Общее устройство двигателя | Двигатель автомобиля
Для нормальной работы двигателя в цилиндры должны подаваться горючая смесь в определенной пропорции (у карбюраторных двигателей) или отмеренные порции топлива в строго определенный момент под высоким давлением (у дизелей). Для уменьшения затрат работы на преодоление трения, отвод теплоты, предотвращения задиров и быстрого износа трущиеся детали смазывают маслом. В целях создания нормального теплового режима в цилиндрах двигатель должен охлаждаться. Все двигатели, устанавливаемые на автомобили, состоят из следующих механизмов и систем.
Основные механизмы двигателя
Кривошипно-шатунный механизм (КШМ) преобразует прямолинейное движение поршней во вращательное движение коленчатого вала.
Механизм газораспределения (ГРМ) управляет работой клапанов, что позволяет в определенных положениях поршня впускать воздух или горючую смесь в цилиндры, сжимать их до определенного давления и удалять оттуда отработавшие газы.
Основные системы двигателя
Система питания служит для подачи очищенного топлива и воздуха в цилиндры, а также для отвода продуктов сгорания из цилиндров.
Система питания дизеля обеспечивает подачу дозированных порций топлива в определенный момент в распыленном состоянии в цилиндры двигателя.
Система питания карбюраторного двигателя предназначена для приготовления горючей смеси в карбюраторе.
Система зажигания рабочей смеси в цилиндрах установлена в карбюраторных двигателях. Она служит для воспламенения рабочей смеси в цилиндрах двигателя в определенный момент.
Смазочная система необходима для непрерывной подачи масла к трущимся деталям и отвода теплоты от них.
Система охлаждения предохраняет стенки камеры сгорания от перегрева и поддерживает в цилиндрах нормальный тепловой режим.
Расположение составных частей различных систем двигателей показано на рисунке.
Рис. Составные части разных систем двигателей: а — карбюраторный двигатель ЗИЛ-508: I — вид справа; II — вид слева; 1 и 15 — масляный и топливный насосы; 2 — выпускной коллектор; 3 — искровая свеча зажигания; 4 и 5 — масляный и воздушный фильтры; 6 — компрессор; 7 — генератор; 8 — карбюратор; 9 — распределитель зажигания; 10 — трубка масломерного щупа; 11 — стартер; 12 — насос гидроусилителя рулевого управления; 13 — бачок насоса гидроусилителя; 14 — вентилятор; 16 — фильтр вентиляции картера; б — дизель Д-245 (вид справа): 1 — турбокомпрессор; 2 — маслоналивная труба; 3 — маслоналивная горловина; 4 — компрессор; 5 — генератор; 6 — поддон картера; 7 — шпилька-фиксатор момента подачи топлива; 8 — выпускной трубопровод; 9 — центробежный маслоочиститель; 10 — маслоизмерительный щуп
ustroistvo-avtomobilya.ru
Назначение и устройство двигателя внутреннего сгорания
Более сотни лет в качестве силовых установок большинства машин и механизмов используются двигатели внутреннего сгорания. В начале 20-го века они заменили собой паровой мотор внешнего сгорания. ДВС сейчас является самым экономичным и эффективным среди прочих моторов. Давайте рассмотрим устройство двигателя внутреннего сгорания.
История создания
История этих агрегатов началась примерно 300 лет назад. Именно тогда Леонардо Да Винчи разработал первый чертеж примитивного двигателя. Разработка этого агрегата дала толчок к сборке, испытаниям и постоянному совершенствованию ДВС.
В 1861 году по чертежам, которые оставил миру Да Винчи, создали первый двухтактный мотор. Тогда еще никто и не думал, что подобными установками будут комплектоваться все автомобили и другая техника, хотя тогда использовались паровые агрегаты на железнодорожной технике.
Первым, кто стал использовать ДВС на автомобилях, стал Генри Форд. Он первым написал книгу об устройстве и работе ДВС. Форд стал первым, кто вычислял КПД этих двигателей.
Классификация ДВС
В процессе развития усложнялось и устройство двигателя внутреннего сгорания. Назначение его при этом оставалось прежним. Можно выделить несколько основных видов ДВС, которые являются наиболее эффективными сегодня.
Первые по эффективности и экономичности – поршневые установки. В этих агрегатах энергия, образовавшаяся от сгорания топливной смеси, превращается в движение через систему из шатунов и коленчатого вала.
Общее устройство двигателя внутреннего сгорания карбюраторного ничем не отличается от других моторов. Но горючая смесь приготавливается непосредственно в карбюраторе. Впрыск осуществляется в общий коллектор, откуда под воздействием разряжения смесь попадает в цилиндры, где затем загорается от электрического разряда на свече.
Инжекторный двигатель отличается от карбюраторного тем, что топливо подается в каждый цилиндр непосредственно через отдельные форсунки. Затем после того, как бензин смешается с воздухом, топливо поджигается от искры свечи.
Дизельный мотор отличается от бензиновых. Рассмотрим кратко устройство дизельного двигателя внутреннего сгорания. Здесь для воспламенения не используются свечи. Данное топливо загорается под воздействием высокого давления. В результате дизель нагревается. Температура превышает температуру горения. Впрыск осуществляется посредством форсунок.
К ДВС относят и роторно-поршневые двигатели. В этих агрегатах тепловая энергия от сгорания топлива воздействует на ротор. Он имеет особенную форму и специальный профиль. Траектория движения ротора – планетарная (элемент находится внутри специальной камеры). Ротор одновременно выполняет огромное количество функций – это газораспределение, функция коленчатого вала и поршня.
Существуют и газотурбинные ДВС. В этих агрегатах тепловая энергия преобразуется через ротор с клиновидными лопатками. Затем эти механизмы заставляют турбину вращаться.
Самыми надежными, не требующими частого обслуживания и экономичными считаются поршневые моторы. Роторные практически не используют в массовой автомобильной технике. Сейчас модели автомобилей, оснащенных роторно-поршневыми двигателями, выпускает только японская “Мазда”. Опытные авто с газотурбинными моторами в 60-х годах выпускал “Крайслер”, и после этого больше к этим установкам не возвращался ни один автопроизводитель. В Советском Союзе газотурбированными моторами недолго оснащали некоторые модели танков и десантных кораблей. Но затем было решено отказаться от таких силовых агрегатов. Именно поэтому мы рассматриваем устройство двигателя внутреннего сгорания – они наиболее популярны и эффективны.
Устройство ДВС
В корпусе мотора объединено несколько систем. Это блок цилиндров, в котором и находятся те самые камеры сгорания. В последних сгорает топливная смесь. Также двигатель состоит из кривошипно-шатунного механизма, призванного превращать энергию движения поршней во вращение коленчатого вала. В корпусе силового агрегата имеется и газораспределительный механизм. Его задача — обеспечивать своевременное открытие и закрытие впускных и выпускных клапанов. Двигатель не сможет работать без системы впрыска, зажигания, а также без выхлопной системы.
При запуске силового агрегата в цилиндры через открытые впускные клапаны подается смесь топлива и воздуха. Затем она воспламеняется от электрического разряда на свече зажигания. Когда смесь воспламенится и газы начнут расширятся, увеличится давление на поршень. Последний приведется в движение и заставит вращаться коленчатый вал.
Устройство и работа двигателя внутреннего сгорания таковы, что мотор работает определенными циклами. Эти циклы постоянно повторяются с высокой частотой. За счет этого обеспечивается непрерывное вращение коленчатого вала.
Принцип действия двухтактных ДВС
Когда мотор запускается, поршень, который приводится в движение посредством вращения коленвала, начинает двигаться. Когда он достигнет самой нижней своей точки и начнет двигаться вверх, в цилиндр подается топливо.
При движении вверх поршень сжимает смесь. Когда он достигнет верхней мертвой точки, то свеча за счет электрического разряда воспламеняет смесь. Газы моментально расширяются и толкают поршень вниз.
Затем открывается выпускной клапан цилиндра, и продукты сгорания выходят из цилиндров в выхлопную систему. Затем, снова дойдя до нижней точки, поршень начнет двигаться вверх. Коленчатый вал сделает один оборот.
Когда начнется новое движение поршня, впускные клапаны снова откроются, и будет подана топливная смесь. Она займет весь объем, который занимали продукты сгорания, и цикл повторится снова. За счет того, что поршни в таких двигателях работают только в двух тактах, совершается меньше движений, в отличие от четырехтактного ДВС. Снижаются потери на трение деталей. Но эти моторы сильнее нагреваются.
В двухтактных силовых агрегатах поршень также играет роль газораспределительного механизма. В процессе движения открываются и закрываются отверстия для впуска топливной смеси и выпуска отработанных газов. Худший газообмен в сравнении с четырехтактными моторами – это основной недостаток таких двигателей. В момент выпуска отработанных газов значительно теряется мощность.
На данный момент двухтактные двигатели применяются в мопедах, скутерах, лодках, бензиновых пилах и на другой маломощной технике.
Четырехтактный
Устройство двигателя внутреннего сгорания такого типа немного отличается от двухтактного. Принцип работы тоже немного другой. На одно вращение коленчатого вала приходится четыре такта.
Первым тактом является подача горючей смеси в цилиндр двигателя. Мотор под воздействием разряжения всасывает смесь в цилиндр. Поршень в цилиндре в этот момент направляется вниз. Впускной клапан открыт, и распыленный бензин вместе с воздухом попадет в камеру сгорания.
Далее идет такт сжатия. Впускной клапан закрывается, а поршень двигается по направлению вверх. При этом смесь, находящаяся в цилиндре, значительно сжимается. По причине давления смесь нагревается. Давлением повышается концентрация.
Далее следует третий рабочий такт. Когда поршень почти доходит до своего верхнего положения, срабатывает система зажигания. На свече проскакивает искра, и смесь воспламеняется. Из-за мгновенного расширения газов и распространения энергии взрыва, поршень под давлением движется вниз. Данный такт в работе четырехтактного мотора основной. Прочие три такта не влияют на создание работы и являются вспомогательными.
На четвертом такте начинается фаза выпуска. Когда поршень достигает низа камеры сгорания, открывается выпускной клапан и отработанные газы выходят сначала в выхлопную систему, а затем в атмосферу.
Вот такое устройство и принцип работы двигателя внутреннего сгорания четырехтактного, который установлен под капотами большинства автомобилей.
Вспомогательные системы
Мы рассмотрели устройство двигателя внутреннего сгорания. Но любой мотор не смог бы работать, если бы не был оснащен дополнительными системами. О них мы расскажем ниже.
Зажигание
Эта система – часть электрического оборудования. Она предназначена для формирования искр, которые поджигают топливную смесь.
Система включает в себя АКБ и генератор, замок зажигания, катушку, а также специальное устройство – распределитель зажигания.
Впускная система
Она необходима для того, чтобы в мотор без каких-либо перебоев поступал воздух. Кислород необходим для образования смеси. Сам по себе бензин гореть не будет. Нужно отметить, что в карбюраторах впуск представляет собой только фильтр и воздуховоды. Впускная система современных авто более сложная. Она включает в себя воздухозаборник в виде патрубков, фильтр, дроссельную заслонку, а также впускной коллектор.
Система питания
Из принципа устройства двигателя внутреннего сгорания мы знаем, что мотору нужно что-то сжигать. Это бензин или дизельное топливо. Система питания обеспечивает подачу горючего в процессе работы мотора.
В самом примитивном случае данная система состоит из бака, а также топливной магистрали, фильтра и насоса, которые обеспечивает подачу горючего в карбюратор. В инжекторных автомобилях система питания контролируется ЭБУ.
Смазочная система
В смазочную систему входит масляный насос, поддон, фильтр для очистки масла. В дизельных и мощных бензиновых силовых агрегатах также имеется радиатор для очистки смазки. Насос приводится в действие от коленчатого вала.
Заключение
Вот что представляет собой двигатель внутреннего сгорания. Устройство и принцип действия его мы рассмотрели, и теперь понятно, как работает автомобиль, бензопила или дизельный генератор.
fb.ru
Двигатель. Классификация, механизмы и системы ДВС
На современных тракторах и автомобилях в основном применяют поршневые двигатели внутреннего сгорания. Внутри этих двигателей сгорает горючая смесь (смесь топлива с воздухом в определенных соотношениях и количествах). Часть выделяющейся при этом теплоты преобразуется в механическую работу.
Классификация двигателей
Поршневые двигатели классифицируют по следующим признакам:
- по способу воспламенения горючей смеси — от сжатия (дизели) и от электрической искры
- по способу смесеобразования — с внешним (карбюраторные и газовые) и внутренним (дизели) смесеобразованием
- по способу осуществления рабочего цикла — четырех- и двухтактные;
- по виду применяемого топлива — работающие на жидком (бензин или дизельное топливо), газообразном (сжатый или сжиженный газ) топливе и многотопливные
- по числу цилиндров — одно- и многоцилиндровые (двух-, трех-, четырех-, шестицилиндровые и т.д.)
- по расположению цилиндров — однорядные, или линейные (цилиндры расположены в один ряд), и двухрядные, или V-образные (один ряд цилиндров размещен под углом к другому)
На тракторах и автомобилях большой грузоподъемности применяют четырехтактные многоцилиндровые дизели, на автомобилях легковых, малой и средней грузоподъемности — четырехтактные многоцилиндровые карбюраторные и дизельные двигатели, а также двигатели, работающие на сжатом и сжиженном газе.
Основные механизмы и системы двигателя
Поршневой двигатель внутреннего сгорания состоит из:
- корпусных деталей
- кривошипно-шатунного механизма
- газораспределительного механизма
- системы питания
- системы охлаждения
- смазочной системы
- системы зажигания и пуска
- регулятора частоты вращения
Устройство четырехтактного одноцилиндрового карбюраторного двигателя показано на рисунке:
Рисунок. Устройство одноцилиндрового четырехтактного карбюраторного двигателя:
1 — шестерни приводи распределительного вала; 2 — распределительный вал; 3 — толкатель; 4 — пружина; 5 — выпускная труба; 6 — впускная труба; 7 — карбюратор; 8 — выпускной клапан; 9 — провод к свече; 10 — искровая зажигательная свеча; 11 — впускной клапан; 12 — головка цилиндра; 13 — цилиндр: 14 — водяная рубашка; 15 — поршень; 16 — поршневой палец; 17 — шатун; 18 — маховик; 19 — коленчатый вал; 20 — резервуар для масла (поддон картера).
Кривошипно-шатунный механизм (КШМ) преобразует прямолинейное возвратно-поступательное движение поршня во вращательное движение коленчатого вала и наоборот.
Механизм газораспределения (ГРМ) предназначен для своевременного соединения надпоршневого объема с системой впуска свежего заряда и выпуска из цилиндра продуктов сгорания (отработавших газов) в определенные промежутки времени.
Система питания служит для приготовления горючей смеси и подвода ее к цилиндру (в карбюраторном и газовом двигателях) или наполнения цилиндра воздухом и подачи в него топлива под высоким давлением (в дизеле). Кроме того, эта система отводит наружу выхлопные газы.
Система охлаждения необходима для поддержания оптимального теплового режима двигателя. Вещество, отводящее от деталей двигателя избыток теплоты, — теплоноситель может быть жидкостью или воздухом.
Смазочная система предназначена для подвода смазочного материала (моторного масла) к поверхностям трения с целью их разделения, охлаждения, защиты от коррозии и вымывания продуктов изнашивания.
Система зажигания служит для своевременного зажигания рабочей смеси электрической искрой в цилиндрах карбюраторного и газового двигателей.
Система пуска — это комплекс взаимодействующих механизмов и систем, обеспечивающих устойчивое начало протекания рабочего цикла в цилиндрах двигателя.
Регулятор частоты вращения — это автоматически действующий механизм, предназначенный для изменения подачи топлива или горючей смеси в зависимости от нагрузки двигателя.
У дизеля в отличие от карбюраторного и газового двигателей нет системы зажигания и в системе питания вместо карбюратора или смесителя установлена топливная аппаратура (топливный насос высокого давления, топливопроводы высокого давления и форсунки).
ustroistvo-avtomobilya.ru
Назначение, принцип работы и общее устройство ДВС.
На автомобилях устанавливаются преимущественно тепловые двигатели внутреннего сгорания, т.е. такие двигатели, в которых топливо сжигается непосредственно внутри цилиндра, а выделяющаяся в процессе сгорания топлива тепловая энергия при помощи кривошипно-шатунного механизма преобразуется в механическую работу.
Для объяснения принципа работы двигателя возьмем цилиндр с поршнем, свободно перемещающимся внутри цилиндра, и соединим поршень при помощи шатуна с кривошипом вала (рис.10). В цилиндр введем заряд горючей смеси (пары бензина, смешанные с воздухом) и этот заряд воспламеним электрической искрой. Образующиеся при быстром сгорании газы, нагреваясь, расширяются, создают давление и перемещают поршень. Так как поршень шарнирно связан с шатуном, другой конец которого так же шарнирно закреплен на шейке кривошипа коленчатого вала, то при перемещении поршня вместе с шатуном повернется коленчатый вал и закрепленный на его конце маховик. Прямолинейное движение поршня посредством шатуна и кривошипа преобразовалось во вращательное движение коленчатого вала и маховика.
Рис.10. Схема кривошипно-шатунного механизма.
Для продолжения работы двигателя необходимо периодически возобновлять заряд горючей смеси, предварительно освободив цилиндр от отработавших газов. В верхней части цилиндра для этой цели сделаны впускное и выпускное отверстия (см. рис. 3), перекрываемые клапанами. Маховик изготовляется достаточно тяжелым, чтобы, получив разгон во время сгорания смеси, он смог перемещать поршень в цилиндре до нового воспламенения.
При движении поршня вверх клапан выпускного отверстия открывается, и отработавшие газы поршнем выталкиваются наружу. Коленчатый вал, продолжая вращаться, перемещает поршень вниз, и в освобождаемой части цилиндра создается разрежение, под действием которого цилиндр через впускное отверстие заполняется новым зарядом горючей смеси.
При нижнем положении поршня зажигать смесь нецелесообразно, так как давление газов не может быть использовано; поэтому поршень необходимо вернуть в первоначальное положение — вверх — и сжать рабочую смесь. Сжатую рабочую смесь зажигают, и под действием создавшегося давления газов поршень вновь переместится вниз.
Крайние положения поршня в цилиндре, в которых направление движения поршня меняется, называются мертвыми точками (рис.11, а), а путь, проходимый поршнем от одной мертвой точки до другой, — ходом поршня. За один ход поршня коленчатый вал повернется на пол-оборота — 180°.
Рис.11. Крайние положения поршня и объемы цилиндра.
Процесс, происходящий внутри цилиндра за один ход поршня, называется тактом.
Пространство внутри цилиндра над поршнем при положении его в верхней мертвой точке называется камерой сгорания.
Объем, освобождаемый поршнем при его движении от верхней мертвой точки (в.м.т.) к нижней мертвой точке (н.м.т.), называется рабочим объемом цилиндра.
В многоцилиндровых двигателях сумма рабочих объемов всех цилиндров, выраженная в литрах, называется литражом двигателя.
Полным объемом цилиндра называется рабочий объем и объем камеры сгорания, вместе взятые (рис.11, б).
Горючая смесь при впуске заполняет полный объем цилиндра. В конце сжатия объем, занятый смесью, уменьшится то объема камеры сгорания.
Рис.12. Схема работы четырехтактного одноцилиндрового двигателя
Отношение полного объема цилиндра к объему камеры сгорания называется степенью сжатия. В изучаемых двигателях, работающих на бензине, степень сжатия равна 6,2-6,6.
Чем больше степень сжатия, тем выше экономичность и мощность двигателя за счет уменьшения тепловых потерь и увеличения среднего давления на поршень. Снижение тепловых потерь в двигателе достигается уменьшением внутренней поверхности камеры сгорания, с которой соприкасаются газы. Среднее давление на поршень повышается за счет увеличения температуры и скорости сгорания рабочей смеси при ее большем сжатии.
Из описания принципа работы одноцилиндрового двигателя видно, что для выполнения одного такта рабочего хода, при котором происходит сгорание рабочей смеси и расширение газов, необходимы три подготовительных такта: впуск, сжатие и выпуск (рис.12).
1-й такт — впуск служит для наполнения цилиндра горючей смесью. Поршень перемещается от в.м.т. к н.м.т., впускной клапан открыт, выпускной — закрыт. Под действием разрежения горючая смесь заполняет полость цилиндра над поршнем.
2-й такт — сжатие служит для подготовки рабочей смеси к воспламенению. Поршень перемещается вверх от н.м.т. к в.м.т., оба клапана закрыты, объем, занимаемый рабочей смесью, уменьшается в 6-7 раз, смесь сжимается и давление достигает 10-12 кг/см2. При сжатии рабочая смесь нагревается до 300-400°.
3-й такт — рабочий ход служит для преобразования энергии сжигаемого топлива в полезную механическую работу. Сжатая рабочая смесь воспламеняется электрической искрой; выделенное при этом тепло нагревает газы до температуры 2200-2500°. Расширяющиеся газы создают давление в 35-40 кг/см2, под действием которого поршень перемещается вниз от в.м.т. к н.м.т. Оба клапана при этом закрыты.
Действующая на поршень сила давления газов через шатун передается на кривошип, создавая крутящий момент на коленчатом валу двигателя. Крутящий момент двигателя выражается в килограммометрах (кгм) и определяется умножение действующей на кривошип коленчатого вала силы, выраженной в килограммах, на радиус кривошипа, выраженный в метрах.
4-й такт — выпуск служит для освобождения цилиндра от отработавших газов. Поршень перемещается вверх от н.м.т. к в.м.т., выпускной клапан открыт, впускной — закрыт.
В дальнейшем процесс работы двигателя повторяется в указанном порядке.
Совокупность процессов, происходящих в цилиндре во время его работы в определенной последовательности (впуск, сжатие, рабочий ход, выпуск), называется рабочим циклом.
Рис.13. Схема одноцилиндрового двигателя.
Двигатель, у которого такты повторяются через каждые 4 хода поршня или 2 оборота коленчатого вала, называется четырехтактным.
При пуске двигателя подготовительные такты осуществляются проворачиванием коленчатого вала пусковой рукояткой или стартером. В работающем двигателе эти такты происходят за счет энергии маховика, накопленной при рабочем такте.
Для осуществления всех процессов рабочего цикла двигателя внутреннего сгорания служат: кривошипно-шатунный и газораспределительный механизм (рис.13) и системы — охлаждения, смазки, питания и зажигания.
1. Кривошипно-шатунный механизм служит для преобразования прямолинейного, возвратно-поступательного движения поршня во вращательное движение коленчатого вала.
2. Газораспределительный механизм: служит для своевременного впуска в цилиндры свежей горючей смеси и выпуска отработавших газов.
3. Система охлаждения предназначена для отвода тепла от деталей двигателя. Наиболее распространенным является жидкостное охлаждение.
4. Система смазки служит для подачи масла к трущимся деталям двигателя, частичного охлаждения их и очистки масла.
5. Система питания предназначена для подвода топлива, очистки и подачи воздуха к карбюратору, приготовления горючей смеси, подачи ее в цилиндры и отвода из них отработавших газов.
6. Система зажигания служит для образования электрической искры и воспламенения ею рабочей смеси в цилиндрах двигателя.
Одноцилиндровый двигатель, несмотря на наличие маховика, уменьшающего неравномерность работы двигателя, все же работает неравномерно, толчками, так как из четырех тактов только один является рабочим. Работа двигателя толчками вызывает его вибрацию и расшатывание деталей крепления, повышенный износ и возможную поломку деталей. Неравномерность вращения коленчатого вала значительно уменьшается при применении многоцилиндровых двигателей, представляющих собой как бы несколько одноцилиндровых двигателей, имеющих общий коленчатый вал. В этом случае равномерность работы многоцилиндрового двигателя достигается тем, что происходящие в разных цилиндрах рабочие такты не совпадают по времени, а чередуются в определенной последовательности.
(перечень неисправностей перечисляется для агрегата полученного по заданию.)
Читайте также:
Рекомендуемые страницы:
Поиск по сайту
poisk-ru.ru
Классификация двигателей внутреннего сгорания (ДВС)
Двигатели внутреннего сгорания классифицируют по ряду признаков:
- по способу осуществления рабочего цикла: двух- и четырехтактные, с наддувом и без него
- по способу воспламенения топлива: с принудительным зажиганием (искровым или факельным) топливовоздушной смеси, образованной в карбюраторе (карбюраторные двигатели), с воспламенением от сжатия (дизели)
- по способу смесеобразования: внешним и внутренним смесеобразованием
- по способу охлаждения: с жидкостным и воздушным охлаждением
- по расположению цилиндров: однорядные с вертикальным, горизонтальным и наклонным расположением цилиндров, двухрядные (V-образные с различным углом развала цилиндровых блоков), многорядные (с числом цилиндровых блоков три и более)
- по назначению: стационарные, транспортные (судовые тепловозные, тракторные, автомобильные, авиационные)
На автомобильном транспорте широко применяются карбюраторные двигатели и дизели, работающие по четырехтактному циклу. Реже используются двухтактные двигатели. Наибольшее число моделей имеют однорядное расположение цилиндров с числом цилиндров два — шесть. На большинстве грузовых автомобилей и автобусов установлены V-образные двигатели.
Условия эксплуатации транспортных двигателей характеризуются частой сменой нагрузочных и скоростных режимов работы, значительным диапазоном изменения температуры и давления атмосферного воздуха, его загрязнением.
Технико-экономическими требованиями предусматривается значительное повышение эффективности ДВС с одновременным снижением их металлоемкости и улучшением технологичности конструкции.
ustroistvo-avtomobilya.ru
Основные механизмы и системы двигателя — Общее устройство и работа двигателя — Двигатель — Автомобиль
Двигатель внутреннего сгорания состоит из двух основных механизмов — кривошипно-шатунного и газораспределительного — и систем охлаждения, смазки, питания. У карбюраторных двигателей имеется и система зажигания.
Кривошипно-шатунный механизм воспринимает силу давления газов и преобразует прямолинейное, возвратно-поступательное движение поршня во вращательное движение коленчатого вала.
Газораспределительный механизм предназначен для своевременного впуска в цилиндр свежей горючей смеси (карбюраторные двигатели) или воздуха (дизели) и выпуска из него отработавших газов.
Система охлаждения отводит теплоту от нагревающихся деталей двигателя. Она может быть жидкостной (у большинства отечественных двигателей) или воздушной (МеМЗ-968).
Система смазки служит для уменьшения трения между деталями двигателя, охлаждения их и отвода продуктов износа.
Система питания обеспечивает приготовление горючей смеси и подачу ее в цилиндры двигателя (карбюраторные и газовые двигатели) или же раздельную подачу в цилиндры топлива и воздуха (дизели), а также удаление из цилиндров продуктов сгорания.
Система зажигания служит для воспламенения рабочей смеси в цилиндрах двигателя при помощи электрической искры.
Основные данные двигателей, установленных на автомобилях ГАЭ-53А, ГАЗ-51А, ЗИЛ-130, «Москвич-412» и ГАЗ-24 «Волга», приведены в таблице:
Контрольные вопросы
- Что называется тактом и из каких тактов состоит рабочий цикл четырехтактного двигателя?
- Что называется степенью сжатия и как она влияет на мощность и экономичность работы двигателя?
- Назовите величину степени сжатия и литраж изучаемых двигателей.
- Какова степень сжатия дизелей и на каком топливе они работают?
- Как происходит рабочий цикл четырехтактного дизеля?
«Автомобиль», под. ред. И.П.Плеханова
www.carshistory.ru
1.2 Механизмы, системы и их назначение
Двигатель внутреннего сгорания состоит из корпусных деталей, кривошипно-шатунного и газораспределительного механизмов, систем питания, охлаждения, смазки и пуска (рис.1а). Дополнительно для облегчения запуска у дизелей предусмотрен декомпрессионный механизм, а карбюраторных двигателей имеется система зажигания для принудительного зажигания смеси при помощи электрической искры.
Кривошипно-шатунный механизм преобразует прямолинейное возвратно-поступательное движение поршня во вращательное движение коленчатого вала, и наоборот. Он состоит из цилиндра 6, поршня 7 с кольцами, поршневого пальца 8, шатуна 9, коленчатого вала 12 и маховика 10. Сверху цилиндр закрыт головкой 1.
Механизм газораспределения предназначен для своевременного соединения надпоршневого объема с системой впуска свежего заряда и выпуска из цилиндра продуктов сгорания (отработавших газов) в определенные промежутки времени.
Он состоит из распределительного вала 14, зубчатых колес 13 привода распределительного вала, толкателей и штанг 16, коромысел 2, клапанов 4 и 5, пружин.
Система питания служит для приготовления горючей смеси и подвода ее е цилиндру (в карбюраторном и газовом двигателе) или наполнения цилиндра воздухом и подачи в него топлива под высоким давлением (в дизеле).
Система охлаждения необходима для поддержания оптимального теплового режима двигателя. Вещество, отводящее от деталей двигателя избыток теплоты, — теплоноситель, может быть жидкостью или воздухом.
Смазочная система предназначена для подвода смазочного материала (моторного масла) к поверхностям трения с целью их разделения, охлаждения, защиты от коррозии и вымывания продуктов изнашивания.
Система пуска – это комплекс взаимодействующих механизмов и систем, обеспечивающих устойчивое начало протекания рабочего цикла в цилиндрах двигателя.
1.3 Рабочий цикл двигателя
Рассмотрим рабочий цикл четырехтактного дизеля и, что происходит в одном из цилиндров работающего дизеля (рис. 2).
Рисунок 2 – Схема работы четырехтактного одноцилиндрового двигателя.
Такт впуска (рис. 2а). Поршень движется от в.м.т. к н.м.т., впускной клапан открыт, в цилиндр поступает воздух. Давление в конце такта 0,08…0,09 МПа, температура воздуха 30…500С.
Такт сжатия (рис. 2б). Оба клапана закрыты. Поршень движется от н.м.т. к в.м.т., сжимая воздух.. Вследствие большой степени сжатия (порядка 14…18) давление воздуха в конце этого такта достигает 3,5…4,0 МПа, а температура — (550…7500С) превышая температуру самовоспламенения топлива. При положении поршня, близком к в.м.т., в цилиндр через форсунку начинается впрыскивание жидкого топлива, подаваемого насосом высокого давления.
Топливо, впрыснутое в цилиндр, смешивается с нагретым воздухом и остаточными газами, образуя рабочую смесь. Большая часть топлива воспламеняется и сгорает. Давление газов достигает 5,5…9,0 МПа, а температура 20000С.
Такт расширения. Оба клапана закрыты. Поршень под давлением расширяющихся газов движется от в.м.т. к н.м.т. (рис. 2в). В начале такта расширения сгорает остальная часть топлива. К концу такта расширения давление газов уменьшается до 0,2…0,3 МПа, температура до 3000С.
Такт выпуска. Выпускной клапан открывается. Поршень движется от н.м.т. к в.м.т. (рис. 2в) и через открытый выпускной клапан выталкивает отработавшие газы из цилиндра в атмосферу. К концу такта давление газов 0,11…0,12 МПа, температура 65…900С.
Далее рабочий цикл повторяется.
Теперь, рассмотрим рабочий цикл двухтактного двигателя. Схема устройства и работы двухтактного карбюраторного двигателя с кривошипно-камерной продувкой изображены на рисунке 3.
1 – свеча зажигания; 2 – поршень; 3 – выпускное окно; 4 – карбюра-
тор; 5 – впускное окно; 6 – кривошипная камера; 7 — продувочный
канал; 8 – цилиндр; 9 – выхлопная труба; 10 – картер.
Рисунок 3 – Схема работы двухтактного двигателя.
В стенке цилиндра 8 двигателей этого типа выполнены три окна: впускное 5, продувочное 7 и выпускное 3. Картер (кривошипная камера 6) двигателя непосредственно с атмосферой не сообщен. Впускное окно 5 соединено с карбюратором 4, продувочное окно – через канал 7 с кривошипной камерой 6 двигателя.
Рабочий цикл двухтактного карбюраторного двигателя происходит следующим образом. Поршень 2 движется от н.м.т. к в.м.т. (рис. 3а), перекрывая в начале хода продувочное окно 7, а затем выпускное 3. После этого в цилиндре 8 начинается сжатие находящейся в нем рабочей смеси. В то же время в кривошипной камере 6 создается разрежение, и как только нижняя кромка поршня откроет впускное окно 5, через него из карбюратора 4 в кривошипную камеру будет засасываться горючая смесь.
При положении поршня 2, близком к в.м.т., сжатая рабочая смесь воспламеняется электрической искрой от свечи 1. При сгорании смеси давление газов резко возрастает. Под давлением газов поршень перемещается к н.м.т. (рис. 3б). Как только он закроет впускное окно 5, в кривошипной камере 6 начнется сжатие ранее поступившей сюда горючей смеси.
В конце хода поршень открывает выпускное 3 (рис. 3в), а затем и продувочное 7 окна. Через открытое выпускное окно отработавшие газы с большой скоростью выходят в атмосферу. Давление газов в цилиндре быстро понижается. К моменту открытия продувочного окна давление сжатой горючей смеси в кривошипной камере становится выше, чем давление отработавших газов в цилиндре. Поэтому горючая смесь из кривошипной камеры по каналу 7 поступает в цилиндр и, заполняя его, выталкивает остатки отработавших газов через выпускное окно наружу.
В дальнейшем все процессы повторяются в такой же последовательности.
studfile.net