результат при таком измерении будет неточным.

Рычаг механической КПП должен находиться в нейтральной позиции, если коробка автоматическая — в положении P (Parking). Затяните ручной тормоз.

Для каждого цилиндра желательно провести измерения как с открытой заслонкой (при полностью выжатой педали газа), так и закрытой (педаль газа не нажимается). Полученные в обоих случаях абсолютные значения, а также их сравнение помогут точнее выявить неисправность.

Применение компрессометра

Вкрутите наконечник измерительного прибора в свечное отверстие 1-го цилиндра.

Для замера с открытой заслонкой нужно 3…4 секунды крутить коленвал стартером, нажав газ до упора. Если ваш прибор имеет прижимной наконечник, то без ассистента не обойтись.

Посмотрите и запишите зафиксированные прибором показания.

Выпустите воздух из компрессометра.

Проведите замеры для всех цилиндров. Если в каком-то случае показания будут отличаться от нормы, произведите данное измерение еще раз, чтобы исключить возможную ошибку.

Прежде чем начинать измерения с закрытой заслонкой, вкрутите свечи и запустите мотор, чтобы дать ему прогреться, а заодно и подзарядить АКБ. Теперь проделайте всё, как с открытой заслонкой, но без нажимания на газ.

Измерение без прогрева мотора

При наличии сложностей с запуском двигателя стоит измерить компрессию без его предварительного прогрева. Если имеется серьезный износ деталей ЦПГ или залегли кольца, то давление в цилиндре при «холодном» измерении может упасть примерно вдвое относительно нормальной величины. После прогрева мотора оно заметно возрастет и может даже приблизиться к норме. И тогда неисправность останется незамеченной.

Анализ полученных результатов

Измерения, проведенные с открытой заслонкой, способствуют выявлению грубых повреждений, поскольку нагнетание большого объема воздуха в цилиндр с лихвой перекрывает его возможные утечки из-за дефектов. В результате снижение давления относительно нормы будет не очень большим. Так можно вычислить сломанный или треснувший поршень, закоксованные кольца, прогоревший клапан.

Когда заслонка закрыта, воздуха в цилиндре мало, и компрессия окажется низкой. Тогда даже незначительная утечка сильно уменьшит давление. Так можно выявить более тонкие дефекты, связанные с поршневыми кольцами и клапанами, а также механизмом толкателей клапанов.

Простая дополнительная проверка поможет уточнить, в чем кроется источник неприятностей. Для этого на стенки проблемного цилиндра нужно нанести немного масла (примерно 10…15 мл), чтобы смазка закупорила возможные места утечки газа между поршнем и стенкой цилиндра. Теперь нужно повторить измерение для данного цилиндра.

Существенно возросшая компрессии укажет на утечки из-за изношенности или залегания поршневых колец либо царапин на внутренней стенке цилиндра.

Отсутствие изменений означает, что не полностью закрываются клапаны и нужна их притирка или замена.

Если показания увеличились на небольшую величину, виноваты кольца и клапаны одновременно, либо имеется дефект прокладки ГБЦ.  

Анализируя результаты измерений, следует учитывать, что давление в цилиндрах имеет зависимость от степени прогрева мотора, густоты смазки и других факторов, а измерительные приборы часто имеют погрешность, которая может составлять 2…3 бара. Поэтому важны не только и даже не столько абсолютные величины компрессии, сколько разница измеренных значений для разных цилиндров.

Если компрессия несколько ниже нормы, но в отдельных цилиндрах отличие в пределах 10%, значит, имеется равномерный износ ЦПГ без явно выраженных неисправностей. Тогда причины ненормальной работы агрегата нужно искать в других местах — система зажигания, форсунки и другие узлы.

Заниженная компрессия в одном из цилиндров указывает на наличие в нем неисправности, которую необходимо устранить.

Если такое наблюдается в паре соседних цилиндров, то возможен пробой прокладки ГБЦ.

Помочь определить конкретную неисправность в бензиновом моторе на основе результатов проведенных измерений и дополнительных признаков поможет следующая таблица.


В отдельных случаях полученные результаты могут показаться нелогичными, но всему можно найти свое объяснение. Если двигатель солидного возраста имеет высокую компрессию, не стоит делать вывод, что он в полном порядке и беспокоиться не о чем. Дело может быть в значительном количестве нагара, который уменьшает объем камеры сгорания. Отсюда и повышение давления.

Когда снижение компрессии не слишком велико и нормативный ресурс двигателя еще не выработан, можно попробовать провести раскоксовку, а через пару недель после этого снова сделать измерения. Если ситуация улучшится, то можно вздохнуть с облегчением. Но не исключено, что всё останется по-прежнему или даже станет хуже, и тогда нужно готовиться — морально и финансово — к проведению капитального ремонта агрегата.  

Какая компрессия должна быть в дизельном двигателе

В списке технических характеристик любого двигателя внутреннего сгорания зачастую указывается не компрессия в цилиндрах ДВС, а степень сжатия. Степень сжатия является конструктивным параметром, выражающим постоянное отношение объема цилиндра к объе­му камеры сгорания конкретного ДВС. Другими словами, степень сжатия указывает на то, во сколько раз объем рабочей топливно-воздушной смеси уменьшается (сжимается) в цилиндре во время перемещения поршня из НМТ в ВМТ.

Компрессия и степень сжатия дизельного или бензинового двигателя являются разными понятиями. Компрессия двигателя представляет собой величину, под которой следует понимать создаваемое давление в цилиндрах силового агрегата в самом конце такта сжатия смеси. Указанное давление измеряют в атмосферах, давлении в килограммах на квадратный сантиметр (кг/см2), МПа, используют единицу измерения бар и т.д.

Уверенный запуск дизельного двигателя возможен тогда, когда показатель ком­прессии в цилиндрах мотора данного типа составляет минимальные 22 кг/см2 и более.

Падение компрессии в цилиндрах дизеля ниже отметки в 20 кг/см2, приводит к тому, что двигатель самостоятельно и без дополнительных вмешательств уже не заводится. Под таким дополнительным вмешательством без разборки двигателя наиболее часто стоит понимать прямую заливку в цилиндры моторного или трансмиссионного масла. В ряде случаев этот способ помогает единоразово завести мотор с низкой компрессией. Повторный запуск неисправного ДВС после простоя будет невозможен.

Среди главных признаков сниженной компрессии отмечены:

Простейшим способом диагностики уровня компрессии является выкручивание свечей накала, после чего можно пальцем перекрыть свечное отверстие. Если компрессия находится на отметке около 20 кг/см2 и выше, тогда человек попросту не удержит палец. Более основательная проверка компрессии дизельного двигателя осуществляется путем выкручивания свечей накала, установки в освободившееся отверстие и замерами при помощи компрессометра.

Содержание статьи

Почему снижается компрессия

Резкое и неожиданное падение компрессии без видимых причин может возникнуть после ремонта ДВС, после многочисленных попыток запустить агрегат, а также в результате недостаточной частоты вращения коленвала стартером. В первых двух случаях масляная пленка на стенках цилиндров может отсутствовать, в результате чего компрессия недостаточна для запуска. Частота вращения зависит от состояния АКБ, стартера и других элементов, а также от вязкости моторного масла. Обильное попадание топлива или ОЖ в картер двигателя может привести к разжижению масла, что также приведет к потере компрессии.

Компрессия может снизиться в результате неисправностей ГРМ (прогар клапана, разрушение стержня клапана или повреждение направляющей втулки, проблемы с гидрокомпенсаторами и т.д.) Падение компрессии дизельного двигателя также может быть вызвано трещинами в ГБЦ или деформацией прилегающей поверхности головки блока цилиндров к блоку цилиндров, разрушением прокладки ГБЦ, износом зеркала цилиндров, неисправностями компрессионных колец, прогаром и/или разрушением поршня. На показатель компрессии двигателя также влияет степень закоксовки двигателя (отложения на днище поршня, залегание поршневых колец в результате обильного нагара и т.п.)

Как завести дизель с низкой компрессией

Запуск дизеля, в котором упала компрессия, можно реализовать путем искусственного создания масляной пленки на стенках цилиндров. Для этого необходимо выкрутить калильные свечи, после чего потребуется залить 20-25 «кубиков» моторного масла через свечные отверстия.

Также масло можно заливать и через форсуночные отверстия, но демонтаж дизельных форсунок сложнее, требует больше навыков и времени. По окончании заливки масла во все цилиндры мотор нужно провернуть в ручном режиме. Достаточно сделать пару оборотов, за которые на стенках цилиндров образуется равномерная масляная пленка. После этого мотор с выкрученными свечами накала необходимо снова провернуть на два или три оборота, но уже стартером.

Данная операция позволит удалить излишки масла из цилиндров агрегата и избежать так называемого гидроклина, который может возникнуть после закручивания свечей. Наиболее частой причиной потери компрессии выступает неисправность поршневых колец.  Самостоятельная заливка масла позволяет существенно поднять компрессию в момент первого запуска до оптимальных параметров, что и приводит к уверенному пуску мотора. 

Читайте также

Двигатели внутреннего сгорания

Двигатели внутреннего сгорания

Классификация ДВС

По способу смесеобразования :
  • с внешним смесеобразованием, у которых горючая смесь приготовляется вне цилиндров (карбюраторные и газовые)
  • с внутренним смесеобразованием (рабочая смесь образуется внутри цилиндров) — дизели
По способу осуществления рабочего цикла :
  • четырехтактные
  • двухтактные
По числу цилиндров :
  • одноцилиндровые
  • двухцилиндровые
  • многоцилиндровые
По расположению цилиндров :
  • с вертикальным или наклонным расположением цилиндров в один ряд
  • V-образные с расположением цилиндров под углом (при расположении цилиндров под углом 180 двигатель называется двигателем с противолежащими цилиндрами, или оппозитным)
По способу охлаждения :
  • с жидкостным охлаждением
  • с воздушным охлаждением
По виду применяемого топлива :
  • бензиновые
  • дизельные
  • газовые
  • многотопливные
По степени сжатия :
  • высокого (E=12. ..18) сжатия
  • низкого (E=4…9) сжатия
По способу наполнения цилиндра свежим зарядом :
  • без наддува, у которых впуск воздуха или горючей смеси осуществляется за счет разряжения в цилиндре при всасывающем ходе поршня
  • с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым компрессором, с целью увеличения заряда и получения повышенной мощности двигателя
По частоте вращения :
  • тихоходные
  • повышенной частоты вращения
  • быстроходные

Основы устройства поршневого ДВС

Основными частями ДВС являются кривошипно-шатунный механизм и газораспределительный механизм, а также системы питания, охлаждения, зажигания и смазочная система. Кривошипно-шатунный механизм преобразует прямолинейное возвратно- поступательное движение поршня во вращательное движение коленчатого вала. Механизм газораспределения обеспечивает своевременный впуск горючей смеси в цилиндр и удаление из него продуктов сгорания. Система питания предназначена для приготовления и подачи горючей смеси в цилиндр, а также для отвода продуктов сгорания.

Смазочная система служит для подачи масла к взаимодействующим деталям с целью уменьшения силы трения и частичного их охлаждения, наряду с этим циркуляция масла приводит к смыванию нагара и удалению продуктов изнашивания. Система охлаждения поддерживает нормальный температурный режим работы двигателя, обеспечивая отвод теплоты от сильно нагревающихся при сгорании рабочей смеси деталей цилиндров поршневой группы и клапанного механизма. Система зажигания предназначена для воспламенения рабочей смеси в цилиндре двигателя.

