Работа многоцилиндрового двигателя: Работа многоцилиндрового двигателя | Двигатель автомобиля

Содержание

Работа четырехтактных многоцилиндровых двигателей — Энциклопедия по машиностроению XXL

РАБОТА ЧЕТЫРЕХТАКТНЫХ МНОГОЦИЛИНДРОВЫХ ДВИГАТЕЛЕЙ  [c.32]

Важным из этих предположений является идентичность изменения давления во времени во всех цилиндрах. Любая неправильность в циклах цилиндров нарушает это предположение. Эти неправильности могут возникнуть от изменений воспламенений, распределения топлива по цилиндрам, неправильной работы клапанов и т. д. Они обычно возбуждают основную гармонику цикла давления газов четырехтактных двигателей, которая становится очень интенсивной, и возникает повышенная низкочастотная вибрация двигателя. Эти неправильности также могут содействовать высокочастотным вибрациям двигателя. Как правило, фазовые соотношения сил инерции в многоцилиндровых двигателях приводят к тому, что внешняя неуравновешенная сила или полностью отсутствует или мала для двигателя в целом. В двигателях с двумя и более цилиндрами при равномерном расположении колен по окружности кривошипов центробежные силы инерции от отдельных цилиндров для двигателя в целом взаимно уравновешиваются. Однако эти силы, действующие в плоскостях расположения цилиндров, создают моменты, которые необязательно уравновешиваются между собой для двигателя в целом. Вибрацию двигателей обычно подразделяют на низкочастотную и звуковую. Под низкочастотной вибрацией будем понимать механические колебания, длина волн которых значительно превышает размеры двигателя, и поэтому двигатель можно заменить жесткой  

[c.187]


Рабочий цикл четырех-и восьмицилиндровых четырехтактных двигателей. Для плавной работы многоцилиндрового двигателя и уменьшения неравномерных нагрузок на коленчатый вал рабочие процессы в различных цилиндрах  [c.38]

Для равномерной работы многоцилиндрового двигателя необходимо, чтобы рабочие ходы в отдельных цилиндрах чередовались через равные углы поворота коленчатого вала. Так, при четырехтактном рабочем процессе в четырехцилиндровом двигателе рабочие ходы должны чередоваться через 720°/4 = 180° в шестицилиндровом двигателе — через 720°/6 = 120°, а в восьмицилиндровом двигателе — через 720°/8 = 90°.  

[c.37]

При периодически изменяющейся скорости кинетическая энергия изменяется также периодически. В этом случае сумма работ всех действующих в машине сил равна нулю лишь в конце каждого постоянного периода времени, который может измеряться временем одного или двух оборотов начального звена, а иногда и больше. В поршневом компрессоре, например, или в насосе с кривошипным приводом период движения равен одному обороту кривошипа. То же можно сказать и о двухтактном одноцилиндровом двигателе внутреннего сгорания, но в четырехтактном одноцилиндровом двигателе период установившегося движения равен уже двум оборотам кривошипа. Б многоцилиндровом двигателе период движения меньше одного оборота.  [c.242]

Рабочий цикл восьмицилиндровых четырехтактных двигателей. Для плавной работы многоцилиндрового двигателя и уменьшения неравномерных нагрузок на коленчатый вал рабочие процессы в различных цилиндрах должны происходить в определенной последовательности. Последовательность чередования одноименных тактов в различных цилиндрах двигателя называется порядком работы.  

[c.33]

Порядок работы многоцилиндрового двигателя зависит от угла между кривошипами. Этот угол, в свою очередь, зависит от тактности двигателя и числа цилиндров. Так, для получения равномерной работы цилиндров угол между кривошипами в четырехтактном двигателе должен быть следующим  [c.64]

В нем изложены устройство, принципы работы и рабочие циклы многоцилиндровых четырехтактных и двухтактных двигателей с воспламенением от сжатия, а также карбюраторных двигателей. Приведены их основные энергетические и экономические показатели. Описаны системы питания, смазки и охлаждения двигателей.  [c.2]


В четырехтактном двигателе все четыре такта, из которых состоит цикл его работы — впуск, сжатие, расширение и выпуск, совершаются в цилиндре над днищем поршня. Отдельные такты, хотя в некоторых случаях и перекрывают во времени один другой (при наличии так называемого перекрытия клапанов), однако в основном совершаются в разное время. Преимущество четырехтактного цикла заключается в том, что он обеспечивает устойчивую работу двигателя в более широком диапазоне скоростных режимов недостатком является то обстоятельство, что полный рабочий цикл совершается в нем за два оборота коленчатого вала, причем топливо сгорает лишь во время второго оборота, а в течение всего первого оборота совершаются вспомогательные такты впуска и сжатия. Вследствие этого теоретически мощность четырехтактного двигателя должна (при прочих равных условиях) быть вдвое меньшей, чем двухтактного кроме того, четырехтактный двигатель работает с большей степенью неравномерности для более равномерной работы автомобильный двигатель выполняют многоцилиндровым, причем кривошипы вала должны быть соответствующим образом расположены один относительно другого. Наличие двух тактов, требующих для своего осуществления затраты энергии (выпуск и впуск), а также привод механизма газораспределения вызывают некоторое снижение механического к. п. д.  
[c.413]

Порядок работы многоцилиидрового двигателя. Из характеристики тактов рабочего цикла четырехтактного двигателя следует, что для равномерного вращения коленчатого вала и плавной работы многоцилиндрового двигателя нужно установить такую последовательность чередования тактов, чтобы рабочие ходы в отдельных цилиндрах чередовались через равные углы поворота коленчатого вала. Такая последовательность чередова-  [c.22]

В связи с тем что только один такт за два оборота коленчатого вала (в четырехтактных двигателях) является рабочим, а три остальные — вспомогательными, требующими для их осуществления затраты энергии, коленчатый вал при работе одноцилиндрового четырехтактного двигателя вращается неравномерно. Некоторое улучшение равномерности вращения вала достигается установкой маховика. Более лучшей равномерностью вращения коленчатого вала обладают многоцилиндровые двигатели. Естественно, что в таких двигателях одноименные такты единичных циклов, осуществляющихся в каждом цилиндре, должны быть сдвинуты по углу поворота коленчатого вала так, чтобы в разных цилиндрах они следсшали друг за другом через равные угловые интервалы.  

[c.26]

II. Г. д. м а л о й и средней мощности выполнялись как одноцилиндровые, так и многоцилиндровые четырехтактные простого действия горизонтальными. В последнее время начинают преобладать вертикальные. Па фиг. 12 представлен образец горизонтального двигателя фирмы Korting. Основные элементы этой тнд.ательно равработанной конструкции, равно как и двигатели фирмы Deutz, послужили образцом для развития горизонтальных Г. д. малой и средней мощности в Европе и отчасти в США для работы на генераторном, а также светильном газах.  

[c.511]


Работа многоцилиндрового двигателя

Из описания работы четырехтактного двигателя выте­кает, что коленчатый вал в двигателе с одним цилиндром равномерно вращаться не может, так как только при одном такте из четырех — рабочем ходе — он вращается С ускорением, а при остальных трех — с замедлением. Чтобы выровнять работу двигателя, на конце коленчато­го вала установлен маховик. Кроме того, для получения большей мощности двигателя повышают частоту враще­ния коленчатого вала, отчего он вращается равномер­нее. Увеличение количества цилиндров в двигателе также способствует более равномерному вращению коленчатого мала и повышению мощности двигателя.

Многоцилиндровые двигатели изготавливают так, чтобыпри движении одних поршней вниз другие в это время перемещались вверх.

Например, у четырехцилиндрового двигателя колена валарасположены так, что когда поршни в первом и четвертом цилиндрах движутся вниз, во втором и треть­ем — вверх, т. е. поршни перемещаются попарно.

Если учесть, что при движении в одну сторону в каж­дом из цилиндров происходит свой, отличный от другогорабочий процесс, то нетрудно увидеть, что при этом будет обеспечено последовательное воздействие сил рас­ширяющихся газов на шейки коленчатого вала.

Рассмотрим этот процесс при помощи таблицы.

Полуобороты коленчатого вала Цилиндры
I II III IV
Первый Второй Третий Четвертый Рабочий ход Выпуск Впуск Сжатие Выпуск Впуск Сжатие Рабочий ход Сжатие Рабочий ход Выпуск Впуск Впуск Сжатие Рабочий ход Выпуск

Из таблицы видно, что при первом полуобороте коленчатого вала рабочий ход происходит в первом цилиндре двигателя, при втором полуобороте — в третьем, при третьем — в четвертом и при четвертом — во втором.

Написав номера цилиндров в порядке протекания одинаковых процессов (например, Рабочий ход), получим так называемый порядок работы цилиндров двигателя 1-3-4-2.

Что называется порядком работы цилиндров двигателя?

21 Порядок работы многоцилиндрового двигателя

Порядок работы многоцилиндрового двигателя

зависит от типа двигателя (расположения цилинд­ров) и от количества цилиндров в нем.

Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени). Для определения этого угла продолжительность цикла, выраженную в градусах поворота коленчатого вала, делят на число цилиндров. Например, в четырехцилиндровом четырехтактном двигателе такт расширения (рабочий ход) происходит через 180° (720 : 4) по отношению к предыдущему, т. е. через половину оборота коленчатого вала. Другие такты этого двигателя чередуются также через 180°. Поэтому шатунные шейки коленчатого вала у четырех цилиндровых двигателей расположены под углом 180° одна к другой, т. е. лежат в одной плоскости. Шатунные шейки первого и четвертого цилиндров направлены в одну сторону, а шатунные шейки второго и третьего цилиндров — в противоположную сторону. Такая форма коленчатого вала обеспечивает равномерное чередование рабочих ходов и хорошую уравновешенность двигателя, так как все поршни одновременно приходят в крайнее положение (два поршня вниз и два вверх).

Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы четырехцилиндровых отечественных тракторных двигателей 1—3—4—2. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.

При выборе порядка работы двигателя конструкторы стремятся равномернее распределить нагрузку на коленчатый вал.

Одноименные такты у четырехтактного шестицилиндрового двигателя совершаются через поворот коленчатого вала на 120°. Поэтому шатунные шейки расположены попарно в трех плоскостях под углом 120°. У четырехтактного восьмицилиндрового двигателя одноименные такты происходят через 90° поворота коленчатого вала и его шатунные шейки расположены крестообразно под углом 90° одна к другой.

В восьмицилиндровом четырехтактном двигателе за два оборота коленчатого вала совершается восемь рабочих ходов, что способствует его равномерному вращению.

Порядок работы восьмицилиндровых четырехтактных двигателей 1— 5—4—2—6—3—7—8, а шестицилиндровых 1—4—2—5—3—6.

Зная порядок работы цилиндров двигателя, можно правильно распределить провода по свечам зажигания, присоединить топливопроводы к форсункам и отрегулировать клапаны.

22 Силы и моменты, действующие в кмш одноцилиндрового двигателя

При такте «сгорание—расширение» сила Р1, приложенная к поршневому пальцу, слагается из двух сил:

силы P давления газов на поршень

силы инерции Pи (сила инерции переменна по величине и направлению)

Суммарную силу P1 разложить на можно две силы: силу S, направленную вдоль оси шатуна, и силу N, прижимающую поршень к стенкам цилиндра.

Силу S перенесем в центр шатунной шейки, а к центру коленчатого вала приложим две равные силе S и параллельные ей силы S1 и S2. Тогда совместное действие сил S1 и S создаст (на плече R) крутящий момент, приводящий во вращение коленчатый вал, а сила S2 нагрузит коренные подшипники и через них будет передаваться на картер двигателя.

Разложим силу S2 на две перпендикулярно направленные силы N1 и Р2. Сила N1 численно равна силе N, но направлена в противоположную сторону; совместное действие сил N и N1 образует момент Nl, который стремится опрокинуть двигатель в сторону, обратную вращению коленчатого вала. Сила P2 численно равная силе Р1, действует вниз, а сила Р действует на головку цилиндра вверх, т.е. в противоположную сторону. Разность между силами Р и P1 представляет собой силу инерции поступательно движущихся масс Ри. Наибольшей величины эта сила достигает в момент изменения направления движения поршня.

Вращающиеся массы шатунной шейки, щек кривошипа и нижней части шатуна создают центробежную силу Рц, направленную по радиусу кривошипа в от сторону центра вращения.

Таким образом, в кривошипно-шатунном механизме одноцилиндрового двигателя, кроме крутящего момента, возникающего на коленчатом валу, действует ряд неуравновешенных моментов и сил, как то:

реактивный, или опрокидывающий, момент Nl, воспринимаемый опорами двигателя через картер

сила инерции поступательно движущихся масс Ри, направленная по оси цилиндра

центробежная сила вращающихся масс Рц, направленная по кривошипу вала

Боковая сила N достигает наибольшей величины при расширении газов, когда поршень прижимается к левой стенке цилиндра, чем и объясняется ее обычно больший износ.

Как нумеруются цилиндры, виды их расположения в двигателе

С момента изобретения первого ДВС перед инженерами стояла очень ответственная цель –снять максимум мощности с конкретного объема силового агрегата. Стараясь решить эту задачу, конструкторы проводили эксперименты с числом и компоновкой камер сгорания.

В разное время в серийных моделях авто использовались, как маленькие одноцилиндровые ДВС, так и огромные агрегаты с 16-ю цилиндрами. На разных моделях камеры сгорания расположены и нумеруются по-разному и начинающему автолюбителю эта информация будет очень полезна.

Как располагаются цилиндры в двигателях

Существуют разные модели двигателей – это и старинные одно- и двухцилиндровые ДВС, традиционные рядные четырех- и шестицилиндровые модели.

Более крупные агрегаты имели V-образные блоки – такие агрегаты могли иметь восемь и более камер сгорания.

Рядное расположение

При рядном расположении в блоке цилиндры располагаются в один ряд. В такой конфигурации существуют двух, трех, четырех, пяти и даже шестицилиндровые моторы.

Двух- и трехцилиндровые ДВС сейчас устанавливаются на современных авто не так часто, хотя популярность их медленно набирает обороты.

Этому способствовали умные системы приготовления топливной смеси и турбины – например, турбированная версия двухцилиндрового ДВС хетчбека Fiat 500. Трехцилиндровый рядный двигатель можно встретить на «Деу Матиз» и многих других.

Что касается рядной «четверки», то такие блоки устанавливаются в большинстве двигателей для легковых авто – объемы таких движков начинаются от 1 л., а самый объемный рядный ДВС – 2,4 л. и более.

Пятицилиндровые двигатели с рядным расположением на автомобилях, производимых серийно, стали появляться в 70-х годах. В числе первых можно выделить дизельные модели Mercedes – они устанавливались в 1974 году на модели в кузове W123.

А уже в 1976 году построили пятицилиндровый мотор от Audi. Начиная с конца 80-х годов рядная пятерка уже никого не удивляла и успешно устанавливалась на самые разные автомобили Fiat, Volvo и других автобрендов.

Рядная «шестерка», которая в 80-х и 90-х была очень популярна в Европе, нынче превратилась в вымирающий вид.

Про восьмицилиндровые модели и говорить не стоит – с такой компоновкой давно попрощались еще в 30-е годы.

Почему? С увеличением объемов блоки также увеличивались. Это создавало конструкторам и инженерам массу проблем при компоновке.

К примеру, втиснуть рядную восьмерку в переднеприводный автомобиль получилось только в двух случаях – это Austin Maxi 2200, который производился в 60-х, и Volvo S80.

В два ряда

Как сделать большой рядный ДВС короче и компактнее?

Двигатель можно “разрезать” пополам, установить две части рядом и заставить поршни вращать один коленчатый вал. Такие моторы имеют форму буквы “V».

Здесь камеры сгорания располагаются в два ряда под углом друг к другу. Такая конфигурация очень популярна у производителей и уступает только рядной «четверке».

Самые популярные модели – это те, где угол развала блока составляет 60 и 90 градусов. В такой конфигурации можно встретить шести- , восьми- , двенадцатицилиндровые моторы.

В первые такой силовой агрегат появился на Lancia Aurelia, это был 1950 год. За счет своих компактных размеров автомобиль быстро стал популярным среди автомобилистов.

Восемь камер сгорания в этой конфигурации располагаются по четыре в два ряда. Это самая компактная компоновка для крупнообъемных ДВС. Самый большой объем за всю историю автомобилестроения в такой V-компоновке составлял 13 литров. В случае с двенадцатью цилиндрами разница только в их количестве.

Со смещением

Конструкторы и инженеры искали компромиссное решение, чтобы создать мощный и в тоже время компактный силовой агрегат для легковых авто в среднем классе. Двигатель со смещением – это шестицилиндровый V-образный блок.

Цилиндры расположены друг напротив друга в шахматном порядке. Шесть цилиндров под углом в 15 градусов образуют достаточно узкий и короткий агрегат. Среди примеров можно привести VR6, которые устанавливались на «Golf» от Фольксваген.

Оппозитный тип

Как известно, на V-образном блоке угол развала двух частей составляет – 90 или 60 градусов. Если угол развала между двумя частями будет 180 градусов, то это оппозитный двигатель.

Здесь цилиндры располагаются друг напротив друга, горизонтально. Коленчатый вал в таких моделях общий, установлен в центре, а поршни двигаются от него.

Одним из первых таких конструкций стала отечественная разработка, которая использовалась при строительстве дирижабля «Россия». Кстати, несмотря на передовую конструкцию ДВС, дирижабль в небо не взлетел. Также можно вспомнить французские агрегаты от Gorbon-Brille.

А тот, кто разработал и запустил традиционный привычный каждому оппозитный мотор, это Фердинанд Порше. Первая партия автомобилей «Жук» комплектовалась именно этими ДВС в 1937 году.

Аналогичную конструкцию применили и на «Ford» А, С, F. В 1920 году баварский автомобильный концерт предложил свою конструкцию оппозитного мотора.

В данных силовых агрегатах соединены для ряда камер сгорания с VR-расположением. В каждом ряду цилиндры размещаются под углом 15 градусов.

Оба ряда находятся под углом в 72 градуса. В случае с восьмицилиндровым мотором, блок представляет собой два V-образных блока, которые находятся под углом в 72 градуса.

Нумерация цилиндров в разных типах ДВС

Что касается стандартов нумерации камер сгорания, то их нет. На то, как они пронумерованы в ДВС, влияют такие факторы:

  • Тип привода;
  • Тип ДВС, компоновка блока;
  • Поперечное либо продольное расположение агрегата под капотом;
  • Сторона вращения.

На стандартных переднеприводных авто с поперечно установленным двигателем нумерация начинается со стороны ГРМ. Так, возле ремня ГРМ находится первый цилиндр и дальше все остальные. Последний находится около КПП.

В многоцилиндровых V-образных двигателях первый цилиндр расположен в ряду с водительской стороны.

В двигателях американского производства камеры сгорания и их нумерация может отличаться и не поддаваться логике.

Так, для рядных четверок и шестерок первым может быть цилиндр около радиатора, в то время, как на всех прочих моделях нумерация начинается в сторону салона. Если нумерация обратная, то первым считается цилиндр ближайший к салону.

Французы очень оригинальны и применяют два способа нумерации камер сгорания ДВС.

  • На рядных четверках нумерация начинается от маховика.
  • Если это V-образная шестерка, тогда ближний к радиатору ряд – это первые три цилиндра, а ряд ближе к салону – последние три.

Как определить порядок работы цилиндров

Разные версии однотипных ДВС могут работать по разным схемам. К примеру, ЗМЗ-402 мотор работает следующим образом – 1-2-4-3. А вот ЗМЗ-406 имеет другой порядок – 1-3-4-2.

Шестицилиндровые моторы с рядным расположением работают по такой схеме – 1-5-3-6-2-4.

Порядок работы восьмицилиндрового двигателя будет следующим – 1-5-4-8-6-3-7-2.

Тема обширная, поэтому обязательно поделись своим опытом или мнением в комментария ниже.

Порядок работы 4, 6, 8 цилиндрового двигателя — просто о сложном

По большому счёту, нам, обычным автолюбителям, совершенно не обязательно знать порядок работы цилиндров двигателя. Ну, работает и работает. Да, с этим трудно не согласится. Не нужно до того момента, пока вы не пожелаете своими руками выставить зажигание или не займетесь регулировкой зазоров клапанов.

И совершенно не будет лишним знание о порядке работы цилиндров двигателя автомобиля, когда вам нужно будет подсоединить высоковольтные провода к свечам, либо трубопроводы высокого давления у дизеля. А если вы затеете ремонт головки блока цилиндров?

3D работа двигателя внутреннего сгорания, видео:

Ну согласитесь, смешно будет ехать на автосервис для того, чтобы правильно установить ВВ провода. Да и ехать-то как? Если двигатель троит.

Что значит порядок работы цилиндров двигателя?

Последовательность, с которой чередуются одноименные такты в разных цилиндрах и называется порядком работы цилиндров.

От чего зависит порядок работы цилиндров? Есть несколько факторов, а именно:

  • расположение цилиндров двигателя: однорядное или V-образное;
  • количество цилиндров;
  • конструкция распредвала;
  • тип и конструкция коленвала.

Рабочий цикл двигателя

Рабочий цикл двигателя состоит из газораспределительных фаз. Последовательность этих фаз должна равномерно распределяться по силе воздействия на коленчатый вал. Именно в этом случае происходит равномерная работа двигателя.

Обязательным условием является то, что цилиндры, работающие последовательно, не должны находиться рядом. Для этого и разрабатываются производителями двигателей, схемы порядка работы цилиндров двигателя. Но, во всех схемах порядок работы цилиндров начинает свой отсчет с главного цилиндра №1.

Порядок работы цилиндров у разных двигателей

У двигателей одного типа, но разных модификаций, работа цилиндров может отличаться. Например, двигатель ЗМЗ. Порядок работы цилиндров двигателя 402 – 1-2-4-3, в то время как порядок работы цилиндров двигателя 406 – 1-3-4-2.

Если углубится в теорию работы двигателя, но так, чтобы не запутаться, то мы увидим следующее. Полный рабочий цикл 4-х тактного двигателя проходит за два оборота коленвала. В градусах это равно 720. У 2-х тактного двигателя 360 0 .

Колена вала смещают на определенный угол для того, чтобы вал находился под постоянным усилием поршней. Этот угол напрямую зависит от количества цилиндров и тактности двигателя.

  • Порядок работы 4 цилиндрового двигателя, однорядного, чередование тактов происходит через 180 0 , ну а порядок работы цилиндров может быть 1-3-4-2 (ВАЗ) или 1-2-4-3 (ГАЗ).
  • Порядок работы 6 цилиндрового рядного двигателя 1-5-3-6-2-4 (интервал между воспламенением составляет 120 0 ).
  • Порядок работы 8 цилиндрового V-образного двигателя 1-5-4-8-6-3-7-2 (интервал между воспламенениями 90 0 ).
  • Существует, например, порядок работы 12 цилиндрового двигателя W-образного: 1-3-5-2-4-6 – это левые головки блока цилиндров, а правые: 7-9-11-8-10-12

Для того, чтобы вам был понятен весь этот порядок цифр, рассмотрим пример. У 8 цилиндрового двигателя ЗиЛ порядок работы цилиндров следующий: 1-5-4-2-6-3-7-8. Кривошипы расположены под углом 90 0 .

То есть если в 1 цилиндре происходит рабочий цикл, точерез 90 градусов поворота коленвала, рабочий цикл происходит в 5 цилиндре, и последовательно 4-2-6-3-7-8. В нашем случае один поворот коленвала равен 4 рабочим ходам. Естественным образом напрашивается вывод, что 8 цилиндровый двигатель работает плавне и равномернее, чем 6 цилиндровый.

Скорее всего, глубокое знание порядка работы цилиндров двигателя вашего автомобиля, вам не понадобится. Но общее представление об этом иметь необходимо. А если вы задумаете произвести ремонт, например головки блока цилиндров, то эти знания лишними не будут.

Успехов вам в изучении порядка работы цилиндров двигателя вашего автомобиля.

Порядок работы 6-цилиндрового двигателя

Многие автолюбители особо не задумываются над тем, какой порядок работы шестицилиндрового двигателя у их машины, полностью удовлетворяясь тем фактом, что он вообще функционирует. Однако бывают моменты, когда мотор авто начинает давать сбои, что может выражаться в совершенно разных симптомах. А для адекватной оценки ситуации любому водителю просто необходимо знать азы устройства своего автомобиля. В частности, абсолютно не лишним будет ознакомиться с порядком работы цилиндров двигателя внутреннего сгорания (ДВС) различной конструкции.

Что значит порядок работы цилиндров двигателя?

Чтобы понять, что такое порядок работы цилиндров, следует немного углубиться в технические нюансы конструкции ДВС. Работа поршневой системы происходит за определённое количество тактов – 2 или 4. Тактом называют один из этапов полного цикла подачи топливовоздушной смеси в цилиндр, её сгорания и удаления выхлопных газов.

В результате, под действием хода поршня, на который оказывают давление расширяющиеся газы воспламенившегося топлива, проворачивается коленчатый вал. В двухтактных моторах полный рабочий цикл происходит за один оборот коленвала, а в четырёхтактных – за два. При этом в разных цилиндрах такты не совпадают, то есть, цилиндры работают вразнобой.

Это необходимо для того, чтобы крутящее усилие на коленвал передавалось более равномерно, а не рывками.

Если бы все цилиндры работали в одинаковом такте, то коленвал, а за ним и кардан, и колёса, вращались бы не плавно, а частыми быстрыми рывками. Это приводило бы к ускоренному износу узлов и механизмов, а также не самым лучшим образом отражалось бы на комфорте передвижения.

Последовательность чередования одинаковых тактов в различных цилиндрах ДВС и называют порядком их работы. Зависит он от ряда условий:

  • Тип расположения цилиндров в двигателе – в один ряд, или в два ряда. Второй вариант ДВС в поперечном разрезе напоминает латинскую букву V, поэтому его называют V-образным.
  • Конструктивные особенности распредвала, отвечающего за ход впускных и выпускных клапанов.
  • Тип коленчатого вала.
  • Число цилиндров. Существуют самые разные варианты моторов, имеющие их в количестве от 1 до 16 штук.

В зависимости от сочетания перечисленных факторов, разные цилиндры по-разному включаются в работу, беспрерывно вращая коленвал.

Справка. В настоящее время на автомобили устанавливаются ДВС с числом цилиндров от 2 до 16. В недалёком прошлом можно было встретить и одноцилиндровые микролитражки, но сегодня подобными моторами оснащают в основном лёгкие скутеры. Среди примеров двухцилиндрового авто – отечественная «Ока». Шестнадцатицилиндровые двигатели обычно ставят на гоночные спорткары и мощные авто премиум-класса.

Рабочий цикл двигателя

Рабочий цикл ДВС, он же «цикл Карно» – это чередование фаз газораспределения. Его работа состоит из следующих этапов:

  1. Распределительный вал, вращаясь, открывает впускной клапан, и в цилиндр нагнетается топливовоздушная смесь из карбюратора.
  2. Затем впускной клапан закрывается, а топливо воспламеняется электрической искрой от свечи зажигания.
  3. В камере сгорания происходит микровзрыв, энергия которого толкает расположенный в нём поршень, соединённый с коленвалом. Поршень вращает коленчатый вал, а тот посредством трансмиссии (сцепление, кардан) передаёт крутящее усилие на ходовую часть.
  4. Далее распредвал открывает выпускной клапан, и продукты сгорания топлива удаляются через выхлопной коллектор.

После этого весь цикл повторяется снова.

Главное условие работы цилиндров состоит в том, что действовать они должны вразнобой, а не по порядку. То есть, недопустимо, чтобы такты чередовались по очереди от 1 до 4 или, к примеру, до 16 цилиндра.

Конечно, это правило не распространяется на двухцилиндровые ДВС, наподобие тех, что ставятся в «Оке». Но вот уже трёцилиндровые моторы работают по схеме 1-3-2. То есть, крутящее усилие на коленвал сначала передаёт поршень 1-го, затем 3-го, а уже потом 2-го цилиндра.

Порядок работы шестицилиндрового двигателя в зависимости от вида

Разные виды двигателей внутреннего сгорания могут иметь различный порядок работы, даже при одинаковом числе цилиндров.

Рядный ДВС

Отличительной чертой однорядного двигателя является расположение всех цилиндров в один ряд. Количество их может составлять от 2 до 6, но наиболее распространённый вариант – это 4 цилиндра. Подобные типы ДВС, в частности, ставятся на отечественные автомобили «АвтоВАЗа» и «ГАЗа».

Шестицилиндровые «однорядники» можно встретить на БМВ и прочих авто высокого класса. Их работа может происходить по одной из трёх возможных схем:

  • 1-4-2-3-6-5;
  • 1-5-3-6-2-4;
  • 1-3-5-6-4-2 – также отступление от правила неочерёдности (5–6).

V-образные двигатели

Эта конструкция силового агрегата позволяет размещать цилиндры в два ряда, напротив друг друга. Подобная схема нашла широкое применение не только в автомобилестроении, но и в авиационных и корабельных двигателях. Основное преимущество V-образных ДВС состоит в их компактности, что особо актуально для мощных многоцилиндровых моторов.

Ряды цилиндров в них установлены под некоторым углом относительно друг друга: 45 о , 90 о , 120 о . Для установки в автомобили выпускаются 6…16-цилиндровые силовые агрегаты подобной конфигурации.

Одним из вариантов являются и W-образные ДВС, представляющие, по своей сути, спаренные традиционные V-образные моторы.

Принцип работы подобных силовых агрегатов состоит в последовательном вращении коленвала поршнями из противоположных рядов.

Пример. На «Феррари» традиционно устанавливается V-образная восьмёрка, где цилиндры имеют следующую нумерацию: с 1-го по 4-й включительно – левый ряд, а с 5-го по 8-й – второй ряд. Порядок работы такого мотора схематично выглядит таким образом: 1-5-3-7-4-8-2-6.

Оппозитный двигатель

Оппозитный ДВС представляет собой конструкцию, в которой цилиндры располагаются попарно, друг напротив друга. Но, в отличие от V-образного расположения, угол между ними составляет 180 о . Другая их отличительная черта – противоположные поршни совершают зеркальное движение, одновременно достигая нижней и верхней крайних точек.

Подобные конструкции традиционны для многих японских автомобилей, в частности, очень их «любят» конструкторы компаний «Субару» и «Хонда». В Европе они устанавливались на «Фольксваген-жук», некоторые модели «Порше», БМВ, «Альфа Ромео», «Феррари». Также оппозитники ставили на советские мотоциклы «Урал» и «Днепр».

Порядок работы оппозитной установки с углом расположения «шеек» коленчатого вала 60° выглядит следующим образом: 1-4-5-2-3-6 для шестицилиндровой модификации.

Автолюбитель, который знает принцип работы двигателя своего железного коня, может, при необходимости, самостоятельно производить регулировку его работы. Например, сможет выставить зажигание, либо отрегулировать зазор клапанов.

Топ-10 моторов всех времен — журнал За рулем

В нашем обзоре — десять знаменитых двигателей, десять ступеней к совершенству. Почти каждый из них повлиял не только на развитие техники, но и на социальную среду.

10-е место: родоначальник даунсайзинга

01 TopEngines zr04–11

Приличные характеристики двигателя при скромном рабочем объеме уже не особенно удивляют. Мы начинаем привыкать к понятию «даунсайзинг», понимая, что эра двигателей большого литража постепенно уходит. А началось это, на мой взгляд, с дебюта в середине 1990-х годов наддувного мотора в 1,8 л, разработанного «Ауди». При умеренном рабочем объеме он должен был удовлетворить владельцев автомобилей самых различных классов. Поэтому даже в самой простой версии двигатель выдавал 148 сил, чего вполне хватало, чтобы превратить в маленькую зажигалку хэтчбек «СЕАТ-Ибица» и не заставлять гореть со стыда владельца престижного «Ауди-А6».

Собственно, литраж ничего не говорил о способностях агрегата. Это был небольшой (в том числе по габаритам — ставь его хоть вдоль, хоть поперек) шедевр своего времени: пять клапанов на цилиндр, изменяемые фазы на впуске, кованые алюминиевые поршни и, конечно, турбонаддув.

С его помощью мощность мотора поднимали все выше и выше, дойдя в спецверсии «Ауди-ТТ кваттро Спорт» до 236 сил. Данный предел был обусловлен лишь спецификой дорожного автомобиля. В гоночной формуле «Палмер Ауди», где ресурс не так важен, с новым блоком управления и агрегатом наддува с 1800-кубового двигателя сняли 365 сил. В Формуле-2, превращая серийный двигатель в чисто гоночный агрегат, достигли и вовсе фантастических 480 сил. Поэтому переход Формулы-1 на «шестерки» объемом 1,6 л в свете достижений мотора «Ауди» не выглядит абсурдным.

9-е место: верность ротору

02 TopEngines zr04–11

Исключительный случай — когда автомобильная компания прочно ассоциируется с одним типом двигателя. Конечно, «Мазда» не сама изобрела роторно-поршневой двигатель Ванкеля. Зато она в труднейшие времена энергетического кризиса 1970-х пересилила обстоятельства: не бросила, как другие, эту весьма сложную в доводке конструкцию, а продолжила совершенствовать «Ванкель» в узком, зато перспективном для имиджа сегменте форсированных спортивных машин. Хотя первоначально планировалось, что все модели «Мазды», вплоть до грузовиков и автобусов, перейдут со временем на двигатель Ванкеля.

Когда в 1975 году двухсекционный мотор с индексом 13В появился на серийных машинах, никто не мог предположить, что он станет самым массовым РПД в мире и продержится в производстве более 30 лет. Более того, даже современный маздовский РПД «Ренезис» — лишь результат эволюции 13B. Именно этот мотор стал проводником в серию большинства впервые примененных на РПД новинок, которые и обеспечили ему столь долгую жизнь, — настроенного впуска с изменяемой геометрией, электронного впрыска топлива, турбонаддува. В итоге мотор, который начал жизнь под капотом утилитарного пикапа с мощности чуть больше 100 сил, превратился в короля автогонок, выдававшего даже в серийном варианте минимум 280. Повышенный расход топлива и большой угар масла — неизбежные проблемы любого РПД — были оправданной расплатой за скромный вес, низкий центр тяжести и способность крутить свыше 10 тысяч оборотов в минуту. Маздовские купе RX-7 доминировали в американских кузовных чемпионатах на протяжении 1980-х годов во многом благодаря роторно-поршневому мотору 13B.

8-е место: «восьмерка» планеты Земля

03 TopEngines zr04–11

Материалы по теме

Любой, кто хоть немного интересуется американским автомобилестроением, наверняка слышал о «восьмерке» «Шевроле» семейства Small Block. Неудивительно, ведь ее в почти неизменном виде можно было встретить на различных моделях концерна «Дженерал моторс» с 1955 по 2004 год. Долгая карьера сделала этот нижневальный двигатель самым распространенным V8 на Земле. Small Block первого поколения (не путать с аналогичными моторами второй и третьей генераций серий LT и LS!) выпускается и сейчас, правда, только на рынок запчастей. Общее число изготовленных моторов превысило 90 миллионов.

Не стоит соотносить слово Small с небольшим литражом двигателя. Рабочий объем «восьмерки» никогда не опускался ниже 4,3 л, а в лучшие времена достигал 6,6 л. Свое имя мотор получил за небольшую высоту блока, обусловленную соотношением диаметра цилиндра и хода поршня: на первом образце 95,2х76,2 мм. Такая короткоходность обусловлена техзаданием: новую «восьмерку» следовало вписать под низкий капот родстера «Шевроле-Корвет», который до этого едва не лишился спроса из-за слабой для него рядной «шестерки». Не появись этот мощный V8, подхлестнувший интерес к первому массовому американскому спорткару, «Корвет» вряд ли пережил бы середину 1950-х.

Вскоре удачного шевролетовского «малыша» назначили базовой «восьмеркой» для всего GM, хотя двигатели V8 собственной конструкции были у каждого отделения концерна. Простой, надежный и неприхотливый мотор пережил все уровни признания: участвовал в гонках, трудился в качестве движущей силы катеров и изредка монтировался даже на легкие самолеты. И хотя в последние годы полноценной жизни двигателя его предлагали только для пикапов и фургонов, все автомобильные фанаты знали, что именно этот заслуженный V8 когда-то был рожден для спасения «Шевроле-Корвет».

7-е место: единственный в своем роде

04 TopEngines zr04–11

Какой же рейтинг моторов обойдется без БМВ! Марка попала бы в наш перечень уже за исключительную приверженность рядной «шестерке» — когда-то такая компоновка легковых двигателей была широко распространена. Помимо баварцев, на легковых машинах (вседорожники и пикапы не в счет) ее применяют сейчас только «Вольво» и австралийский филиал «Форда» (остальные сдались в пользу менее уравновешенного, зато гораздо более компактного V6). Но БМВ стоит особняком: только эта компания смогла выжать из расположенных в ряд шести цилиндров все преимущества — от потрясающе плавной работы до способности легко раскручиваться до самых высоких оборотов.

С каждым поколением, начиная с «шестерки» БМВ образца 1968 года, которую получили, добавив пару цилиндров к уже выпускавшейся «четверке», эти двигатели становились легче, мощнее, совершеннее. Многоцилиндровые схемы для баварцев были практически под запретом — первый V12 появился лишь в 1986 году, а V8 вообще только в 1992-м. Создание этих двигателей легче оправдать маркетингом, нежели истинной любовью инженеров — они всю душу и умение вкладывали именно в шесть расположенных в ряд цилиндров.

Апофеоз атмосферной «шестерки» БМВ — мотор S54 образца 2000 года, предназначенный для М3. Это гимн совершенству гоночного по сути двигателя, водруженного на гражданский автомобиль. Тяжелого на подъем вначале, но расцветающего при малейшем намеке на спортивный стиль езды. С 3,2 л рабочего объема сняли 343 силы (с литра — 107) — для атмосферного мотора даже сейчас великолепный результат.

Его было бы трудно достичь без применения всех новейших на тот момент технологий — индивидуальных дросселей на каждый цилиндр с электронным управлением, системы регулирования фаз, причем как впуска, так и выпуска. Чтобы мотор выдерживал любые нагрузки, его даже перевели на чугунный блок цилиндров, что для БМВ редкость.

К сожалению, следующее поколение M3 отказалось от семейных ценностей в пользу V8. Это тоже очень неплохой мотор — но радость от укрощения разъяренного зверя ушла вместе с прежней «шестеркой». Подобные ей двигатели в нынешних условиях считаются, как бы точнее сказать, неполиткорректными.

6-е место: легенда гонок

05 TopEngines zr04–11

Последние образцы настоящего V8 «Хеми» собрали в 1971 году (современное одноименное семейство не имеет с ним ничего общего), но еще более четверти века этот двигатель служил любимой игрушкой любителям дрэг-рейсинга. Мотор, появившийся в 1964 году как чисто гоночный для серии NASCAR, был идеальным образцом спортивного V8 (рабочий объем 7 л, или 426 куб. дюймов по американской системе, стандартная мощность 425 сил) с минимальным применением сложных технологий: нижневальный, с двумя клапанами на цилиндр.

Важнейшим отличием от конкурентов стала полусферическая (отсюда «хеми», происходит от HEMIspherical — «полусферический») камера сгорания, позволившая оптимизировать процесс — получить большую мощность при меньшей степени сжатия. Впрочем, это тоже изобрел не «Крайслер». Его заслуга в том, что на основе известной технологии он создал непобедимый мотор, отличавшийся помимо характеристик еще и нереальной прочностью, способный выдержать самые ужасные методы форсировки. Недаром «Хеми» весил заметно больше, чем любой другой V8 начала 1960-х, — почти 400 кг. Но это обстоятельство совершенно не мешало автомобилям с 426-м «Хеми» уверенно громить соперников в гонках.

Гегемонию крайслеровского мотора не раз пытались ограничить — переписывая правила, изменяя количество требуемых для омологации серийных моторов, но он не сдавался и удерживал лидирующие позиции в NASCAR вплоть до 1970-х годов. К тому времени он стал не только спортивной, но и уличной легендой: серийные машины, снабженные дорожной версией «Хеми», выпускались в мизерных количествах — их сделали не более 11 тысяч, причем и эту малость распределили среди нескольких моделей «Доджа» и «Плимута». Ныне автомобили с оригинальным «Хеми», несмотря на примитивную конструкцию, стоят бешеные деньги — легенда пошла на новый круг.

5-е место: сложнее не бывает

06 TopEngines zr04–11

Самый необычный и амбициозный проект двигателя уникальной компоновки W16 выпестовали ради возрожденной марки «Бугатти». На самом деле этот двигатель, за исключением грандиозной мощности в 1001 л.с., является логичным развитием семейства компактных VR-образных моторов «Фольксвагена». Они отличались критически малым углом развала цилиндров — всего 15 градусов, что позволяло использовать на оба ряда одну головку. Мотор VR6 появился на «фольксвагенах» еще в 1991 году. Американский рынок требовал машин с шестью цилиндрами, и немцы умудрились выйти из положения, применив оригинальную схему, позволявшую без увеличения подкапотного пространства легко втиснуть «шестерку» (как вдоль, так и поперек) взамен стандартных четырех цилиндров.

Материалы по теме

Позже удачная находка получила развитие в более крупных масштабах. Амбиции Фердинанда Пиха, желавшего сделать «Фольксваген» топ-брендом, привели к созданию W8, представлявшего собой два VR4, установленных на общий картер под углом 72 градуса. Появился W12, «собранный» из двух VR6. Но мотор «Бугатти» даже в этой компании стоит особняком. Перед его создателями стояла задача почти неразрешимая — выдать рекордную мощность при минимальной массе. Поэтому мотор даже при схожей схеме получился иного уровня — сделанный на грани инженерного безумства. Конструкторы максимально уплотняли пространство вокруг двигателя. Блоки двух VR8 развалили под углом 90 градусов, разместив между ними сразу четыре турбонагнетателя.

Серьезная проблема возникла с охлаждением — решая ее, только для одних интеркулеров предусмотрели 15 л охлаждающей жидкости. Обычно данного количества хватало на весь мотор. Но «Вейрон» не вписывался в стандартные схемы — на охлаждение его двигателя в предельных режимах работали три отдельных радиатора, перегоняя 40 л антифриза. Возникли сложности с диагностикой, ведь определить сбои в одном из 16 цилиндров на слух практически невозможно. Поэтому мотор оснастили системой самодиагоностики, способной оперативно решать проблему, вплоть до отключения проблемного цилиндра.

А теперь самое интересное. При всей сложности и грандиозности замысла (одних только клапанов — вдумайтесь! — 64 штуки) создателям удалось удержать массу W16 в пределах 400 кг. Финансовый фактор при создании этого двигателя не имел почти никакого значения, поэтому титановые шатуны или полностью алюминиевый масляный насос для мотора «Бугатти» в порядке вещей.

4-е место: основоположник американской мечты

07 TopEngines zr04–11

Теперь о воплощении одной из последних замечательных идей Генри Форда, перевернувшей автомобильный мир. До него никто не предполагал, что массовый автомобиль можно запросто комплектовать престижной и мощной «восьмеркой», которая считалась принадлежностью лишь дорогих, роскошных машин. Появившийся в 1932 году фордовский V8 кардинально изменил на последующие полвека представление об автомобилях из-за океана. Они и до того заметно превосходили по размерам европейские модели аналогичной стоимости, а появление массового V8 окончательно развело процесс развития автомобилестроения на разных берегах Атлантики в противоположных направлениях.

Материалы по теме

Но как Генри Форду удалось снизить себестоимость довольно-таки сложного и массивного агрегата до уровня ширпотреба? О, здесь была масса ухищрений. К примеру, оба блока цилиндров и картер в фордовском V8 отливали как единую деталь. У «восьмерок» старой школы это были как минимум три отдельных элемента, скреплявшихся воедино болтами. Коленчатый вал, вместо того чтобы ковать, отливали с последующим термоупрочнением, что также снижало себестоимость.

Распредвал располагался в блоке, клапаны и выпускная система размещались внутри развала цилиндров — это упрощало конструкцию двигателя, однако приводило к перегреву при малейших проблемах с охлаждением. Даже в начальном варианте «восьмерка» при рабочем объеме 3,2 л выдавала приличные 65 сил, что быстро сделало «Форд- V8» любимцем гангстеров и полиции. Джон Диллинджер и Клайд Берроу в перерывах между кровавыми делами умудрились черкнуть пару строк Генри Форду с благодарностью за столь быстрый автомобиль.

Когда у первых V8 наступил пенсионный возраст, они оказались в руках молодых людей, творивших на их базе диковинные тачки по кличке «хот-род». Простая, мощная и легко поддающаяся форсировке фордовская «восьмерка» поспособствовала рождению сверхпопулярной автоконтркультуры. Ну а сама фирма отправила мотор на пенсию лишь в 1953 году, когда восьмицилиндровые двигатели в американских машинах стали уже повсеместным явлением.

3-е место: изменивший сознание

08 TopEngines zr04–11

В 1993 году в недрах исследовательского подразделения «Тойоты» была создана группа по разработке перспективных машин с минимальными выбросами, которые смогли бы занять нишу между традиционными машинами с ДВС и электромобилями. Результатом стала появившаяся в 1997 году «Тойота-Приус» — первый массовый автомобиль с гибридным приводом. Тогда он воспринимался как любопытный эксперимент, игрушка, продаваемая заведомо в убыток, которая вряд ли выйдет за пределы обожающих экзотику Японских островов. Но «Тойота» строила более серьезные планы.

Коренное отличие «Приуса» от прочих гибридных машин, уже существовавших в то время (речь идет о множестве экспериментальных и чуть раньше вышедшей на рынок серийной «Хонде-Инсайт»), заключалось в новом подходе к построению подобной модели. «Приус» создавали как гибрид с самого начала, без упрощений и компромиссов вроде заимствования кузова у традиционной модели или использования обычной механической коробки передач (как было сделано на «Инсайте»).

«Тойота» внедрила гибридную трансмиссию как неотъемлемую часть машины. Даже 1,5-литровый бензиновый двигатель специально модифицировали для работы с электромотором, переведя его на цикл Аткинсона, отличающийся укороченным тактом сжатия за счет увеличенной продолжительности открытия впускных клапанов. Это позволило получить необычно высокую степень сжатия (13–13,5) и дополнительные плюсы в копилку экономичности и экологичности.

Расплатой стала полная беспомощность ДВС на низких оборотах, но для гибрида, который всегда располагает поддержкой электродвигателя, это не проблема. Такой комплексный подход в итоге сделал «Приус» законодателем моды на гибриды. Он стоял в начале процесса, который уже не остановить.

2-е место: любимец всех континентов

09 TopEngines zr04–11

Что сказать про этот воздушник от «Фольксвагена»? Он так же легендарен, как и «Жук» — автомобиль, под который его сделали. Даже больше — ведь одним «Жуком» область применения данного мотора далеко не ограничивалась. Простой, надежный и легкий, четырехцилиндровый оппозитник воздушного охлаждения оказался столь эффективным, что его популярность намного превзошла признание даже самого распространенного в мире автомобиля.

С той поры, как благодаря таланту Фердинанда Порше первые образцы мотора в 1933 году появились на прототипах «Жука», он перепробовал десятки профессий. Достаточная мощность (довоенные образцы выдавали минимум 24 силы, а самые мощные под конец серийного выпуска утроили этот показатель), беспроблемное в любом климате воздушное охлаждение и небольшая масса (цилиндры алюминиевые, картер — из магниевого сплава) позволили фольксвагеновскому мотору найти массу занятий. Он служил на амфибиях вермахта, примешивал свой выхлоп к запаху марихуаны в микробусах хиппи, приводил пожарные насосы, компрессоры, лесопилки, стал основой прогулочных багги и понтовых трайков, взмывал в небо более чем на 40 типах самолетов. И это далеко не полный список его талантов. Еще важнее, что именно из этого двигателя выросло семейство оппозитников «Порше».

На протяжении всех лет производства (моторы семейства окончательно прекратили выпускать только в 2006 году) принципиальная схема двигателя не менялась. Рос рабочий объем, на некоторых версиях применили впрыск топлива, но изначальная схема со штанговым приводом клапанов оставалась такой же, как на первых образцах 1930-х годов. Он радует сердца автомобилистов, да и не только их, более 70 лет — это ли не лучший показатель совершенства мотора?

1-е место: первый массовый

10 TopEngines zr04–11

С «Форда-Т» и его двигателя начал раскручиваться маховик массовой автомобилизации. Больше того, именно мотор «тэшки» стал в свое время самым распространенным ДВС в мире, с ним познакомилось подавляющее большинство жителей земного шара. Как и в случае с описанным выше оппозитником «Фольксвагена», мотор «Форда-Т» приводил не только одноименный автомобиль, которых с 1908 по 1927 год было построено более 15 миллионов.

Материалы по теме

Трактора, грузовики, моторные лодки, походные электростанции — он применялся везде, где была нужда в дешевом и простом в обращении моторе. Что касается автомобилей, то в какой-то период до 90% машин, колесивших по Земле, были одной-единственной модели Т. И приводил их этот самый двигатель необычно большого по сегодняшним меркам рабочего объема 2,9 л — при скромной мощности 20 сил. Но мощность тут была не принципиальна. Гораздо важнее крутящий момент и всеядность — помимо бензина «тэшку» официально разрешалось заправлять керосином и этанолом. Двигатель удивительно прост. Собранный в одном блоке с двухступенчатой планетарной коробкой передач, четырехцилиндровый мотор делил с трансмиссией смазочное масло. Никакого давления в системе не создавалось, смазка осуществлялась разбрызгиванием. Водяную помпу через год производства отправили в отставку — Генри Форд решил, что дешевому автомобилю достаточно простого термосифонного принципа, когда жидкость циркулирует благодаря разности температур. С другой стороны, фордовский мотор необычен для своего времени тем, что его блок и картер отливались как одно целое, а головка цилиндров впервые в мировой практике была сделана отдельной деталью. Но это дань массовости производства: ни один автомобиль в мире не выпускали в таких масштабах, как «Форд», поэтому его конструкция изначально рассчитана на максимально быструю и простую сборку. Двигатель «тэшки» надолго пережил сам автомобиль. Последний экземпляр собрали в августе 1941 года. Он останется в истории как первый массовый ДВС человечества.

Многоцилиндровый двигатель — Большая Энциклопедия Нефти и Газа, статья, страница 1

Многоцилиндровый двигатель

Cтраница 1

Многоцилиндровые двигатели имеют еще преимущество перед одноцилиндровыми в том, что применение нескольких цилиндров малого диаметра вместо одного большого благодаря уменьшению движущихся масс кривошипно-шатунного механизма позволяет повысить число оборотов двигателя, а следовательно, и его мощность.  [1]

Многоцилиндровые двигатели обычно бывают с двухрядным расположением цилиндров — поровну в каждом ряду. Чтобы упростить формулу для определения эффективной мощности двигателя парциальным методом, величину п целесообразно принять равной половине числа цилиндров двигателя.  [2]

Многоцилиндровые двигатели преимущественно применяются на тракторах, автомобилях, комбайнах, а также как стационарные двигатели.  [3]

Многорядные многоцилиндровые двигатели с V-образным, Х — образ-ным, Н — образным или звездообразным расположением цилиндров, выполненные по схемам А, Б и В, с общим картером, но с отдельной для каждого-цилиндра кривошипной камерой, используемой в качестве продувочного насоса, и отдельным коленчатым валом. Все коленчатые валы связаны между собой при помощи специальных устройств.  [4]

Пуск многоцилиндровых двигателей или газомоторных компрессоров, у которых пусковые клапаны установлены на всех крышках цилиндров, осуществляется с любого положения кривошипов коленчатого вала: как бы ни были расположены кривошипы коленчатого вала один из поршней будет находиться за в. При этом сжатый воздух приводит в движение поршень, а следовательно, и коленчатый вал и связанный с ним распределительный валик.  [6]

Цилиндры многоцилиндрового двигателя должны быть так расположены и сгруппированы, чтобы собранный двигатель имел возможно большую жесткость и как можно меньшие габаритные размеры.  [7]

Насос многоцилиндрового двигателя должен обеспечивать: а) равномерную подачу топлива во все цилиндры; б) одинаковый для всех цилиндров угол опережения подачи топлива и в) одинаковую длительность впрыска.  [8]

Для многоцилиндровых двигателей ( 1Ц — 8 — г — 12) эти формулы дают несколько преувеличенные результаты, и мощность стартера может быть уменьшена.  [9]

У многоцилиндровых двигателей, отличающихся высокой равномерностью работы, маховики делают небольшого размера и веса по сравнению с двигателями с малым числом цилиндров.  [10]

Цилиндры многоцилиндровых двигателей отливают из серого чугуна или алюминиевого сплава в виде целой детали — блока цилиндров. Как одно целое с блоком цилиндров отливают верхнюю часть картера двигателя.  [11]

У многоцилиндровых двигателей все цилиндры объединены и отлиты вместе в виде так называемого блока цилиндров. В этом случае крышка цилиндров является также общей и называется головкой блока.  [12]

У многоцилиндровых двигателей с водяным охлаждением основной частью остова является корпус, объединяющий в общий блок все цилиндры. Он называется блоком цилиндров или блок-картером. Конструкция блок-картера должна обладать прочностью, жесткостью, удобством монтажа механизмов и приборов, расположенных внутри или снаружи блока. Все эти требования обеспечиваются в большей или меньшей степени его коробчатой формой, наличием ребер, люков, а также применением в качестве материала для его изготовления различных чугунов.  [14]

Для многоцилиндровых двигателей, поскольку их кривошипно-шат унные механизмы жестко связаны между собой общим коленчатым валом и картером, кроме знания законов газовых сил и сил инерции каждого кривошипно-шатун-ного механизма, необходимо знать, какое влияние они оказывают друг на друга при совместной работе с учетом расположения кривошипов на коленчатом валу и порядка работы цилиндров. Установлено также, что в многоцилиндровых двигателях газовые и инерционные силы одновременно с созданием активного и равного ему по величине реактивного моментов создают нежелательные, дополнительно нагружающие коленчатый вал, изгибающие и скручивающие моменты.  [15]

Страницы:      1    2    3    4

Четырехтактный двигатель. Работа четырехтактного двигателя

В цилиндре четырехтактного поршневого двигателя циклическая последовательность энергетических преобразований начинается с реакции горения ТВ-заряда, когда поршень находится в ВМТ. В результате сгорания химическая энергия топлива переходит в тепловую энергию сильно сжатых газов.

Так в камере сгорания образуется газообразное рабочее тело теплового двигателя. Далее тепловая энергия рабочего тела за счет его интенсивного расширения переходит в механическую работу по перемещению поршня из ВМТ в НМТ. Следующим этапом преобразований является кинематическое превращение линейного перемещения поршня в возвратно-поступательное его движение и получение вращательного движения на выходном валу двигателя. Это преобразование реализуется с помощью кривошипно-шатунного механизма, коленчатого вала и его маховика. При этом сам коленчатый вал и навешенные на него детали (массы) получают значительный импульс движения, за счет которого совершается полезная работа двигателя, а поршень переходит через НМТ и начинает обратное движение к ВМТ.

Эта часть энергетического цикла соответствует рабочему такту двигателя «рабочий ход» и заканчивается в НМТ. С этого момента (от нижней мертвой точки) на полезную нагрузку одноцилиндрового двигателя и на последующие вспомогательные процессы энергетических преобразований начинает работать кинетическая энергия инерционных масс коленчатого вала, ранее разогнанных рабочим ходом поршня. Вслед за процессом «рабочий ход» в любом поршневом двигателе должны быть выполнены два насосных процесса: выпуск отработавших газов и впуск свежего топливовоздушного заряда.

В четырехтактном одноцилиндровом двигателе такты выпуска, впуска и сжатия реализуются инерционным вращением коленвала с массивным маховиком (тремя ходами поршня между НМТ и ВМТ). В многоцилиндровом двигателе поршни поочередно работают на один общий коленвал, и процессы выпуска, впуска и сжатия в цилиндре реализуются не только инерционным вращением коленвала, но и рабочими ходами поршней в других цилиндрах, на выполнение насосных процессов затрачивается часть энергии рабочего хода.

Чем продолжительнее насосные процессы в общей продолжительности рабочего цикла, тем ниже КПД двигателя. Именно поэтому двухтактные двигатели эффективнее четырехтактных, а четырехтактные — эффективнее шеститактных.

После завершения насосных процессов, сразу вслед за впуском, в цилиндре четырехтактного двигателя начинается энергетический процесс сжатия. Этот процесс реализуется четвертым (последним) в данном цикле ходом поршня (вверх).

Рассмотрев последовательность основных процессов энергетического преобразования и сопутствующие им вспомогательные процессы в четырехтактном двигателе, можно перейти к рассмотрению рабочих тактов в четырехтактном цикле.

Четырехтактным циклом называется последовательность из четырех рабочих тактов двигателя: впуск, сжатие, рабочий ход, выпуск. За начало цикла обычно принимают такт впуска.

Следует предварительно заметить, что хотя по определению рабочий такт включает в себя несколько рабочих процессов, приходящихся на один ход поршня, в четырехтактном двигателе каждому такту присваивается наименование только одного (основного) рабочего процесса. Например, рабочий такт «сжатие» (ход поршня из НМТ в ВМТ после впуска) включает в себя не только само сжатие, но и внутреннее перемешивание ТВ-смеси, формирование ТВ-заряда, воспламенение ТВ-заряда перед его сгоранием, начало формирования газообразного рабочего тела. Но называется данный такт — тактом сжатия.

То же самое можно показать на примерах других тактов. Но главное здесь то, что довольно продолжительная последовательность различных процессов, имеющих место в каждом такте, в целях упрощения «раскладывается» только на четыре рабочих такта. Эти такты: ВПУСК, СЖАТИЕ, РАБОЧИЙ ХОД, ВЫПУСК Таким образом, для четырехтактного двигателя рабочим циклом можно считать не совокупность рабочих процессов, приходящихся на один акт сгорания ТВ-заряда, а последовательность четырех конкретных рабочих тактов.


Рассмотрение четырехтактного цикла удобнее проводить с помощью индикаторной диаграммы, которая отображает изменение давления в цилиндре по ходу поршня за рабочий цикл.

Индикаторная диаграмма состоит из четырех характерных участков:
1. Участок (71) — впуск ТВ-смеси под разрежением от всасывания (Р = 0,8 атм). Температура ТВ-смеси в конце впуска Ti = 10О°С. Имеет место вентиляционное охлаждение цилиндра.
2. Участок (123) — сжатие. При степени сжатия еа = 10 (для бензинового ДВС) давление в конце сжатия Рс = 15 атм, температура Тс = 500°С.
3. Участок (3456) — сгорание ТВ-заряда и расширение (рабочий ход). Воспламенение ТВ-зарядв в точке 2. Окончание процесса сгорания ТВ-заряда в точке 3. Дааление газов Р4 = 40 атм, температура Т4 & 2800°С. К концу расширения (точка 5) давление Р5 = 4 атм, Т5 = 1000°С. В точке 6 давление Р6 = 1,3 атм (остаточное давление газов), Т6 = 800°С.
4. Участок (67) — выпуск отработавших газов. Выпускной клапан открывается в точке 5.

Процесс выпуска протекает при даалении, которое превышает атмосферное. К концу выпуска температура падает до Т7 = 700°С, и далее там. Здесь же показаны схемы текущего положения порш-при впуске — до Т± = 100°С. ня в четырехтактном двигателе.
Управление клапанами в поршневых двигателях осуществляется от специального вала, который называется распределительным. Распределительный вал механически жестко сочленен с коленчатым валом через цепную, шестеренчатую или зубчатую ременную передачу. В двигателях с четырехтактным рабочим циклом передвточное отношение такой передачи равно один к двум. То есть за два оборота коленчатого вала распределительный вал делает один оборот.

Третьим рабочим тактом поршневого двигателя является такт рабочий ход. Он начинается сразу после того, как поршень 6 начнет перемещаться из верхней мертвой точки снова вниз. Такт «рабочий ход» наиболее важный в работе двигателя. Именно в этом такте происходит главное энергетическое преобразование ДВС — превращение тепловой энергии сгоревшего топливовоздушного заряда в механическую работу.

В бензиновых поршневых ДВС этот такт происходит следующим образом. В зоне, близкой к ВМТ, еще в такте сжатия топливовоздушный заряд принудительно воспламеняется от электрической искры в свече 13 зажигания. Топливовоздушный заряд быстро сгорает, и к началу такта рабочий ход давление в образовавшихся газах достигает максимального значения (точка Z). Газы, образовавшиеся в результате сгорания топливовоздушного заряда, с этого момента выполняют роль сильно разогретого рабочего тела, сжатого в объеме камеры сгорания. Как только поршень за ВМТ начинает перемещаться вниз, рабочее тело, интенсивно расширяясь, высвобождает приобретенную тепловую энергию, которая превращается в механическую работу в виде движения поршня вниз под действием расширения газов.

Последний (четвертый) рабочий такт поршневого двигателя называется тактом выпуска, так как в нем осуществляется эвакуация из объема цилиндра отработавших газов.

Важно понимать, что из всех четырех тактов четырехтактного двигателя только такт «рабочий ход» полезно работает на нагрузку ДВС, так как только в нем коленчатый вал 10 получает от поршня 6 через шатун 7 и кривошип 8 разгонное механическое усилие. Во всех остальных рабочих тактах двигатель не вырабатывает, а потребляет часть механической энергии от коленчатого вала.


Описанные четыре рабочих такта во время работы ДВС чередуются друг за другом и образуют полный четырехтактный рабочий цикл двигателя.

Следует иметь в виду, что строгого соответствия между рабочими тактами (ходами поршня) и тактовыми рабочими процессами в четырехтактных (так же, как и в двухтактных) поршневых двигателях нет. Это объясняется тем, что при работе двигателя фазы клапанного газораспределения и фазовые состояния клапанов накладываются на рабочие ходы поршня в разных конструкциях двигателей по-разному.

Работа многоцилиндровых ДВС происходит по цилиндрам последовательно, в каждом из которых рабочие процессы протекают так же, как и в вышеописанном одноцилиндровом двигателе. Все цилиндры в многоцилиндровом ДВС работают на один коленчатый вал, который воспринимает рабочие усилия от разных цилиндров через заданный числом цилиндров угол поворота.

Чередование срабатываний цилиндров в многоцилиндровых двигателях носит наименование — порядок работы.

Порядок работы ДВС задается конструктивно соответствующим исполнением распределительного и коленчатого валов и не может быть изменен в процессе эксплуатации.

Реализуется порядок работы ДВС чередованием искр зажигания, поступающих на свечи цилиндров от системы зажигания. К примеру, порядок работы четырехцилиндровых двигателей может быть либо 1342, либо 1243

Газораспределительные механизмы в современных поршневых двигателях

При различных режимах работы двигателя газообмен в его цилиндрах происходит по-разному. На оборотах холостого хода, когда скорость движения газообразных масс в двигателе низкая, отработавшие газы не успевают эвакуироваться из цилиндров и двигатель, «задыхаясь», может остановиться. Чтобы этого не произошло, горючую смесь обогащают, что приводит к дополнительному расходу топлива и повышенному образованию СО в отработавших газах. Оптимальные условия работы двигателя нарушаются. Однако эффект задымления цилиндров на холостом ходу можно свести к минимуму более ранним открытием выпускного клапана в такте «рабочий ход». Тогда часть энергии расширения рабочего тела будет затрачиваться на принудительную и интенсивную эвакуацию отработавших газов. Мо при высоких оборотах двигателя под большой нагрузкой раннее открытие выпускного клапана приводит к значительной потере развиваемой двигателем мощности. Получается так: фазу начала открытия выпускного клапана желательно иметь разной, а жесткий распредвал этого не обеспечивает.

Другой пример. Когда двигатель работает на очень высоких оборотах, скорость движения топливовоздушной смеси на входе цилиндра и выхлопных газов на его выходе тоже очень высокая. Это придает газовым потокам значительную дополнительную энергию движения за счет инерции. Поэтому одновременное открытие впускного и выпускного клапанов (перекрытие клапанов) в цилиндрах в конце выпуска и в начале впуска является крайне желательным явлением.

Фаза перекрытия клапанов в таком случае должна быть расширена по сравнению с режимами работы двигателя в менее скоростных режимах, так как это способствует дополнительной продувке цилиндра под напором быстрых впускных газов и под сильным разрежением быстро вылетающих отработавших газов. Однако подобное расширение фазы перекрытия клапанов в режиме холостого хода недопустимо, т.к. приводит к нарушению процесса внешнего смесеобразования из-за обратного выхлопа части отработавших газов во впускной коллектор. Из этого примера следует, что и фазу перекрытия клапанов жесткий распредвал формирует неоптимально.

Ясно, что каждому виду фазовой диаграммы соответствует определенная форма кулачков на распредвале. Так, для впускного и выпускного клапанов в идеальном двигателе кулачки симметричные, с идеальным профилем; у двигателя ЗИЛ кулачки гармонические, впускной с разворотом в сторону опережения, выпускной — почти симметричный; двигатель оптимальный по холостому ходу имеет тангенциальные кулачки — выпускной кулачок со значительным разворотом в сторону отставания, а впускной — в сторону опережения; у двигателя, работающего в форсированном режиме с расширенной фазой перекрытия клапанов, впускной кулачок гармонический и должен давать опережение по открытию клапана, а выпускной тангенциальный — отставание по закрытию.

Опережение или отставание фазовых состояний клапана определяется и формируется разворотом кулачка против вращения распредвала (отставание) или по направлению (опережение). Важно также заметить, что в реальных двигателях с жестким распредвалом фазы впуска и выпуска почти никогда не бывают симметричными (их середина сдвинута относительно середины рабочего такта — хода поршня от одной мертвой точки к другой).

• Из рассмотрения диаграмм ясно, что жесткая привязка фаз газораспределения к вращению коленчатого вала, даже при их расширении и (или) смещении относительно рабочих тактов двигателя, не является оптимальным способом формирования процессов газораспределения в реальных ДВС. Получается так: изменился режим работы двигателя, надо бы соответственно изменить и фазы газораспределения. Но газораспределительный механизм с жесткими кинематическими связями не позволяет этого сделать. Приходится искать «золотую середину». Компромиссное среднее положение фаз газораспределения относительно нижней и верхней мертвых точек для каждого конкретного двигателя определяется опытным путем на специальном экспериментальном стенде. Найденные таким способом фазы газораспределения называются установочными. До недавнего времени опытный подбор установочных фаз был единственной возможностью подогнать жесткий распредвал под реальные процессы газообмена в ДВС на различных режимах его работы.

При подборе установочных фаз имеют в виду следующие соображения. Фазы, раскрыв угла которых более 180°, могут быть сдвинуты относительно мертвых точек, а также относительно друг друга. Манипулируя шириной фаз впуска и выпуска и их сдвигом, можно подгонять рабочие параметры двигателя под заданные условия эксплуатации. Такая возможность обусловлена тем, что эффективность газообмена в цилиндрах ДВС определяется степенью их наполнения свежим зарядом и степенью их очистки от отработавших газов. А наполнение и очистка цилиндров непосредственно зависят от продолжительности фаз впуска и выпуска, и от фазы их взаимного наложения друг на друга (фаза перекрытия клапанов).
Можно детально объяснить, почему так происходит, но здесь ограничимся тем, что укажем на три основных момента:
1. В высокоскоростном двигателе наполнение цилиндра свежим зарядом несколько увеличивается (примерно на 10…15%) за счет напора газов со стороны впускного коллектора, если впускной клапан остается открытым на некоторое время после НМТ (50е…80° по углу поворота KB).

2. При раннем открытии выпускного клапана (за 40°…70° до НМТ, в такте «рабочий ход») большая часть отработавших газов (до 60%) эвакуируется из цилиндра достаточно высоким (4…5 атм) давлением газов. (Поршень в такте выпуска вытесняет из цилиндра всего 40…50% отработавших газов.)

3. Одновременное открытие выпускного и впускного клапанов (перекрытие клапанов) в конце такта выпуска (за 20…30° до ВМТ) и в начале такта впуска (20…50° после ВМТ) способствует продувке камеры сгорания, из которой вытесняются остаточные отработавшие газы. Продувка происходит за счет инерционного движения газовых потоков во впускном и выпускном коллекторах.
Используя эти три фактора воздействия на эффективность газообмена, можно создавать двигатели с различными рабочими характеристиками. Для двигателей обычного назначения фазы газораспределения устанавливаются таким образом, чтобы они наиболее оптимально соответствовали применяемому на данном двигателе способу смесеобразования и конструкции газопропускных каналов и тем самым обеспечивали устойчивую работу двигателя при всех возможных режимах его работы.

Однако усредненный подбор фаз газораспределения не является единственным способом улучшения характеристик двигателя внутреннего сгорания с жестким распредвалом. Так, современные двигатели теперь стали оборудовать многоклапанным газораспределительным механизмом, в котором на один цилиндр приходится до четырех и даже до пяти клапанов. Клапаны приводятся в действие от двух распределительных валов группами по два или три клапана.

Такая конструкция газораспределительного механизма дает возможность значительно увеличивать суммарную площадь пропускных щелей клапанов во время одновременного их открытия сравнительно небольшим ходом.

Таким образом, многоклапанная система позволяет реализовать более эффективный газообмен в цилиндрах ДВС при высокой степени сжатия и при высоких оборотах без применения искусственного наддува цилиндров свежей порцией воздуха и без значительного расширения фаз. Это существенно повышает выход мощности ДВС с единицы его конструктивного объема. Как следствие, многоклапанные двигатели меньше по весу и габаритам в сравнении с классическими моделями ДВС.

Четырехцилиндровый двигатель

«Audi-A4» с двадцатью клапанами работает без наддува и развивает мощность в 125 л.с. уже при 5800 об/мин. Он имеет плавный ход за счет «длинной полочки» в характеристике крутящего момента (крутящий момент в 165 Нм развивается на 3500 об/мин и в 173 Нм — на 3950 об/мин). Три впускных и два выпускных клапана своим коротким ходом и малой длительностью открытия позволяют приблизить продолжительность и место нахождения фаз газораспределения к их соответствию с рабочими тактами идеального теоретического двигателя. Перекрытие клапанов в такой конструкции минимальное. Это значительно улучшает такие показатели работы ДВС, как бесшумность и плавность хода, динамичность и расход топлива. Вращение коленчатого вала вначале передается зубчатым ремнем на выпускной распределительный вал (в передней части двигателя), а с него — на впускной распределительный вал цепной передачей (сзади двигателя).

В настоящее время многоклапанные системы находят широкое применение на ДВС для современных легковых автомобилей.

Еще одно новшество в современном механизме газораспределения — это гидравлические толкатели. Существуют две разновидности гидравлических толкателей: с подачей масла под давлением от системы смазки и с герметичной масляной подушкой, находящейся под давлением пружины или сжатого газа. Такие толкатели передают усилие от распределительных валов непосредственно на клапаны без промежуточных коромысел, что исключает необходимость регулировки клапанов в процессе эксплуатации ДВС.
Но самым перспективным направлением в повышении эффективности работы газораспределительного механизма является гибкое программное управление работой клапанов, что может быть реализовано несколькими способами: поворотом составного распредвала относительно коленчатого вала на соответствующий угол, создавая тем самым опережение или отставание распредвала с одновременным расширением вершин кулачков; изменением профиля кулачка по заданному закону управления: или, например, сделать кулачок вращающимся на распредвалу с жесткой его фиксацией в нужный момент от электронной автоматики.
Наиболее активно и плодотворно в направлении внедрения электроники в управление механизмом газораспределения работали японские автомобилестроители. Так, в 1992 году две японские фирмы «Honda» и «Mitsubishi» объявили о своих намерениях выпустить двигатель с автотронной системой управления клапанами. С 1993 года фирма «Honda» действительно освоила серий ный выпуск таких двигателей, на которых получила широкую и выпуклую характеристику для крутящего момента и значительную удельную мощность — 75 кВт/л. Не менее интересны достижения фирмы «Mitsubishi». Эта фирма оснастила автотронной системой «Mivec» двигатель автомобиля «Lanser». Этот двигатель объемом 1600 см3 до модернизации развивал мощность 83 кВт при 6000 об/мин и максимальный крутящий момент 137 Нм. После замены обычной головки блока цилиндров на головку с автотронным управлением клапанами двигатель стал мощнее на 40 кВт, а максимальный крутящий момент достиг значения в 167 Нм.

С этим же двигателем более легкий автомобиль «Mit-Colt» показал расход топлива 3,75 л/100 км при постоянной скорости движения 60 км/ч. Такие показатели получены за счет применения в автотронной системе управления клапанами, в системе впрыска топлива и в системе цифрового зажигания единой гибко интегрированной программы управления, заложенной в память центрального бортового компьютера, тем самым достигнута высокая точность срабатывания всех систем.

В этом механизме два верхних распредвала впускной и выпускной. На каждую пару одноименных клапанов работают не два одинаковых, а два разнопрофильных кулачка: один пологий, другой острый. Толкающие действия клапанам могут сообщаться или от острого, или от пологого кулачка попеременно или от обоих кулачков сразу. Режимы работы кулачков, зависящие от режима работы двигателя, заложены в программу бортового компьютера и реализуются с помощью электрогидраалического или электромагнитного управления системой передаточных коромысел. Такой работой механизма реализуется автоматическое управление фазами и высотой хода клапанов.

Функциональная модель узла с электронным упраалением механизмом газораспределения работает следующим образом. Если по программе требуется, чтобы клапан открывался и закрывался по синусоидальному закону, в работу включается гармонический (пологий) кулачок. Для этого сигнал управления от ЭБУ подается на соленоид 2, который выталкивает шток 3, а тот в свою очередь надавливает на фиксатор 4. Происходит жесткая фиксация толкателя 6 на промежуточном валу 5, который одновременно является поворотной осью для Т-образного коромысла 8. Пологий кулачок 13 набегает на левый ролик 9, и спаренные клапаны 7 открываются наклоном Т-образного коромысла. Так как в это время правый толкатель 6 не зафиксирован на оси 5, то он никакого действия на коромысло 8 не оказывает. Аналогично работает и острый кулачок 11 или оба кулачка сразу.

В последнем случае может быть получена сколько угодно сложная форма управления клапанами. Достоинством системы является возможность выключения клапанов. Недостатки — конструктивная сложность и низкая надежность механизма фиксации толкателя 6 на оси 5. Сравнительно быстрый износ фиксаторов приводит не только к нарушению программы работы двигателя, но и к полной его остановке. Возможны и другие варианты исполнения фиксаторов, например с электромагнитным гидрофиксатором.

Однако идеальный по газораспределению двигатель внутреннего сгорания пока еще не создан, хотя изобретен профессором МАДИ В.М. Архангельским еще в пятидесятых годах XX века. По идее Архангельского идеальный двигатель должен управляться не механическими клапанами с приводом от распределительного вала, а электромагнитными клапанами с электрическим управлением процессами их открывания и закрывания. Ясно, что если клапаны будут включаться и выключаться по электрическим сигналам, то можно будет создать программу идеального газораспределения и управления клапанами так, как это делается в современных системах зажигания при формировании момента новообразования.

Главной проблемой реализации идеи электромагнитного управления газораспределительными клапанами является пока непреодолимая сложность создания малогабаритных, мощных и быстродействующих электрических клапанов с тихой работой. Когда это станет возможным, процессы газораспределения в поршневом ДВС будут осуществляться не газораспределительным механизмом с распредвалом, а электромагнитными клапанами с управлением от электронной автоматики или от центрального бортового компьютера.

Зачем двигатели у автомобилей делают многоцилиндровые

Четырехтактный цикл автомобильного двигателя происходит в течение двух оборотов коленчатого вала. При этом поршень через шатун подталкивает коленчатый вал только на протяжении полуоборота.

Остальные полтора оборота вращение коленчатого вала происходит за счет энергии, накопленной во время предыдущих циклов. Кроме того эти полтора оборота перемещение поршня в цилиндре происходит при помощи коленчатого вала. В результате получается очень неравномерное вращение.

А это рывки при движении, повышенные вибрации.

Что делать в таком случае?

Самый простой выход – увеличить массу маховика. Этот тяжелый металлический «блин» на конце коленчатого вала за счет своей массы как раз и будет сглаживать неравномерность, и создавать запас энергии. Именно так и поступали на первых автомобильных двигателях.

Маховики там ставили внушительного размера.

Построить мощный одноцилиндровый двигатель сложно. Поршень и цилиндр получатся огромного размера.

Этих недостатков нет, или они проявляются значительно меньше у многоцилиндровых двигателей. Наиболее распространенная конструкция на сегодняшний день это четырехцилиндровый двигатель, у которого цилиндры размещены в один ряд.

Рабочие циклы у такого двигателя организованы по цилиндрам таким образом, что такты рабочего хода происходят каждые пол-оборота коленчатого вала. В результате вращение вала более равномерное, да плюс еще помощь маховика.

Последовательность работы цилиндров: первый, третий, четвертый, второй. Так происходит на большинстве двигателей. Редко встречается другая последовательность: первый, второй, четвертый, третий.

Наиболее самоуравновешена конструкция двигателя с шестью цилиндрами в один ряд. В нём рабочие циклы смещены на сто двадцать градусов угла поворота коленчатого вала. Такую схему любит применять компания БМВ, в частности на её родстере Z4, мощном спортивном автомобиле.

Схем расположения цилиндров двигателя большое количество. Но на автомобилях чаще всего, кроме рядных, применяют V-образные двигатели. Это двигатели, в которых цилиндры располагаются в два ряда под углом. Чаще всего угол развала равен 90 градусов. Это связано с компоновочными соображениями.

Такой двигатель получается невысоким, форма его близка к параллелепипеду. Некоторые фирмы, в частности Субару, применяют схему с углом развала в 180 градусов. Двигатель (его называют оппозитным) при этом выходит плоским, что в целом понижает центр тяжести автомобиля, а это ценят любители быстрой езды.

Раньше на автомобилях применялись двигатели с углом развала 60 градусов. Сейчас нет, двигатель получается слишком высокий, вписать его в моторный отсек сложно.

Иногда у V-образных двигателей сложно добиться самоуравновешенности, получив одинаковый угол поворота коленчатого вала между тактами рабочего хода в разных цилиндрах. Например, широко распространенный шестицилиндровый V-образный двигатель с углом развала 90 градусов.

В нем такты смещены на 90 и 150 градусов угла поворота коленчатого вала. Для того, чтобы уменьшить вибрации двигателя, конструкторы устанавливают в нем дополнительные балансировочные валы.

Загрузка…

Многоцилиндровые двигатели (автомобили)

2.4.

Многоцилиндровые двигатели

Мощность, развиваемая двигателем, может быть увеличена путем увеличения размера одного цилиндра
или установки большего количества цилиндров того же размера. Один большой цилиндр
может быть более удобным выбором из-за меньшего количества деталей в производстве и обслуживании, но преимущества перевешиваются недостатками
. Соотношение площадей головки поршня и объема цилиндров двух двигателей, один из которых
имеет в два раза больше линейных размеров другого, следующее.

При одинаковом среднем эффективном давлении газа в цилиндре в обоих двигателях тяга поршня
увеличивается пропорционально площади головки поршня. Таким образом, при увеличении диаметра цилиндра вдвое усилие поршня
увеличивается в четыре раза. Для данной скорости поршня и среднего эффективного давления газа
мощность двигателя увеличивается пропорционально квадрату диаметра цилиндра. Таким образом,
за счет увеличения диаметра цилиндра вдвое увеличивает мощность в четыре раза. Объем и, следовательно, масса возвратно-поступательных компонентов увеличивается пропорционально кубу их размеров.Следовательно, удвоение размеров поршня
увеличивает массу в восемь раз, из-за чего максимальная скорость поршня
должна быть уменьшена. Если ход поршня для данной частоты вращения коленчатого вала удваивается,
, скорость поршня также удваивается. Чтобы поддерживать одинаковую скорость поршня для обоих двигателей, необходимо уменьшить вдвое частоту вращения коленчатого вала
большого двигателя. Крутящий момент пропорционален усилию поршня
и длине хода кривошипа. Следовательно, за счет удвоения диаметра поршня и хода
усилие поршня увеличивается в четыре раза, а рычаг поворота кривошипа удваивается, таким образом, крутящий момент
увеличивается в восемь раз.
Таким образом, при увеличении диаметра цилиндра вдвое мощность увеличивается в четыре раза, а у
вес увеличивается в восемь раз. Следовательно, вес увеличивается с большей скоростью по сравнению с
мощность, обеспечивая низкое соотношение мощности к весу. Многоцилиндровые двигатели могут обеспечивать более высокую выходную мощность
за счет более высоких оборотов по сравнению с одноцилиндровыми двигателями.


2.4,1.

Циклический крутящий момент и эффект маховика

Четырехтактный двигатель совершает один рабочий цикл за два оборота или 720
градусов поворота коленчатого вала; таким образом, каждый из четырех ходов соответствует половине оборота на
‘или поворота коленчатого вала на 180 градусов.Из четырех тактов, то есть всасывания, сжатия
, мощности и выпуска, только рабочий ход обеспечивает энергию для приведения в действие коленчатого вала
против различных сопротивляющих нагрузок, в то время как другие три оставшихся хода поглощают некоторую энергию для преодоления
насосных и фрикционных потерь. Кроме того, возникают возвратно-поступательные инерционные нагрузки, вызванные
обратным усилием, прикладываемым для изменения направления движения поршневого узла каждый раз, когда он
достигает своей ВМТ или НМТ. В результате имеется значительное колебание частоты вращения коленчатого вала
в каждом цикле работы из-за изменения полезного давления в цилиндре на протяжении
рабочего хода и встречных нагрузок трения, накачки и инерции.
Маховик, прикрепленный к концу коленчатого вала, поглощает избыточную энергию, когда коленчатый вал
ускоряется во время рабочего хода на 180 градусов, и автоматически передает эту накопленную кинетическую энергию
на коленчатый вал, чтобы преодолеть сопротивление вращению в течение следующих 540 градусов. -рабочие мазки. Коленчатый вал замедляется, поскольку маховик отдает
энергии для привода коленчатого вала в течение трех холостых ходов, но восстановление скорости происходит
из-за движения расширения поршня во время рабочего хода.Таким образом, маховик снижает на
колебания частоты вращения коленчатого вала в течение каждого рабочего цикла. Энергия, передаваемая маховику
и коленчатому валу, иногда превышает среднюю сопротивляемую нагрузку в двигателе, а в других
раз она может быть значительно ниже этого значения. Это вызывает соответствующие колебания скорости
маховика (рис. 2.10). Средняя высота диаграммы крутящего момента представляет крутящий момент
, эквивалентный постоянной нагрузке, прилагаемой к двигателю. Заштрихованная область над линией среднего значения
крутящего момента указывает избыточную энергию, запасенную в маховике, а энергия ниже средней линии
показывает энергию, потребляемую от маховика в течение одного цикла.

Рис. 2.10. Одноцилиндровый маховик с постоянной нагрузкой.
В начале импульса мощности маховик находится на минимальной скорости, а ближе к концу рабочего хода
— на максимальной. Чтобы цикл событий продолжался, избыток
и недостаток энергии должны быть равны. Это означает, что кинетическая энергия маховика во время
увеличения и уменьшения скорости должна быть одинаковой. Поскольку степень изменения скорости в каждом цикле
зависит от размера маховика, большой маховик снижает колебания скорости до минимума,
заставляя двигатель работать плавно при постоянных скоростях.Но большая масса маховика
препятствует быстрому ускорению и замедлению двигателя, из-за чего реакция двигателя становится вялой. С другой стороны, небольшой маховик определенно заставляет двигатель быстро реагировать на быстрые изменения скорости
, но за счет неравномерной и неровной работы на малых оборотах.

2.4.2.

Многоцилиндровый Циклический крутящий момент

Ограничения на размер маховика и его неспособность сглаживать крутящий момент
неравномерность между циклами была в значительной степени устранена за счет использования многоцилиндровых двигателей, в которых
фазы газораспределения с одним коленчатым валом упорядочены таким образом, чтобы рабочие ходы Цилиндры
возникают поэтапно, а не одновременно.При увеличении количества
цилиндров соответственно уменьшаются интервалы между импульсами мощности. Следовательно, изменение крутящего момента на протяжении четырех ходов цикла сглаживается.
Кривая циклического крутящего момента для одноцилиндрового двигателя (рис. 2.10) показывает рабочий ход каждые
720 градусов, а изменение пикового значения крутящего момента за один цикл составляет около 8: 1. Когда добавляется второй цилиндр
, интервал между импульсами зажигания уменьшается вдвое, то есть на 360 градусов, таким образом
снижает пиковый средний крутящий момент, создаваемый за цикл, до 4: 1 (рис.2.11 А). При добавлении третьего цилиндра
интервал между импульсами зажигания уменьшается до 240 градусов, а пиковое значение поворотного усилия
дополнительно сглаживается до порядка 2,8: 1 (рис. 2.11B). Четырех-, пяти-, шести- и восьмицилиндровые двигатели
имеют интервалы включения 180 градусов, 144 градусов, 120 градусов и 90
градусов соответственно, при этом соответствующие отношения максимального крутящего момента к среднему уменьшены до 2: 1, 1,7: 1,
1,4: 1 и l.l :! (Рис. 2.11 C — F).

Фиг.2.11. Диаграммы крутящего момента многоцилиндровых двигателей.
A. Двухцилиндровый двигатель B. Трехцилиндровый двигатель.
C. Четырехцилиндровый двигатель D. Пятицилиндровый двигатель.
E. Шестицилиндровый двигатель F. Восьмицилиндровый двигатель.

2.4.3.

Достоинства и ограничения одно- и многоцилиндровых двигателей

Следующие основные факторы необходимо учитывать при сравнении двигателей
с различной кубатурой и различным количеством цилиндров.
(a) Для данной максимальной скорости поршня, чем короче ход поршня, тем выше может быть
вращение коленчатого вала.
(b) По мере того, как цилиндр становится меньше, поршень становится легче по сравнению с размером цилиндра
, соответственно вызывая более высокие скорости поршня.
(c) При том же объеме цилиндра двигателя и максимальной скорости поршня многоцилиндровый двигатель
развивает большую мощность, чем одноцилиндровый двигатель.
id) Одноцилиндровый двигатель с той же площадью поперечного сечения поршня, что и многоцилиндровый двигатель
, обеспечивает больший выходной крутящий момент.
(e) Чем меньше размер цилиндра, тем выше его отношение поверхности к объему и, следовательно, выше
степень сжатия с улучшением теплового КПД двигателя.
if) Для данного общего объема реакция на ускорение улучшается с увеличением количества цилиндров,
из-за более легких компонентов возвратно-поступательного движения и маховика меньшего размера.
(g) По мере увеличения количества цилиндров и длины двигателя крутильные колебания становятся проблемой
.
(h) По мере увеличения количества цилиндров
• мощность, потребляемая для преодоления сопротивления вращения и возвратно-поступательного движения, также увеличивается,
• распределение смеси для карбюраторных двигателей становится более трудным,
• стоимость замены компонентов становится пропорционально выше, и
• частота импульсов мощности увеличивается, благодаря чему выходная мощность
становится более стабильной.
Плавная работа многоцилиндровых двигателей возможна только тогда, когда каждая камера сгорания
создает такое же давление в камере сгорания, как и другие в том же двигателе. Карбюратор
должен обеспечивать качество заряда, смешивая топливо с поступающим воздухом в правильных пропорциях
. Впускной коллектор должен направлять равное количество смешанного заряда на каждый впускной клапан
. Каждый впускной клапан должен быть синхронизирован так же, как и другие, чтобы позволить равному количеству
заряда войти в каждую камеру сгорания.Распределитель зажигания должен быть синхронизирован, чтобы послать искру
через зазор свечи зажигания, когда сжатие достигнет одинаковой величины во всех цилиндрах
. При соблюдении всех этих требований давление в камерах сгорания равно
. Но практически эти идеальные требования не выполняются при всех условиях эксплуатации из-за «
» из-за увеличения стоимости производства. Многоцилиндровые двигатели предпочтительнее одноцилиндровых двигателей
, которые будут давать такую ​​же мощность по следующим причинам:

Большой одноцилиндровый двигатель

Многоцилиндровый двигатель
id) Рывок крутящего момента от одного рабочего хода на
двух оборотов
(a) Больше рабочих ходов на оборот,
обеспечивает плавный выходной крутящий момент
(b) Требуется тяжелый маховик (6) Облегченный маховик, обеспечивающий более быстрое ускорение
(c) Большой поршень и клапаны представляют собой значительные трудности с охлаждением
(c) Маленькие клапаны и поршни облегчают охлаждение
(d) Сильные пульсации выхлопных газов затрудняют глушитель
(rf) Более частые и меньшие пульсации облегчают глушитель
(e) Двигатель будет очень высоким, и его будет трудно разместить под капотом
(e) Двигатель намного компактнее
Двигатель будет тяжелее (f) Вес двигателя будет намного меньше, чем у одноцилиндрового двигателя
fce) Тяжелый поршень затрудняет балансировку (г) Простота балансировки
Дж -.-
Hh) Должен работать на малых скоростях
(h) Может работать на гораздо более высокой скорости.

, УКАЗЫВАЮЩИЙ О БЫСТРОСКОРОСТНОМ МНОГОЦИЛИНДРОВОМ ДВИГАТЕЛЕ ВНУТРЕННЕГО СГОРАНИЯ

Индикатор, заявленный как единственное известное устройство для надежного и экономичного получения составных индикаторных диаграмм, отображающих мощность, смещение и влияние нижнего контура на высокоскоростные многоцилиндровые двигатели внутреннего сгорания, широкая область применения для таких инструмент, способствующий развитию высокоскоростных двигателей, позволяющий точно исследовать процессы в цилиндрах двигателя, которые давно стали очевидными, поскольку обычный индикатор выходит из строя при частоте вращения двигателя выше 300 об. / мин.вечера. из-за инерционного воздействия на его карандашный механизм и барабан. Из-за большой потребности в получении точных индикаторных карточек при высоких оборотах двигателя было решено сконструировать устройство, которое будет создавать диаграммы с небольшим или нулевым эффектом инерции для цилиндров двигателя, работающего на любой скорости, и производить эти диаграммы доступны для анализа немедленно, без обращения к фотографическим или другим процессам.

Вкратце, стандартный индикатор малой скорости с барабаном 1½ дюйма.в диаметре напрямую соединяется стандартным штуцером с той частью устройства, внутри которой находится небольшой тарельчатый клапан, который открывается на очень небольшой интервал каждого цикла двигателя и который при открытии завершает сообщение между коллектором двигатель и индикатор. Цилиндр индикатора заполнен густым смазочным маслом, чтобы обеспечить надлежащее уплотнение для поршня индикатора и минимизировать перенос газа в цилиндр двигателя или из него во время каждого цикла двигателя.

Движение барабана контролируется струной, намотанной на шкив и соединенной с траверсой устройства, которую можно рассматривать как копию поршня двигателя, но которая перемещается только на один ход за каждые 800 ходов поршня двигателя и дает очень медленное возвратно-поступательное движение к барабану индикатора, тем самым сводя на нет эффекты инерции.Крейцкопф управляется регулируемым по длине шатуном и градуированным кривошипно-шатунным механизмом, образующим цепь, имеющую характеристики, точно такие же, как у цепи, которая управляет поршнем двигателя. Поскольку длина шатуна может изменяться, соотношение штока и его кривошипно-шатунного механизма может быть точно таким же, как соотношение между соответствующими частями двигателя. Направляющая крейцкопфа может быть отрегулирована для имитации смещения цилиндров, если такое смещение существует, и устройство можно сделать доступным для использования на всех типах двигателей внутреннего сгорания и для соотношений шатуна и кривошипа, варьирующихся от 3¾ до 1. и 5½ к 1.

Вал устройства, проходящий вертикально вверх от другого вала, приводимого в движение с частотой вращения двигателя, вращается с половинной частотой вращения двигателя. Горизонтальный вал с ручным кривошипом приводится во включенное сцепление с частотой вращения коленчатого вала 1/40. Этот горизонтальный вал приводит в движение вертикальный вал, к которому через червячную передачу прикреплен градуированный кривошипно-шатунный диск, имеющий редукцию 20: 1; Таким образом, при включенном сцеплении этот диск приводится в движение двигателем на 1/800 частоты вращения двигателя и приводит в действие шатун устройства.При выключенном сцеплении ступенчатый кривошипно-шатунный диск может приводиться в движение рукояткой в ​​любом направлении.

Включены подробные сведения и иллюстрации конструкции, применения, процедуры и работы. Индикатор успешно работает более 500 часов. тестирования и исследовательской работы в Университете штата Огайо. Составная индикаторная диаграмма, полученная в течение большого количества циклов двигателя, которые по отдельности обычно не похожи, является явным преимуществом по сравнению с чем-либо еще опробованным, поскольку диаграмма строится на глазах инженера-испытателя.

, УКАЗЫВАЮЩИЙ О БЫСТРОСКОРОСТНОМ МНОГОЦИЛИНДРОВОМ ДВИГАТЕЛЕ ВНУТРЕННЕГО СГОРАНИЯ на JSTOR

Абстрактный

Индикатор, заявленный как единственное известное устройство для надежного и экономичного получения составных индикаторных диаграмм, отображающих влияние мощности, смещения и нижнего контура на высокоскоростных многоцилиндровых двигателях внутреннего сгорания, широкая область применения такого инструмента в содействии развитию высокоскоростных двигателей, позволяя точно исследовать процессы в цилиндрах двигателя, которые давно стали очевидными, поскольку обычный индикатор выходит из строя при оборотах двигателя выше 300 об. / мин.вечера. из-за инерционного воздействия на его карандашный механизм и барабан. Из-за большой потребности в получении точных индикаторных карточек при высоких оборотах двигателя было решено сконструировать устройство, которое будет создавать диаграммы с небольшим или нулевым эффектом инерции для цилиндров двигателя, работающего на любой скорости, и производить эти диаграммы доступны для анализа немедленно, без обращения к фотографическим или другим процессам. Вкратце, стандартный индикатор медленной скорости, имеющий барабан диаметром 1½ дюйма, напрямую соединен стандартным соединением с частью устройства, внутри которого находится небольшой тарельчатый клапан, который открывается на очень небольшой интервал каждого цикла двигатель и который при открытии завершает связь между коллектором двигателя и индикатором.Цилиндр индикатора заполнен густым смазочным маслом, чтобы обеспечить надлежащее уплотнение для поршня индикатора и минимизировать перенос газа в цилиндр двигателя или из него во время каждого цикла двигателя. Движение барабана контролируется струной, нарезанной на шкив и соединенной с траверсой устройства, которую можно рассматривать как копию поршня двигателя, но которая перемещается только на один ход за каждые 800 ходов поршня двигателя и обеспечивает очень медленный обратный ход. движение вперед к индикаторному барабану, что устраняет инерционные эффекты.Крейцкопф управляется регулируемым по длине шатуном и градуированным кривошипно-шатунным механизмом, образующим цепь, имеющую характеристики, точно такие же, как у цепи, которая управляет поршнем двигателя. Поскольку длина шатуна может изменяться, соотношение штока и его кривошипного диска может быть точно таким же, как соотношение между соответствующими частями двигателя. Направляющая крейцкопфа может быть отрегулирована для имитации смещения цилиндров, если такое смещение существует, и устройство можно сделать доступным для использования на всех типах двигателей внутреннего сгорания и для соотношений шатуна и кривошипа, варьирующихся от 3¼ до 1. и 5½ к 1.Вал устройства, проходящий вертикально вверх от другого вала, приводимого в движение с частотой вращения двигателя, вращается с половинной частотой вращения двигателя. Горизонтальный вал с ручным кривошипом приводится во включенное сцепление с частотой вращения коленчатого вала 1/40. Этот горизонтальный вал приводит в движение вертикальный вал, к которому через червячную передачу прикреплен градуированный кривошипно-шатунный диск, имеющий редукцию 20: 1; Таким образом, при включенном сцеплении этот диск приводится в движение двигателем на 1/800 частоты вращения двигателя и приводит в действие шатун устройства.При выключенном сцеплении ступенчатый кривошипно-шатунный диск может приводиться в движение рукояткой в ​​любом направлении. Включены подробные сведения и иллюстрации конструкции, применения, процедуры и работы. Индикатор успешно работает более 500 часов. тестирования и исследовательской работы в Университете штата Огайо. Составная индикаторная диаграмма, полученная в течение большого количества циклов двигателя, которые по отдельности обычно не похожи, является явным преимуществом по сравнению с чем-либо еще опробованным, поскольку диаграмма строится на глазах инженера-испытателя.

Информация об издателе

SAE International — это глобальная ассоциация, объединяющая более 128 000 инженеров и технических экспертов в аэрокосмической, автомобильной и коммерческой промышленности. Основные направления деятельности SAE International — обучение на протяжении всей жизни и разработка добровольных согласованных стандартов. Благотворительным подразделением SAE International является SAE Foundation, который поддерживает множество программ, включая A World In Motion® и Collegiate Design Series.

HCCI Работа многоцилиндрового двигателя

% PDF-1.4 % 1 0 объект > / Метаданные 2 0 R / PieceInfo> >> / Страницы 3 0 R / PageLayout / OneColumn / StructTreeRoot 4 0 R / Тип / Каталог / LastModified (D: 20061221110332) / PageLabels 5 0 R >> эндобдж 6 0 obj / Creator (Acrobat PDFMaker 7.0.7 для Word) / Производитель (Acrobat Distiller 7.0.5 \ (Windows \)) / ModDate (D: 20061221110332 + 01’00 ‘) /Компания / SourceModified (D: 20061221100315) / Название (Работа многоцилиндрового двигателя HCCI) >> эндобдж 2 0 obj > ручей Акробат Дистиллятор 7.0.5 (Windows) Acrobat PDFMaker 7.0.7 для Word2006-12-21T11: 03: 32 + 01: 002006-12-21T11: 03: 25 + 01: 002006-12-21T11: 03: 32 + 01: 00application / pdf

  • HCCI Работа многоцилиндрового двигателя
  • за Tunestål
  • uuid: 6937ae26-4e0e-4357-982b-973fb122effduuid: 121a66b9-8445-47a2-9a2b-892b91c50affLTH, FörbränningsmotorerD: 20061221100315 конечный поток эндобдж 3 0 obj > эндобдж 4 0 obj > эндобдж 5 0 obj > эндобдж 7 0 объект > / XObject> >> / Аннотации [22 0 R 23 0 R 24 0 R] / Родитель 3 0 R / MediaBox [0 0 595 842] >> эндобдж 8 0 объект > / ProcSet [/ PDF / Text] / ExtGState> >> / Тип / Страница >> эндобдж 9 0 объект > / ProcSet [/ PDF / Text] / ExtGState> >> / Тип / Страница >> эндобдж 10 0 obj > / ProcSet [/ PDF / Text] / ExtGState> >> / Тип / Страница >> эндобдж 11 0 объект > / ProcSet [/ PDF / Text] / ExtGState> >> / Тип / Страница >> эндобдж 12 0 объект > / ProcSet [/ PDF / Text] / ExtGState> >> / Тип / Страница >> эндобдж 13 0 объект > / ProcSet [/ PDF / Text] / ExtGState> >> / Тип / Страница >> эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > ручей xWMoF] @ 7`uKSI $% RSMZ $ mHpQ] {+ ܯ yo {˱lzawl۵> | NWWYq5W Wmrjo) q! ͇NmvӚ ˡ3WUkv ֺ [~ 秛 ۏ VW: vv {2mB, _b, DE4iͥ = S + uM9; .ڤ X {yDCHF; NVkV (۾! AH # o @ ATMFZ! Dh> h 51yL0Ǿ & hBz;%, ETJs + ҳͮ # Ϟ «YF» — 웓 ў

    Моделирование вибрационного поведения многоцилиндрового двигателя

    В данной работе анализируется вибрационное поведение рядного 4-цилиндрового 4-тактного бензинового двигателя внутреннего сгорания с турбонаддувом и прямым впрыском. Реализована многомерная численная модель двигателя для моделирования его динамического отклика при испытаниях на стенде. Многокорпусная модель кривошипа создается с использованием геометрических данных, извлеченных из системы автоматизированного проектирования двигателя, с использованием в качестве сил возбуждения экспериментально измеренных значений давления в цилиндрах.Гибкий подход с несколькими корпусами использует моделирование коленчатого вала, блока цилиндров и головки с помощью метода конечных элементов для динамического анализа, при этом остальные части моделируются как жесткие. Опоры двигателя моделируются гибкими элементами заданной жесткости и демпфирования. Подчеркивается важность явного моделирования стержней, соединяющих двигатель с опорами. Для оценки используется программное обеспечение Siemens-LMS Virtual Lab и ANSYS.

    • URL записи:
    • Наличие:
    • Дополнительные примечания:
      • Авторские права © Inderscience Enterprises Ltd., 2018.
    • Авторов:
      • Сиано, Даниэла
      • Citarella, Роберто
      • Арментани, Энрико
    • Дата публикации: 2018

    Язык

    Информация для СМИ

    Предмет / указатель терминов

    Информация для подачи

    • Регистрационный номер: 01687594
    • Тип записи: Публикация
    • Файлы: TRIS
    • Дата создания: 10 октября 2018 г. 10:23

    Эксплуатация и обслуживание многоцилиндровых газовых двигателей | Практика бурения и добычи

    РЕЗЮМЕ

    В этом документе представлены рекомендации Калифорнийского подкомитета по техническому обслуживанию многоцилиндровых газовых двигателей и краткое изложение подробного обсуждения, проведенного в ходе восьми сессий в 1936-37 годах под председательством Генри Гриннелла.Приведенные здесь рекомендации могут быть легко применены на нефтяных месторождениях. Утверждается, что регулирование температуры охлаждающей воды является одним из основных направлений технического обслуживания — рекомендуются более высокие температуры. Проблемы со смазкой сводятся к минимуму за счет более высоких рабочих температур; исключено нефтешламирование. Трудности при запуске тщательно анализируются, с рекомендованной процедурой поиска неисправности. Зажигание и карбюрация требуют большей части технического обслуживания в полевых условиях, и подробно описана процедура, позволяющая минимизировать стоимость этой работы.Кратко обсуждаются требования к персоналу и приводятся цифры по эксплуатационным расходам, установленные накопленным на сегодняшний день опытом.

    ВВЕДЕНИЕ

    В этом документе собраны результаты дискуссий по эксплуатации и техническому обслуживанию многоцилиндровых газовых двигателей, недавно разработанные после 28 лет встреч по этому вопросу в комитете из 11 членов, которым помогали другие участники заседаний с участием от 45 до 60 заинтересованных операторов и поставщиков. До присоединения к Американскому институту нефти комитет проделал большую работу по определению эффективности вакуумметра во впускном коллекторе как показателя мощности двигателя.Поскольку корреляция мощности двигателя с фактическими нагрузками является важным элементом, влияющим на техническое обслуживание в полевых условиях, было решено представить выводы, прежде чем переходить к общей теме этой статьи. Это:

    • Что при правильной настройке зажигания и карбюратора вакуум в коллекторе может использоваться для измерения указанной мощности двигателя, но не развиваемой мощности.

    • То, что с помощью портативного динамометра «Prony Brake», вакуумметра и тахометра можно очень точно оценить мощность, развиваемую двигателем, установленным в полевых условиях (см. Рис.1). Однако повторные испытания большого количества двигателей убедительно доказали, что из-за различных внутренних и внешних изменений, которые происходят в двигателе при непрерывной работе, кривую мощности в лошадиных силах, построенную в зависимости от вакуума и скорости в коллекторе, нельзя считать равными. все с точностью, превышающей пределы одного полевого испытания. Таким образом, постоянная установка вакуумметра и тахометра в коллекторе не может использоваться для непрерывной индикации выходной мощности в лошадиных силах.

    • Таким образом, с соответствующими показывающими приборами и специально разработанным устройством для одновременного получения мгновенных показаний скорости, вакуума в коллекторе, шкалы тормозов Prony и положения полировальной штанги, можно построить очень хорошие кривые выходной мощности в лошадиных силах. двигатель во время полного цикла откачки скважины (см. рис.2).

    Вакуумный 4-цилиндровый двигатель, мощность тормозной системы, коллектор, 350 куб. Дюймов Смещение.

    РИС. 1 (доступен в виде полной статьи)

    Целью работы было определить, где улучшения в конструкции или лучшее понимание возникающих проблем могут привести к снижению эксплуатационных расходов. В конце концов было решено не заниматься выбором или проектированием, а, предполагая, что двигатель был правильно выбран для требуемой нагрузки, сконцентрироваться на формировании практического руководства по эксплуатации и техническому обслуживанию.?

    Зажигание от сжатия бензина в многоцилиндровом двигателе малой мощности с использованием широкого диапазона реактивности топлива и расслоения тяжелого топлива | J. Energy Resour. Technol.

    Многие исследования были посвящены использованию бензина в современных двигателях с воспламенением от сжатия для снижения выбросов и повышения эффективности. В совокупности этот режим горения стал известен как воспламенение от сжатия бензина (GCI). Одной из самых больших проблем при работе GCI является поддержание контроля над процессом сгорания с помощью стратегии впрыска топлива, так что двигателем можно управлять на поцикловой основе.Исследовательские исследования изучали широкий спектр стратегий впрыска GCI (то есть уровни расслоения топлива) для поддержания контроля над скоростью тепловыделения при достижении низкотемпературного сгорания (LTC). Эта работа показывает, что при нагрузках, характерных для двигателей малой мощности, частичное расслоение топлива (PFS) с бензином обеспечивает очень небольшую управляемость по времени сгорания. Напротив, стратификация тяжелого топлива (HFS) обеспечивает очень линейный и четкий контроль над временем сгорания.Однако у стратегии HFS есть проблемы с достижением режима LTC из-за нагрузки на обработку воздуха, связанной с высокими скоростями рециркуляции выхлопных газов (EGR), которые требуются для снижения выбросов NO x почти до нулевого уровня.

    Автор: alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *