Устройство роторного двигателя
После создания двигателя внутреннего сгорания началась эра автомобилей. Самое большое распространение при этом получил мотор поршневого типа. Но при этом с момента создания ДВС перед конструкторами стала задача извлечения максимального КПД при минимальных затратах топлива. Решалась эта задача несколькими путями – от технического улучшения уже имеющихся двигателей, до создания абсолютно новых, с другой конструкцией. Одним из таковых стал роторный двигатель.
Роторный двигатель
Появился он значительно позже поршневого, в 30-х годах. Полноценно работоспособная же модель такого двигателя появилась и вовсе в 50-х годах. После появления роторный двигатель вызвал заинтересованность у многих автопроизводителей, и все они кинулись разрабатывать свои модели роторных силовых установок, однако вскоре от них отказались в пользу обычных поршневых. Из приверженцев роторного мотора осталась только японская фирма Mazda, которая сделала такого типа мотор своей визитной карточкой.
Особенностью такого мотора является его конструкция, которая вообще не предусматривает наличие поршней. В целом это сильно сказалось на конструктивной простоте.
В поршневых моторах энергия сгораемого топлива воспринимается поршнем, который за счет своего возвратно-поступательного движения передает ее на кривошипы коленвала, обеспечивая ему вращение.
У роторных же двигателей энергия сразу преобразовывается во вращение вала, минуя возвратно-поступательное движение. Это сказывается на уменьшении потерь мощности на трение, меньшую металлоемкость и простоту конструкции. За счет этого КПД двигателя значительно возрастает.
Конструкция
Чтобы понять принцип работы, следует разобраться, какова конструкция роторного двигателя. Итак, вместо поршней энергия сгорания топлива у такого силового агрегата воспринимается ротором. Ротор имеет вид равностороннего треугольника. Каждая сторона этого треугольника и играет роль поршня.
Ротор
Чтобы обеспечить процесс горения, ротор помещается в закрытое пространство, состоящее из трех элементов – двух боковых корпусов, и одного центрального, называющегося статором. Пространство, в котором производится процесс горения, сделано в статоре, боковые корпуса обеспечивают только герметичность этого пространства.
Внутри статора сделан цилиндр, в котором и размещается ротор. Чтобы внутри этого цилиндра происходили все необходимые процессы, выполнен он в виде овала, с немного прижатыми боками.
Сам статор с одной стороны имеет окна для впуска топливовоздушной смеси или воздуха, и выпуска отработанных газов. Противоположно им сделано отверстие под свечи зажигания.
Устройство двигателя
Особенностью движения ротора в цилиндре статора является то, что его вершины постоянно контактируют с поверхностью цилиндра, его движение сделано по эксцентриковому типу. Он не только вращается вокруг своей оси, но еще и смещается относительно нее.
Для этого в роторе сделано большое отверстие, с одной стороны этого отверстия имеется зубчатый сектор. С другой стороны в ротор вставлен вал с эксцентриком.
Чтобы обеспечить вращение в боковой корпус установлена неподвижная шестерня, входящая в зацепление с зубчатым сектором ротора, она является опорной точкой для него. При своем эксцентриковом движении он опирается на неподвижную шестерню, а зацепление обеспечивает ему вращательное движение. Вращаясь, он обеспечивает и вращение вала с эксцентриком, на который он одет.
Принцип работы
Теперь о самом принципе работы. Выполнение определенной работы поршня внутри цилиндров называется тактами. Классический поршневой двигатель имеет четыре такта:
- впуск — в цилиндр подается горючая смесь;
- сжатие — увеличение давления в цилиндре за счет уменьшения объема;
- рабочий ход — энергия, выделенная при сгорании смеси, преобразовывается во вращение вала;
- выпуск — из цилиндра выводятся отработанные газы;
Данные такты имеют все двигатели внутреннего сгорания, и сопровождаются они определенным движением поршня.
Однако они выполняются по-разному. Существуют двухтактные поршневые двигатели, в которых такты совмещены, но такие моторы чаще применяются на мотоциклах и другой бензиновой технике, хотя раньше создавались и дизельные двухтактные моторы. В них одно движение поршня включает два такта. При движении поршня вверх – впуск и сжатие, а при движении вниз – рабочий ход и выпуск. Все это обеспечивается наличием впускных и выпускных окон.
Классические автомобильные поршневые двигатели обычно являются 4-тактными, где каждый такт отделен. Но для этого в двигатель включен механизм газораспределения, который значительно усложняет конструкцию.
Что касается роторного двигателя, то отсутствие поршня как такового позволило несколько совместить конструктивные особенности 2-тактных и 4-тактных моторов.
Принцип работы
Поскольку цилиндр роторного двигателя имеет впускные и выпускные окна, то надобность в газораспределительном механизме отпала, при этом сам процесс работы сохранил все четыре такта по отдельности.
Теперь рассмотрим, как все это происходит внутри статора. Углы ротора постоянно контактируют с цилиндром статора, обеспечивая герметичное пространство между сторонами ротора.
Овальная форма цилиндра статора обеспечивает изменение пространства между стенкой цилиндра и двумя близлежащими вершинами ротора.
Далее рассмотрим действие внутри цилиндра только с одной стороны ротора. Итак, при вращении ротора, одна из его вершин, проходя сужение овала цилиндра, открывает впускное окно и в полость между стороной треугольника ротора и стенкой цилиндра начинает поступать горючая смесь или воздух. При этом движение продолжается, эта вершина достигает и проходит высокую часть овала и дальше идет на сужение. Возможность постоянного контакта вершины ротора обеспечивается его эксцентриковым движением.
Впуск воздуха производится до тех пор, пока вторая вершина ротора не перекроет впускное окно. В это время первая вершина уже прошла высоту овала цилиндра и пошла на его сужение, при этом пространство между цилиндром и стороной ротора начинает значительно сокращаться в объеме – происходит такт сжатия.
В момент, когда сторона ротора проходит максимальное сужение, в пространство между стороной ротора и стенкой цилиндра подается искра, которая воспламеняет горючую смесь, сжатую между зауженной стенкой цилиндра и стороной ротора.
Особенностью роторного двигателя является то, что воспламенение производится не перед прохождением стороны так называемой «мертвой точки», как это делается в поршневом двигателе, а после ее прохождения. Делается это для того, чтобы энергия, выделенная при сгорании, воздействовала на ту часть стороны ротора, которая уже прошла ВМТ (верхняя мёртвая точка). Этим обеспечивается вращение ротора в нужную сторону.
После прохождения свечи, первая вершина ротора начинает открывать выпускное окно, и постепенно, пока вторая вершина не перекроет выпускное окно – производится отвод газов.
Такты двигателя
Следует отметить, что был описан весь процесс, сделанный только одной стороной ротора, все стороны проделывают процесс один за другим. То есть, за одно вращение ротора производится одновременно три цикла – пока в полость между одной стороной ротора и цилиндра запускается воздух или горючая смесь, в это время вторая сторона ротора проходит ВМТ, а третья – выпускает отработанные газы.
Теперь о вращении вала, на эксцентрик которого надет ротор. За счет этого эксцентрика полный оборот вала производится меньше чем за один оборот ротора. То есть, за один полный цикл вал сделает три оборота, при этом отдавая полезное действие дальше. В поршневом двигателе один цикл происходит за два оборота коленчатого вала и только один полуоборот при этом является полезным. Этим обеспечивается высокий выход КПД.
Если сравнить роторный двигатель с поршневым, то выход мощности с одной секции, которая состоит из одного ротора и статора, равна мощности 3-цилиндрового двигателя.
А если учитывать, что Mazda устанавливала на свои авто двухсекционные роторные моторы, то по мощности они не уступают 6-цилиндровым поршневым моторам.
Достоинства и недостатки
Теперь о достоинствах роторных моторов, а их вполне много. Выходит, что одна секция по мощности равна 3-цилиндровому мотору, при этом она в габаритных размерах значительно меньше. Это сказывается на компактности самых моторов. Об этом можно судить по модели Mazda RX-8. Этот автомобиль, обладая хорошим показателем мощности, имеет средне моторную компоновку, чем удалось добиться точной развесовки авто по осям, влияющую на устойчивость и управляемость авто.
Помимо компактных размеров в этом двигателе отсутствует газораспределительный механизм (ГРМ), ведь все фазы газораспределения выполняются самим ротором. Это значительно уменьшило металлоемкость конструкции, и как следствие – массу двигателя.
Из-за ненадобности поршней и ГРМ снижено количество подвижных частей в двигателе, что сказывается на надежности конструкции.
Сам двигатель из-за отсутствия разнонаправленных движений, которые есть в поршневом моторе, при работе меньше вибрирует.
Но и недостатков у такого двигателя тоже хватает. Начнем с того, что система смазки у него идентична с системой 2-тактного двигателя. То есть, смазка поверхности цилиндра производится вместе с топливом. Но только организация подачи масла несколько иная. Если в 2-тактном двигателе масло для смазки добавляется прямо в топливо, то в роторном оно подается через форсунки, а потом оно уже смешивается с топливом.
Использование такого типа смазки привело к тому, что для двигателя подходит только минеральное масло или специализированное полусинтетическое. При этом в процессе работы масло сгорает, что негативно сказывается на составе выхлопных газов. По экологичности роторный двигатель сильно уступает 4-тактному поршневому двигателю.
При всей простоте конструкции роторный мотор обладает сравнительно небольшим ресурсом. У той же Mazda пробег до капитального ремонта составляет всего 100 тыс. км. В первую очередь «страдают» апексы – аналоги компрессионных колец в поршневом двигателе. Апексы размещаются на вершинах ротора и обеспечивают плотное прилегание вершины к стенке цилиндра.
Недостатком является также невозможность проведения восстановительных работ. Если у ротора изношены посадочные места апексов – ротор полностью заменяется, поскольку восстановить эти места невозможно.
То же касается и цилиндра статора. При его повреждении расточка практически невозможна из-за сложности выполнения такой работы.
Из-за большой скорости вращения эксцентрикового вала, его вкладыши изнашиваются значительно быстрее.
В общем, при значительно простой конструкции, из-за сложности процессов его работы роторный двигатель оказывается по надежности значительно хуже поршневого.
Но в целом, роторный двигатель не является тупиковой ветвью развития двигателей внутреннего сгорания. Та же Mazda постоянно совершенствует данный тип мотора. К примеру, мотор, устанавливаемый на RX-8 по токсичности уже мало отличается от поршневого, что является большим достижением.
Теперь они стараются еще и увеличить ресурс. Однако это скорее всего будет достигнуто за счет использования особых материалов изготовления элементов двигателя, а также из-за высокой степени обработки поверхностей, что еще больше осложнит и увеличит стоимость ремонта.
особенности, преимущества и недостатки моторов
Идея роторного двигателя слишком заманчива: когда и конкурент весьма далек от идеала, кажется, что вот-вот преодолеем недостатки и получим не мотор, а само совершенство… Mazda находилась в плену этих иллюзий аж до 2012 года, когда была снята с производства последняя модель с роторным двигателем — RX-8.
История создания роторного двигателя
Второе имя роторного двигателя (РПД) — ванкель (этакий аналог дизеля). Именно Феликсу Ванкелю сегодня приписываются лавры изобретателя роторно-поршневого двигателя и даже рассказывается трогательная история о том, как Ванкель шел к поставленной цели тогда же, когда Гитлер шел к своей.
На самом деле все было чуточку иначе: талантливый инженер, Феликс Ванкель действительно трудился над разработкой нового, простого двигателя внутреннего сгорания, но это был другой двигатель, основанный на совместном вращении роторов.
После войны Ванкель был привлечен немецкой фирмой NSU, занимавшейся в основном выпуском мотоциклов, в одну из рабочих групп, трудившихся над созданием роторного двигателя под руководством Вальтера Фройде.
Вклад Ванкеля — это обширные исследования уплотнений вращающихся клапанов. Базовая схема и инженерная концепция принадлежат Фройде. Хотя у Ванкеля был патент на двойственное вращение.
Первый двигатель имел вращающуюся камеру и неподвижный ротор. Неудобство конструкции навело на мысль поменять схему местами.
Первый двигатель с вращающимся ротором начал работу в середине 1958 года. Он мало отличался от своего потомка наших дней — разве что свечи пришлось перенести на корпус.
Феликс Ванкель и его первый роторный двигатель
Вскоре фирма объявила о том, что ей удалось создать новый и очень перспективный двигатель. Почти сотня компаний, занимающихся производством автомобилей, закупила лицензии на выпуск этого мотора. Треть лицензий оказалась в Японии.
РПД в СССР
А вот Советский Союз лицензию не покупал вовсе. Разработки собственного роторного двигателя начались с того, что в Союз привезли и разобрали немецкий автомобиль Ro-80, производство которого NSU начала в 1967 году.
Через семь лет после этого на заводе ВАЗ появилось конструкторское бюро, разрабатывающее исключительно роторно-поршневые двигатели. Его трудами в 1976 году возник двигатель ВАЗ-311. Но первый блин получился комом, и его дорабатывали еще шесть лет.
Первый советский серийный автомобиль с роторным двигателем — это ВАЗ-21018, представленный в 1982 году. К сожалению, уже в опытной партии у всех машин вышли из строя моторы. Дорабатывали еще год, после чего появился ВАЗ-411 и ВАЗ 413, которые были взяты на вооружение силовыми ведомствами СССР. Там не особо переживали за расход топлива и малый ресурс мотора, зато нуждались в быстрых, мощных, но неприметных авто, способных угнаться за иномаркой.
ВАЗ с роторным двигателем (ГАИ)
РПД на Западе
На Западе роторный двигатель не произвел бума, а конец его разработкам в США и Европе положил топливный кризис 1973 года, когда цены на бензин резко взлетели, и покупатели машин стали прицениваться к моделям с экономным расходованием топлива.
Если учесть, что роторный двигатель съедал до 20 литров бензина на сотню км, продажи его во время кризиса упали до предела.
Единственной страной на Востоке, не утратившей веру, стала Япония. Но и там производители довольно быстро охладели к двигателю, который никак не желал совершенствоваться. И в конце концов там остался один стойкий оловянный солдатик — компания Mazda. В СССР топливный кризис не ощущался. Производство машин с РПД продолжалось и после распада Союза. ВАЗ прекратил заниматься РПД только в 2004 году. Mazda смирилась только в 2012.
Особенности роторного мотора
В основу конструкции положен ротор треугольной формы, каждая из граней которого имеет выпуклость (треугольник Рёло). Ротор вращается по планетарному типу вокруг центральной оси — статора. Вершины треугольника при этом описывают сложную кривую, именуемую эпитрохоидой. Форма этой кривой обуславливает форму капсулы, внутри которой вращается ротор.
У роторного мотора те же четыре такта рабочего цикла, что и у его конкурента — поршневого мотора.
Камеры образуются между гранями ротора и стенками капсулы, их форма — переменная серповидная, что является причиной некоторых существенных недостатков конструкции. Для изоляции камер друг от друга используются уплотнители — радиальные и торцевые пластины.
Если сравнивать роторный ДВС с поршневым, то первым бросается в глаза то, что за один оборот ротора рабочий ход происходит три раза, а выходной вал при этом вращается в три раза быстрее, чем сам ротор.
У РПД отсутствует система газораспределения, что весьма упрощает его конструкцию. А высокая удельная мощность при малом размере и весе агрегата являются следствием отсутствия коленвала, шатунов и других сопряжений между камерами.
Достоинства и недостатки роторных двигателей
Преимущества
-
Роторный двигатель хорош тем, что состоит из куда меньшего числа деталей, чем его конкурент — процентов на 35-40.
-
Два двигателя одинаковой мощности — роторный и поршневый — будут сильно отличаться габаритами. Поршневый в два раза больше.
-
Роторный мотор не испытывает большой нагрузки на высоких оборотах даже в том случае, если на низкой передаче разгонять машину до скорости более 100 км/ч.
-
Автомобиль, на котором стоит роторный двигатель, проще уравновесить, что дает повышенную устойчивость машины на дороге.
-
Даже самые легкие из транспортных средств не страдают от вибрации, потому что РПД вибрирует куда меньше, чем «поршневик». Это происходит в силу большей сбалансированности РПД.
Недостатки
-
Главным недостатком роторного двигателя автомобилисты назвали бы его малый ресурс, который является прямым следствием его конструкции. Уплотнители изнашиваются крайне быстро, так как их рабочий угол постоянно меняется.
-
Мотор испытывает перепады температур через каждый такт, что также способствует износу материала. Добавьте к этому давление, которое оказывается на трущиеся поверхности, что лечится только впрыскиванием масла непосредственно в коллектор.
-
Износ уплотнителей становится причиной утечки между камерами, перепады давления между которыми слишком велики. Из-за этого КПД двигателя падает, а вред экологии растет.
-
Серповидная форма камер не способствует полноте сгорания топлива, а скорость вращения ротора и малая длина рабочего хода — причина выталкивания еще слишком горячих, не до конца сгоревших газов на выхлоп. Помимо продуктов сгорания бензина там еще присутствует масло, что в совокупности делает выхлоп весьма токсическим. Поршневый — приносит меньше вреда экологии.
-
Непомерные аппетиты двигателя на бензин уже упоминались, а масло он «жрет» до 1 литр на 1000 км. Причем стоит раз забыть про масло и можно попасть на крупный ремонт, если не замену двигателя.
-
Высокая стоимость — из-за того, что для изготовления мотора нужно высокоточное оборудование и очень качественные материалы.
Как видите, недостатков у роторного двигателя полно, но и поршневый мотор несовершенен, поэтому состязание между ними не прекращалось так долго. Закончилось ли оно навсегда? Время покажет.
Рассказываем как устроен и работает роторный двигатель
Роторный двигатель.Принцип работы роторного двигателя.
Роторный двигатель Феликса Ванкеля — уникальная разновидность двигателей, создан и более менее доведенный до ума в середине двадцатого века. В чем же уникальность роторно-поршневого двигателя Ванкеля? Ответ прост, при малых габаритах и рабочем объёме, в комплекте с простотой конструкции и значительно меньшем количестве деталей по сравнению с обычным поршневым двигателем, роторный двигатель выдаст мощность в 2-2.5 раза большую, нежели поршневой двигатель с тем же рабочим объёмом цилиндров. Однако, тут же возникает вопрос, раз роторный мотор такой простой и одновременно мощный, то почему он не получил широкого распространения.
В общем то вариантов довольно много, самый на мой взгляд вероятный ответ на данный вопрос кроется в событиях тогдашнего времени. В 70-х годах многие авто-концерны того времени попытались сделать ставку на роторный двигатель, ввиду его превосходящей мощности и простоты конструкции над традиционным ДВС того времени.
Все возможно и было бы хорошо, и роторные двигатели возможно сейчас ставили бы как минимум на половину современных авто, если бы не одно НО, как всегда, куда ж без него. В общем в 1973 году началась война на Аравийском полуострове. К слову, в то время арабские страны были основными поставщиками нефти в Европу и Америку, и война вынудила их значительно сократить поставки ресурсов в страны нового и старого света, что повлекло за собой невероятное подорожание нефтепродуктов, и в том числе и бензина, на котором работал роторный двигатель. Но, почему не перестали выпускать стандартные ДВС? Да потому, что в роторном двигателе всегда имеется огромный табун лошадей, который нужно кормить, короче РПД слишком много жрал, содержать его в то время было очень не выгодно, поэтому компании, вложившие деньги в разработки и производство роторных двигателей потерпели крах и понесли колоссальные убытки, машины с большим расходом топлива оказались совсем не востребованы на рынке. Производители отказались от прожорливого роторного двигателя в пользу более экономичного поршневого варианта.
Однако все же нашлись приверженцы роторного двигателя — авто-концерн Mazda встал на путь самурая и продолжил проводить исследования и совершенствование двигателя Ванкеля, подобно тому, как однажды Subaru не отказались от использования оппозитных двигателей, которые на сегодняшний день являются главной фишкой этой марки. Инженеры мазды тоже даром времени не теряли и также имели свои разработки в области РПД. Это позволило им создать роторный двигатель 13b-REW с системой твин-турбо, мощностью 350 л.с, который устанавливался в автомобили Mazda RX7, в процессе эксплуатации двигатель зарекомендовал себя достаточно хорошо, но один непобедимый недостаток, свойственный РПД у него всё же остался,это большой расход топлива. Далее маздисты воткнули роторник в следующую модель Mazda RX8, но в ней заметно сократили табун под капотом с 350 л.с до 200, уменьшив рабочий объём до 1.3 литра. Ну где вы видели ДВС объёмом 1.3 с мощностью 200 л.с.? Это позволило сократить расход топлива и вывести модель на более конкурентно-способный уровень. Про попытку воткнуть РПД в жигуляторы думаю писать не стоит, инженеры купили авто с РПД у немцев и тупо скопировали двигатель. В результате ничего хорошего из этого не получилось.
В общем все это очень хорошо звучит, но что же представляет из себя роторный двигатель в реальной жизни. На самом же деле по всему свету довольно много авто с роторными моторами времен 60-80х годов, многие на ходу и хранятся где то в музеях или частных коллекциях, еще больше гниют или уже сгнили на свалках. Стоит взглянуть на владельца авто с роторным двигателем, который мотор перегрел и носится по городу в поисках спецов и запчастей, всплывают все недостатки этого вида двигателей. Самое страшное для РПД на той же мазде рх8 это перегрев. Стоит один раз перегреть такой мотор и отремонтировать его будет потом очень сложно,так как запчасти стоят довольно недешево и ехать будут из Японии.В большинстве случаем при ремонте РПД бракуется и сам ротор и блок, на котором образовались задиры от поплавившегося металла. Многие в этом случае заказывают новый мотор, так как стоить он буден примерно так же как и ремонт старого двигателя. Поэтому некоторые мечтают сменить роторник на традиционный поршневой ДВС, однако, есть и фанаты, которые его ни на что не променяют.
Не оправдавший надежды — журнал «АБС-авто»
Немецкая фирма NSU оставила заметный след в истории мирового автомобилестроения благодаря созданию роторно-поршневого двигателя. Это заслуга ее инженера Феликса Ванкеля, чье имя и получил данный очень интересный мотор (РПД Ванкеля).
Немецкий период
Необходимо сразу отметить, что роторно-поршневой двигатель – это целое направление в моторостроении. Придумано огромное количество их разнообразных конструкций. Однако единственным доведенным до серийного производства представителем племени, в котором функцию поршня выполняет вращающееся тело, является именно РПД Ванкеля. Феликс Ванкель получил патент на свое изобретение в 1957 году. Первый в мире серийный автомобиль с роторно-поршневым двигателем (заднемоторный NSU Spider) начали выпускать в 1964 году, в 1967-м запустили в производство переднеприводный NSU Ro 80, завоевавший титул «Автомобиль года». А затем. NSU сошла со сцены – ее «проглотил» Volkswagen. Однако на этом развитие РПД Ванкеля не прекратилось – дело продолжила японская Mazda, причем весьма успешно. О достижениях японской компании поговорим позднее, а пока рассмотрим устройство немецкой диковинки. Предложенный Ванкелем двигатель состоял из трех основных компонентов: корпуса (в литературе его также называли картером или статором), ротора и эксцентрикового вала. Отличительной особенностью данного РПД является выполненная по эпитрохоиде внутренняя поверхность корпуса и трехгранная форма ротора. К боковой крышке корпуса прикреплена шестерня, которая при работе двигателя остается неподвижной. Другая шестерня с внутренним зацеплением соединена с ротором. Отношение количества их зубьев равно 2 : 3. Ротор через подшипник надет на эксцентрик вала и при поворачивании вала совершает сложное движение – он вращается вокруг своей оси, а та, в свою очередь, описывает окружность вокруг оси вала. Такая конструкция двигателя обеспечивает постоянное прилегание граней ротора к внутренней поверхности корпуса. При этом образуются три полости, объем которых зависит от положения вала и при его вращении периодически меняется (то увеличивается, то уменьшается). Получается как у обычного поршневого мотора, что позволяет реализовать хорошо известный четырехтактный цикл, т.е. впуск, сжатие, сгорание-расширение и выпуск. Все четыре такта в одной полости (камере) осуществляются за один оборот ротора, а камер три. Но если учесть, что эксцентриковый вал вращается в 3 раза быстрее ротора, то на один оборот двигателя приходится один рабочий такт. Следовательно, однороторный РПД можно сопоставить с одноцилиндровым 2-такт-ным или 2-цилиндровым 4-тактным мотором. Нельзя не отметить и обстоятельство, связанное с определением литража двигателя. Рабочий объем одной полости равен разности между ее максимальным и минимальным объемами, и их отношение дает степень сжатия. В обычном четырехтактном одноцилиндровом моторе количество топливовоздушной смеси, равное рабочему объему цилиндра, сжигается за два оборота коленчатого вала, а РПД с одним ротором за те же два оборота «пропускает через себя» смеси в 2 раза больше. Отсюда при равном рабочем объеме мощность роторного двигателя получается в 2 раза больше. Чтобы уравнять моторы (для удобства сравнения их характеристик), придумали выражать рабочий объем РПД двойной величиной, что вроде бы разумно. Но тут возникла путаница, так как в обращении оказались обе эти величины. Поэтому надо понимать, о чем в каждом конкретном случае идет речь. В качестве примера рассмотрим «движок» NSU Spider. Рабочий объем его камеры равен 497,5 см3; степень сжатия 8,5; мощность 54 л.с. при 6000 об/мин. Такая мощность соответствует литровому бензиновому мотору тех лет, поэтому приведенный (эквивалентный) рабочий объем рассматриваемого РПД определяют в 995 см3. Кстати, а как собирать налоги в тех странах, где ориентируются на «кубатуру» двигателей? Может быть, начислять даже не в двойном, а в тройном размере по отношению к объему полости, так как их три? Но это так, курьез. Камера сгорания у двигателя Ванкеля имеет серпообразную форму, которая весьма далека от оптимальной с точки зрения тепловых потерь. А это предопределяет повышенное потребление топлива. Не все хорошо получается и с токсичностью отработавших газов. Много неприятностей разработчикам доставило уплотнение ротора – оно получалось сложным и не обеспечивало необходимой герметичности, а также быстро изнашивалось. Потребовала к себе повышенного внимания и свеча зажигания – в силу конструктивных особенностей она не охлаждалась свежей смесью, а посему часто отказывала. Значительным событием стало появление NSU Ro 80. Автомобиль создан с максимальным использованием достоинств РПД. 115-сильный двухроторный мотор (объем камеры каждого ротора остался как у Spider, а суммарный «литраж» удвоился; эксцентрики сдвинуты друг относительно друга на половину оборота вала) расположен в переднем свесе. В результате получился просторный салон. NSU Ro 80 разгоняется до 100 км/ч за 12,8 с; достигает скорости 180 км/ч; расход топлива составляет 11,2 л на 100 км пути. Подведем промежуточный итог. По сравнению с обычным поршневым мотором той же мощности двигатель Ванкеля получается компактнее и легче, но отличается повышенным аппетитом и имеет больше проблем с экологией. Он хорошо уравновешен, однако желательно увеличить надежность и долговечность. Все сказанное относится к раннему периоду развития РПД. В дальнейшем его параметры удалось значительно улучшить, но и «шевелящие поршнями» тоже не стояли на месте и значительно продвинулись и по экономичности, и по экологичности, и по степени форсирования. В итоге реальной конкуренции со стороны РПД Ванкеля так и не получилось.
Японская эра
Появление работоспособного роторного двигателя произвело сильное впечатление на мировую научно-техническую общественность. Многие фирмы закупили лицензии. РПД Ванкеля пытались применять в авиации, на водном транспорте, для газонокосилок, использовать в качестве стационарных для привода электрогенераторов и насосов. Для установки на мотоциклы создали роторные двигатели с воздушным охлаждением. Однако, несмотря на все усилия конструкторов, особого успеха эта деятельность не принесла. Хотя не обошлось и без исключения – Mazda, купив лицензию у немцев, внесла в двигатель собственные изменения и с 1967 года начала серийно комплектовать ими свою продукцию. Первым японским автомобилем с РПД стал двухместный спортивный Mazda Cosmo Sport (110S). Его 110-сильный двигатель (2 ротора, объем каждой камеры 491 см3) позволял достигать скорости 185 км/ч. За ним последовали другие. Выпуском роторных автомобилей фирма занималась более четырех десятилетий, причем в весьма приличных количествах. Большинство моделей могли комплектоваться как роторным, так и обычным моторами. К сожалению, при таком подходе теряется одно из главных достоинств РПД – его компактность. Зато увеличивается тираж, что благоприятно сказывается на цене. Среди роторных «японцев» были и более, и менее удачные модели. Значительным успехом стало создание в 1978 году Mazda Savanna RX-7. 2-роторный 130-сильный мотор разгонял 4-местный автомобиль до 180 км/ч. Специалисты фирмы постоянно занимались совершенствованием конструкции роторного двигателя. В целом нововведения шли в том же направлении, что и у обычных моторов. На смену карбюратору пришел электронный впрыск, электронным стало и зажигание. Экспериментировали с впускными трубопроводами, применяли турбонаддув, создавали устройства дополнительной очистки отработавших газов. Вершиной достижений стал 230-сильный «движок» RENESIS для 4-дверного купе Mazda RX-8. Компания всемерно старалась привлечь внимание к роторным двигателям, в том числе участвуя в соревнованиях «24 часа Ле Мана». В 1991 году пришел большой успех – роторная Mazda 787В с бортовым номером 55 выиграла эту престижнейшую гонку.
Принцип работы роторно-поршневого двигателя ВанкеляОтечественная эпопея
Ротор и корпус РПД ВанкеляОтдельная страница в истории РПД – работы по данной теме в СССР, а затем и в России. Мы лицензию не покупали – перед тем как платить деньги, надо сначала разобраться, за что. Вот мы и разбирались. А позднее оказалось, что сделали правильно – платить-то было не за что. Все фирмы, кроме Mazda, купившие лицензию, их повыбрасывали. Кроме того, любая индустриально-развитая держава, а Советский Союз, несомненно, был таковой, должна быть в курсе всех нюансов развития техники, что заставляло нас заниматься и данной тематикой. В нашей стране работы по РПД велись несколькими организациями, в том числе мото- и автостроителями. В Серпухове создали несколько моделей мотоциклов с такими моторами. Их испытывали, и они даже принимали участие в соревнованиях. Существенных успехов в роторном деле добились в Тольятти. На ВАЗе своими силами сумели разработать целое семейство двигателей мощностью от 40 до 200 л.с., причем наибольшие усилия были направлены на 120- и 140-сильные варианты. Первоначально идея заключалась в создании «бешеных» «Жигулей» примерно таким путем, как в Горьком поступали с «Волгами», оснащая их силовыми агрегатами от «Чайки». Эти автомобили предназначались для спецслужб, и они были созданы и производились в небольших количествах. Затем волжскими РПД заинтересовались авиаторы, например, была предпринята попытка установить их на легкий вертолет Ми-34. Во второй половине 1990-х годов роторные машины из Тольятти даже стали поступать в свободную продажу. Эпопея с РПД закончилась, когда на ВАЗ пришла компания Renault. Французы действовали по хорошо известному принципу: экономика должна быть экономной. Подробнее о ВАЗовских роторных изделиях и возможностях их обслуживания наш журнал рассказал в № 3/2002. В заключение вновь вернемся в Японию. В июне прошлого года Mazda выпустила последний роторный автомобиль (RX-8), и в настоящее время такие транспортные средства нигде в мире не производятся, по крайней мере, серийно. По поводу дальнейшего хода событий от пресс-службы компании поступают противоречивые сведения. Так и должно быть – фирма подогревает интерес к своей продукции. Попробуем порассуждать о перспективах РПД Ванкеля. В последние десятилетия направление развития мирового моторостроения в основном задавалось законодателями, которые, стараясь угодить избирателям (и это хорошо), принимали один за другим все более жесткие экологические стандарты. Но теперь проблема загрязнения окружающей среды автомобилями практически решена (Euro VI вступили в действие) и на первый план вышла обеспокоенность по поводу изменения климата. То ли происходит потепление, то ли похолодание. Пока точно не известно, но виновный уже назван – парниковые газы, а значит, с ними надо бороться. Это очень выгодно для имиджа слуг народа. А что эта борьба означает для автомобилестроения? Ответ прост: повышение КПД силовой установки и снижение массы транспортного средства посредством уменьшения его размеров и применения легких материалов в конструкции. Здесь и кроется основная опасность для роторных двигателей – по экономичности они далеко не лидеры. Правда, остается надежда на подзаряжаемые гибридомобили. Эти транспортные средства имеют приличный пробег на электротяге и при небольшой протяженности поездок им двигатель внутреннего сгорания особо и не нужен. В таких случаях ДВС фактически превращается в балласт, и главное требование к нему – низкая масса и малый размер, т.е. то, чем отличаются РПД. Кроме того, роторные двигатели неплохо проявили себя при работе на водороде, а футурологи называют водород топливом будущего. Так что для РПД Ванкеля пока еще не все потеряно. Уникальную информацию по устройству, эксплуатации и ремонту систем турбонаддува смотрите на сайте turbomaster.ru
- Геннадий Дунин
Устройство автомобиля. Роторно-поршневой двигатель. Конец истории?
Автомобили с роторно-поршневыми двигателями впору заносить в Красную книгу: в 2011 году закончился выпуск последней в этом ряду модели Mazda RX-8. А ведь полвека назад за подобными моторами видели будущее – большая литровая мощность, высокие обороты, компактные размеры… Что же пошло не так?
Заглянув под капот роторного автомобиля впервые, недоумеваешь: а мотор-то где? Сквозь дебри навесных агрегатов виднеется лишь непонятный цилиндр. По своей конструкции роторно-поршневой двигатель (РПД) и вправду кардинально отличается от привычных нам поршневых моторов, хотя в обоих случаях осуществляется один и тот же четырехтактный цикл – впуск, сжатие, рабочий ход и выпуск. Разница лишь в том, что у роторного двигателя нет ни поршней с шатунами, ни системы газораспределения. Вместо них – треугольный ротор, совершающий сложное планетарное движение.
Плюсы и минусы
Вращаясь одновременно вокруг собственной оси и вокруг центральной шестерни, ротор своими вершинами описывает хитрую поверхность корпуса, образуя три отдельные камеры сгорания. Объем каждой из них, ограниченный корпусом и гранью ротора, за один оборот меняется от максимального к минимальному четыре раза, позволяя реализовать четырехтактный цикл. Функции же газораспределения осуществляются путем перекрывания впускных и выпускных окон самим ротором – подобно двухтактным поршневым моторам. И никаких распредвалов, клапанов и цепей! Отсюда и поразительная компактность роторных агрегатов: при сопоставимой мощности они оказываются примерно вдвое короче и настолько же легче поршневых, упрощая задачу компоновки автомобиля.
Не доставляют проблем и вибрации – единственная центробежная сила уравновешивается двумя противовесами на валу. Вспышки, правда, происходят не часто: поскольку выходной вал вращается в три раза быстрее ротора, то одному обороту вала соответствует одна вспышка или один рабочий ход, что эквивалентно двухцилиндровому поршневому двигателю. Но двухсекционные РПД, то есть фактически сдвоенные моторы, работающие на общий вал, имеют уже две вспышки на оборот, как четырехцилиндровый двигатель. При этом пульсации крутящего момента оказываются даже меньше, поскольку рабочий ход у РПД длится в течение 270° поворота вала против 180° у поршневого. В результате по плавности работы двухсекционный мотор близок к рядной «шестерке».
А вот с мощностью все уже не так однозначно. Конструкция РПД позволяет добиться отличного наполнения камер сгорания: на торцевой или боковой поверхности можно разместить сразу несколько впускных окон, снижая общее сопротивление впускного тракта – в моторе Mazda RX-8 таких окон аж пять штук на секцию! Причем открываются они очень быстро, что способствует проявлению эффекта динамического напора, дополнительно улучшающего наполнение на определенных оборотах.
Две стороны медали
Роторные двигатели часто нахваливают за хорошую за оборотистость – та же Mazda RX-8 способна загонять стрелку тахометра к 9000 об/мин. Однако мало кто вспоминает, что с такой скоростью вращается лишь выходной вал, а сам ротор крутится в три раза медленнее – всего 3000 об/мин. В поршневом же двигателе на каждый оборот коленвала приходится движение поршней вверх-вниз, а потому даже привычные 6000–7000 об/мин оказываются гораздо большим достижением, нежели 9000 об/мин роторного мотора.
Однако сам процесс сгорания протекает крайне плохо. Сильно вытянутая серповидная камера обладает значительными потерями тепла и не обеспечивает полного сгорания топлива по краям. Частично улучшить воспламенение помогает установка двух свечей зажигания, но за это приходится расплачиваться повышенным прорывом газов в соседнюю камеру в момент пересечения торцом ротора свечных отверстий. Иными словами, роторный мотор способен втянуть большое количество топливно-воздушной смеси, но эффективно извлечь из нее полезную энергию не может.
Одни головоломки
Получается, что за счет отличного наполнения РПД оказывается все-таки сопоставим по литровой мощности с поршневым мотором, одновременно сильно уступая ему в экономичности. Тем не менее в равенство литровой мощности поначалу трудно поверить. Какой поршневой агрегат сравнится c ротором Mazda RX-8, выдающим 230 л.с. с двух секций общим объемом 1,3 л.? Это же 176 «лошадей» с литра!
Так-то оно так, но нужно помнить, что за один оборот вала роторный двигатель отрабатывает весь рабочий объем, а поршневой – только половину, причем и тот и другой способны выдать за этот оборот полную мощность. Таким образом, при сравнении удельной мощности объем поршневого двигателя справедливо делить на два. Возьмем, например, Nissan 350Z – одного из конкурентов RX-8. Его 300-сильный V6 имеет объем 3,5 л, то есть 1,75 л на одном обороте и 171 «лошадку» с литра. Практически как у RX-8! При этом, несмотря на 30-процентное преимущество в мощности и чуть более тяжелый кузов, он расходует столько же топлива в смешанном цикле, сколько и RX-8.
Пытаясь как-то снизить расход топлива в роторе, инженеры пробовали применить непосредственный впрыск, но неудачная форма камеры сгорания мешала организовать вихревое смесеобразование, лишая возможности работы на обедненной смеси. Задумывались и о дизельном топливе, но успеха это направление тоже не принесло: слишком велики нагрузки на ротор, да и уплотнение рабочих камер организовать труднее, ведь степень сжатия должна быть почти в два раза больше.
А уплотнения и без того, отдельная головная боль. Если в поршневом двигателе кольца всегда находятся под одним и тем же углом к поверхности трения, то в роторном рабочий угол радиальных пластин постоянно меняется. Меняется и усилие их прижима к поверхности корпуса – оно определяется центробежной силой, а потому сильно зависит от оборотов. А как организовать их смазку? Только впрыскиванием масла в рабочую камеру подобно двухтактным поршневым моторам. Но это влечет значительный расход масла на угар (около 1 л на 1000 км) и повышает риск закоксовывания уплотнений. Достаточно сказать, что именно из-за того, что оказалось невозможно хорошо герметизировать рабочие камеры, было отброшено множество других более замысловатых роторных конструкций, обладавших рядом преимуществ. В привычном же нам РПД задачу удалось до некоторой степени решить, хотя уплотнения все же остаются слабым местом мотора.
Автора!
Создателем известного нам РПД принято считать Феликса Ванкеля, однако сам он предлагал несколько иную конструкцию: в его двигателе ротор и корпус вращались вокруг неподвижного вала. Такая схема упрощала работу уплотнительных соединений камер сгорания и не требовала противовесов для уравновешивания, хотя при этом возникали огромные проблемы с подводом впускных и выпускных каналов, а также с передачей напряжения на вращающие свечи. Поэтому в серию пошел РПД, предложенный Вальтером Фройде, в то время как Ванкель сосредоточился на исследованиях механических уплотнений.
Проблемы доставляет и очень неравномерный нагрев корпуса. Это в поршневом двигателе вспышки чередуются по цилиндрам, а после рабочего хода камера охлаждается на такте впуска. В роторном же вспышки происходят только в одной части двигателя, причем происходят постоянно, в то время как противоположная часть непрерывно охлаждается всасываемым воздухом. Такой перепад температур деформирует картер двигателя, заставляя еще на этапе проектирования учитывать это отклонение формы в процессе прогрева. Разумеется, все это не способствует лучшей работе уплотнительных соединений и долговечности материалов. В итоге преимущества конструктивной простоты РПД нивелируются его малым ресурсом – пробег до капремонта редко превышает 100 тыс. км.
Окончательным же приговором роторным двигателям стала экология. Низкая экономичность означает большие выбросы CO2, а неоптимальный процесс сгорания повышает уровни токсичных соединений, к которым подмешиваются еще и продукты горения масла. И все это на фоне повального стремления к экологической чистоте, на что автопроизводители расходуют огромные средства. В результате даже Mazda, потратившая немало усилий на раскрутку роторной идеологии, была вынуждена от нее отказаться.
Конец истории? Видимо, да. Но окончательно прощаться с роторными моторами все же рано: пускай им уже и не занять основное место под капотом, они вполне могут быть востребованы в качестве резервного генератора для подзарядки батарей электромобиля. Впрочем, все ДВС со временем ожидает та же участь.
- Автор
- Олег Карелов, эксперт по подбору автомобилей AutoTechnic.su
- Издание
- Автопанорама №4 2015
РАБОЧИЙ ПРОЦЕСС И КОНСТРУКЦИЯ РОТОРНОГО ДВИГАТЕЛЯ ПО СПОСОБУ АРУТЮНОВА
Описание проекта
РАБОЧИЙ ПРОЦЕСС РОТОРНОГО ДВИГАТЕЛЯ ПО СПОСОБУ АРУТЮНОВА И КОНСТРУКЦИЯ РОТОРНОГО ДВИГАТЕЛЯ АРУТЮНОВА
Изобретение относится к области энергомашиностроения и в частности, к рабочему процессу и конструкции двигателя внутреннего сгорания.
Роторные двигатели внутреннего сгорания являются перспективным направление энергомашиностроения, история которого началась с изобретением двигателя Ванкеля, представляющего собой поршень-ротор, в виде треугольника, помещенный в корпус, где с помощью специального эксцентрика он совершает сложное эпициклическое движение. Рабочий процесс осуществляется по четырехтактному циклу за счет сжигания топливно-воздушной смеси в объемах, ограниченных внутренней поверхностью корпуса и каждой стороной поршня-ротора.
Двигатель Ванкеля не получил широкого распространения в автомобильной отрасли из-за своей кинематической сложности и необходимости соблюдения высокой точности при изготовлении сопрягаемых деталей, т.е. корпуса и ротора-поршня. К тому же значительной проблемой является герметизация внутреннего рабочего объема двигателя.
Дальнейшее развитие роторных двигателей внутреннего сгорания пошло по пути радикального изменения рабочего процесса за счет отказа от принципа его организации, типичного для поршневых машин.
Так, примером иной организации рабочего процесса является роторный двигатель Кузнецова [RU 2074967, публ. 10.03.97.]. Этот двигатель содержит цилиндрический ротор с равноудаленными каплеобразными углублениями по его образующей поверхности, каждое из которых выполняет роль лопатки. Ротор заключен в корпус с цилиндрической внутренней полостью соответствующего диаметра. Средство подачи топливно-воздушной смеси выполнено в виде пары диаметрально расположенных на корпусе поршневых компрессоров, полости которых имеют возможность периодически при вращении ротора сообщаться с углублениями последнего через направляющие сопла промежуточных камер сгорания, в свою очередь, содержащих средство воспламенения топливно-воздушной смеси в виде запальной свечи. Каждый поршневой компрессор содержит впускной клапан, предназначенный для подачи в него топливно-воздушной смеси, приготавливаемой вне компрессора и перепускной клапан, соединяющий полость компрессора с камерой сгорания. Кроме всего перечисленного выше, корпус содержит выхлопные каналы.
Принцип работы двигателя Кузнецова состоит в следующем.
Поршень одного из компрессоров, находясь в условно крайней верхней точке, начинает движение и через открытый впускной клапан происходит всасывание топливно-воздушной смеси. Достигнув условно крайней нижней точки, поршень, совершая возвратно-поступательное перемещение, начинает двигаться в обратном направлении и сжимает топливно-воздушную смесь. При этом, впускной клапан закрыт и через открытый перепускной клапан происходит перекачка смеси в промежуточную камеру сгорания (далее камера сгорания). Одновременно с закрытием перепускного клапана топливно-воздушная смесь воспламеняется от запальной свечи и за счет вращения ротора открывается направляющее сопло. Продукты сгорания под большим давлением в виде струи попадают в углубление ротора, ударяя в его лопаточную часть, и передают ему всю накопленную потенциальную энергию. После совмещения углубления с выхлопным каналом продукты сгорания сбрасываются в атмосферу.
Анализ рабочего процесса двигателя Кузнецова показал, что в его основе лежит использование кинетической энергии струи (потока) сжатого газа, взаимодействующего с лопаточным аппаратом ротора. В сравнении с двигателем Ванкеля роторный двигатель Кузнецова имеет значительное преимущество, выражающееся в кинематической простоте его конструкции. Кроме того, расположение камеры сгорания вне ротора и ее устройство дают возможность обеспечить процесс сгорания топливно-воздушной смеси в режиме близком к оптимальному, способствуя снижению уровня токсичности выхлопных газов.
Однако, несмотря на кинематическую простоту роторного двигателя Кузнецова, в целом конструкция этого двигателя усложнена наличием промежуточной системы подачи топливно-воздушной смеси в виде пары поршневых компрессоров, сообщенных через перепускные клапаны с соответствующими камерами сгорания. Но основным недостатком аналога является собственно рабочий такт двигателя, выраженный во взаимодействии струи газа из камеры сгорания с лопаточной частью углубления ротора. По мере истечения газа в углубление, давление там будет возрастать, что значительно снизит эффективность воздействия струи газа из-за прогрессивно возрастающего противодавления. Это явление ведет к потере мощности и снижению КПД.
В качестве прототипа предлагаемому изобретению выбран роторный двигатели внутреннего сгорания, рабочий такт которого может быть определен как реактивный, т.е. принципиально отличный от вышеописанного аналога. Конструкция этого двигателя [DE 2910304, публ. 25.09.80.] содержит корпус, в котором установлен ротор с тремя равноудаленными углублениями на его цилиндрической части, образующие с аналогичными по форме внутренними стенками корпуса камеры сгорания. Корпус снабжен, как и аналог, поршневым компрессором в виде цилиндра и размещенного в нем поршня, связанного посредством шатунно-кривошипного механизма с приводом, синхронизированным с вращением ротора. При этом нагнетательная полость цилиндра открыта со стороны ротора и при вращении последнего имеет возможность периодически сообщаться с одним из углублений. Полость цилиндра связана со средством подачи топливно-воздушной смеси. Приблизительно, под углом 900 к оси цилиндра на корпусе смонтировано средство воспламенения топливно-воздушной смеси, выполненное в виде запальной свечи. Соосно цилиндру и противоположно запальной свече на корпусе выполнен выхлопной канал, расположенный тангенциально по отношению к внутренней цилиндрической стенке корпуса.
Рабочий процесс в описанной конструкции роторного двигателя реализуется следующим образом.
В полость цилиндра, перекрытую цилиндрической поверхностью ротора, с помощью соответствующего устройства подают топливно-воздушную смесь. При этом поршень находится в крайнем верхнем положении. Затем посредством приводимого в действие шатунно-кривошипного механизма поршень перемещается в крайнее нижнее положение, сжимая, таким образом, смесь до необходимого давления. При совмещении с полостью цилиндра одного из углублений ротора последнее заполняется топливно-воздушной смесью, которая транспортируется в сторону запальной свечи. Когда углубление со смесью оказывается в зоне действия запальной свечи, осуществляется ее воспламенение. Это приводит к горению смеси и, как следствие, значительному повышению температуры и давления в углублении. «Законсервированные» в последнем, продукты горения топливно-воздушной смеси дальше перемещаются к выхлопному каналу и при совмещении с ним начинают истекать с высокой скоростью с эффектом реактивной струи. Этим создается давление на стенки углубления, а значит и ротора, в конечном итоге преобразуясь в крутящий момент, чему способствует конструктивное исполнение углубления, обеспечивающее плечо для равнодействующей силы реакции струи, действующей на ротор.
Таким образом, описанный рабочий процесс основан на реактивном принципе, что можно считать основным недостатком прототипа, который выражается в низкой мощности, возникающей вследствие того, что горение топливно-воздушной смеси осуществляется в постоянном объеме и высокое избыточное давление, в отличие от двигателей с расширительным принципом, не создает вращательного момента, а реализуется во время выхлопа за счет опоры на среду с низкой плотностью, а значит с высокими потерями мощности и КПД.
Цель настоящего изобретения: — повышение КПД роторного двигателя, создание технологичного, компактного роторного двигателя, который при простоте конструкции и меньших габаритах позволит обеспечить высокую мощность и высокую экономичность. Использовать различные виды топлива без конструктивных изменений и значительно повысить мотто-ресурс двигателя. Поставленная задача достигается за счет того, что в рабочем процессе роторного двигателя, включающем приготовление топливно-воздушной смеси, введение ее в полость камеры сгорания, воспламенение, совершение рабочего такта и выхлоп, внутренняя стенка корпуса образует камеры сгорания с равноудаленными друг от друга углублениями, выполненными на цилиндрическом роторе, отличающийся тем, что радиальное сечение камеры сгорания имеет форму с тремя сторонами, одной стороной которой является криволинейное очертание внутренней стенки корпуса, а две другие стороны, образующие углубление ротора, являются прямолинейными и расположены под прямым углом друг относительно друга и одна из них имеет радиальное направление, для совершения рабочего такта в топливно-воздушной смеси возбуждают ударные волны, переходящие в детонационные, в направлении вращения ротора путем воспламенения топливно-воздушной смеси в задней части камеры сгорания по ходу вращения ротора
Достижению поставленной задачи способствует и предлагаемая конструкция роторного двигателя. Она включает корпус, внутренняя стенка которого образует камеры сгорания с равноудаленными друг от друга углублениями, выполненными на цилиндрическом роторе, при этом корпус снабжен средствами подачи и воспламенения топливно-воздушной смеси и выхлопными каналами. Радиальное сечение камеры сгорания имеет форму с тремя сторонами, одной стороной которой является криволинейное очертание внутренней стенки корпуса, а две другие стороны, образующие углубление ротора, являются прямолинейными и расположены под прямым углом друг относительно друга и одна из них имеет радиальное направление.
В корпусе имеются выхлопные каналы, выполненные тангенциально по отношению к ротору.
Сущность изобретения по способу и конструкции состоит в том, что в качестве движущей силы, используемой во время рабочего такта предлагается использовать детонационные волны, что позволит значительно повысить мощность и КПД роторного двигателя.
На прилагаемой к описанию схеме изображение роторного двигателя предлагаемой конструкции.
Он содержит корпус 1, в цилиндрической полости которого установлен ротор 2. Последний снабжен рядом равноудаленных друг от друга углублений, которые с внутренней стенкой корпуса образуют камеры сгорания 3. Радиальное сечение камеры сгорания 4 одной стороной которого является криволинейное очертание внутренней стенки корпуса, а две другие образуют углубление ротора. При этом стороны, образующие углубление, являются прямолинейными и расположены под прямым углом друг к другу. Сторона 5 имеет радиальное направление и образует со стороной 6 прямой угол. Корпус 1 снабжен средством подачи топливно-воздушной смеси, выполненным в виде инжектора 7, а средств 8 воспламенения смеси представлено запальной электрической свечой. Инфраструктурные системы по приготовлению топливно-воздушной смеси и генерирования электрической искры на запальной свече на чертеже не показаны. В корпусе 1 выполнены выхлопные каналы 9, ориентированные тангенциально по отношению к ротору 2. На представленном чертеже роторного двигателя выполнено три камеры сгорания, расположенные под углом 1200, и набор средств подачи топливно-воздушной смеси, воспламенения последней и выхлопных каналов, количество и расположение которых показано на чертеже. Количество камер сгорания определяется размером ротора и требованиями к развиваемой мощности и плавности развиваемого на роторе крутящего момента. Вопрос синхронизации во времени работы всех камер сгорания в настоящем описании не рассматривается.
Рабочий процесс роторного двигателя Арутюнова реализуется следующим образом.
Предварительно приготовленную топливно-воздушную смесь через инжектор 7 подают в камеру сгорания 3. При повороте ротора 2 против часовой стрелки камера сгорания перемещается в зону размещения средства воспламенения 8 и в момент, когда запальная свеча окажется позиционированной в задней части камеры сгорания по ходу вращения ротора, осуществляют воспламенение топливно-воздушной смеси путем подачи высокого напряжения на запальную свечу и инициирования искры. Камеры сгорания, согласно принципам газодинамики, способствует тому, что процесс горения топливно-воздушной смеси носит детонационный характер. В развитии последнего большое значение имеет создание турбулентности в топливно-воздушной смеси, чему способствует, во-первых, несимметричность формы камеры сгорания, а во-вторых, генерирование в ней пульсаций из-за химических превращений вещества, которые сопровождаются движением среды, возникающего вследствие различия удельных объемов исходного вещества и продуктов сгорания. Элементарные волны сжатия, испускаемые при воспламенении последовательно слоев топливно-воздушной смеси и направленные в сторону вращения ротора, образуют ударные волны. Ударная волна это распространение по среде фронта резкого, почти мгновенного изменения параметров среды: плотности, давления, температуры, скорости. Динамическое воздействие ударных волн на преграду зависит от времени воздействия и числа Маха ударной волны.
Согласно газодинамической теории детонационная волна рассматривается как совместное распространение ударной волны с волной горения. Детонационное самовоспламенение вызывается ударной волной такой интенсивности, которая обеспечивает самовоспламенение смеси и повышение скорости сгорания. В конечном итоге, детонационная волна есть такая фаза горения, когда воспламенение каждого слоя топливно-воздушной смеси вызывается сжатием, а не подогревом. Горение и детонация отличаются друг от друга тем, что в первом случае скорость движения фронта химических превращений меньше скорости звука, а во втором – она превышает эту скорость, которая достигает, по разным научным источникам, 1000 – 3500м/с. Детонация может распространяться в условиях изолированной, замкнутой системы. Детонация – это процесс сверхзвукового распространения фронта химических превращений по веществу, который может протекать без всякого взаимодействия с окружающей средой. Как указано выше, химические превращения вещества сопровождаются движением среды. В свою очередь, механическое движение влияет на состояние вещества в пределах детонационного фронта и, в конечном итоге, на скорость химических превращений. Следовательно, детонация представляет собой не только химический, но и газодинамический процесс. Более того, именно законы газодинамики определяют скорость движения детонационного фронта по веществу. Таким образом, генерируемая в камере сгорания 3 детонационные волны в направлении вращения ротора взаимодействуют со стороной 5, преобразуют свою кинетическую энергию в механическую энергию вращения ротора 2.
Однако, кинетическая энергия детонационной волны лишь часть энергии отдаваемой ротору в рабочем процессе роторного двигателя. Дополнительный силовой импульс, увеличивающий крутящий момент на роторе 2 возникает в момент соединения камеры сгорания с выхлопным каналом 9. Поток продуктов сгорания, вырывающийся под значительным давлением и скоростью через образующийся зазор, взаимодействует со стороной 5 камеры сгорания, оказывая на нее давление в сторону вращения ротора 2 и создавая на плече приблизительно равном радиусу ротора крутящий момент. Образно, поток газа, истекающий из камеры сгорания, можно сравнить с «клином», вбиваемым между стенкой корпуса 1, переходящей в выхлопной канал 9 и верхней кромкой стороны 5. Затем газодинамический поток переходит в реактивную струю газового потока формирующую третью тангенсальную вращающую силу Fг.д.п..
Суммирование сил детонационного импульса, сил газодинамического клина и сила реактивного газодинамического потока увеличивает мощность и КПД роторного двигателя предлагаемой конструкции.
Fс.д.и. – сила детонационного импульса.
Fс.г.к – сила газодинамического клина.
Fс.г.п. – сила газодинамического потока
Fт.в.с.р. – тангенсальная вращающая сила ротора.
Fд.и. + Fг.д.к.+ Fс.г.п. = F т. в. р.
К достоинствам предлагаемой конструкции роторного двигателя относится то, что он не имеет «мертвых точек», характерных для поршневых машин и крутящий момент на валу приближается к постоянному. Роторный двигатель работает без вибрации, потому что ротор совершает только вращательное движение и полностью статически и динамически сбалансирован. Отсутствие преобразования одного вида движения в другое (например, возвратно-поступательное во вращательное) позволяет работать двигателю на высоких частотах вращения недоступных для машин других типов. Благодаря вышесказанному, а также новому рабочему процессу, основанному на использовании детонационных волн, предлагаемая конструкция роторного двигателя имеет удельно-габаритные показатели мощности, превосходящие в несколько раз соответствующие показатели машин аналогичного типа, например таких как реактивные и лопаточно-струйные. Производительность роторного двигателя предлагаемой конструкции прямо пропорциональна скорости вращения ротора, что позволяет контролировать и управлять расходом рабочего тела. Такая конструкция дает возможность использовать новые конструкционные материалы, например, керамику, порошковые материалы, сведя процесс производства двигателя к высокоточному объемному прессованию с минимумом финишных операций.
В 1986г. Был изготовлен действующий макет двигателя Размеры экспериментального двигателя были следующие:
1.Ротор D= 50мм
2. Вал D=10мм, L=200мм
3.Цилиндрический корпус L =14 см, Dвн=50+0.01мм, Dнар=60мм,
4. Два идентичных поршневых компрессора:
Dц=50мм, Ход поршня l=20мм.
На стендовом испытании роторно-реактивный двигатель показал следующие тактико-технические данные:
1. Литровый объем двигателя составил Vдв=0,236л
2. Максимальная степень сжатия составила 27:1
3. Работа двигателя была ровной, обороты от 500об/мин до 10000об/мин были стабильны.
4. Максимальную мощность на валу двигатель развил 36,7 kw.
5. Масса двигателя в сборе составила 2кг.700г. Что составило 13,59 kw. на 1кг. веса
Как показала эксплуатация опытного образца на различных видах топлива расход последнего в 4 раза меньше по сравнению с существующими поршневыми двигателями такой же мощности, а моторесурс в два раза выше. КПД опытного образца достигало 90%. На единицу массы (кг) двигателя приходится 16 кВт мощности и такого показателя не имеет ни один из известных в настоящее время двигателей внутреннего сгорания.
Дополнительные сведения
Аналитика рынка
Альтернативы нет.
Уникальность проекта
•простота и технологичность РРДА, открывают долговременные устойчивые перспективы ее использования, делая ее новым системообразующим механизмом нового тысячелетия. Технической задачей изобретения является, упрощение конструкции, увеличение мощности на единицу веса, значительное снижение расхода топлива на единицу мощности, экологически чистый выхлоп обеспечивающий Евро-4-5 и увеличение мотто-ресурса по сравнению с существующими как минимум в 2 раза
•Аналогов нет.
•Чем наш способ лучше: Отсутствие преобразования одного вида движения в другое(например, возвратно-поступательного во вращательное) и реализация в двигателе детонационного рабочего процесса позволяют работать РРДА на значительно более высоких частотах вращения вала отбора мощности в сравнении с современными поршневыми двигателями. Это и определяет высокие удельные массо-габаритные и мощностные показатели реализуемых на базе предлагаемой конструктивной схемы машинных систем (двигателей, генераторов, насосов, и т.д.). РРДА потенциально имеет высокий механический КПД не менее 90% на всех режимах работы. Мощность РРДА, прямо пропорциональная скорости вращения ротора, управляется расходом рабочего тела.
•Почему конкурентам будет сложно его воспроизвести: Есть ряд серьезных нюансов в конструкции.
Каналы монетизации
•Как вы собираетесь зарабатывать деньги: разработка имеет потенциально высокий лицензионный и производственно-технологический рейтинг (предполагаемый доход только от продажи лицензий может составить до 100 000 000 евро).
Стратегия продаж и маркетинг
•Произвести несколько силовых установок и представить их в автомобильных, авиационных и энергетических международных салонах.
Роторно-поршневой двигатель — это… Что такое Роторно-поршневой двигатель?
Роторно-поршневой двигатель в разрезе, с ротором, изготовленным в форме треугольника РёлоРо́торно-поршнево́й дви́гатель внутреннего сгорания (РПД, двигатель Ва́нкеля), конструкция которого разработана в 1957 году инженером компании NSU Вальтером Фройде, ему же принадлежала идея этой конструкции. Двигатель разрабатывался в соавторстве с Феликсом Ванкелем, работавшим над другой конструкцией роторно-поршневого двигателя.[1]
Особенность двигателя — применение трёхгранного ротора (поршня), имеющего вид треугольника Рёло, вращающегося внутри цилиндра специального профиля, поверхность которого выполнена по эпитрохоиде (возможны и другие формы ротора и цилиндра[2]).
Конструкция
Установленный на валу ротор жёстко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестернёй — статором. Диаметр ротора намного превышает диаметр статора, несмотря на это ротор с зубчатым колесом обкатывается вокруг шестерни. Каждая из вершин трёхгранного ротора совершает движение по эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер в цилиндре с помощью трёх клапанов.
Цикл двигателя Ванкеля: впуск (голубой), сжатие (зелёный), рабочий ход (красный), выпуск (жёлтый) Роторно-поршневой двигательТакая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами. Отсутствие механизма газораспределения делает двигатель значительно проще четырехтактного поршневого (экономия составляет около тысячи деталей), а отсутствие сопряжения (картерное пространство, коленвал и шатуны) между отдельными рабочими камерами обеспечивают необычайную компактность и высокую удельную мощность. За один оборот двигатель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя.
Смесеобразование, зажигание, смазка, охлаждение, запуск принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания.
Практическое применение получили двигатели с трёхгранными роторами, с отношением радиусов шестерни и зубчатого колеса: R:r = 2:3, которые устанавливают на автомобилях, лодках и т. п.
Автомобили с РПД потребляют от 7 до 20 литров топлива на 100 км, в зависимости от режима движения, масла — от 0,4 л до 1 л на 1000 км.
Преимущества и недостатки
Преимущества перед обычными бензиновыми двигателями
- низкий уровень вибраций. Роторно-поршневой двигатель полностью механически уравновешен, что позволяет повысить комфортность лёгких транспортных средств типа микроавтомобилей, мотокаров и юникаров;
- главным преимуществом роторно-поршневого двигателя являются отличные динамические характеристики: на низкой передаче возможно без излишней нагрузки на двигатель разогнать машину выше 100 км/ч на более высоких оборотах двигателя (8000 об/мин и более), чем в случае конструкции обычного поршневого двигателя внутреннего сгорания.
- Высокая удельная мощность(л.с./кг), причины:
- Масса движущихся частей в РПД гораздо меньше, чем в аналогичных по мощности «нормальных» поршневых двигателях, так как в его конструкции отсутствуют коленчатый вал и шатуны.
- К тому же однороторный двигатель выдаёт мощность в течение трёх четвертей каждого оборота выходного вала. В отличие от одноцилиндрового поршневого двигателя, который выдаёт мощность только в течение одной четверти каждого оборота выходного вала. (современный серийный РПД с объёмом рабочей камеры 1300 см³ имеет мощность 220 л.с., а с турбокомпрессором — 350 л.с.)
- меньшие в 1,5-2 раза габаритные размеры.
- меньшее на 35-40 % число деталей
За счёт отсутствия преобразования возвратно-поступательного движения во вращательное, двигатель Ванкеля способен выдерживать гораздо большие обороты, но с меньшими вибрациями, по сравнению с традиционными двигателями. Роторно-поршневые двигатели обладают более высокой мощностью при небольшом объёме камеры сгорания, сама же конструкция двигателя сравнительно мала и содержит меньше деталей. Небольшие размеры улучшают управляемость, облегчают оптимальное расположение трансмиссии (развесовка) и позволяют сделать автомобиль более просторным для водителя и пассажиров.
Недостатки:
- Соединение ротора с выходным валом через эксцентриковый механизм, являясь характерной особенностью РПД Ванкеля, вызывает давление между трущимися поверхностями, что в сочетании с высокой температурой приводит к дополнительному износу и нагреву двигателя.
В связи с этим возникает повышенное требование к периодической замене масла. При правильной эксплуатации периодически производится капитальный ремонт, включающий в себя замену уплотнителей. Ресурс при правильной эксплуатации достаточно велик, но не заменённое вовремя масло неизбежно приводит к необратимым последствиям, и двигатель выходит из строя.
- Наиболее важной проблемой считается состояние уплотнителей. Площадь пятна контакта очень невелика, а перепад давления очень высокий. Следствием этого, неразрешимого для двигателей Ванкеля, противоречия являются высокие утечки между отдельными камерами и, как следствие, падение коэффициента полезного действия и токсичность выхлопа.
Проблема быстрого износа уплотнителей на высокой скорости вращения вала была решена применением высоколегированной стали.
- Другой особенностью двигателей Ванкеля является его склонность к перегреву. Камера сгорания имеет линзовидную форму, то есть при маленьком объёме у неё относительно большая площадь. При температуре горения рабочей смеси основные потери энергии идут через излучение. Интенсивность излучения пропорциональна четвёртой степени температуры, таким образом идеальная форма камеры сгорания — сферическая. Лучистая энергия не только бесполезно покидает камеру сгорания, но и приводит к перегреву рабочего цилиндра. Эти потери не только снижают эффективность преобразования химической энергии в механическую, но и вызывают проблемы с воспламенением рабочей смеси, поэтому в конструкции двигателя часто предусматривают 2 свечи.
- Высокие требования к геометрической точности изготовления деталей двигателя делают его сложным в производстве — требуется применение высокотехнологичного и высокоточного оборудования: станков, способных перемещать инструмент по сложной траектории эпитрохоидальной поверхности камеры объёмного вытеснения.
- При всех преимуществах (высокая удельная мощность, простота устройства, несложный ремонт при правильной эксплуатации), важной проблемой является меньшая экономичность на низких оборотах по сравнению с обычными ДВС.
Применение
NSU Ro80.Двигатель разрабатывался изначально именно для применения на автотранспорте. Первый серийный автомобиль с роторным двигателем — немецкий спорткар NSU Spider.
Первый массовый (37 204 экземпляра) — немецкий седан бизнес-класса NSU Ro 80. Автомобиль имел достаточно инноваций и помимо двигателя, в частности, кузов с рекордно низким аэродинамическим сопротивлением, полуавтоматическую коробку передач с гидротрансформатором, блок-фары, и так далее. Ro80 отличалась не только уникальной конструкцией, но и передовым дизайном, который оказался непонятен публике середины шестидесятых[источник не указан 1238 дней]; через десять лет именно он был положен в основу стиля моделей «Ауди» 100 и 200 поколения C2.
К сожалению, ресурс двигателя оказался весьма мал (ремонт требовался уже после пробега порядка 50 тыс. км), поэтому автомобиль заслужил плохую репутацию и относительно малоизвестен. На многих сохранившихся автомобилях оригинальный двигатель заменён на поршневой V4 «Essex» фирмы Ford.
Citroën также экспериментировал с РПД — проект Citroën M35.
После этого серийное и мелкосерийное производство роторно-поршневых двигателей Ванкеля производились только фирмами Mazda (Япония) и ВАЗ (Россия)[3].
Современное состояние
Инженерам фирмы Mazda, создавшим роторно-поршневой двигатель «Renesis» (производное от слов (англ. Rotary Engine:роторный двигатель и Genesis:процесс становления, название говорящее о появлении нового класса двигателей), удалось решить основные проблемы таких двигателей — токсичность выхлопа и неэкономичность. По сравнению с двигателями-предшественниками, удалось сократить потребление масла на 50 %, бензина на 40 % и довести выброс вредных окисей до норм, соответствующих Euro IV. Двухкамерный двигатель «Renesis» объёмом всего 1,3 л выдаёт мощность в 250 л. с. и занимает гораздо меньше места в моторном отсеке. Следующая модель двигателя Renesis 2 16X имеет объём 1,6 литра, и при большей мощности, нагревается меньше.
Автомобили марки Mazda с буквами RE в наименовании (первые буквы от названия «Renesis») могут использовать в качестве топлива как бензин, так и водород (так как менее чувствителен к детонации, чем обычный двигатель, использующий возвратно-поступательное движение поршня). Это явилось вторым витком роста внимания к РПД со стороны разработчиков.
Авиационные двигатели
В начале 50-х годов была создана серия авиадвигателей ВП-760, ВП-1300, ВП-2650 — пятилучевых двухтактных звёзд мощностью от 40 до 130 л. с. и весом от 25 до 100 кг авиационного инженера В. Полякова, созданных для лёгкой авиационной техники и прошедших успешные испытания в небольшой серии в ДОСААФ.[4] Позднее, в 90-х годах, в Научно-техническом центре ВАЗ были созданы ВАЗ-416, ВАЗ-426, ВАЗ-526.
Несмотря на ряд попыток установки двигателя Ванкеля на самолетах (опытные образцы испытывались в разных странах с 1950-х годов), он не нашел широкого применения в авиации. В настоящее время (2011) двигатель Ванкеля устанавливается на некоторые модели мотопланеров Schleicher.
См. также
Примечания
Литература
- Роторно-поршневой двигатель // Большая советская энциклопедия
Ссылки
РПД СССР/России
Авиационные РПД
Проект роторного двигателяСореньи | Новая конструкция роторного двигателя
Представьте себе треугольники, вращающиеся вокруг стержня для занавески для душа внутри пивного бочонка — это элементарное описание кричащего роторного двигателя Ванкеля. Эту силовую установку любят редукторы во всем мире из-за ее простой конструкции с минимумом движущихся частей, плавности хода от низких до высоких оборотов и огромного количества мощности, которое достигается за счет крошечного рабочего объема.
Однако у легендарного треугольного ротора Ванкеля число оборотов ограничено из-за того, что его треугольные роторы эксцентрично крепятся к коленчатому валу, что означает, что скорость двигателя ограничена примерно 9000 об / мин, потому что коленчатый вал согнется, если он будет вращаться быстрее.Конечно, красная линия на 9000 об / мин — это высокий показатель для уличного автомобиля, но возможность более высоких оборотов может обеспечить большую мощность в других приложениях.
Может быть, если бы мы вышли за рамки вращающихся треугольников.
Двигатель Сорени, взорванная схема.REDA
Более десяти лет австралийские инженеры, работающие под названием Rotary Engine Development Agency (REDA), разработали новую конструкцию роторного двигателя, основанную на деформирующемся ромбе, а не на традиционных треугольных роторах.Основным преимуществом двигателя является большая удельная мощность, чем может достичь двигатель Ванкеля, потому что более сбалансированная конструкция позволяет двигателю развивать более высокие обороты — так говорит Питер Кинг, один из двух партнеров REDA.
Другое главное преимущество Кинга состоит в том, что предел оборотов Szorenyi не ограничивается изгибом коленчатого вала, который возникает из-за эксцентриковых роторов Ванкеля. Уравновешенные роторы Szorenyi (в которых вращающий их коленчатый вал находится в центре ротора) позволяют ему вращаться выше, чем роторы Ванкеля, у которых центр тяжести ротора эксцентричен относительно его коленчатого вала.
Эта новая роторная конструкция называется ротором Сореньи, в честь изобретателя двигателя и партнера REDA Петера Сореньи. После того, как он скончался в 2012 году, его сын Адам занял его место в REDA вместе с Кингом.
Легендарный роторный двигатель Mazda Wankel.Getty Images
Ванкель никогда не был единственной роторной конструкцией, но он стал визитной карточкой. Созданный в Германии в 1920-х годах, Wankel, наконец, начал производство в 1950-х годах на немецком автопроизводителе NSU.Mazda, наряду с огромным списком производителей автомобилей и самолетов, а также парой производителей мотоциклов, лицензировала Wankel у NSU и разработала свои собственные версии. Только Mazda на самом деле пошла за нее , используя роторные двигатели, наиболее известные в спортивных автомобилях, таких как RX-7, и грандиозных туристических автомобилях, таких как Cosmo.
NSU обанкротилась в 1970-х годах, потому что ее ранние версии Wankels продолжали самоуничтожаться, и, хотя компания в конечном итоге исправила недостатки, ее репутация была подорвана.Когда разразился нефтяной кризис 1973 года, Mazda переводила почти все свои производственные линии на станки Ванкельса. С тех пор роторный двигатель был зарезервирован в основном для нишевых легких спортивных автомобилей и роскошных гранд-туреров, пока Mazda не разочаровала всех поклонников Ванкеля, остановив производство после 2012 года.
Сзореньи пережили свою собственную сагу. REDA разрабатывала четырехкамерный Szorenyi в течение многих лет и построила действующий прототип в 2008 году. Но когда группа опубликовала свой технический документ совместно с Обществом автомобильных инженеров в 2017 году, все наткнулось на препятствие.Инженеры известной британской автомобильной инженерной фирмы проверили двигатель и сказали Кингу, что угловые шарниры будут испытывать экстремальные нагрузки от давления и их будет сложно смазывать должным образом.
«В результате того [разговора] у меня возникло вдохновение снять петли и просто смириться с потерей одной [камеры сгорания]», — говорит Кинг. Это упростило двигатель и устранило проблемы со смазкой и высокими нагрузками, но также вернуло Szorenyi к трехкамерному роторному двигателю, более близкому по концепции к Ванкелю.
Роторный двигатель Szorenyi сохраняет основные особенности Ванкеля в отношении неподвижных частей двигателя, однако у него все еще есть ключевое преимущество — у Szorenyi используется более закругленная форма для своего статора (неподвижная часть двигателя в форме бочонка пива). Его роторы испытывают центробежные силы, которые деформируют их относительно верхних уплотнений, выстилающих камеры сгорания, что улучшает герметичность этих камер. В отличие от этого, утверждает Кинг, эксцентриковые роторы Ванкеля испытывают силу, действующую к центру двигателя, и это может вызвать подъем уплотнения верхушки, что приводит к утечке газов между камерами.
Потеря четвертой камеры уменьшает рабочий объем двигателя — если все остальное остается прежним — но трехкамерный Szorenyi сохраняет сбалансированные роторы, которые позволяют ему вращаться выше, чем эквивалентный двигатель Ванкеля. «Мой подход сейчас состоит в том, чтобы поставить четырехкамерный двигатель и сконцентрироваться на трехкамерном двигателе», — говорит Кинг. Это будет первая версия Szorenyi, которую мы увидим, хотя Кинг не говорит, для какого приложения она дебютирует.
Лицо трехкамерного поворотного Сорени.REDA
Предполагая, что его окончательный дизайн будет реализован, Szorenyi столкнется с экзистенциальным вопросом: каково место ротора в мире?
Подобно двигателю с воздушным охлаждением, роторный двигатель вызвал интерес, и производство среди крупных производителей прекратилось на рубеже веков. Wankel просуществовал до 2012 года, когда Mazda убила RX-8 с роторным двигателем. Ужесточение стандартов выбросов и экономии топлива привело к подписанию смертного приговора Ванкелю.
За исключением небольшого оживления.Примерно в то же время REDA решила сконцентрироваться на трехкамерном Szorenyi, Mazda объявила, что возродит Wankel в качестве расширителя диапазона для автомобилей с электрическим приводом. Таким образом, Mazda Wankel не будет напрямую вращать колеса, а будет действовать как бортовой генератор, который в крайнем случае вырабатывает дополнительную электроэнергию для электродвигателей, приводящих в движение колеса автомобиля. Внезапно роторный обрел еще одну жизнь.
Непосредственная судьба Сореньев остается неясной. В отличие от того, чтобы найти свой путь в автомобиле — долгий и трудный процесс — эту конструкцию можно было сначала использовать в беспилотных летательных аппаратах и легких самолетах, где Ванкель был популярен в течение многих лет.Szorenyi был бы идеальным двигателем для сверхлегких самолетов и автожиров по тем же причинам, что и Wankel: хорошая мощность, малый вес, небольшие размеры.
После всех положительных отзывов со стороны отрасли, единственное препятствие, которое остается для REDA, — это убедить кого-то построить его.
Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на пианино.io
Роторный двигатель — шедевр инженерной мысли
При покупке новенького автомобиля вопрос о конструкции двигателя практически не возникает, и он не указывается на сайте производителя. Хотя существуют двигатели разных размеров, конфигураций и даже с принудительной индукцией, все они используют цилиндры и поршни. Однако в 1950-х годах человек по имени Феликс Ванкель разработал двигатель совершенно другого типа. Широко известный как роторный двигатель, он был меньше, легче и часто мощнее, чем его конкуренты с поршневым двигателем.
Как работает роторный двигатель?
Чтобы понять, что делает роторный двигатель уникальным, нам сначала нужно узнать, как работает традиционный поршневой двигатель. Впускные клапаны позволяют воздуху поступать в цилиндры. При движении вниз поршни всасывают воздух в камеру сгорания. В этот момент топливная форсунка добавляет топливо в смесь. Когда поршень движется обратно вверх, он начинает сжимать воздух в камере. Оказавшись наверху, свеча зажигания воспламеняет смесь, толкая поршень обратно вниз.Это движение, повторяющееся с молниеносной скоростью, позволяет двигателю развивать свою мощность.
Роторный двигатель, с другой стороны, выполняет тот же процесс, но совершенно по-другому. Вместо поршня, который движется вертикально, роторный двигатель использует ротор, который вращается вокруг оси. Во-первых, воздух и топливо засасываются в камеру сгорания за счет вакуума, создаваемого вращающимся ротором. Когда ротор вращается, он сжимает воздух, и в этот момент две свечи зажигания воспламеняют смесь.Выхлопные газы затем выпускаются ротором из камеры сгорания только для того, чтобы всасывать больше воздуха и топлива, когда он совершает еще один оборот. Это вращательное движение позволяет двигателю развивать свою мощность.
Кто это разработал?
Капелла Ротари | MazdaСВЯЗАННЫЙ: стоит ли рисковать покупкой автомобиля с роторным двигателем?
В то время как Феликс Ванкель разрабатывал оригинальный дизайн роторного двигателя, Mazda популяризировала его. Согласно Mazda, в 1960 году различные производители подписали лицензионные соглашения на производство двигателя; однако только Mazda когда-либо смогла сделать его коммерчески жизнеспособным.Первым автомобилем Mazda с роторным двигателем был Cosmo 110S, который, как следует из названия, развивал 110 л.с. в двухроторной конфигурации.
С тех пор роторный двигатель стал хитом, в конечном итоге породив линейку спортивных автомобилей RX, которые мы знаем и любим сегодня. Одной из выдающихся моделей, в которых использовался роторный двигатель, была RX-7 третьего поколения, которая производилась с 1992 по 2002 год. На RX-7 был установлен 1,3-литровый двухроторный двигатель 13b с двумя турбинами. Силовой агрегат комплекса развивал 236 л.с.
Почему это так редко?
Mazda RX-792P | Аллан Хэмилтон / Icon Sportswire через Getty ImagesРоторный двигатель по своей конструкции идеально подходит для жизни в мире автоспорта.Одна из причин, по которой мы не видим роторные двигатели в серийных автомобилях, а именно, связана с затратами на техническое обслуживание. Хотя в роторном двигателе меньше движущихся частей, дроссельная заслонка напрямую влияет на количество масла в камере, смазывая ротор и все уплотнения.
Когда дроссельная заслонка не используется, например, при остановках и дорожном движении, уплотнения могут высохнуть и выйти из строя. Кроме того, сам ротор может быть недостаточно смазан, что приведет к повреждению камеры сгорания, что приведет к потере сжатия.Эти требования означают, что для ухода за ротором необходимо тщательно выполнять техническое обслуживание. В результате коммерческая жизнеспособность роторного двигателя начала угасать, и в конечном итоге Mazda сняла его с производства в 2012 году.
Малый двигатель впечатляет | MIT News
Шум, чрезмерная вибрация и относительная неэффективность являются недостатками поршневых двигателей внутреннего сгорания (ДВС), которыми оснащено современное газонное и садовое оборудование, такое как воздуходувки и триммеры для газонов.
Но теперь стартап из Массачусетского технологического института LiquidPiston разработал роторный ДВС, который, по его словам, значительно меньше, легче и тише, а также на 20 процентов более экономичен, чем ДВС, используемые во многих подобных устройствах с малым объемом двигателя.
«Если вы думаете о ручных инструментах — например, о цепной пиле или кусторезе — примерно через полчаса вы больше не хотите их использовать, потому что ваша рука кажется, что он вот-вот упадет», — говорит Александр Школьник, доктор философии. ’10, президент LiquidPiston и соавтор двигателя.«В нашем двигателе совсем нет вибрации, и он намного тише. Это должно быть намного приятнее для пользователей ».
Двигатель LiquidPiston объемом 70 кубических сантиметров, X Mini, выдает около 3,5 лошадиных сил при 10 000 об / мин; при весе 4 фунта он также примерно на 30 процентов меньше, чем четырехтактные поршневые ДВС с объемом двигателя 50 кубических сантиметров, которые он намерен заменить. По словам Школьника, в полностью собранном виде X Mini может выдавать около 5 лошадиных сил при 15000 оборотах в минуту и весить 3 фунта.
Двигатель работает по новому высокоэффективному гибридному циклу (HEHC), разработанному Школьником и его отцом-физиком Николаем, который обеспечивает сгорание при постоянном объеме и избыточное расширение для большего извлечения энергии.По словам Школьника, с двумя движущимися частями, ротором и валом и без тарельчатых клапанов, которые обычно используются в других четырехтактных ДВС для управления подачей топлива, двигатель также имеет пониженные характеристики шума, вибрации и резкости.
Первыми приложениями будут портативные газоны и садовая техника, говорит Школьник. Но двигатель можно масштабировать и модифицировать для других приложений, включая мопеды, дроны, судовое силовое оборудование, робототехнику, расширители диапазона и вспомогательные силовые агрегаты для лодок, самолетов и других транспортных средств.Компания также продемонстрировала концепцию высокоэффективных дизельных версий двигателя, включая 70-сильный X1 и 40-сильный X2, для генераторов и других приложений. Компания надеется в конечном итоге разработать небольшие дизельные версии двигателя X Mini для военных целей.
«Если вы посмотрите на 3-киловаттный военный генератор, это 270-фунтовая горилла, которой нужно пять человек, чтобы передвигаться», — говорит Школьник. «Вы можете себе представить, что если мы сможем превратить его в 15-фунтовое устройство, для них это будет довольно революционно.
Школьник представил доклад о X2 и X Mini 19 ноября на конференции и выставке по технологии малых двигателей 2014 года в Италии.
Обратный двигатель Ванкеля
X Mini — это, по сути, модернизация конструкции и эффективности компактного роторного двигателя Ванкеля, изобретенного в 1950-х годах и используемого сегодня в спортивных автомобилях, лодках и некоторых самолетах.
В машине Ванкеля ротор с закругленным треугольником вращается по эксцентрической орбите внутри овальной камеры, причем каждое вращение производит три такта мощности, где двигатель создает силу.В X Mini овальный ротор вращается внутри модифицированного скругленного треугольного корпуса.
«Мы перевернули все в традиционном роторном двигателе, и теперь мы можем выполнить этот новый термодинамический цикл [HEHC] и решить все проблемы, которые преследовали традиционный двигатель Ванкеля» для небольших двигателей, — говорит Школьник.
В двигателе Ванкеля, например, используется длинная камера сгорания (похожая на тонкий полумесяц), что способствует плохой экономии топлива — поскольку пламя не может достичь задних краев камеры и гасится из-за большой площади поверхности камеры. .Камера сгорания X Mini более округлая и толстая, поэтому пламя горит на меньшей площади.
Впуск воздуха, топлива и выпуска газа в X Mini происходит через два отверстия в роторе, которые открываются или закрываются по мере вращения ротора, что устраняет необходимость в клапанах. Асимметричное расположение этих портов немного задерживает процесс выхлопа при расширении. Это позволяет осуществлять процесс сверхрасширения HEHC — из термодинамического цикла Аткинсона, используемого в некоторых гибридных автомобилях, — когда газ расширяется в камере до тех пор, пока давление не исчезнет, что дает двигателю больше времени для извлечения энергии из топлива.Эта конструкция также обеспечивает «горение постоянного объема» HEHC — из термодинамического цикла Отто, используемого в поршневых двигателях с искровым зажиганием — где сжатый газ удерживается в камере в течение длительного периода, позволяя воздуху и топливу смешиваться и полностью воспламеняться перед расширением. что приводит к увеличению давления расширения и повышению эффективности.
«Топливо в двигателе сжигается очень долго, — говорит Школьник. «В большинстве двигателей к тому времени, когда вы сжигаете топливо, вы расширяете газы и теряете эффективность процесса сгорания.Мы продолжаем горение, пока ротор находится наверху камеры, и при этих условиях форсируем горение. Так намного эффективнее.
Кроме того, на X Mini были перемещены уплотнения верхушки, что привело к снижению расхода масла. У Ванкельса уплотнения вершины соединяются с краями треугольного ротора, где они скользят и перемещаются. Смазка их требует подачи в топливовоздушную смесь большого количества масла, которое горит и протекает, что увеличивает выбросы и расход масла. Однако в X Mini эти уплотнения расположены в корпусе треугольной формы, который остается на месте.«Теперь мы можем подавать крошечные количества масла через стационарный корпус, ровно столько, сколько нужно уплотнению, и при этом вы не сжигаете масло и не теряете его в окружающей среде», — говорит Школьник.
«Дорожная карта» LiquidPiston
Интерес к робототехнике и искусственному интеллекту привел Школьника в Массачусетский технологический институт в 2003 году в качестве аспиранта по электротехнике и информатике. В том же году Николай Школьник подал свой первый патент HEHC, и его сын узнал о Конкурс предпринимательства MIT на 50 тысяч долларов (сейчас 100 тысяч долларов) в классе, посвященном техническому предпринимательству.Они объединились со студентами школы менеджмента MIT Sloan School of Management, чтобы создать бизнес-план и представить двигатель HEHC на конкурсе 2004 года, где они забрали домой приз в размере 10 000 долларов США за запуск LiquidPiston.
Сам конкурс оказался полезным для предпринимателей, отцов и сыновей, у которых на тот момент еще не было опыта стартапов. При составлении подробного бизнес-плана и изучении того, как объяснить свои технологии инвесторам, «он действительно показал нам план действий, и мы были вынуждены много обдумывать проблемы, с которыми мы собирались столкнуться», — говорит Школьник.
В течение следующих шести лет Школьник помогал своему отцу разработать двигатель LiquidPiston из семейного гаража, используя навыки, которые он оттачивал в группе Robot Locomotion при Массачусетском технологическом институте, возглавляемой Расселом Тедрейком, доцентом электротехники и информатики. «Это было много оптимизации, контроля, моделирования и моделирования», — говорит он. «Все те же самые методы применимы к проектированию двигателя».
Школьник приписывает большую часть разработки LiquidPiston расширенному сообществу MIT.Во время розыгрыша 50 тысяч долларов венчурный капиталист Билл Фрезза ’76, SM ’78 был наставником команды; его фирма тогда стала одним из первых инвесторов. Члены команды MIT Sloan Брайан Роуган, MBA ’05, Дженнифер Эндрюс Берк, MBA ’05, и Викрам Сани, MBA ’05, провели исследование рынка, написали бизнес-план, работали над развитием бизнеса и представили компанию инвесторам.
Наставники из Venture Mentoring Service (VMS) Массачусетского технологического института, в том числе покойный Дэйв Сталин, основавший VMS, также руководили развитием LiquidPiston, предлагая советы по разработке продуктов, найму и поиску венчурного капитала.(На данный момент компания заработала более 15 миллионов долларов на финансирование.)
В 2006 году, после анализа десятков итераций двигателей, LiquidPiston получила военный грант в размере 70 000 долларов на производство первого прототипа дизельного двигателя. (Сегодня LiquidPiston проанализировал и запатентовал около 60 различных конструкций двигателей для воплощения HEHC.)
Из-за огромного количества отзывов от производителей силового оборудования, призывающих к более легким, более тихим и безвибрационным двигателям, LiquidPiston недавно перешел на X Mini, который был разработан и выпущен за последние шесть месяцев.Компания вызвала интерес со стороны потенциальных клиентов и ведет переговоры с производителями двигателей, заинтересованных в лицензировании технологии X Mini.
«В дополнение к улучшению существующих приложений для двигателей, — объясняет Школьник, — X Mini может позволить использовать совершенно новые приложения, которые в настоящее время невозможны с текущими двигателями или аккумуляторными технологиями».
В начале следующего года компания планирует провести конкурс, чтобы узнать у общественности идеи, касающиеся этих новых применений X Mini.«Мы хотим, чтобы творческие соки текли и открылись для более широкого сообщества, чтобы увидеть, есть ли что-нибудь интересное», — говорит Школьник.
Как работают роторные двигатели | HowStuffWorks
Роторные двигатели используют четырехтактный цикл сгорания, который является тем же циклом, что и четырехтактные поршневые двигатели. Но в роторном двигателе это делается совершенно по-другому.
Если вы посмотрите внимательно, вы увидите, что лепесток смещения на выходном валу вращается три раза за каждый полный оборот ротора.
Сердце роторного двигателя — это ротор. Это примерно эквивалент поршней в поршневом двигателе. Ротор установлен на большом круглом выступе выходного вала. Этот выступ смещен от центральной линии вала и действует как рукоятка кривошипа лебедки, давая ротору рычаг, необходимый для поворота выходного вала. Когда ротор вращается внутри корпуса, он толкает лепесток по узким кругам, поворачивая три раза на за каждый оборот ротора.
По мере того, как ротор перемещается через корпус, три камеры, создаваемые ротором, меняют размер. Это изменение размера вызывает перекачивающее действие. Давайте рассмотрим каждый из четырех тактов двигателя, глядя на одну сторону ротора.
Впуск
Фаза впуска цикла начинается, когда кончик ротора проходит через впускное отверстие. В момент, когда впускное отверстие выходит в камеру, объем этой камеры близок к своему минимуму. Когда ротор движется мимо впускного отверстия, объем камеры увеличивается, втягивая топливно-воздушную смесь в камеру.
Когда пик ротора проходит через впускной канал, эта камера закрывается и начинается сжатие.
Сжатие
По мере того, как ротор продолжает движение вокруг корпуса, объем камеры становится меньше, и топливно-воздушная смесь сжимается. К тому времени, когда поверхность ротора добралась до свечей зажигания, объем камеры снова близок к своему минимуму. Это когда начинается горение.
Сгорание
Большинство роторных двигателей имеют две свечи зажигания.Камера сгорания длинная, поэтому пламя распространялось бы слишком медленно, если бы была только одна заглушка. Когда свечи зажигания воспламеняют топливно-воздушную смесь, давление быстро растет, заставляя ротор двигаться.
Давление сгорания заставляет ротор перемещаться в направлении увеличения объема камеры. Газы сгорания продолжают расширяться, перемещая ротор и создавая мощность, пока пик ротора не пройдет через выхлопное отверстие.
Выхлоп
Как только пик ротора проходит через выхлопное отверстие, газообразные продукты сгорания под высоким давлением могут свободно выходить из выхлопа.По мере того как ротор продолжает двигаться, камера начинает сжиматься, вытесняя оставшийся выхлоп из порта. К тому времени, когда объем камеры приближается к своему минимуму, пик ротора проходит через впускное отверстие, и весь цикл начинается снова.
Особенность роторного двигателя заключается в том, что каждая из трех сторон ротора всегда работает в одной части цикла — за один полный оборот ротора будет три такта сгорания. Но помните, что выходной вал вращается три раза за каждый полный оборот ротора, а это означает, что на каждый оборот выходного вала приходится один ход сгорания.
Технический лакомый кусочек: три стороны гладкой работы роторного двигателя
Mazda была единственным производителем автомобилей, производившим роторные двигатели Феликса Ванкеля в больших объемах, и этот дизайн был снят с производства, когда RX-8 покинул рынок в 2012 году.
В гибридной электромобиле Mazda MX-30 2022 года в качестве источника энергии сгорания бортового генератора будет использоваться роторный двигатель. Это обеспечит более плавную альтернативу обычным поршневым двигателям с возвратно-поступательным движением, используемым в других гибридах, чья вибрация является резким нарушением качества вождения на электричестве.
Связано: В Mazda3 2020 года «Ангел в деталях»
Mazda подчеркнула эту плавность, продвигая роторный двигатель в США в рекламных роликах, в которых звучало «Поршневой двигатель гудит [звуковой эффект« боинг, боинг, боинг »] , но Mazda идет «ММММММ» ».
Роторы двигателя представляют собой отливки треугольной формы, которые вращаются на эксцентриковом валу, который аналогичен роторному коленчатому валу поршневого двигателя.В то время как поршни качаются вверх и вниз, меняя направление дважды за каждый оборот коленчатого вала, роторные двигатели вращаются плавно, их легкое колебание отслеживает путь через корпус ротора, имеющий нечеткую форму «восьмерки».
Связано: Новая стратегия испытаний Mazda может сэкономить «сотни миллионов йен» в год
Ротор выполняет тройную работу, запуская три цикла сгорания каждый раз, когда он вращается на 360 градусов, причем одно событие сгорания происходит на каждой стороне треугольника проходит свечи зажигания в корпусе ротора.Ротор предназначен для однократного вращения за три оборота эксцентрикового вала, поэтому каждый ротор выполняет одно событие сгорания за один оборот вала.
В каждом цилиндре поршневого двигателя происходит одно событие сгорания при каждом втором обороте коленчатого вала, если это четырехтактный двигатель. Компактные электроинструменты, такие как цепные пилы, используют двухтактные двигатели, вырабатывающие мощность при каждом обороте коленчатого вала.
ДвигателиMazda имели внутри два ротора, причем роторы располагались под углом 180 градусов друг к другу, так что они работали по очереди.Роторы и вал представляют собой три движущихся части роторного двигателя, что резко отличается от функции Руба Голдберга, заключающейся в перемещении и возвратно-поступательном движении частей внутри поршневого двигателя. Сюда входят не только поршни, шатуны и коленчатый вал, но также цепь и шестерни ГРМ (или ремень и шкивы), распределительный вал, толкатели клапанов, толкатели, коромысла и клапаны.
Роторный двигатель прост, легкий, компактный, плавный и вырабатывает большую мощность для своего размера.Эти атрибуты когда-то побудили мировых автопроизводителей предсказать его как двигатель будущего. В середине 1970-х годов на Chevrolet Corvette и AMC Pacer планировалось внедрить новые роторные двигатели этих компаний.
Увы, техническая проблема создания таких двигателей с удовлетворительной долговечностью была решена всеми автомобильными компаниями, не названными Mazda, а некоторые недовольные владельцы могли даже включить эту компанию в список.
Основной технической задачей является создание прочных уплотнений на трех концах треугольника ротора.Известно, что эти верхние уплотнения изнашиваются при меньшем пробеге, чем внутренние детали поршневого двигателя.
У роторных двигателейесть и другие проблемы, даже если они находятся в идеальном рабочем состоянии. Они потребляют масло в процессе сгорания, потому что они используют впрыск масла для смазывания внутренних поверхностей. У них огромный аппетит к топливу из-за почти непрерывного процесса сгорания. Они также производят много тепла и шума выхлопных газов по той же причине, по которой, казалось бы, непрерывное сгорание.
MazdaЭто роторы четырехроторного гоночного автомобиля Mazda 787B 1991 года, победившего в гонке «24 часа Ле-Мана».
Mazda, по-видимому, разработала эффективные глушители для сдерживания этого звука, чтобы водители MX-30, ожидающие использования электромобилей, не слышали громкого шума при запуске роторного генератора. «Роторный генератор ознаменует возвращение нашей уникальной роторной трансмиссии, — сказал Джефф Гайтон, президент Mazda North American Operations. «Эта технология разработана для почти бесшумной работы и будет заряжать аккумулятор, а не приводить в движение колеса.В результате MX-30 всегда будет ездить как привлекательный электромобиль, но с возможностью заряжаться от стены или на ходу ».
В качестве генератора роторный двигатель сможет работать на более постоянных оборотах двигателя, чем двигатель, который обеспечивает единственное средство движения автомобиля, поэтому это, вероятно, является источником адекватной топливной экономичности, шума двигателя и долговечности двигателя. Двигатель внутреннего сгорания MX-30.
По словам Mazda, технические подробности, объясняющие все это, будут доступны ближе к запуску автомобиля на рынок Калифорнии осенью 2021 года.
MazdaРоторные двигатели допускают использование самых разных видов топлива. На этой схеме изображена роторная Mazda, работающая на водороде.
50 ЛЕТ РОТАЦИОННОЙ РЕВОЛЮЦИИ
Без роторного двигателя, наверное, не было бы Mazda. А без Mazda роторный двигатель, конечно, не производился бы почти 50 лет.
Именно инженеры Mazda реализовали уникальную концепцию двигателя Феликса Ванкеля и довели ее до коммерческого успеха пять десятилетий назад в этом году.
Роторный двигатель меньше и легче обычного поршневого двигателя, с превосходным соотношением мощности к массе. Поскольку в нем нет возвратно-поступательных частей — только трехсторонний ротор, вращающийся в корпусе, он также работает тише и плавнее. Ротор также обеспечивает выдающуюся производительность при заданном рабочем объеме. Это было большим прорывом для компании, полной автолюбителей.
Mazda также приняла роторный двигатель, чтобы отличаться от других, — философия «бросить вызов условностям», которая сохраняется и по сей день. В 1950-х и 1960-х годах Министерство международной торговли и промышленности Японии, архитектор послевоенной промышленной политики страны, пыталось сделать свой зарождающийся автомобильный сектор конкурентоспособным на мировом рынке.Он хотел сократить количество автопроизводителей, рассуждая о том, что более крупные производители с большей вероятностью будут конкурировать с американскими и европейскими тяжеловесами. Небольшие производители автомобилей, такие как Mazda, оказались уязвимыми для принудительного слияния.
Но производитель автомобилей, который «думает иначе», создавший двигатель нового смелого типа, с гораздо большей вероятностью сохранит свою независимость. Роторный двигатель: отличная причина купить Mazda — автомобиль, который понравился не только тем, кто просто хотел добраться из пункта А в пункт Б.
Высоко оцененный Cosmo Sport с роторным двигателем (также известный как 110S) 1967 года не только укрепил репутацию Mazda как небольшого, но очень влиятельного производителя автомобилей, но в конечном итоге гарантировал компании постоянное место на автомобильном небосклоне.
Преодоление невзгод
В то время как другие автопроизводители пытались сделать роторный двигатель успешным, но безуспешно, Mazda упорно отказывалась позволить сложным двигателям встать у них на пути. Постоянно возникающая проблема заключалась в появлении царапин, получивших название «следы дьявольских когтей», на внутренней поверхности корпуса двигателя.Это было вызвано тем, что уплотнения на вершине треугольного ротора дергались, а не плавно скользили по внутреннему корпусу. Такая оценка привела к плохой стойкости уплотнения и вызвала преждевременный отказ от предложений роторных двигателей от многих других производителей автомобилей (см. Панель справа). Инженеры Mazda
под руководством Кеничи Ямамото в конечном итоге не только решили проблему с уплотнением из графит-алюминиевого сплава, но и устранили другие недостатки, такие как чрезмерный расход масла и отсутствие крутящего момента на низких оборотах. В конце концов роторный двигатель стал реальным, сочетая надежность с впечатляющей мощностью для своего размера.
Эта выигрышная комбинация привела к значительному успеху продаж Mazda в 1970-х годах. Около 100 000 автомобилей с роторным приводом было продано в США только в 1972 году, а в оставшееся десятилетие половина автомобилей Mazda была произведена с роторным двигателем.
Известные роторы
Mazda RX-9: надежды подкреплены новой технологией роторных двигателей
Бизнес-модель спортивного автомобиля Mazda RX-9 с роторным двигателем стала сильнее, чем когда-либо, благодаря разработке нового роторного двигателя, предназначенного для использования в электрифицированных силовых агрегатах, по словам руководителей компании.
Ходили слухи о RX-9, и в 2015 году концепция RX-Vision была задумана как знак намерения японского автопроизводителя выпустить первоклассный спортивный автомобиль с роторным двигателем. Такой автомобиль еще не появился, но возрождение роторного двигателя Mazda для помощи в электрификации означает, что аргументы в пользу RX-9 становятся гораздо более убедительными.
Новый роторный двигатель будет впервые представлен в версии Mazda MX-30 с увеличенным запасом хода, недавно представленной в чисто электрической форме. Тем не менее, роторный двигатель также может использоваться для подключаемых гибридов и гибридов и работает с топливом, включая сжиженный нефтяной газ и водород, что означает, что со временем он может использоваться во многих автомобилях Mazda.
Руководитель отдела исследований и разработок Mazda Ичиро Хиросе сказал: «Гибкий роторный двигатель — важное решение для технологий электрификации. Он компактный и легкий, с выдающимся шумом в воздухе. Используя роторный двигатель различными способами, мы можем повысить рентабельность — это означает, что мы можем снизить трудности, связанные с установкой роторного двигателя на спортивный автомобиль. Очень хочу, чтобы мы смогли оправдать эту машину. У нас, конечно, есть эта мечта ».
Ужесточение законодательства о выбросах означает, что RX-9 с роторным двигателем потребует некоторой формы электрификации, по словам руководителя бренда и дизайнера Икуо Маэда.