Итак, четырехтактный поршневой двигатель состоит из цилиндра и картера, который снизу закрыт поддоном. Внутри цилиндра перемещается поршень с компрессионными (уплотнительными) кольцами, имеющий форму стакана с днищем в верхней части. Поршень через поршневой палец и шатун связан с коленчатым валом, который вращается в коренных подшипниках, расположенных в картере. Коленчатый вал состоит из коренных шеек, щек и шатунной шейки. Цилиндр, поршень, шатун и коленчатый вал составляют так называемый кривошипно-шатунный механизм. Сверху цилиндр накрыт головкой с клапанами и, открытие и закрытие которых строго согласовано с вращением коленчатого вала, а следовательно, и с перемещением поршня. Перемещение поршня ограничивается двумя крайними положениями, при которых его скорость равна нулю. Крайнее верхнее положение поршня называется верхней мертвой точкой (ВМТ), крайнее нижнее его положение — нижняя мертвая точка (НМТ). Безостановочное движение поршня через мертвые точки обеспечивается маховиком, имеющим форму диска с массивным ободом. 2*S)/4*i, где i — число цилиндров. Отношение полного объема цилиндра Va к объему камеры сгорания Vc называется степенью сжатия: E=(Vc+Vh)Vc=Va/Vc=Vh/Vc+1. Степень сжатия является важным параметром двигателей внутреннего сгорания, т.к. сильно влияет на его экономичность и мощность.

Принцип работы

Действие поршневого двигателя внутреннего сгорания основано на использовании работы теплового расширения нагретых газов во время движения поршня от ВМТ к НМТ. Нагревание газов в положении ВМТ достигается в результате сгорания в цилиндре топлива, перемешанного с воздухом. При этом повышается температура газов и давления. Т.к. давление под поршнем равно атмосферному, а в цилиндре оно намного больше, то под действием разницы давлений поршень будет перемещаться вниз, при этом газы — расширяться, совершая полезную работу. Чтобы двигатель постоянно вырабатывал механическую энергию, цилиндр необходимо периодически заполнять новыми порциями воздуха через впускной клапан и топливо через форсунку или подавать через впускной клапан смесь воздуха с топливом. Продукты сгорания топлива после их расширения удаляются из цилиндра через впускной клапан. Эти задачи выполняют механизм газораспределения, управляющий открытием и закрытием клапанов, и система подачи топлива. Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным. Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.

Рабочий цикл четырехтактного карбюраторного двигателя

  1. Впуск. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение 0.07 — 0.095 МПа, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.

  2. Сжатие. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.

  3. Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ.

    В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал. При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом.

    В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200 С.

  4. Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

Рабочий цикл четырехтактного дизеля

  1. Впуск. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздухоочистителя в полость цилиндра через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60 С.

  2. Сжатие. Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.

  3. Расширение или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000 С. Под действием давления газов поршень 2 перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0. 3 — 0.5 МПа, а температура до 700 — 900 С.

  4. Выпуск. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан 6 отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700 С. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

Принцип действия двухтактного двигателя

Двухтактные двигатели отличаются от четырехтактных тем, что у них наполнение цилиндров горючей смесью или воздухом осуществляется в начале хода сжатия, а очистка цилиндров от отработавших газов в конце хода расширения, т.е. процессы выпуска и впуска происходят без самостоятельных ходов поршня. Общий процесс для всех типов двухтактных двигателей — продувка, т.е. процесс удаления отработавших газов из цилиндра с помощью потока горючей смеси или воздуха. Поэтому двигатель данного вида имеет компрессор (продувочный насос). Рассмотрим работу двухтактного карбюраторного двигателя с кривошипно-камерной продувкой. У этого типа двигателей отсутствуют клапаны, их роль выполняет поршень, который при своем перемещении закрывает впускные, выпускные и продувочные окна. Через эти окна цилиндр в определенные моменты сообщается с впускным и выпускным трубопроводами и кривошипной камерой (картер), которая не имеет непосредственного сообщения с атмосферой. Цилиндр в средней части имеет три окна: впускное, выпускное и продувочное, которое сообщается клапаном с кривошипной камерой двигателя. Рабочий цикл в двигателе осуществляется за два такта:

  1. Сжатие. Поршень перемещается от НМТ к ВМТ, перекрывая сначала продувочное, а затем выпускное окно. После закрытия поршнем выпускного окна в цилиндре начинается сжатие ранее поступившей в него горючей смеси. Одновременно в кривошипной камере вследствие ее герметичности создается разряжение, под действием которого из карбюратора через открытое впускное окно поступает горючая смесь в кривошипную камеру.

  2. Рабочий ход. При положении поршня около ВМТ сжатая рабочая смесь воспламеняется электрической искрой от свечи, в результате чего температура и давление газов резко возрастают. Под действием теплового расширения газов поршень перемещается к НМТ, при этом расширяющиеся газы совершают полезную работу. Одновременно опускающийся поршень закрывает впускное окно и сжимает находящуюся в кривошипной камере горючую смесь. Когда поршень дойдет до выпускного окна, оно открывается и начинается выпуск отработавших газов в атмосферу, давление в цилиндре понижается. При дальнейшем перемещении поршень открывает продувочное окно и сжатая в кривошипной камере горючая смесь перетекает по каналу, заполняя цилиндр и осуществляя продувку его от остатков отработавших газов.

Рабочий цикл двухтактного дизельного двигателя отличается от рабочего цикла двухтактного карбюраторного двигателя тем, что у дизеля в цилиндр поступает воздух, а не горючая смесь, и в конце процесса сжатия впрыскивается мелкораспыленное топливо. Мощность двухтактного двигателя при одинаковых размерах цилиндра и частоте вращения вала теоретически в два раза больше четырехтактного за счет большего числа рабочих циклов. Однако неполное использование хода поршня для расширения, худшее освобождение цилиндра от остаточных газов и затраты части вырабатываемой мощности на привод продувочного компрессора приводят практически к увеличению мощности только на 60…70%.

В качестве силовой установки на автомобилях используется двигатель внутреннего сгорания.

По виду применяемого топлива двигатели подразделяются на карбюраторные, дизельные и газовые.

Карбюраторные – это двигатели, работающие на жидком топливе (бензине), с принудительным зажиганием. Перед подачей в цилиндры двигателя, топливо перемешивается с воздухом в определенной пропорции с помощью карбюратора.

Дизельные — это двигатели, работающие на жидком топливе (дизельном топливе), с воспламенением от сжатия. Подача топлива осуществляется форсункой, а смешивание с воздухом происходит внутри цилиндра.

Газовые — это двигатели, которые работают на пропано-бутановом газе, с принудительным зажиганием. Перед подачей в цилиндры двигателя, газ смешивается с воздухом в карбюраторе. По принципу работы такие двигатели практически не отличаются от карбюраторных (бензиновых). Поэтому в объеме этой книги не имеет смысла подробно останавливаться на рассмотрении газовых установок. Однако, если вы переоборудовали свой автомобиль «на газ», то советую внимательно изучить прилагаемую к оборудованию инструкцию.

При работе двигателя внутреннего сгорания из каждых десяти литров использованного топлива, к сожалению, только около двух идет на полезную работу, а все остальные — на «согревание» окружающей среды. Коэффициент полезного действия ныне выпускаемых двигателей составляет всего около 20%. Но мир пока не придумал более совершенного устройства, которое могло бы долго и надежно работать при более высоком КПД.

Карбюраторные поршневые двигатели.

К основным механизмам и системам карбюраторного поршневого двигателя относятся:
  • кривошипно-шатунный механизм,
  • газораспределительный механизм,
  • система питания,
  • система выпуска отработавших газов,
  • система зажигания,
  • система охлаждения,
  • система смазки.
Рис. 6 Одноцилиндровый карбюраторный двигатель внутреннего сгорания а) «стакан» в «стакане»; б) поперечный разрез
1 — головка цилиндра; 2 — цилиндр; 3 — поршень; 4 — поршневые кольца; 5 — поршневой палец; 6 — шатун; 7 — коленчатый вал; 8 — маховик; 9 — кривошип; 10 — распределительный вал; 11 — кулачок распределительного вала; 12 — рычаг; 13 — клапан; 14 — свеча зажигания

Для начала, давайте возьмем простейший одноцилиндровый карбюраторный двигатель (рис. 6) и разберемся с принципом его работы. Рассмотрим протекающие в нем процессы, и выясним, наконец, откуда все-таки берется тот самый крутящий момент, который в конечном итоге приходит на ведущие колеса автомобиля.
Основной частью одноцилиндрового карбюраторного двигателя (рис. 6), является цилиндр с укрепленной на нем съемной головкой. Если продолжить сравнение элементов автомобиля с предметами, всем известными в быту, то цилиндр вместе с головкой, очень похож на обыкновенный стакан, перевернутый вверх дном.
Внутри цилиндра помещен еще один «стакан», также вверх дном, это — поршень. На поршне в специальных канавках находятся поршневые кольца. Именно они скользят по зеркалу внутренней поверхности цилиндра, и они же не дают возможности газам, образующимся в процессе работы двигателя, прорваться вниз. В тоже время кольца препятствуют попаданию вверх масла, которым смазывается внутренняя поверхность цилиндра.
С помощью пальца и шатуна, поршень соединен с кривошипом коленчатого вала, который вращается в подшипниках, установленных в картере двигателя. На конце коленчатого вала крепится массивный маховик.

Через впускной клапан в цилиндр поступает горючая смесь (смесь воздуха с бензином), а через выпускной клапан выходят отработавшие газы. Клапаны открываются при набегании кулачков вращающегося распределительного вала на рычаги. При сбегании же кулачков с рычагов, клапаны надежно закрываются под воздействием мощных пружин. Распределительный вал с кулачками приводится во вращение от коленчатого вала двигателя.
В резьбовое отверстие головки цилиндра ввернута свеча зажигания, которая электрической искрой, проскакивающей между ее электродами, воспламеняет рабочую смесь (это горючая смесь перемешанная с остатками выхлопных газов, о чем более подробно рассказано ранее).
Думаю, что после знакомства с основными деталями одноцилиндрового двигателя, вы уже начали догадываться о том, как он работает. Но давайте все-таки разберемся с тем, как происходит преобразование возвратно-поступательного движения поршня в цилиндре во вращательное движение коленчатого вала. Этим в двигателе занимается шатунно-поршневая группа.

Вспомните теплый летний вечер, когда вы катались на велосипеде и даже не задумывались о том, как он перемещается в пространстве. А сейчас давайте посмотрим на действия велосипедиста со стороны. Нажимая на педаль одной ногой, мы поворачиваем ось педалей на пол-оборота, затем помогает вторая нога, нажимая на вторую педаль и… колесо вращается, велосипед едет! Необходимо отметить, что работа двух ног — это пример двухцилиндрового двигателя. Чтобы не чувствовать себя обманутым, можете привязать одну ногу к педали и использовать только ее для нашего эксперимента.
При дальнейшем изучении работы ноги велосипедиста можно увидеть принцип работы шатунно-поршневой группы двигателя. Роль шатуна выполняет голень ноги, поршнем с верхней головкой шатуна является — колено, ну а нижняя головка шатуна на кривошипе – это ступня на педали.
Колено велосипедиста движется только вверх — вниз (как поршень), а ступня с педалью уже по окружности (как кривошип коленчатого вала). Так это и есть преобразование возвратно-поступательного движения во вращательное. В двигателе, взаимодействие деталей шатунно-поршневой группы точно такое же, как и в рассмотренном нами примере с ногой велосипедиста.

Рис. 7 Ход поршня и объемы цилиндра двигателя
а) поршень в нижней мертвой точке
б) поршень в верхней мертвой точке,

На рисунке 7 показаны некоторые параметры цилиндра и поршня, которые используются для оценки того или иного двигателя (объемы цилиндра и ход поршня).
Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ). При езде на велосипеде колено вашей ноги, также как и поршень, периодически будет находиться в крайнем верхнем или крайнем нижнем положениях.
Ходом поршня называется путь, пройденный от одной «мертвой» точки до другой — S.

Объемом камеры сгорания называется объем, расположенный над поршнем, находящимся в ВМТ — Vс.

Рабочим объемом цилиндра называется объем, освобождаемый поршнем при перемещении от ВМТ к НМТ — VР.

Полным объемом цилиндра является сумма объемов камеры сгорания и рабочего объема: Vп = VР + Vс.

Рабочий объем двигателя, это сумма рабочих объемов всех цилиндров и измеряется он в литрах. Пока мы с вами рассматриваем только одноцилиндровый двигатель, а вообще двигатели современных легковых автомобилей имеют, как правило — 4, 6, 8 и даже 12 цилиндров. Соответственно, чем больше рабочий объем — тем более мощным будет двигатель. Измеряется мощность в киловаттах или в лошадиных силах (кВт или л.с.).
Например, рабочий объем двигателя ВАЗ 2105 — 1,3 литра, его мощность 46,8 кВт (63,7 л.с.). А рабочий объем двигателя ВАЗ 21083 — 1,5 литра и его мощность 51,5 кВт (70 л.с.).

Рабочий цикл четырехтактного карбюраторного двигателя.

Двигатели внутреннего сгорания отличаются друг от друга рабочим циклом, по которому они работают.
Рабочий цикл — это комплекс последовательных рабочих процессов, периодически повторяющихся в каждом цилиндре при работе двигателя.
Рабочий процесс, происходящий в цилиндре за один ход поршня, называется тактом.
По числу тактов, составляющих рабочий цикл, двигатели делятся на два вида:

  • четырехтактные — в которых рабочий цикл совершается за четыре хода поршня,
  • двухтактные — в которых рабочий цикл совершается за два хода поршня.
На легковых автомобилях отечественного производства применяются четырехтактные двигатели, а на мотоциклах и моторных лодках – двухтактные. О путешествиях по водным просторам поговорим как-нибудь потом, а вот с четырьмя тактами работы автомобильного двигателя разберемся сейчас. Рабочий цикл четырехтактного карбюраторного двигателя состоит из следующих тактов:
  • впуск горючей смеси,
  • сжатие рабочей смеси,
  • рабочий ход,
  • выпуск отработавших газов.
Рис. 8 Рабочий цикл четырехтактного карбюраторного двигателя а) впуск; б) сжатие; в) рабочий ход; г) выпуск

Первый такт – впуск горючей смеси (рис. 8а).
Горючей смесью называется смесь мелко распыленного бензина с воздухом в определенной пропорции. Приготовлением смеси в двигателе занимается карбюратор, о чем мы с вами поговорим чуть позже. А пока следует знать, что соотношение бензина к воздуху 1:15 считается оптимальным для обеспечения нормального процесса горения.
При такте впуска поршень от верхней мертвой точки перемещается к нижней мертвой точке. Объем над поршнем увеличивается. Цилиндр заполняется горючей смесью через открытый впускной клапан. Иными словами, поршень всасывает горючую смесь.
Хочется посоветовать читателю, почаще включать свое воображение, сравнивая сложное с простым. Если вам удастся почувствовать, как бы ощутить на себе те процессы, которые протекают в двигателе, да и в автомобиле в целом, то многие из «секретов» машины станут для вас «открытой книгой».

Например, наверняка каждый из вас видел, как медицинская сестра, готовясь сделать укол, набирает шприцем лекарство из ампулы. За счет перемещения поршня шприца, над ним создается разряжение, которое и засасывает из ампулы то, что позже «вольется» в «мягкое место» пациента. Почти то же самое происходит и в цилиндре двигателя в процессе такта впуска.
Впуск смеси продолжается до тех пор, пока поршень не дойдет до нижней мертвой точки. За первый такт работы двигателя кривошип коленчатого вала поворачивается на пол-оборота.
В процессе заполнения цилиндра горючая смесь перемешивается с остатками отработавших газов и меняет свое название, теперь эта смесь называется – рабочая.

Второй такт — сжатие рабочей смеси (рис. 8б).
При такте сжатия поршень от нижней мертвой точки перемещается к верхней мертвой точке.
Оба клапана плотно закрыты и поэтому рабочая смесь сжимается. Из школьной физики всем известно, что при сжатии газов их температура повышается. Так и здесь. Давление в цилиндре над поршнем в конце такта сжатия достигает 9 — 10 кг/см2, а температура 300 — 400оС.
В заводской инструкции к автомобилю можно увидеть один из параметров двигателя, имеющий название – степень сжатия (например 8,5). А что это такое? Надеюсь сейчас это станет понятно.

Степень сжатия показывает во сколько раз полный объем цилиндра больше объема камеры сгорания (Vп/Vс — см. рис.7). У карбюраторных двигателей в конце такта сжатия, объем над поршнем уменьшается в 8 — 10 раз.
В процессе такта сжатия коленчатый вал двигателя поворачивается на очередные пол-оборота. А в сумме, от начала первого такта и до окончания второго, он повернется уже на один оборот.

Третий такт — рабочий ход (рис. 8в).
Во время третьего такта происходит преобразование выделяемой при сгорании рабочей смеси энергии в механическую работу. Давление от расширяющихся газов передается на поршень и затем, через шатун и кривошип, на коленчатый вал. Вот откуда берется та сила, которая заставляет вращаться коленчатый вал двигателя и, в конечном итоге, ведущие колеса автомобиля.
В самом конце такта сжатия, рабочая смесь воспламеняется от электрической искры, проскакивающей между электродами свечи зажигания. В начале такта рабочего хода, сгорающая смесь начинает активно расширяться. А так как впускной и выпускной клапаны все еще закрыты, то расширяющимся газам остается только один единственный выход — давить на подвижный поршень. Поршень под действием этого давления, достигающего 40 кг/см2, начинает перемещаться к нижней мертвой точке. При этом на всю площадь поршня давит сила 2000 кг и более, которая через шатун передается на кривошип коленчатого вала, создавая крутящий момент. При такте рабочего хода, температура в цилиндре достигает 2000 градусов и выше.

Коленчатый вал при рабочем ходе поршня делает очередные пол-оборота.
Позднее мы вернемся к этим огромным цифрам, похожим на температуры в доменной печи. А пока следует отметить для себя, что процесс рабочего хода происходит за очень короткий промежуток времени, по сравнению с которым, удивленное «хлопание» ресницами ваших глаз после прочтения этого сюжета, длится целую вечность.

Четвертый такт — выпуск отработавших газов (рис.8г)
При движении поршня от нижней мертвой точки к верхней мертвой точке, открывается выпускной клапан (впускной все еще закрыт) и отработавшие газы с огромной скоростью выбрасываются из цилиндра двигателя. Вот почему слышен тот сильный грохот, когда по дороге едет автомобиль без глушителя выхлопных газов, но об этом позже. А пока обратим внимание на коленчатый вал двигателя — при такте выпуска он делает еще пол-оборота. И всего, за четыре такта рабочего цикла, он сделал два полных оборота.
После такта выпуска начинается новый рабочий цикл, и все повторяется: впуск – сжатие – рабочий ход – выпуск… и так далее.

А теперь, интересно, кто из вас обратил внимание на то, что полезная механическая работа совершается двигателем только в течение одного такта — рабочего хода! Остальные три такта называются подготовительными (выпуск, впуск и сжатие) и совершаются они за счет кинетической энергии маховика, вращающегося по инерции.

Рис. 9 Коленчатый вал двигателя с маховиком
1 — коленчатый вал двигателя; 2 — маховик с зубчатым венцом; 3 — шатунная шейка; 4 — коренная (опорная) шейка; 5 — противовес

Маховик (рис. 9) — это массивный металлический диск, который крепится на коленчатом валу двигателя. Во время рабочего хода, поршень, через шатун и кривошип, раскручивает коленчатый вал двигателя, который и передает запас инерции маховику.
Запасенная в массе маховика инерция позволяет ему, в обратном порядке, через коленчатый вал, шатун и поршень осуществлять подготовительные такты рабочего цикла двигателя. То есть, поршень движется вверх (при такте выпуска и сжатия) и вниз (при такте впуска), именно за счет отдаваемой маховиком энергии. Если же двигатель имеет несколько цилиндров, работающих в определенном порядке, то подготовительные такты в одних цилиндрах совершаются за счет энергии, развиваемой в других, ну и маховик конечно тоже помогает.

В далеком детстве у вас наверняка была игрушка, которая называлась «Волчок». Вы раскручивали его энергией своей руки (рабочий ход) и радостно наблюдали за тем, как долго он вращается. Точно также и массивный маховик двигателя — раскрутившись, он запасает энергию, но только значительно большую, чем детская игрушка, а затем эта энергия используется для перемещения поршня в подготовительных тактах.

Дизельные двигатели

Главной особенностью работы дизельного двигателя является то, что топливо подается форсункой или насос-форсункой непосредственно в цилиндр двигателя под большим давлением в конце такта сжатия. Необходимость подачи топлива под большим давлением обусловлена тем, что степень сжатия у таких двигателей в несколько раз больше, чем у карбюраторных. И так как давление и температура в цилиндре дизельного двигателя очень высоки, то происходит самовоспламенение топлива. А это означает, что искусственно поджигать смесь не надо. Поэтому у дизельных двигателей отсутствуют не только свечи, но и вся система зажигания.

Рабочий цикл четырехтактного дизельного двигателя.

Первый такт — впуск, служит для наполнения цилиндра двигателя только воздухом.
При движении поршня от верхней мертвой точки к нижней мертвой точке, происходит всасывание воздуха через открытый впускной клапан.

Второй такт — сжатие, необходим для подготовки к самовоспламенению дизельного топлива.
При своем движении к верхней мертвой точке, поршень сжимает воздух в 18 — 22 раза (у карбюраторных в 8 — 10 раз). Поэтому в конце такта сжатия, давление над поршнем достигает 40 кг/см2, а температура поднимается выше 500 градусов.

Третий такт — рабочий ход, служит для преобразования энергии сгораемого топлива в механическую работу.
В конце такта сжатия, в камеру сгорания, через форсунку под давлением подается дизельное топливо, которое самовоспламеняется за счет высокой температуры сжатого воздуха.
При сгорании дизельного топлива (взрыве), происходит его расширение и увеличение давления. При этом возникает усилие, которое перемещает поршень к нижней мертвой точке и через шатун проворачивает коленчатый вал. Во время рабочего хода давление в цилиндре достигает 100 кг/см2, а температура превышает 2000о.

Четвертый такт – выпуск отработавших газов, служит для освобождения цилиндра от отработавших газов.
Поршень от нижней мертвой точки поднимается к верхней мертвой точке и, через открытый выпускной клапан, выталкивает отработавшие газы.
При своем последующем движении вниз, поршень засасывает свежую порцию воздуха, происходит такт впуска и рабочий цикл повторяется.
В дизельном двигателе, нагрузки на все механизмы и детали значительно больше, чем в карбюраторном бензиновом, и это закономерно приводит к увеличению его массы, размеров и стоимости. Однако дизельный двигатель имеет и неоспоримые преимущества — меньший расход топлива, чем у его карбюраторного «брата» (приблизительно на 30%), а также отсутствие системы зажигания, что значительно уменьшает количество возможных неисправностей при эксплуатации.

Главное достоинство дизельных двигателей — это низкие затраты на топливо, поскольку моторы этого типа имеют малые удельные расходы топлива на основных эксплуатационных режимах, да и само горючее во многих странах заметно дешевле бензина.

К числу недостатков дизеля по сравнению с бензиновыми двигателями относятся: сравнительно низкие мощностные показатели, более дорогая в изготовлении и обслуживании топливная аппаратура, худшие пусковые качества, повышенный выброс некоторых токсичных компонентов с отработавшими газами, повышенный уровень шума.

Экономические и экологические показатели автомобильного дизельного двигателя в первую очередь зависят от особенностей рабочего процесса и, в частности, от типа камеры сгорания, системы впрыскивания топлива. Камеры сгорания дизельного двигателя делятся на разделенные (вихрекамерные и форкамерные), полуразделенные и неразделенные. Дизельные двигатели с неразделенной камерой иногда называют двигателями с непосредственным впрыском.

Разделенная вихрекамерная камера сгорания Разделенная форкамерная камера сгорания
Полуразделенная камера сгорания Неразделенная камера сгорания
Дизельные двигатели с разделенной камерой сгорания обычно устанавливаются на грузовики малой грузоподъемности и легковые автомобили. Это определяется необходимостью снижения уровня шума и меньшей жесткостью работы. При подходе поршня к ВМТ воздух из основного объема камеры сгорания вытесняется в дополнительный, создавая в нем интенсивную турбулизацию заряда, что способствует лучшему перемешиванию капель топлива с воздухом. Недостатком дизельных двигателей с разделенной камерой сгорания являются: некоторое увеличение расхода топлива вследствие повышения потерь в охлаждающую среду из-за увеличенной поверхности камеры сгорания, больших потерь на перетекание воздушного заряда в дополнительную камеру и горящей смеси обратно в цилиндр. Кроме того, ухудшаются пусковые качества.

Дизельные двигатели с неразделенной камерой сгорания имеют низкие расходы топлива и легче запускаются. Недостатком их является повышенная жесткость работы и соответственно — высокий уровень шума.

Для полного сгорания топлива изготовитель выбирает оптимальное соотношение между количеством сопловых отверстий у форсунки и интенсивностью вихревого движения заряда в цилиндре — так, чтобы струи топлива полностью охватили весь воздушный заряд. Чем меньше сопловых отверстий, тем более интенсивным должно быть вращательное движение заряда. У четырехтактных дизельных двигателей вращательное движение воздуха во время хода впуска обеспечивается тангенциальным расположением впускного канала, наличием ширмы у клапана, винтовым (улиткообразным) каналом перед впускным клапаном. В процессе сжатия при подходе поршня к ВМТ воздух перетекает из надпоршневого пространства в камеру сгорания в поршне, увеличивая интенсивность вращательного движения свежего заряда. Поэтому при ремонте дизельных двигателей необходимо следить, чтобы зазор между днищем поршня и головкой цилиндров соответствовал заданной инструкцией величине. При большем зазоре интенсивность турбулизации заряда будет недостаточна, при меньшем на больших нагрузках может появиться стук поршня от его ударов по головке. Во время сборки дизельного двигателя этот зазор проверяется установкой свинцовых пластинок на днище поршня и прокруткой коленчатого вала после затяжки болтов крепления головки.

Способы создания вихревого движения заряда во время впуска:
Тангенциальное расположение канала Установка на клапане ширмы Винтовой канал
Пуск дизельного двигателя:
У дизельных двигателей с разделенной камерой сгорания (вихрекамерные или форкамерные) пусковые качества значительно хуже, чем у дизельных двигателей с неразделенной камерой.

Для облегчения пуска дизельные двигатели с разделенной камерой оснащаются электрическими свечами накаливания, устанавливаемыми в форкамеру или вихревую камеру. Реже свечи устанавливаются в дизельных двигателей с непосредственным впрыском.

Свечи бывают открытого и закрытого типа со спиралью накаливания или нагревательным элементом. Они выпускаются теми же фирмами, что и свечи зажигания. Кожух свечи располагается в камере сгорания дизельного двигателя так, чтобы конус распыленного топлива попадал только на его раскаленный наконечник.

В период, когда токсичность отработавших газов оценивалась по выбросу СО и СН (углеводородов), в широкой прессе отмечалось, что дизели имеют из всех ДВС наиболее низкую токсичность. Однако в дальнейшем, когда товарные бензины стали выпускаться без этиловой жидкости, а бензиновые двигатели начали оснащаться трехкомпонентными каталитическими нейтрализаторами, снижающими содержание СО, СН, NОх на 90-95%, о низкой токсичности дизельных двигателей по сравнению с бензиновыми двигателями стали скромно умалчивать.

Повышенная токсичность дизелей определяется следующими факторами:
Первый из них — низкая эффективность каталитических нейтрализаторов. Это связано с тем, что степень сжатия, а следовательно, и степень расширения дизелей значительно выше, чем у бензиновых двигателей. Поэтому температура отработавших газов недостаточна для эффективной работы нейтрализаторов. В связи с этим не удается добиться снижения выброса оксидов азота, которые в несколько десятков раз более токсичны, чем СО.

Второй фактор — повышенный выброс на некоторых режимах, особенно во время прогрева, продуктов неполного сгорания с характерным неприятным запахом (акролеина, альдегидов и др.), многие из которых являются канцерогенами. Третий — частицы сажи являются носителями канцерогенов. Попадая в дыхательные пути, они вызывают раковые опухоли. Из-за того, что ни в одной из стран до сих пор нет быстродействующих газоанализаторов, нет и возможности нормировать их выброс. Поэтому законодатели используют косвенные показатели — ограничение выброса углеводородов и твердых частиц.

Основные причины повышенной токсичности и повышенного расхода топлива дизельных двигателей следующие:
— низкое качество топлива,

— нарушение работы системы топливоподачи (слишком низкий коэффициент избытка воздуха, неравномерная подача топлива по цилиндрам, смещение фаз впрыска, межцикловая неравномерность подачи топлива),

— повышенный расход масла на угар из-за износа деталей цилиндропоршневой группы,

— в двигателях с турбонаддувом — слишком низкое давление наддува.

Одна из главных характеристик дизельного топлива — это его цетановое число, показывающее способность к самовоспламенению.
Оно определяется на одноцилиндровой установке сравнением со смесью эталонного топлива, подбираемого так, чтобы период задержки воспламенения был таким же, как и у испытуемого горючего. Величина цетанового числа должна быть не менее 45. Она зависит от химического состава топлива и наличия в нем специальных присадок. Увеличение цетанового числа достигается повышением содержания в топливе парафиновых углеводородов. При этом улучшаются пусковые качества, однако при цетановом числе 50…55 ухудшается полнота сгорания.


Проверка компрессии в цилиндрах Тойота Королла


Компрессия (давление в конце такта сжатия) в цилиндрах — важнейший показатель доя диагностики состояния двигателя без его разборки. По ее среднему значению и по разнице значений в отдельных цилиндрах можно с достаточной степенью точности определить степень общего износа деталей шатунно-поршневой группы двигателя и выявить неисправности этой группы и деталей клапанного механизма.

Проверяют компрессию специальным прибором — компрессометром, который можно приобрести в магазинах автозапчастей.

Важными условиями правильности показаний при проверке компрессии являются исправность стартера и его электрических цепей, а также полная заряженность аккумуляторной батареи.

Вам потребуется ключ «на 14» для выворачивания свечей зажигания.

Процедура проверки компрессии в цилиндрах показана на примере двигателя 1ZR-FE. Проверку компрессии на двигателях 1NR-FE и 4ZZ-FE выполняйте аналогично.

1. Пустите двигатель и прогрейте его до рабочей температуры

2. Остановите двигатель и выверните свечи зажигания

3. Отключите топливный насос, вынув его предохранитель в монтажном блоке, установленном в подкапотном пространстве автомобиля.

 

4.    Прижмите компрессометр к свечному отверстию проверяемого цилиндра.

5.    Нажмите на педаль акселератора до упора, чтобы полностью открыть дроссельную заслонку

6       Включите стартер и проворачивайте им коленчатый вал двигателя до тех пор, пока давление в цилиндре не перестанет увеличиваться. Это соответствует примерно четырем тактам сжатия.

Для получения правильных показаний компрессометра коленчатый вал должен вращаться со скоростью 180-200 мин ’ или выше, но не более 350 мин

7.    Записав показания компрессометра, установите его стрелку на ноль, нажав на клапан выпуска воздуха.

Показания компрессометров иной конструкции могут сбрасываться другими способами (в соответствии с инструкцией к прибору).
8.    Повторите операции 4-7 для остальных цилиндров. Давление должно быть не ниже 1,0 МПа и не должно отличаться в разных цилиндрах более чем на 0,1 МПа. Пониженная компрессия в отдельных цилиндрах может возникнуть в результате неплотной посадки клапанов в седлах, повреждения прокладки головки блока цилиндров, поломки или приго-рания поршневых колец. Пониженная компрессия во всех цилиндрах указывает на износ поршневых колец.

9.    Для выяснения причин недостаточной компрессии залейте в цилиндр с пониженной компрессией около 20 мл чистого моторного масла и вновь измерьте компрессию. Если показания компрессометра повысились, наиболее вероятна неисправность поршневых колец. Если значение компрессии осталось неизменным, то это указывает на неплотное прилегание тарелок клапанов к их седлам или на повреждение прокладки головки блока цилиндров.

Причину недостаточной компрессии можно выяснить также подачей сжатого воздуха в цилиндр, в котором поршень предварительно установлен в ВМТ такта сжатия. Для этого снимите с компрессометра наконечник и присоедините к нему шланг компрессора. Вставьте наконечник в свечное отверстие и подайте в цилиндр воздух под давлением 0,2-0,3 МПа. Для того чтобы коленчатый вал двигателя не провернулся, включите высшую передачу и затормозите автомобиль стояночным тормозом. Выход (утечка) воздуха через дроссельный узел свидетельствует о негер-метичности впускного клапана, а через глушитель — о негерметичности выпускного клапана. При повреждении прокладки головки блока цилиндров воздух будет выходить через горловину расширительного бачка в виде пузырей или в соседний цилиндр, что обнаруживается по характерному шипящему звуку

 

 

Что такое компрессия двигателя и на что она влияет? | Обслуживание | Авто

Первое, что делает покупатель поддержанного автомобиля, — это едет в сервис и просит замерить компрессию в двигателе. По результатам делается вывод о сохранности силового агрегата и о его остаточном ресурсе. Однако не все представляют смысл этого термина и нередко путают компрессию со степенью сжатия. За что же отвечает компрессия в бензиновом двигателе и какой должна быть ее величина для нормальной работы мотора?

Давление конца сжатия

Компрессия — это простонародное выражение, правильный термин — «давление конца сжатия». Оно создается в цилиндре движением поршня при выключенном зажигании и без подачи топлива.

Для измерения давления в цилиндрах мастера в технических сервисах обычно используют специальный прибор — компрессометр, который вкручивается вместо свечи зажигания. Измерительный элемент оказывается внутри цилиндра. Далее коленвал раскручивается стартером, и на шкале стрелка показывает определенное значение.

Чем выше компрессия, тем большую мощность может развить силовой агрегат. Она зависит от состояния колец поршней и их степени износа. Тарелки клапанов постепенно подгорают, неплотно садятся в седло и пропускают газы. «Подвисший» клапан либо прогоревший поршень не позволяют создать нужное давление в цилиндре.

При повреждении их газы проникают в картер, двигатель не может развить проектную мощность, и его характеристики искажаются. Если в одном цилиндре компрессия ниже, чем в других, на 25%, то необходим ремонт двигателя с полной его разборкой.

Нормальными значениями компрессии для распространенных 1,6-литровых атмосферных моторов считается 11-12 бар. В старых карбюраторных двигателях ВАЗ минимальный порог составляет 10 бар. Новый агрегат в отличном состоянии только что с конвейера должен показать 13 бар.

Бесконечно увеличивать компрессию нельзя из-за риска возникновения детонаций. Воздушно-топливная смесь при сжатии разогревается и может воспламениться произвольно еще до завершения цикла сжатия. То есть произойдет взрыв смеси раньше времени, из-за чего повреждаются детали двигателя.

Как увеличить мощность?

Увеличивают мощность двигателя за счет степени сжатия топливной смеси. Эта величина показывает отношение полного объема цилиндра к объему камеры сгорания. Представим цилиндр в разрезе. Поршень ходит вверх и вниз. Когда он останавливается в верхней точке, то над ним остается свободное пространство объемом V1, где должно находиться сжатое под высоким давлением топливо и воздух, которые затем подрывается искрой.

Под силой расширяющихся газов поршень движется вниз и совершает работу. Когда он достигает нижней мертвой точки, то открывается второй объем V2, в который вновь впрыскивается смесь и начинается новый цикл сжатия.

Степень сжатия — это отношение V2/V1, то есть таким простым способом рассчитывается, во сколько раз сжимается воздушно-топливная смесь при движении поршня из нижней мертвой точки в верхнюю. Чем больше сжимается топливо, тем выше КПД.

К примеру, если старый 6-цилиндровый 3-литровый мотор со степенью сжатия 5 развивает мощность в 100 л. с., то при степени сжатия 11 он показывает уже 130 л. с. Причем при неизменном расходе горючего.

Насколько сжимается топливо?

На заре автомобилестроения степень сжатия двигателей Отто делали в 4-5 единиц. На старых карбюраторных моторах ВАЗа смесь топлива с воздухом сжималась в 9,5-10 раз. На инжекторных моторах – в 10,5-11 раз. Сейчас на современных турбированных агрегатах она сжимается в 12-14 раз. Но бесконечно это делать невозможно. Растут конструктивные издержки.

В общем, компрессия и степень сжатия — это не одно и то же. Но обе эти величины влияют на мощность мотора. Правда, с износом поршней, клапанов и колец компрессия может падать, а вот степень сжатия — никогда.

низкая, разная, неравномерная. что делать ?

Компрессия в цилиндрах: низкая, разная, неравномерная. что делать ?

Компрессия может понижаться из-за:

  • Проблемного запуска мотора;
  • Неустойчивого функционирования во всех режимах;
  • Нерабочего состояния одного или нескольких цилиндров;
  • Наличия хлопков во впускном либо выпускном трактах;
  • Повышенного расхода горючего;
  • Повышения уровня давления в патрубках системы охлаждения.

Причина неравномерной либо пониженной компрессии кроется в:

  1. Закоксованных поршневых кольцах, наличии нагара внутри камеры сгорания и на дне поршней;
  2. Изнашивании или наличии повреждений на рабочих поверхностях цилиндров, а также не сильном повреждении поршневых колец;
  3. Неправильном регулировании клапанов, изнашивании или наличии повреждений гидрокомпенсаторов;
  4. Изнашивании направляющих втулок клапанов, изменении нормальной формы стержня клапана;
  5. Прогоревшем клапане, неисправной прокладке ГБЦ, наличии трещин в ГБЦ или деформировании последней. Также к низкой компрессии приводит сквозное прогорание или полуразрушенный поршень, повреждение поршневых колец.

Рекомендации специалистов ХАДО

Если поршневые кольца закоксованы, а в камере сгорания и дне поршней образовался нагар, нужно провести раскоксовку узлов автомобиля. Осуществлять эту процедуру рекомендуется при помощи специальных средств автохимии ХАДО Verylube Антикокс или Jet 100 Раскоксовка для двигателей.

Износ цилиндров можно легко устранить, обработав поверхности цилиндров гелем-ревитализантом ХАДО. Если же цилиндры сильно изношены, необходимо осуществить полную процедуру обработки масляной системы мотора ревитализантом, подходящим к определенному типу мотора.

Каталог продукции

Вы вышли из Вашего Личного Кабинета.

Ваша корзина покупок была сохранена. Она будет восстановлена при следующем входе в Ваш Личный Кабинет.

Укажите ваши данные

Заполните все поля формы с подробной информацией о модели Вашей машины для того, чтобы наши эксперты смогли Вам помочь.

Ваш запрос отправлен

Бесплатный звонок

Ваш запрос отправлен

Ваша заявка принята.

С вами свяжется наш консультант в ближайшее время.

Часы работы: Пн-Пт: с 9:00 до 18:00
Суббота, воскресенье: выходной.

Давление в баллоне — обзор

VI. Давление в цилиндре и эффекты диссоциации

Повышение пикового давления в цилиндре имеет два важных эффекта: (a) механические напряжения в компонентах двигателя увеличиваются. В настоящее время большие двигатели работают с пиковым давлением до 170 бар (Herrman and Magnet, 1985). Высокое давление газа также приводит к увеличению потерь на трение из-за повышенного давления за верхним поршневым кольцом. (б) При прочих равных снижается степень диссоциации.Это проиллюстрировано на рисунке 38, который относится к горению этена (C 2 H 4 ) с воздухом в стехиометрических пропорциях. На рис. 38 показано, как равновесный состав продуктов сгорания этена изменяется в зависимости от давления.

Рисунок 38. Влияние давления на диссоциацию.

Уже упоминалось (раздел I), что двигатель DI обычно имеет более низкий удельный расход топлива, чем двигатель IDI.Эта тема будет дополнительно обсуждаться здесь с особым упором на важность местных соотношений воздух / топливо. Как правило, если капли топлива сгорают в регионе с нехваткой кислорода, образуется большое количество окиси углерода. Если позже в процессе сгорания становится доступным больше кислорода, этот монооксид углерода может окисляться или не окисляться до диоксида углерода, в зависимости от температуры. Если к тому времени, когда станет доступен дополнительный кислород, температура упадет ниже примерно 1800 K, концентрация монооксида углерода останется «замороженной» на своем прежнем уровне и не будет значительного преобразования в диоксид углерода.

Если смесь воздух / топливо неоднородна, в выхлопе может появиться значительное количество окиси углерода, даже если общий коэффициент эквивалентности может быть значительно ниже единицы. Это проиллюстрировано для случая двигателя с искровым зажиганием на Рисунке 39 (Uyehara, 1980a), где процентное содержание окиси углерода в выхлопе показано как функция от коэффициента эквивалентности. Есть четыре кривых. Кривые A и B представляют собой прогнозируемые концентрации в начале такта расширения и при открытии выпускного клапана (EVO), соответственно.Расчеты основывались на степени сжатия 8 и температуре воздуха 830 K в конце такта сжатия; предполагались условия равновесия. Кривая C и точки D представляют измеренные концентрации CO. При испытаниях, к которым относятся точки D, большое внимание было уделено тому, чтобы наведенный заряд был однородным; Топливо и воздух перед подачей в двигатель тщательно перемешивались в системе баков и экранов. Можно видеть, что в этих условиях и со стехиометрической смесью доля CO в выхлопе была очень низкой — около 0.3%. Кривая C, напротив, представляет данные испытаний, в которых топливо впрыскивалось во впускной коллектор, так что у него было гораздо меньше возможностей для правильного смешивания с воздухом; таким образом, в момент воспламенения можно ожидать, что эквивалентное отношение будет значительно изменяться от точки к точке в камере сгорания. Был измерен общий коэффициент эквивалентности; рабочие условия точно соответствовали условиям точки D. Видно, что концентрация окиси углерода в выхлопе больше, чем для гомогенной смеси; разница особенно заметна для стехиометрических и более слабых смесей.Может показаться, что в случае гомогенной смеси монооксид углерода образуется более или менее равномерно по всей камере сгорания, но когда смесь неоднородна, существуют локальные богатые топливом зоны, в которых образование окись углерода относительно высока. Когда температура падает ниже примерно 1400 ° C, концентрация окиси углерода замерзает. Казалось бы, если общий коэффициент эквивалентности меньше единицы, то для снижения концентрации окиси углерода в выхлопе желательно иметь однородный заряд в камере сгорания, без зон местного обогащения.

Рисунок 39. Концентрация окиси углерода — зависимость от коэффициента эквивалентности. (Уехара, 1980).

Перепечатано с разрешения © 1980 Society of Automotive Engineers, Inc. Авторские права © 1980

Рассмотрим двигатель IDI, в котором объем предкамеры равен половине общего объема зазора, а другая половина состоит из зазора в цилиндр вместе с соединительным каналом. При высоких нагрузках масса воздуха, захваченного в камере предварительного сгорания в ВМТ, будет значительно меньше половины общей имеющейся массы.Это связано с тем, что воздух в форкамере будет поглощать тепло от относительно горячих поверхностей канала и форкамеры и, следовательно, будет иметь несколько меньшую плотность, чем воздух в пространстве над поршнем. Все топливо впрыскивается в камеру предварительного сгорания; таким образом, коэффициент эквивалентности будет высоким, а отношения [CO 2 ] / [CO] и [H 2 O] / [H 2 ] будут относительно низкими. Хотя позже в процессе сгорания становится доступным гораздо больше кислорода, когда частично сгоревшие газы выходят в главный цилиндр, окисление CO еще далеко не завершено, и как только температура падает ниже 1800 K, реакция становится чрезвычайно медленной.Таким образом, уровень CO в выхлопных газах может быть довольно высоким, даже если общий коэффициент эквивалентности ниже стехиометрического.

Везде, где есть карманы богатой смеси в общей бедной смеси, вероятно, будет значительная концентрация окиси углерода в выхлопных газах. С монооксидом углерода будет связан водород, часть которого не сможет окисляться до воды, когда местное соотношение эквивалентности будет высоким. Относительные пропорции CO 2 , CO, H 2 O и H 2 регулируются уравнением «водяной газ»:

CO + h3O⇌CO2 + h3

Константа диссоциации для этой реакции дана на

Kp = pCO2ph3pCOph3O = nCO2nh3nCOnh3O

, поскольку количество молей каждого вида одинаково (один).

Из измерений состава выхлопных газов можно работать в обратном направлении, чтобы определить K p и, следовательно, на основании табличных значений K p как функции температуры, чтобы определить температура, при которой реакция замораживалась. На рисунке 40 показан такой график. В этом случае расчетное значение температуры замерзания составляло 1670 К, но большинство значений, цитируемых в литературе, выше этого — около 1800 К.

Рисунок 40. Определение температуры «замерзания» по составу выхлопных газов.

Как указывалось ранее, когда смесь неоднородна и в некоторых частях заряда, которые в целом обеднены, существуют богатые карманы, в продуктах сгорания будут присутствовать оксид углерода и водород, а также диоксид углерода и вода. Эффективное сгорание требует, чтобы пропорции диоксида углерода и воды были как можно более высокими и чтобы они образовывались в начале хода расширения, что подразумевает близкое приближение к сгоранию с постоянным объемом.В двигателе IDI в камере предварительного сгорания неизбежно образуются относительно большие количества окиси углерода и водорода. Эти газы проходят в пространство над поршнем, где они смешиваются с воздухом. Реакции происходят, но когда поршень опускается на такте расширения, температура падает; когда он достигает критического значения, концентрации различных видов замерзают на своем текущем уровне.

Watson и Kamel (1979) использовали компьютерную модель для сравнения скоростей сгорания в аналогичных двигателях DI и IDI.На рисунке 41 показаны графики изменения скорости сгорания в зависимости от угла поворота коленчатого вала для двух случаев. Явно очевидна большая продолжительность сгорания в двигателе IDI; хотя первая стадия сгорания в форкамере завершается относительно быстро, вторая стадия (в цилиндре) протекает сравнительно медленно.

Рисунок 41. Сравнение скоростей сгорания для двигателей DI и IDI.

Разработка двигателя и давление в цилиндре

В некоторых рубриках Enginology назад мы говорили о функциональности и преимуществах, получаемых от измерения давления в цилиндре с приращением углов коленчатого вала.В этом обсуждении мы отметили несколько полезных потоков данных. Один из них связан с непрерывным измерением давления в цилиндре от начала сгорания до его конца, от цикла к циклу в работающем двигателе. Задержите эту мысль на мгновение.

Мы также уделили немного места в этой колонке, говоря о качестве воздушно-топливной смеси, как и о качестве входящего воздушного потока. В частности, мы отметили, что от цикла к циклу (в любом заданном цилиндре) возможно различное качество заряда воздух / топливо в зависимости от эффективности смешивания топлива с воздухом.По сути, разделение воздуха и топлива и то, как это может повлиять на диапазон размеров топливных капель, было в центре внимания, которое мы обсуждали. Из-за проблем, связанных с плохим смешиванием воздуха и топлива, общее давление в рабочем цилиндре может изменяться, что отражается в изменении крутящего момента коленчатого вала.

Суть в понижении мощности. Именно эти изменения давления в рабочем цилиндре от цикла к циклу можно определить как «циклическое диспергирование». Интересно, что анализ выхлопных газов на несгоревшее топливо (углеводороды или уровни углеводородов) помог подтвердить, что изменения давления в цилиндрах предполагают потерю мощности из-за плохо перемешанных или сгоревших зарядов воздух / топливо.Другими словами, поскольку воздух и топливо имеют тенденцию разделяться (либо во время впускного цикла, либо во время движения пламени, либо в обоих случаях), увеличивается количество несгоревшего топлива, которое сопровождается снижением мощности.

Что может вызвать циклическое рассеяние? Из возможностей разделение воздуха и топлива и общее движение смеси в камере сгорания занимают довольно высокое место. И, как и следовало ожидать, эти два условия связаны. Например, хотя два основных типа движения (завихрение и кувырок) использовались как в штатных, так и в гоночных двигателях, возможно их слишком много.Любой из них может быть причиной механического отделения топлива от воздуха где-то на протяжении времени до сгорания, а также снижения полезного объемного КПД или наполнения цилиндра. И, как обсуждалось ранее, существуют причины разделения, которые могут материализоваться во время впускного цикла не только между цилиндрами двигателя, но и случайным образом, от цикла к циклу, в отдельных цилиндрах.

Учитывая характер того, как может развиваться циклическое диспергирование, не нужно много воображения, чтобы увидеть, что двигатель, оснащенный карбюратором, может быть более проблематичным, чем двигатель с последовательным многоточечным электронным впрыском топлива (MPEFI).Даже EFI «периодического действия» (топливо подается в четыре цилиндра одновременно в конфигурации V-8, например), по-видимому, предлагает снижение циклической дисперсии больше, чем компоновка карбюратора и обычные проблемы с мокрым потоком, которые могут возникнуть. между ним и камерой сгорания. Фактически, данные о давлении в цилиндрах, которые я видел при сравнении карбюраторных двигателей с двигателями с EFI, ясно показывают снижение как общих циклических схем дисперсии, так и циклических характеристик отдельных цилиндров.

Более того, если мы переместим наше внимание на то, как можно снизить мощность с помощью того, что мы называем «типичными» условиями циклического рассеивания, данные показали, что процент снижения мощности находится в диапазоне 5-8 процентов.Таким образом, просто уменьшив это условие при том же количестве потребляемого топлива, можно увеличить мощность на этот процент. Перевод? Уменьшение циклической дисперсии может привести к повышению эффективности сгорания, что приводит к увеличению крутящего момента коленчатого вала. Это означает больше мощности.

Здесь есть еще одна небольшая загвоздка для дальнейшего обоснования того, почему снижение циклической дисперсии — это хорошо. Заядлые студенты, изучающие двигатели внутреннего сгорания, скажут вам, что циклическое диспергирование практически гарантирует, что в зазоре свечи зажигания будет различная топливно-воздушная смесь при каждом зажигании.Иногда, в зависимости от степени состояния (проще говоря), заправка воздухом / топливом будет богатой, а иногда — бедной. Остаточные побочные продукты сгорания, отделившееся топливо или условия турбулентности в пространстве сгорания могут повлиять на то, что свеча видит во время сгорания.

Независимо от того, что мы назовем качеством начального сгорания (пламя) и скоростью, с которой оно проходит через пространство сгорания, зависит от соотношения воздух / топливо в зазоре свечи зажигания. Несмотря на то, что сам процесс сгорания создает некоторую турбулентность (в начале горения), которая перекрывается последующей активностью по мере продолжения пламени, циклическое рассеяние может повлиять на скорость начального сгорания и чистое давление в цилиндре.Все это возвращает нас к измерению давления в цилиндрах, чтобы определить масштабы проблемы.

Обратите внимание на прилагаемый рисунок, хотя он несколько преувеличен для целей обсуждения. Хотя он не взят непосредственно из графика испытания давления / угла поворота коленчатого вала, он показывает, как пиковое рабочее давление в цилиндре (чистый крутящий момент) может изменяться в зависимости от циклической дисперсии. Как обсуждалось ранее и проиллюстрировано в этой колонке, пиковое давление обычно возникает немного после ВМТ рабочего хода и изменяется пропорционально частоте вращения коленчатого вала.Во всяком случае, рисунок иллюстрирует взаимосвязь между пиковыми рабочими давлениями и углами поворота коленчатого вала, на которые влияет циклическая дисперсия.

Методы, которые мы ранее обсуждали, связанные со способами улучшения качества заряда воздуха / топлива, связаны со всем этим, особенно для двигателей, оснащенных карбюратором. На самом деле, если вы на минутку задумаетесь об этом, мы, которые работали или разрабатывали детали для двигателей с карбюраторами, уже давно сосредоточены на решении проблемы низкого качества смеси и связанных с этим компромиссов, ведущих к снижению мощности.Такова природа зверя. Однако с появлением EFI и того, как эта технология предлагает отличную возможность уменьшить циклическую дисперсию и ее негативное влияние на характеристики двигателя, органам, санкционирующим автоспорт, остается только вступить в современное время и позволить (возможно, даже потребовать) эту концепцию. использоваться.

Существуют группы разработок двигателей для кольцевых гусениц, которые уже уточняют, как EFI может перейти в эту категорию гонок, решая проблемы, которые в противном случае могли бы вызывать беспокойство.Одним из них является то, как поступать с системами подачи топлива под высоким давлением и потенциальным возгоранием на борту, когда гоночные автомобили попадают в аварии.

Учитывая инновационный и творческий потенциал, которым исторически изобилует сообщество разработчиков запчастей для автоспорта, найдутся решения этой и подобных проблем. Дело в том, что проблемы, связанные с обработкой топливно-воздушной смеси в двигателях, оснащенных карбюраторами, могут быть существенно улучшены путем включения способов, которыми OEM-производители решают как сокращение выбросов, так и требования к экономии топлива для дорожных транспортных средств.EFI, помимо любых опасений по поводу работы с сопутствующей электроникой, представляет собой четкий путь к решению некоторых основных проблем с двигателем внутреннего сгорания, в том числе тех, которые поворачивают налево, направо или их комбинацию. Циклическая дисперсия — это только одна проблема, которую следует уменьшить.

Измерение давления в баллоне | Kistler

Измерение давления в цилиндрах является основой для индикации давления в цилиндрах: метрологический метод измерения и анализа кривой давления внутри цилиндров поршневых двигателей внутреннего сгорания.

Из-за высокого давления измерение внутреннего давления в цилиндре также известно как «индикация высокого давления». «Индикация низкого давления» — дополнительный вид измерения давления в баллоне. Его проводят во время фазы газообмена, чтобы определить давление во впускной и выпускной системах. Для того чтобы измеренное давление можно было привязать к определенной рабочей фазе двигателя внутреннего сгорания, в расчет включается положение поршня (угол поворота коленчатого вала) или время.

Эти методы предоставляют данные, необходимые для исследования, разработки и настройки двигателя. Они также обеспечивают производителям двигателей необходимую основу для соблюдения все более строгого законодательства о выхлопных газах и для оптимизации эффективности своих двигателей.

Кривая давления в баллоне, определенная путем измерения давления в баллоне, является наиболее важным источником информации для индикации давления в баллоне. Индикация давления в цилиндре дает более точные сведения о термодинамических процессах во время сгорания и передаваемой мощности двигателя.Последствия действий по оптимизации двигателя, основанных на этих знаниях, следующие:

  • Повышенная эффективность
  • Повышенная мощность / производительность двигателя
  • Пониженные выбросы
  • Увеличенный срок службы двигателя

Где используется измерение давления в цилиндре?

Измерение давления в цилиндрах используется для:

  • двигателей автомобилей, мотоциклов и грузовых автомобилей
  • больших судовых двигателей, например 2-тактные и 4-тактные дизельные двигатели в судостроении
  • Стационарные большие двигатели, такие как двигатели большой мощности для электростанций

Какая измерительная техника используется для измерения давления в цилиндрах?

Измерение давления в цилиндрах в основном выполняется с помощью пьезоэлектрических высокотемпературных датчиков давления, которые устанавливаются через монтажное отверстие, которое для этой конкретной цели необходимо просверлить в головке блока цилиндров.Используются также измерительные свечи зажигания со встроенным датчиком высокотемпературного давления. Для них не требуется монтажное отверстие, потому что они легко ввинчиваются вместо стандартной свечи зажигания. На дизельных двигателях для измерения также можно использовать специальные переходники для свечей накаливания.

Измерительная цепь укомплектована усилителем заряда, системой сбора данных и системой оценки. В автомобильном секторе также существуют инновационные системы индикации, которые объединяют сбор и оценку данных в одном устройстве; их можно использовать на испытательных стендах, а также в качестве мобильных приложений.

Почему так важно измерять кривую давления в баллоне?

Кривая давления в баллоне, определенная путем измерения давления в баллоне, является наиболее важным источником информации для индикации давления в баллоне. В принципе, поршневые двигатели внутреннего сгорания являются тепловыми двигателями: посредством сгорания они по существу преобразуют химическую энергию, связанную в топливно-воздушной смеси, в механическую работу и тепло.

Разработчики стремятся получить максимально возможную долю механической работы в процессе преобразования — другими словами, их цель — максимизировать эффективность.Существенными факторами здесь являются уровень и кривая давления в цилиндре от угла поворота коленчатого вала, действующего на поршень. Эта кривая давления представляет процесс сгорания, поэтому она показывает, как энергия преобразуется в двигателе. Общая механическая работа поршня, суммированная в течение одного цикла сгорания или такта, получается из давления и соответствующего изменения объема камеры сгорания.

Каковы характеристические переменные для кривой давления в цилиндре?

Ключевыми характеристическими переменными являются уровень сигнала (пиковое давление) и указанное среднее эффективное давление (IMEP) в течение одного цикла сгорания.

Как оптический анализ горения используется для измерения давления в цилиндре?

Оптический анализ сгорания используется в качестве дополнения к измерению давления в цилиндре и других опций для оптимизации процессов сгорания. Основой для этого служат современные оптические датчики, которые точно определяют источники детонации и преждевременного воспламенения, а также образование сажи в камере сгорания. Эти оптические отверстия могут быть встроены в свечи зажигания всех типов.Другие системы могут интегрировать изображения высокоскоростной камеры для визуализации быстрых процессов подсистемы, таких как события нагнетания и распространение пламени.

Слишком далеко

29.02.00

В этой статье подробно описаны некоторые проблемы, связанные с попыткой выжать слишком много мощности из двигателя с турбонаддувом, а также распространенные ошибки, допускаемые многими людьми. Предлагаемое чтение трех других связанных статей на этом сайте в качестве основы для этой статьи:
Ignition Tuning Ideas for Turbos (
Ignition Tuning Ideas for Turbos)
Ignition and Combustion
Fuel Octane vs.Мощность
Интеллектуальные модификации двигателя

Детонация

Детонация определяется как форма горения, при которой выделяется слишком высокая скорость высвобождения энергии, что приводит к чрезмерным давлениям и температурам в камерах сгорания. Эти высокие давления и температуры могут быстро повредить или разрушить детали двигателя. Детонация часто сопровождается дребезжащим звуком.

Предварительное зажигание

Предварительное зажигание определяется как нормальный процесс сгорания, начинающийся до возникновения искры зажигания.Обычно это вызвано локальной горячей точкой, поднимающей температуру смеси выше точки самовоспламенения. Поскольку сгорание началось раньше, чем предполагалось, пиковое давление в цилиндре возникает слишком рано в цикле. Это приводит к чрезмерным давлениям и температурам, часто когда поршень все еще движется вверх, при этом объем цилиндра скорее уменьшается, чем увеличивается. Эффекты предварительного зажигания могут включать повреждение поршня и электрода свечи зажигания. Предварительное зажигание обычно не слышно и часто может привести к детонации.


Воздействие комбинированного события предварительного воспламенения / детонации на купол поршня


Свеча с легкими повреждениями перед зажиганием слева, нормальная свеча справа

Среднее эффективное давление в тормозной системе / пиковое давление в цилиндре

BMEP определяется как среднее эффективное давление сгорания в цикле. Его можно рассчитать по формуле:
792 000 X л.с., разделенные на (объем двигателя в кубических дюймах X об / мин).

Этот показатель полезен при сравнении различных двигателей, работающих на разных видах топлива, максимальное значение наблюдается при пиковом крутящем моменте.Средний диапазон для атмосферных двигателей составляет от 150 до 225 фунтов на квадратный дюйм. Гоночные двигатели с турбонаддувом могут превышать 1000 фунтов на квадратный дюйм.

Пиковое давление в цилиндре (PCP) — это максимальное давление в камере, достигаемое в процессе сгорания. Обычно это значение находится в диапазоне от 600 до 2000 фунтов на квадратный дюйм.

Тепловой КПД

Термический КПД описывает количество энергии, извлеченное для выполнения полезной работы из общей энергии, содержащейся в топливе. TE в первую очередь зависит от степени сжатия и опережения зажигания в данной конструкции двигателя.Большинство двигателей находятся в диапазоне от 25 до 35%. Чем ниже TE, тем выше температура выхлопных газов. TE можно рассчитать по следующей формуле:
2545 X л.с., разделенные на (британские тепловые единицы / фунт X фунт топлива / час).

Удельная выходная мощность

Это описывает количество л.с., развиваемое на единицу рабочего объема. Обычно выражается в л. С. / Литр или л. С. / Куб. Дюйм. Это полезно при сравнении различных двигателей и пределов напряжений. Как правило, чем выше удельная мощность, тем выше нагрузка на двигатель и тем меньше срок его службы.Его можно рассчитать как:
л.с. разделить на рабочий объем двигателя

.

Рекомендации по производительности и эффекты настройки

Для данного топлива максимальное и среднее давление в цилиндре, которое может быть достигнуто, ограничены определенной величиной. Это известно как предел детонации. Попытка достичь давления в цилиндрах выше предела детонации ВНУТРИ ДВИГАТЕЛЯ. При полностью открытой дроссельной заслонке давление в цилиндрах может быть изменено путем изменения давления наддува и момента зажигания. Если предел детонации для данного топлива происходит при давлении PCP 700 фунтов на квадратный дюйм, этот предел может быть достигнут путем использования наддува 5 фунтов на квадратный дюйм с установкой времени на 30 градусов до ВМТ или на 12 фунтов на квадратный дюйм с временным интервалом при 15 градусах до ВМТ.Двигатель будет значительно более эффективным, работая с меньшим наддувом и большим синхронизацией, а также уменьшатся тепловые нагрузки.

Как упоминалось выше, на TE влияют CR и угол опережения зажигания. Поскольку отсчет времени замедляется, PCP развивается позже в цикле. Это позволяет терять больше энергии из-за проводимости в водяные рубашки, потому что поршень находится дальше по каналу, а шток имеет менее выгодный угол на шатуне кривошипа для передачи усилия на коленчатый вал. Задержка синхронизации также значительно повышает температуру выхлопных газов.Это увеличивает тепловую нагрузку на поршни, свечи зажигания, клапаны, выхлопную систему и турбокомпрессор. В тяжелых случаях задержки синхронизации смесь все еще горит, когда выпускной клапан открывается. Поскольку турбокомпрессоры приводятся в действие энергией в потоке выхлопных газов, высокие EGT, вызванные запаздыванием по времени, производят в турбине так много энергии, что даже полностью открытый перепускной клапан не может контролировать давление наддува. В общем, запаздывание времени контрпродуктивно для создания эффективного, надежного и мощного двигателя.

Для большинства двигателей без наддува требуется от 30 до 38 градусов опережения зажигания для достижения PCP при правильном положении шатунной шейки для достижения максимальной мощности. При сжатии смеси за счет турбонаддува скорость распространения фронта пламени увеличивается, и требуется немного меньшее опережение зажигания для достижения PCP в нужный момент. Однако в большинстве случаев требуется менее 5 градусов замедления. Мы видим, как многие люди добавляют 15-25 градусов замедления в тщетную попытку остановить детонацию при очень высоких давлениях наддува для топлива и степеней сжатия, с которыми они работают.Стоит подчеркнуть, что бесплатных поездок здесь нет. Если вы планируете достичь высоких удельных выходов на низкооктановом топливе для насосов в течение продолжительных периодов времени, вам придется снизить CR. Действительно высокая удельная мощность доступна только при использовании высокооктанового топлива или путем впрыска антидетонантов. Существуют веские научные причины, по которым не существует заводских двигателей с турбонаддувом от 10 до 1 CR, которые производят удельную мощность 175 л.с. / л. На самом деле, не существует серийных поршневых автомобильных двигателей, о которых я знаю, которые могут достичь определенной мощности такого уровня на топливе для насоса с октановым числом 92 в любом месте.Несмотря на это, многие люди стараются делать это с дорогостоящими результатами. Высокая степень сжатия и высокий наддув просто несовместимы с топливом для насоса. Если вы попробуете это сделать, то либо будете недовольны результатами, либо взорвете двигатель. Когда я говорю серийный двигатель, я имею в виду тот, который можно купить в выставочном зале, без модификаций, с неповрежденной заводской гарантией. HP должна быть проверена на надлежащем динамометрическом стенде двигателя, а не на динамометрическом стенде шасси с применением поправочных коэффициентов фантомного маховика. Если бы Toyota, Honda или Ford могли сделать это с заводской надежностью, не думаете ли вы, что они бы это сделали? Как обсуждалось в некоторых справочных статьях выше, установите разумные цели для HP и модифицируйте внутренние компоненты по мере необходимости для надежного получения этих уровней.Имейте в виду, что многие японские двигатели разработаны для работы на топливе с октановым числом 98-102 на их внутренних рынках. Эти двигатели не смогут работать с такими же уровнями наддува на североамериканском топливе с октановым числом 92. Ожидайте сильного взрыва или замедления искры, если вы попытаетесь это сделать.

Как сделать жизнь

Уменьшение степени сжатия или использование топлива с более высоким октановым числом — два лучших способа увеличить мощность двигателя с турбонаддувом. Если вы едете по улице, вам, в общем, придется пользоваться насосом.В этом случае вы можете установить несколько поршней с более низким сжатием. Поршни и свечи зажигания часто являются первыми частями двигателя, которые страдают от воздействия избыточного давления и перегрева. Двигатель с высокой мощностью всегда должен оснащаться более холодными свечами зажигания — момент, который производители двигателей-любители часто упускают из виду. Кованые поршни и турбомоторы работают вместе, как варенье и тосты, но кованые поршни сильно различаются. В двигателях с турбонаддувом температура и давление намного превышают все, что наблюдается в двигателях без наддува.Поскольку удельная мощность выше, скорость высвобождения энергии выше. Температура купола поршня может составлять от 450 до 550 градусов по Фаренгейту. Большинство алюминиевых сплавов потеряли более половины своей прочности при 400F. Турбо-поршни должны иметь толстые верхние секции, чтобы они могли быстрее отводить тепло к юбкам и стенкам цилиндров, чтобы поддерживать температуру купола до безопасных пределов. Поршни с высоким содержанием кремния могут быть установлены более плотно из-за их более низкой скорости расширения для меньшего дребезжания в холодном состоянии, но поскольку они более хрупкие, они не выдерживают такой большой детонации, как поршни с низким содержанием кремния.Степень сжатия для уличного использования обычно должна находиться в диапазоне от 7,0 до 8,5 к 1.


Кованый поршень с высоким содержанием кремния для использования с наддувом и маломощным турбонаддувом. Обратите внимание на относительно тонкий купол и радиусы углов.


Литой заводской поршень слева, специально разработанный с низким содержанием кремния, кованый поршень справа


Обратите внимание на большие радиусы углов для более высокой скорости отвода тепла

Большинство заводских двигателей с турбонаддувом оборудовано под поршневыми форсунками. Это особенно хорошая идея для двигателей с большими отверстиями, где центр купола поршня находится далеко от боковых сторон, чтобы можно было эффективно рассеивать тепло, а дополнительная толщина может добавить излишний вес поршневому узлу.


Масляные форсунки

10/3/02 В Racetech мы каждый день получаем телефонные звонки и электронные письма от людей, желающих сделать абсурдные цифры в лошадиных силах по насосному топливу на двигателях и трансмиссиях, которые, по сути, являются стандартными. Мы не пытаемся отговорить вас от ваших мечтаний, просто пытаемся добавить немного реальности. Если у вас все сделано правильно и двигатель объемом 2 л развивает 400 л.с. (маловероятно), какая трансмиссия будет надежно передавать эту мощность на землю, особенно в условиях дрэг-рейсинга? Дренажные полосы завалены автомобилями, страдающими от поврежденных частей трансмиссии, которые загружаются на плоские платформы в конце дня гонки.Какой смысл в этом хп, если что-то взрывается каждый 5-й проход? Постройте все правильно, чтобы получить желаемую мощность. Если вы думаете, что ваша заводская трансмиссия выдержит двойной, тройной или четырехкратный крутящий момент на складе, вас ждет дорогой сюрприз.

04/09/03 Каждый год мы разговариваем с тысячами людей по поводу систем EFI и модифицированных двигателей. У нас есть много людей, которым просто нужно построить уличный двигатель с турбонаддувом с высокой степенью сжатия. Несмотря на то, что мы настоятельно рекомендуем снизить степень сжатия, многие люди настаивают на 9-10: 1 CR.Обычно эти люди звонят в ответ с жалобными рассказами о большом количестве звонков, взорванных прокладках головок, расплавленных пробках и поршнях. Мы бесплатно предоставляем информацию, основанную на 25-летнем опыте создания высокопроизводительных двигателей, чтобы помочь людям сэкономить деньги и избежать разочарований. Откровенно говоря, мы видим очень мало двигателей с турбонаддувом с высокой степенью сжатия, работающих на насосе, работающем более месяца, прежде чем они выйдут из строя. Вот почему вы не встретите заводских мощных турбомашин с 10 или 1 CR. Придерживайтесь значения менее 8,5 Crs, и вы получите больше мощности и более высокую надежность.

Давление бензина в цилиндрах в зависимости от оборотов двигателя

Контекст 1

… производительность двигателя в отношении давления в цилиндре, скорости тепловыделения, указанной работы, указанной мощности, указанного крутящего момента, IMEP (указанное среднее эффективное давление) , ISFC (указанный удельный расход топлива), объемный КПД, FCE (эффективность преобразования топлива) и выбросы выхлопных газов были исследованы для бензина и топлива CNG при различных установившихся режимах работы и состоянии MBT (максимальный тормозной момент) путем регулирования количества впрыскиваемого топлива.Испытания проводились при лямбда, λ: 0,92–1,20 o o, а искровое зажигание было зафиксировано на уровне 342 CA (18 BTDC) для обоих видов топлива. Время зажигания подробно не исследуется в этой статье из-за ограничивающей способности блока управления двигателем. На рисунках 3 и 4 показаны давления в цилиндрах во время сжатия и тактов мощности двигателя при работе на бензине и КПГ при WOT между 1500 и 5000 об / мин. Результаты показывают, что пиковое давление в цилиндре увеличивалось с частотой вращения двигателя до 3000 об / мин, но затем уменьшалось на более высоких скоростях.Сравнение давления в баллоне бензина и КПГ показано на Рисунке 5 для 1500, 3000 и 4500 об / мин. Снижение пикового давления в цилиндре на 13-17% во время рабочего хода при работе на КПГ было обнаружено во всем диапазоне скоростей. CNG показывает более низкое пиковое давление в цилиндрах по сравнению с бензином из-за того, что вдыхаемая энергия заряда цилиндра, таким образом, чистая высвобождаемая энергия намного ниже, чем у бензина. В результате производимая мощность также была уменьшена, что отражено пиковым давлением в цилиндре.Можно обнаружить, что самое высокое давление в цилиндре o, достигаемое с помощью бензина и КПГ, составляет 5,0 МПа (364 CA) o и пиковое давление 4,3 МПа (367 CA) соответственно при 3000 об / мин, где самый высокий крутящий момент достигается как для топлива. Положение пикового давления относительно угла поворота коленчатого вала для обоих видов топлива имеет тенденцию быть примерно одинаковым, показывая, что наилучшее время для пикового давления o должно приходиться на 4-7 CA ATDC. Площади, ограниченные кривой давления на графиках P-V, были использованы для определения указанной работы. На рисунке 6 показана указанная работа бензина и КПГ при 3500 об / мин.На рисунке показано, что цилиндр работает в течение одного цикла, что представляет собой положительную работу за счет сгорания во время рабочего такта и отрицательную работу во время сжатия. Результаты показывают, что тенденция и ценность указанной работы для обоих видов топлива довольно сопоставимы, но бензин лучше с немного более высокой положительной работой. Максимально допустимая работа на бензине и КПГ составляет 0,54 Дж и 0,51 Дж для обоих при o 28 CA ATDC. Скорость тепловыделения как для бензина, так и для КПГ при 1500-5000 об / мин и сравнение задержки воспламенения с моментом зажигания при 1500 об / мин для обоих видов топлива представлены на рисунках 7 и 8.Скорость тепловыделения означает, насколько быстро может быть завершено сгорание топлива и впоследствии передано возвратно-поступательному движению поршня. Как показано на Рисунке 9, результат показывает, что при 3000 об / мин бензин показывает пиковую скорость тепловыделения при o 3 o 354 CA (51 кДж / м / град) по сравнению с CNG при 358 CA 3 (33 кДж / м / град). . Пиковые точки скорости тепловыделения и задержки воспламенения (ΔΘ ig) для каждого топлива и скорости двигателя были перерисованы на рисунках 10 и 11. Очевидно, что скорости сгорания СПГ ниже, чем у бензина, на всех оборотах двигателя.В среднем это показывает, что КПГ дает на 33% меньшую скорость тепловыделения по сравнению с бензином. Кроме того, результаты также показывают, что задержка воспламенения для природного газа намного больше, чем для бензина, которая в среднем увеличивается на 61%, как показано на рисунке 11. Результат согласуется с выводом Джонса и Эванса [21]. ]. В результате при более низкой скорости тепловыделения и более длительной задержке зажигания для работы на КПГ необходимо более быстрое зажигание. Более низкая величина пикового тепловыделения для КПГ обусловлена ​​более низкой теплотворной способностью загрузки и уменьшением объемного расхода…

Характеристики давления в цилиндрах дизельных двигателей с турбонаддувом и безнаддувных двигателей

% PDF-1.7 % 1 0 объект > >> эндобдж 6 0 obj / CreationDate (D: 20150217124326 + 05’30 ‘) / Создатель (Elsevier) / CrossMarkDomains # 5B1 # 5D (sciencedirect.com) / CrossMarkDomains # 5B2 # 5D (elsevier.com) / CrossmarkDomainExclusive (истина) / CrossmarkMajorVersionDate (23 апреля 2010 г.) / ElsevierWebPDFS Технические характеристики (6.4) / ModDate (D: 20150217125507 + 05’30 ‘) / Производитель (Acrobat Distiller 10.0.0 \ (Windows \)) / Тема (Разработка процедур, 100 \ (2015 \) 350-359.DOI: 10.1016 / j.proeng.2015.01.378) / Название (Характеристики давления в цилиндрах дизельных двигателей с турбонаддувом и без наддува) / doi (10.1016 / j.proeng.2015.01.378) / роботы (noindex) >> эндобдж 2 0 obj > транслировать application / pdf10.1016 / j.proeng.2015.01.378

  • Характеристики давления в цилиндре дизельных двигателей с турбонаддувом и без наддува
  • Юри Олт
  • Виллу Микита
  • Корни Юри
  • Альгирдас Ясинскас
  • Двигатели с воспламенением от сжатия
  • Характеристики давления в баллоне
  • фаз процесса горения
  • результаты испытаний двигателя
  • Разработка процедур, 100 (2015) 350-359.DOI: 10.1016 / j.proeng.2015.01.378
  • Elsevier B.V.
  • journalProcedia Engineering © 2015 Авторское шоу Опубликовано Elsevier BV Все права защищены. 1877-705810020152015350-35935035910.1016 / j.proeng.2015.01.378 http://dx.doi.org/10.1016/j.proeng.2015.01.3782010-04-23true10 .1016 / j.proeng.2015.01.378
  • elsevier.com
  • sciencedirect.com
  • 6.410.1016 / j.proeng.2015.01.378noindex2010-04-23truesciencedirect.comↂ005B1ↂ005D> elsevier.comↂ005B2ↂ005D>
  • sciencedirect.com
  • elsevier.com
  • Elsevier2015-02-17T12: 55: 07 + 05: 302015-02-17T12: 43: 26 + 05: 302015-02-17T12: 55: 07 + 05: 30TrueAcrobat Distiller 10.0.0 (Windows) uuid: 846e739f-0129- 47e0-98da-277ef3992007uuid: 784f3d5d-2c15-4b52-83ca-481067e8fc84 конечный поток эндобдж 3 0 obj > эндобдж 4 0 obj > эндобдж 5 0 obj > эндобдж 7 0 объект > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text / ImageB] / Свойства> / XObject> >> / Повернуть 0 / TrimBox [0 0 544.252 742,677] / Тип / Страница >> эндобдж 8 0 объект > эндобдж 9 0 объект > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text] >> / Повернуть 0 / TrimBox [0 0 544.252 742.677] / Тип / Страница >> эндобдж 10 0 obj > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text] >> / Повернуть 0 / TrimBox [0 0 544.252 742.677] / Тип / Страница >> эндобдж 11 0 объект > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text / ImageC] / XObject> >> / Повернуть 0 / TrimBox [0 0 544.252 742.677] / Тип / Страница >> эндобдж 12 0 объект > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text] >> / Повернуть 0 / TrimBox [0 0 544.252 742,677] / Тип / Страница >> эндобдж 13 0 объект > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text] >> / Повернуть 0 / TrimBox [0 0 544.252 742.677] / Тип / Страница >> эндобдж 14 0 объект > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text] >> / Повернуть 0 / TrimBox [0 0 544.252 742.677] / Тип / Страница >> эндобдж 15 0 объект > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text / ImageC] / XObject> >> / Повернуть 0 / TrimBox [0 0 544.252 742.677] / Тип / Страница >> эндобдж 16 0 объект > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text / ImageC / ImageI] / XObject> >> / Повернуть 0 / TrimBox [0 0 544.»L’z`3rF̆,) ɲ: tu & (ӐE,` & _Ԇ = t.! M $: oG4 | pX ٕ R) -k.

    Сравнение измерений давления в цилиндрах дизельного двигателя для тяжелых условий эксплуатации с использованием переключающего адаптера » | J. Eng. Gas Turbines Power

    В этом исследовании сравнивались различные конструкции пьезоэлектрических преобразователей давления и монтажные конфигурации для измерения давления в цилиндрах одноцилиндрового дизельного двигателя для тяжелых условий эксплуатации. Использовалась уникальная конструкция головки блока цилиндров. что позволяло измерять давление в баллоне одновременно в двух местах.В одном месте были изучены различные пьезоэлектрические преобразователи давления и варианты монтажа. В другом месте использовался переключающий адаптер Kistler с водяным охлаждением и пьезорезистивным датчиком давления. Адаптер переключения измерял давление в цилиндре во время части цикла низкого давления. Во время части цикла высокого давления датчик защищен от газов высокого давления и высокой температуры в цилиндре. Таким образом, пьезорезистивный датчик измеряет давление в цилиндре с высокой точностью, без воздействия кратковременного теплового дрейфа, также известного как тепловой удар.Кроме того, пьезорезистивный датчик представляет собой датчик абсолютного давления, который не требует базовой линии или «привязки» на каждом цикле двигателя. С помощью этой измерительной установки для пьезоэлектрических датчиков была точно оценена степень теплового удара и вызванная изменчивость измерений. Также представлены и обсуждаются методы анализа данных для количественной оценки точности измерения давления в пьезоэлектрическом цилиндре. Было замечено, что все исследованные пьезоэлектрические преобразователи дали очень похожие результаты в отношении давления сжатия, начала сгорания, пикового давления в цилиндре и общей формы скорости тепловыделения.Различия возникли при изучении влияния монтажа преобразователя (например, встраиваемый или скрытый монтаж).

    Автор: alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *