Рассчитать объем двигателя: Калькулятор расчета рабочего объёма двигателя внутреннего сгорания

Содержание

Расчет степени сжатия — автосервис

Степень сжатия  в двигателе автомобиля

Расчет степени сжатия и объема мотора

Расчет двигателя

Расчет степени сжатия и объема мотора

Степень сжатия в двигателе автомобиля — отношение объёма поршневого пространства цилиндра при положении поршня в нижней мёртвой точке (НМТ) (полный объем цилиндра) к объёму над поршневого пространства цилиндра при положении поршня в верхней мёртвой точке (ВМТ), то есть к объёму камеры сгорания.

 

где:

b = диаметр цилиндра;

s = ход поршня;

Vc = объём камеры сгорания, то есть, объём, занимаемый бензовоздушной смесью в конце такта сжатия, непосредственно перед поджиганием искрой; часто определяется не расчётом, а непосредственно измерением из-за сложной формы камеры сгорания.

1.2=15.8

Детонация в двигателе — изохорный само ускоряющийся процесс перехода горения топливовоздушной смеси в детонационный взрыв без совершения работы с переходом энергии сгорания топлива в температуру и давление газов. Фронт пламени распространяется со скоростью взрыва, то есть превышает скорость распространения звука в данной среде и приводит к сильным ударным нагрузкам на детали цилиндра — поршневой и кривошипно-шатунной групп и вызывает тем самым усиленный износ этих деталей. Высокая температура газов приводит к прогоранию днища поршней и обгоранию клапанов.

Понятие степени сжатия не следует путать с понятием компрессия, которое обозначает (при определённой конструктивно обусловленной степени сжатия) максимальное давление, создаваемое в цилиндре при движении поршня от нижней мёртвой точки (НМТ) до верхней мёртвой точки (ВМТ) (например: степень сжатия — 10:1, компрессия — 14 атм.).

О спортивных автомобилях

Двигатели гоночных или спортивных автомобилей, снабженными тюнингованными и спортивными автозапчастями, работающих на метаноле имеют степень сжатия, превышающую 15:1, в то время как в обычном карбюраторном двигателе внутреннего сгорания степень сжатия для неэтилированного бензина как правило, не превышает 11. 1:1.

В пятидесятые — шестидесятые годы одной из тенденций двигателестроения, особенно в Соединенных Штатах Америки, было повышение степени сжатия, которая к началу семидесятых на американских двигателях нередко достигала 11-13:1. Однако это требовало соответствующего бензина с высоким октановым числом, что в те годы могло быть получено лишь добавлением ядовитого тетраэтилсвинца. Введение в начале семидесятых годов экологических стандартов в большинстве стран привело к остановке роста и даже снижению степени сжатия на серийных двигателях.

В наше время для улучшения двигателя и автомобиля в целом используются тюнингованые автозапчасти и естественно они должны устанавливаться на профессиональных автосервисах.

Справочная и техническая информация о деталях двигателей

Характеристики автомобильных двигателей.

Двигатели внутреннего сгорания (ДВС) — это наиболее распространенный источник энергии для транспортных средств.

Этот двигатель вырабатывает мощность за счет преобразования химической энергии топлива в теплоту, которая затем преобразуется в механическую работу.
Преобразование химической энергии в теплоту осуществляется при сгорании топлива, а последующий переход теплоты в механическую работу осуществляется за счет внутренней энергии рабочего тела, которое, расширяясь, выполняет работу. В качестве рабочих тел в ДВС используются газы, давление которых возрастает за счет сжатия. Если процесс сгорание топлива происходит внутри цилиндра двигателя, этот процесс называется

внутренним сгоранием. Если процесс сгорания происходит вне цилиндра, то он называется внешним сгоранием. По количеству тактов различают двигатели с двухтактным и четырехтактным рабочим циклом. Двухтактный двигатель это двигатель, в котором присутствуют два рабочих такта: сжатие и расширение. В двухтактном двигателе весь рабочий цикл полностью происходит в течение одного оборота коленчатого вала. Газообмен происходит в конце такта расширения и в начале такта сжатия. Продолжительность впуска и выпуска определяется самим поршнем, когда он при перемещении вверх после НМТ последовательно перекрывает продувочные и выпускные окна. К недостаткам двухтактного двигателя относится повышенный расход топлива и высокий уровень выбросов, плохая работа на холостом ходу и повышенные тепловые нагрузки.

 Четырехтактный двигатель это двигатель с четырьмя рабочими циклами:

ВПУСК СЖАТИЕ РАБОЧИЙ ХОД ВЫПУСК
  • Впуск — впуск воздуха или топливной смеси. В процессе первого такта поршень опускается из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ) и через впускной клапан в цилиндр засасывается свежая топливно-воздушная смесь.
  • Сжатие — сжатие поршнем рабочей смеси в камере сгорания. Поршень идёт из НМТ в ВМТ, сжимая полученную рабочую смесь.
  • Рабочий ход
    (сгорание и расширение) – движение поршня при сгорании рабочей смеси; смесь поджигается искрой от свечи зажигания или давлением (дизель). Во время пути поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень.
  • Выпуск — очищение камеры сгорания от отработавших газов. При достижении поршнем ВМТ выпускной клапан закрывается, и цикл начинается сначала.

Преимуществом четырехтактного двигателя является высокий коэффициент наполнения во всем диапазоне частот вращения коленчатого вала, низкая чувствительность к падению давления в выпускной системе, возможность управления кривой наполнения путем подбора фаз газораспределения и конструкцией впускной системы. Почти все автомобильные двигатели это четырехтактные поршневые двигатели внутреннего сгорания. Они обладают множеством характеристик – такие как крутящий момент, мощность, степень сжатия, расход топлива, выброс вредных веществ и т. д., которые во многом зависят от их конструктивных особенностей.

Кратко мы разберем основные характеристики и отличия поршневых автомобильных двигателей внутреннего сгорания:

  • Тип (код) двигателя.

Каждый производитель автомобилей присваивает своим силовым агрегатам буквенно-цифровые коды, позволяющие подобрать запасные части в зависимости от комплектации конкретной модели автомобиля. Тип двигателя наносится методом выдавливания на отфрезерованный, технологический отлив блока цилиндров или выдавливается на специальной табличке, которая прикрепляется к блоку цилиндров. Как правило, там же содержится информация и о номере двигателя. Некоторые производители наносят эти данные на головку блока цилиндров (например, AUDI двигатель AAN). В подавляющем большинстве случаев можно прочесть нанесенные данные о типе двигателя, без подъемных механизмов или снятия агрегата с автомобиля.

Пример расположения площадки с выбитым типом двигателя Mitsubishi 4G64
  Пример расположения таблички
с типом двигателя MAN D 0226 MKF
  • Диаметр цилиндра ( D )

Диаметр цилиндра — это размер отверстия в блоке цилиндров (гильзе цилиндра), в котором поступательно двигается поршень. Это конструктивный параметр блока цилиндров влияющий на рабочий объем двигателя. Помимо этого от диаметра цилиндра зависит общая габаритная ширина и длинна двигателя. Размер указывается, как правило, в миллиметрах или дюймах с точностью до сотых долей. Данные размере номинального диаметра цилиндра указываются при комнатной температуре ( 20 градусов Цельсия). Измерения производятся нутромером или аналогичным по точности инструментом.

  • Ход поршня ( S )

Ход поршня — это расстояние между положением любой точки поршня в верхней мертвой точке (В. М.Т.) и положение поршня в нижней мертвой точке (Н.М.Т). Это конструктивный параметр коленчатого вала, влияющий на рабочий объем двигателя. Размер указывается, как правило, в миллиметрах или дюймах с точностью до сотых долей. Измерения производятся штангель-циркулем или аналогичным по точности инструментом. Как правило, измерения производятся непосредственно на коленчатом валу. От размера, хода поршня зависит габаритная высота двигателя .

  • Количество цилиндров двигателя ( z )

Количество цилиндров является важнейшей конструктивной характеристикой двигателя. В зависимости от количества цилиндров рассчитывается и проектируется и система охлаждения двигателя. Количество цилиндров самым прямым образом влияет на общие габаритные размеры и вес автомобиля. Например: c увеличением количества цилиндров при одном и том же литраже двигателя размеры его цилиндров уменьшаются. Это уменьшение вследствие увеличения отношения внутренней поверхности цилиндра к его объему сопровождается усилением охлаждения двигателя.

Уменьшение диаметра цилиндра позволяет создавать камеру сгорания улучшенной формы и вместе с обстоятельством усиления охлаждения позволяет производителем создавать более экономичные двигатели. Но есть и обратная сторона, увеличение количества цилиндров ведет к общему удорожанию силового агрегата. В современном автомобильном моторостроении получили распространение 2-х, 3-х , 4-х , 5-и , 6-и , 8-и , 10-и , 12-и , 16 –и цилиндровые двигатели.

  • Объем двигателя ( V )

Как правило, в справочниках и каталогах указывается рабочий объем двигателя. 

Рабочий объем двигателя ( VH(литраж двигателя) складывается из рабочих объемов всех цилиндров. То есть, это произведение рабочего объема одного цилиндра Vp на количество цилиндров Z. 

Рабочий объем цилиндра ( Vp ) — это пространство, которое освобождает поршень при перемещении из верхней мертвой точки (ВМТ) к нижней мертвой точки (НМТ).

Полный объем цилиндра ( Vo ) — это сумма рабочего объема одного цилиндра Vp и объема одной камеры сгорания в головке блока Vk.

Объем камеры сгорания ( Vk ) — объем полости цилиндра и камеры сгорания в головке блока цилиндров над поршнем, находящимся в верхней мертвой точке (ВМТ) — т.е. в крайнем положении и в наибольшем удалении от коленчатого вала. Параметр, прямо влияющий на степень сжатия двигателя. В гаражных условиях измерение камеры сгорания производится с помощью измерения объема жидкости заполняющего камеру.

  • Количество клапанов на один цилиндр

В современном автомобилестроении все чаще и чаще применяются двигатели с мульти клапанным газораспределительным механизмом. Увеличение количества клапанов является важнейшим параметром позволяющим получать большую мощность при одном и том же объеме двигателя, за счет увеличения объема смеси или воздуха попадающего в цилиндры на такте впуска. Увеличение количества клапанов позволяет получать, лучшее наполнение цилиндров свежей рабочей смесью и быстрее освобождать камеру сгорания от отработанных газов.

По типу топлива двигатели разделяются на следующие группы:

Бензиновые двигатели (Petrol) — имеют принудительное зажигание топливовоздушной смеси искровыми свечами. Принципиально различаются по типу системы питания:
В карбюраторных системах питания смешение бензина с воздухом начинается в карбюраторе и продолжается во впускном трубопроводе. В настоящее время выпуск таких двигателей практически прекращено из-за высокого расхода топлива и несоответствия предъявляемым современным экологическим требованиям.
Во впрысковых ( инжекторных ) двигателях топливо может распылятся одним инжектором (форсункой) в общий впускной трубопровод (центральный, моновпрыск) или несколькими инжекторами перед впускными клапанами каждого цилиндра двигателя (распределенный впрыск). В этих двигателях, возможно, небольшое увеличение максимальной мощности и снижение расхода топлива и уменьшение токсичности отработавших газов за счет рассчитанной дозировки топлива блоком электронного управления двигателем;
Двигатели с непосредственным впрыскиванием бензина в камеру сгорания , который подается в цилиндр несколькими порциями, что оптимизирует процесс сгорания, позволяет двигателю работать на обедненных смесях, соответственно максимально уменьшается расход бензина и выброс вредных веществ в атмосферу.

Дизельные двигатели (Diesel) — поршневые двигатели внутреннего сгорания с внутренним смесеобразованием, в которых воспламенение смеси дизельного топлива с воздухом происходит от возрастания ее температуры при сжатии. По сравнению с бензиновыми, дизельные двигатели обладают лучшей экономичностью (примерно на 15-20%) благодаря более чем в два раза большей степени сжатия, значительно улучшающей процессы горения топливо — воздушной смеси. Неоспоримым достоинством дизелей является конструктивное отсутствие дроссельной заслонки, которая создает сопротивление движению воздуха на впуске и в связи с этим увеличивает расход топлива. Максимальный крутящий момент дизели развивают на меньшей частоте вращения коленчатого вала.

Гибридные двигатели — двигатели совмещающие характеристики дизеля и двигателя с искровым зажиганием.

  • Компоновка поршневых двигателей (тип расположения)

Значительное разнообразие компоновок поршневых двигателей связано с их размещением в автомобиле и необходимостью уместить определенное количество цилиндров в ограниченном объеме моторного отсека.

    • Рядный двигатель (R) — компоновка, при которой все цилиндры находятся в одной плоскости. Применяется для небольшого количества цилиндров (R2, R3, R4, R5 и R6). Рядный шестицилиндровый двигатель легче всего поддается уравновешиванию (снижению вибраций), но обладает значительной длиной (рис. 1).
    • V-образный двигатель(V) — цилиндры у него расположены в двух плоскостях, как бы образуя латинскую букву V. Угол между этими плоскостями называют углом развала двигателя. V-образные двигатели выпускаются, по понятным причинам, только с четным количеством цилиндров. Такая компоновка позволяет значительно уменьшить длину двигателя, но увеличивает его ширину. Наиболее распространенными являются двигатели с компоновкой V6 и V8, реже встречаются V4, V10, V12, V16. (рис. 2)
    • Оппозитный двигатель имеет угол развала 180°, благодаря этому у него высота агрегата наименьшая среди всех компоновок. Противолежащие друг другу цилиндры располагаются горизонтально. Как правило, выпускаются 4-х и 6-и цилиндровые варианты оппозитных двигателей. (рис. 3)
    • VR-образный двигатель — обладает небольшим углом развала (порядка 15°), что позволяет уменьшить как продольный, так и поперечный размеры агрегата. Получили распространение компоновки VR5 и VR6. (рис. 4)
    • W-образный двигатель имеет два варианта компоновки — три ряда цилиндров с большим углом развала (рис. 5) или как бы две VR-компоновки (рис. 6). Обеспечивает хорошую компактность даже при большом количестве цилиндров. В настоящее время серийно выпускают W8 и W12.

    В современной мировой практике для уточнения типа клапанного механизма применяются следующие сокращения:

      • OHV     обозначает верхнее расположение клапанов в двигателе. 
      • OHC     обозначает верхнее расположение распредвала.
      • SOHC    обозначает один распределительный вал верхнего расположения.
      • DOHC    обозначает конструкцию газораспределительного механизма с двумя распределительными валами расположенными сверху.
      • Степень сжатия двигателя, компрессия

      Понятие степени сжатия не следует путать с понятием «компрессия», которое указывает максимальное давление создаваемое поршнем в цилиндре при данной степени сжатия (например: степень сжатия для двигателя 10:1, значение «компрессии» при этом соответствует значению в 14 атмосфер).

        • Степень сжатия ( ε ) — отношение полного объема цилиндра двигателя к объему камеры сгорания. Этот параметр показывает, во сколько раз уменьшается полный объем цилиндра при перемещении поршня из нижней мертвой точки в верхнюю мертвую точку. Для бензиновых двигателей степень сжатия определяет октановое число применяемого топлива. Для бензиновых двигателей значение степени сжатия определяется в пределах от 8:1 до 12:1, а для дизельных двигателей в пределах от 16:1 до 23:1. Общая мировая тенденция в двигателестроении это увеличение степени сжатия как у бензиновых так и у дизельных двигателей, вызванное ужесточением экологических норм.

          • Компрессия (давление в цилиндре в конце такта сжатия) ( p c ) является одним из показателей технического состояния (изношенности) цилиндропоршневой группы и клапанов. У двигателей с серьезным пробегом, как правило, уже имеется неравномерный износ гильзы цилиндра и поршневых колец, в связи, с чем поршневое кольцо не плотно прилегает к поверхности цилиндра. Также изнашивается клапанный механизм, а точнее стержень клапана и направляющая втулка клапана. Вследствие перечисленных причин возникают потери герметичности камеры сгорания.

          Где:
          p0 — это начальное давление в цилиндре в начале такта сжатия.
          ε— степень сжатия двигателя.

          • Мощность двигателя ( P )
          • Мощность — это физическая величина, равная отношению произведенной работы или произошедшего изменения энергии к промежутку времени, в течение которого была произведена работа или происходило изменение энергии. Обычно мощность измеряется в Лошадиных силах (Horse Power – англ). Значение 1 л.с. (HP) = 0,735 кВт) или в Киловаттах (1 кВ) = 1,36 л.с. (HP). Максимальное значение мощности и максимальный крутящий момент достигаются при различных оборотах двигателя.

          Где:
          M – это крутящий момент ( Н * м )
          ω — угловая скорость ( рад / сек )
          n — частота вращения коленчатого вала двигателя. ( мин -1)

          Как правило, во всех справочных автомобильных источниках, а также технических документации на транспортное средство, указывается эффективная мощность.

          • Эффективная мощность двигателя — это мощность, снимаемая с коленчатого вала двигателя. Не путать с номинальной мощностью двигателя.

          Где:
          VH – рабочий объем двигателя ( см 3)
          pe — среднее эффективное давление ( бар )
          n — частота вращения коленчатого вала двигателя. ( мин -1)
          K — тактовый коэффициент ( K=1 для двухтактного ; K= 2 для четырехтактного двигателя )

          • Номинальная мощность двигателя — это гарантируемая изготовителем мощность двигателя в режиме полного дросселя и заданной частоты вращения, то есть, при работе двигателя на номинальной частоте вращения при полной подаче топлива.
          • Охлаждение двигателя

          Чтобы избежать тепловых перегрузок, сгорание смазочного масла на направляющей поверхности поршня и неуправляемого сгорания из-за перегрева отдельных деталей, все части двигателя располагаемые вокруг камеры сгорания должны интенсивно охлаждаться. Используются две принципиальные схемы охлаждения: 

            • Непосредственное воздушное охлаждение. Охлаждающий воздух напрямую контактирует с нагретыми частями двигателя и обеспечивает отвод от них теплоты. В основе способа лежит принцип пропуска воздушного потока через оребренную охлаждаемую поверхность. Преимущества: надежность и почти полное отсутствие технического обслуживания. Удорожание стоимости отдельных деталей.
            • Непрямое (жидкостное или водяное) охлаждение, т.к. вода или другие охлаждающие жидкости обладают высокой теплоемкостью и обеспечивают эффективный отвод теплоты от нагретых поверхностей, большинство современных двигателей имеют жидкостные системы охлаждения. Система содержит замкнутых охлаждаемый контур, позволяющий применять антикоррозионные и низкозамерзающие присадки. Охлаждающая жидкость принудительно прокачивается насосом через двигатель и охлаждающий радиатор.
          • Система питания двигателя

          Двигатели внутреннего сгорания выпускаются с различными системами питания, самые известные из них:

          Система Ecotronic  это система электронного управления работой карбюратора состоящая из дроссельной и воздушной заслонок, поплавковой камеры, системы холостого хода, переходной системы и системы управления подачей воздуха на холостом ходу. Двигатели с этой системой являются более экономичными по сравнению с карбюраторными, но уступают впрысковым двигателям.

          Система Mono — Jetronic это электронно-управляемая одноточечная система центрального впрыска высокого давления, особенностью, которой является наличие топливной форсунки центрально расположения, работой которого управляет электромагнитный клапан. Распределение топлива по цилиндрам осуществляется во впускном коллекторе. Различные датчики контролируют все основные рабочие характеристики двигателя, они используются для расчета управляющих сигналов для форсунок и других исполнительных устройств системы.

          Система K- Jetronic — это электронно-управляемая система распределенного впрыска топлива. Она является механической системой, которая не требует применения топливного насоса с приводом от двигателя. Она осуществляет непрерывное дозирование топлива пропорционально количеству воздуха, всасываемого при такте впуска. Так как система производит прямое измерение расхода воздуха, она может учитывать изменения в работе двигателя, что позволяет использовать ее вместе с оборудованием для снижения токсичности отработавших газов.

          Система KE- Jetronic — это электронно-управляемая система распределенного впрыска топлива. Она является усовершенствованным вариантом системы K-Jetronic. Она содержит электронный блок управления для повышения гибкости работы и обеспечения дополнительных функций. Дополнительными компонентами системы являются: датчик расхода всасываемого в цилиндры воздуха; исполнительный механизм регулирования качества рабочей смеси; регулятор давления, поддерживающий постоянство давления в системе и обеспечивающий прекращение подачи топлива при выключении двигателя.

          Система L- Jetronic  это электронно-управляемая система распределенного впрыска топлива. Она сочетает в себе преимущества систем с непосредственным измерением расхода воздуха и возможности, представляемые электронными устройствами. Также как система K-Jetronic данная система распознает изменения в условиях работы двигателя (износ, нагарообразование в камере сгорания, изменение в зазорах клапанов), что обеспечивает постоянный оптимальный состав отработавших газов.

          Система L2- Jetronic — это электронно-управляемая система распределенного впрыска топлива. Эта система обладает дополнительными функциями по сравнению с теми, которые предлагает аналоговое устройство L-Jetronic.

          Система LH- Jetronic  схожа с L- Jetronic , различие заключается в методах измерения расхода всасываемого воздуха, так как в системе LH- Jetronic используется тепловой измеритель массового расхода воздуха. Поэтому результаты не зависят от плотности воздуха, которая изменяется в зависимости температуры и давления. 

          Система L3-Jetronic обладает дополнительными функциями по сравнению с теми, которые предлагает аналоговое устройство L-Jetronic. В электронном блоке управления системы L-Jetronic применяется цифровая обработка для регулирования качества смеси на базе анализа зависимости нагрузка / частота вращения коленчатого вала двигателя. 

          Система Motronic состоит из ряда подсистем. Принцип системы основан на том что зажигание и впрыск топлива объединены в одну систему. И поэтому отдельные элементы системы обладают повышенной гибкостью и возможностью управлять огромным количеством характеристик работы двигателя. 

          Система ME-Motronic эта система объединяет в себе систему впрыска топлива LE2-Jetronic , в которой помимо клапана дополнительной подачи воздуха в дополнительном воздушном канале, имеется повторный регулятор холостого хода, и систему полностью электронного зажигания VSZ.

          Система Mono-Motronic является скомбинированной системой зажигания и впрыска топлива на базе дискретного центрального впрыска топлива Mono-Jetronic.  

          Система KE-Motronic  является комбинированной системой зажигания и впрыска топлива на базе непрерывного впрыска топлива KE-Jetronic. 

          Система Sport-Motronic  является усовершенствованной комбинированной системой зажигания и впрыска топлива обладает повышенной гибкостью и позволяет эксплуатировать двигатель в условиях с максимальной скоростной нагрузкой. 

          Система впрыска CR (Common Rail) — это система питания дизельного двигателя, это так называемая аккумуляторная топливная система, которая делает возможным объединение системы впрыскивания топлива дизеля с различными дистанционно выполняемыми функциями и в тоже время позволяют повышать точность управления процессом сгорания топлива. Отличительная характеристика системы с общим трубопроводом заключается в разделении узла, создающего давление и узла впрыскивания. Это позволяет повысить давление впрыскивания топлива.

          • Количество коренных опор

          Количество коренных опор это параметр, влияющий на жесткость блока и на сопротивление различным нагрузкам коленчатого вала. Количеству коренных опор соответствует количество коренных подшипников скольжения. Количество шатунных подшипников скольжения равняется количеству цилиндров двигателя. 

          • Привод распредвала

          В мировом автомобилестроении получили распространение два типа привода распределительных валов:

            • Ременной привод — это привод, осуществляемый с помощью эластичного, но прочного ремня, имеющего поперечные насечки (зубчатый ремень) для улучшения зацепления. Преимуществом ременного привода является невысокая шумность работы, простота конструкции, и как следствие меньшая стоимость и невысокая масса узлов газораспределительного механизма.
            • Цепной привод — это привод, осуществляемый с помощью металлической цепи, которая своими звеньями приводит вращение зубчатых шестерен на коленчатом валу и распредвала. Основным преимуществом цепного привода является длительный ( по сравнению с ременным приводом) срок службы и повышенная надежность работы газораспределительного механизма.

          Расчет объема цилиндра двигателя: советы, объяснения, формулы

          Как известно, объем двигателя автомобиля представляет собой сумму объемов всех его цилиндров. Однако формула, позволяющая рассчитать объем цилиндра, публикуется в различных вариантах, что порой сбивает с толку, особенно неопытных водителей. И все же, независимо от применяемого варианта, принцип расчета во всех случаях остается одним и тем же.

          Сколько тепловоздушной смеси способен пропустить за один раз цилиндр двигателя? Сразу стоит отметить, что чем больше, тем выше будет крутящий момент, а также мощность мотора. Что значит «за один раз»? Четырехтактный мотор совершает полный цикл за 2 оборота коленчатого вала, то есть происходят впуск, сжатие, рабочий ход и выпуск. Так что 2 оборота или 4 такта считаются за один раз.

          Расчет объема цилиндра

          Объем одного цилиндра двигателя равняется произведению площади основания на высоту. Эта формула известна всем еще со школы.

          Измеряется данная величина в кубических метрах или сантиметрах либо в литрах. 1000 см3 равняется 1 литру. При указании объема мотора в литрах нужно проводить округление до одной цифры после запятой. К примеру, если объем двигателя составляет 1486 см3, то при переводе в литры его нужно обозначать как 1,5 литра; если объем равен 2526 см3, то его следует записать как 2,5 литра. Литраж цилиндров силовых агрегатов автомобилей отличается.

          Понятие рабочего объема цилиндра

          Рабочий объем цилиндра представляет собой объем между крайними позициями движения поршня. Он наполняется горючей тепловоздушной смесью во время ее впускания при движении поршня из верхней крайней позиции в нижнюю. Подходя к верхней мертвой позиции, поршень оставляет свободный объем – камеру сгорания, или сжатия. Чтобы рассчитать объем цилиндра полностью, нужно суммировать объем камер и рабочий объем.

          Уровень сжатия – это величина, которая определяется как частное полного деления в одном цилиндре и объема камеры сгорания. Этот параметр определяет степень сжатия горючей смеси в цилиндре. От нее зависит мощность двигателя, ведь чем выше уровень сжатия, тем сильнее сгорающая смесь давит на поршень.

          Повышение уровня сжатия – дело выгодное, поскольку в этом случае порция топлива может сделать больше полезной работы. Однако если уровень сжатия увеличить чрезмерно, рабочая смесь может самовоспламеняться или сгорать слишком быстро, а топливо детонирует. В результате быстрого сгорания рабочей смеси силовой агрегат работает неустойчиво.

          Детонацию можно определить по резким постукиваниям, уменьшению мощности двигателя и густому черному дыму из выхлопной трубы. Проектировщики автомобилей постоянно ищут способы устранения детонации топлива при повышении степени сжатия. Уровень сжатия определяет необходимость использовать конкретный сорт топлива.

          На увеличение мощности мотора влияет увеличение количества оборотов коленчатого вала за одну минуту. Но и здесь есть свои препятствия. Это нехватка времени для попадания горючей смеси внутрь цилиндра, сложность удаления отработанных газов, а также чрезмерное ускорение работы частей и механизмов, ведущее к их быстрому износу.

          Для преодоления этих препятствий конструкторы увеличивают количество оборотов коленчатого вала. Для многоцилиндровых силовых агрегатов производят расчет объема цилиндра, после чего эти объемы суммируют, получая литраж мотора. Повышение мощности двигателя является следствием увеличения его литража. А параметр этот определяется классом транспортного средства.

          Непостоянный рабочий объем

          Обеспечение непостоянного рабочего объема цилиндра является насущной задачей. Для достижения такого эффекта применяется технология автоматической остановки части цилиндров при неполной нагрузке двигателя. Такая система уже используется в некоторых моделях пикапов и внедорожников, экономия топлива при этом составляет в среднем около 20%.

          Есть и специальные двигатели, в которых применяется механическая трансформация рабочего хода поршня. Однако они пока еще находятся на стадии разработки. Стоит отметить, что двигатели внутреннего сгорания с непостоянным рабочим объемом цилиндров используются в качестве лабораторного оборудования, позволяя устанавливать «моторным способом» октановое число бензина.

          Онлайн-калкулятор

          Определение объема цилиндра онлайн калькулятором – метод, пользующийся популярностью у автомобилистов. Для расчета можно воспользоваться и обычным математическим калькулятором, который позволяет определить объем цилиндра по имеющимся параметрам.

          Рассчитать объем цилиндра можно через:

          •  радиус основания и высоту, при этом высота равняется ходу поршня;
          •  площадь основания и высоту.

          Но есть и более сложные калькуляторы, обладающие расширенным набором функций. Они позволяют рассчитывать не только объем мотора, но и степень сжатия. Для вычислений необходимы значения следующих параметров:

          • длину шатуна;
          • ход поршня;
          • недоход поршня;
          • диаметр цилиндра;
          • объем поршневой камеры;
          • толщину и диаметр прокладки;
          • объем камеры в ГБЦ;
          • количество цилиндров.

          Перед тем, как посчитать объем цилиндра или всего двигателя либо вычислить уровень сжатия, следует уточнить и записать все вышеперечисленные параметры. У новичков с этим могут возникнуть сложности, поэтому придется проявить настойчивость.

          Код ТН ВЭД 8703605991. Автомобили прочие, новые, с рабочим объемом цилиндров двигателя внутреннего сгорания более 1800 см3, но не более 2300 см3, у которых мощность двигателя внутр. сгорания больше максимальной 30-минутной мощности электрического двигателя. Товарная номенклатура внешнеэкономической деятельности ЕАЭС

          Письмо 01-11/74405 от 29. 12.2020 ФТС России (Ставки акцизов по ввозимым подакцизным товарам, коды вида платежа и КБК)

          1418 руб/л.с. — Легковые: С ДВИГАТЕЛЕМ..более 300 кВт (400 лс)
          Письмо 01-11/74405 от 29.12.2020 ФТС России (Ставки акцизов по ввозимым подакцизным товарам, коды вида платежа и КБК)

          1370 руб/л.с. — Легковые: С ДВИГАТЕЛЕМ..более 225 кВт (300 лс)
          Письмо 01-11/74405 от 29.12.2020 ФТС России (Ставки акцизов по ввозимым подакцизным товарам, коды вида платежа и КБК)

          804 руб/л.с. — Легковые: С ДВИГАТЕЛЕМ..более 150 кВт (200 лс)
          Письмо 01-11/74405 от 29.12.2020 ФТС России (Ставки акцизов по ввозимым подакцизным товарам, коды вида платежа и КБК)

          491 руб/л.с. — Легковые с ДВИГАТЕЛЕМ..более 112,5кВт(150лс)
          Письмо 01-11/74405 от 29.12.2020 ФТС России (Ставки акцизов по ввозимым подакцизным товарам, коды вида платежа и КБК)

          51 руб/л. с. — Легковые ПРОЧИЕ,С ДВИГАТЕЛЕМ..более 67,5кВт (90лс)
          Письмо 01-11/74405 от 29.12.2020 ФТС России (Ставки акцизов по ввозимым подакцизным товарам, коды вида платежа и КБК)

          Не облагается- Легковые с двигателем до 67,5кВт (90лс)
          Письмо 01-11/74405 от 29.12.2020 ФТС России (Ставки акцизов по ввозимым подакцизным товарам, коды вида платежа и КБК)

          Не облагается- Прочие
          Письмо 01-11/74405 от 29.12.2020 ФТС России (Ставки акцизов по ввозимым подакцизным товарам, коды вида платежа и КБК)

          Расход топлива от объема двигателя, зависимость, как рассчитать

          Расход топлива и объем двигателя

          • Многих автолюбителей волнует вопрос – как связаны расход топлива и объем двигателя. Казалось было логично, что если больше объем двигателя (например – 2,0 или 2,5 литра), то тем и расход больше! А вот не всегда это так, бывает что двигатель объемом в 1,5 литра «кушает» больше чем двигатель объемом в 2,0 литра. Почему так происходит?

          Кратко это можно пояснить следующим изображением, но далее мы разъясним более подробно.


          Итак, расход топлива и объем двигателя.

          • В мозге рисуется логичная прямая: чем больше объем – тем больше в этот двигатель поместится топлива, а соответственно и расход будет намного выше. Но почему практика иногда показывает обратную картину? Например, двигатель современного автомобиля с объемом в 2,0 литра имеет расход (на механике около 7-8 литров, взять тот же Skyactiv от Mazda), а вот автомобиль не совсем свежего отечественного производителя с двигателем в 1,5 литра будет иметь расход в 8 – 9 литров. Так где же логика?

          Все зависит от множества факторов:

          1) Технологичность.

          Первая причина это технологичность двигателя, автомобили очень быстро эволюционируют, а особенно сильно эволюционируют двигатели, становятся более мощными и более экономичными. Но как такое возможно? Все просто появляются новые технологии, которые позволяют увеличить мощность и уменьшить расход топлива. Простые примеры это 16 клапанов вместо 8 (быстрее впрыск топлива и отвод отработанных газов), или же инжектор вместо карбюратора (инжектор практически никогда не перельет топлива и не зальет свечи в отличие от карбюратора), также появился многоточечный впрыск топлива в цилиндры и т.д. В общем сейчас существует очень много технологий которые на механическом уровне позволяют экономить двигателю топливо, без потери мощности.

          2) Прошивки.

          Не секрет что сейчас, в «инжекторных» автомобилях можно менять программу прошивки блока ЭБУ (мозга двигателя). Автомобиль при помощи таких прошивках может быть очень экономичный! При мне прошивали 2,0 литровый FORD FOCUS, и достигали расхода в 7 литров по городу. НО при таких «экономичных» прошивках страдает мощность двигателя, то есть автомобиль получается «задушенный», с места с «пробуксоном» на нем не тронешься. Правда можно поставить и «мощную» прошивку тут все будет наоборот, расход увеличится, причем многократно, но и увеличится мощность также многократно. Тут нужно выбирать, что для вас нужно.

          3) Стиль езды.

          Тут как говорится, можно экономить – ездить спокойно, а можно топить педаль в пол, соответственно и расход увеличится. От стиля езды расход очень сильно зависит. Например – у моего знакомого на KIA RIO в предыдущем поколении (механика), расход с двигателем 1,4 литра, летом 10 литров, но он выжимает из своего автомобиля все что можно, практически всегда крутит «двигатель»! А у меня с двигателем 1,6 литра и с автоматом расход топлива 9,0 литров на 100 километров (подробнее в статье – Chevrolet Aveo расход топлива). Хотя и двигатель мощнее и автомат.

          4) Техническая исправность автомобиля.

          Очень обширная тема, на расход может влиять очень многое. Если у вас элементарно давно не менялись воздушный и топливный фильтры, давно не чистилась топливная рейка, то расход топлива будет увеличен. Вполне может двигатель 1,6 литра (со старыми фильтрами) расходовать больше чем 2,0 литра (но со свежими фильтрами). Так что следим за фильтрами и меняем их вовремя.

          5) Тип трансмиссии.

          Следующим пунктом в нашей статье – расход топлива и объем двигателя, логично поговорить о типе трансмиссии. Тут думаю все понятно, механика и продвинутые автоматы (вариаторы, коробка DSG или автомат на шесть и более передач), будут расходовать меньше, чем старые автоматы на три – четыре передачи. Таким образом, если автомобиль с двигателем 1,4 литра укомплектован автоматом на 4 передачи, то он будет расходовать больше, чем автомобиль с двигателем 2,0 литра, но с вариатором или автоматом на 6-ть передач.

          6) Турбина или не турбина.

          Если взять два двигателя: – например обычный 1,4 литра и турбированный 1,6 литра. ТО второй 1,6 литра, не только будет намного экономичнее (экономия иногда достигает 20 %), но и намного мощнее и производительнее.

          7) Ошибочная экономия.

          Давайте реально подумаем – почему иногда двигатель 1,4 литра намного прожорливее, чем 1,6 литра или 2,0 литра? Все дело в мощности двигателя. Если взять один и тот же автомобиль, с одинаковой массой, но с разными двигателями (обычные, не турбированные), то получается. Чтобы достигнуть таких же характеристик разгона, двигателю 1,4 литра нужно работать в более высоких оборотах, а соответственно его практически всегда нужно будет раскручивать даже если нужно достигнуть 60 км/ч, иначе ваш автомобиль попросту не будет ехать. Если крутим двигатель больше, то и расход будет больше, это логично. Теперь двигатель 1,6 литра, он намного мощнее своего собрата, чтобы ему достигнуть 60 км/ч ему не нужно больших оборотов, он будет работать в среднем режиме, соответственно и расход топлива зашкаливать не будет.

          На этом все.

          Не нужно думать, что большие двигатели практически всегда это просто «убийцы» бензина, не всегда это так. Простой пример из своего жизненного опыта – есть два автомобиля Nissan Almera (1.6 литра, автомат) и Nissan Teana (2,5 литра, вариатор), расход у Nissan Almera практически такой же как и у Teana – 12 – 14 литров, а зимой Almera начала расходовать больше, примерно 14 литров, у Teana расход по бортовому компьютеру 13,1! 

          Понравилась статья? Поделись:

          Двигатели с изменяемой степенью сжатия: от Saab до Infiniti

          Все чаще звучат авторитетные мнения, что сейчас развитие двигателей внутреннего сгорания достигло наивысшего уровня и больше невозможно заметно улучшить их характеристики. Конструкторам остается заниматься ползучей модернизацией, шлифуя системы наддува и впрыска, а также добавляя все больше электроники. С этим не соглашаются японские инженеры. Свое слово сказала компания Infiniti, которая построила двигатель с изменяемой степенью сжатия. Разбираемся, в чем преимущества такого мотора, и какое у него будущее.

          В качестве вступления напомним, что степенью сжатия называют отношение объема над поршнем, находящимся в нижней «мертвой» точке, к объему, когда поршень находится в верхней.

          Компоненты / Новости

          Для бензиновых двигателей этот показатель составляет от 8 до 14, для дизелей — от 18 до 23.

          Степень сжатия задается конструкцией фиксировано. Рассчитывается она в зависимости от октанового числа применяемого бензина и наличия наддува.

          Возможность динамически изменять степень сжатия в зависимости от нагрузки позволяет поднять КПД турбированного мотора, добившись того, чтобы каждая порция топливовоздушной смеси сгорала при оптимальном сжатии.

          При малых нагрузках, когда смесь обедненная, используется максимальное сжатие, а в нагруженном режиме, когда бензина впрыскивается много и возможна детонация, мотор сжимает смесь минимально.

          Это позволяет не регулировать «назад» угол опережения зажигания, который остается в наиболее эффективной позиции для снятия мощности. Теоретически система изменения степени сжатия в ДВС позволяет до двух раз уменьшить рабочий объем мотора при сохранении тяговых и динамических характеристик.

          Схема двигателя с изменяемым объемом камеры сгорания и шатуны с системой подъема поршней

          Одной из первых появилась система с дополнительным поршнем в камере сгорания, который перемещаясь, изменял ее объем. Но сразу возник вопрос о размещении еще одной группы деталей в головке блока, где уже и так теснились распредвалы, клапаны, инжекторы и свечи зажигания. Притом нарушалась оптимальная конфигурация камеры сгорания, отчего топливо сжигалось неравномерно. Поэтому система так и осталась в стенах лабораторий. Не пошла дальше эксперимента и система с поршнями изменяемой высоты. Разрезные поршни были чрезмерно тяжелыми, притом сразу возникли конструктивные трудности с управлением высотой подъема крышки.

          Система подъема коленвала на эксцентриковых муфтах FEV Motorentechnik (слева) и траверсный механизм для изменения высоты подъема поршня

          Другие конструкторы пошли путем управления высотой подъема коленвала. В этой системе опорные шейки коленвала размещены в эксцентриковых муфтах, приводимых в действие через шестерни электромотором. Когда эксцентрики поворачиваются, коленвал поднимается или опускается, отчего, соответственно, меняется высота подъема поршней к головке блока, увеличивается или уменьшается объем камеры сгорания, и изменяется тем самым степень сжатия. Такой мотор показала в 2000 году немецкая компания FEV Motorentechnik. Система была интегрирована в турбированный четырехцилиндровый двигатель 1.8 л от концерна Volkswagen, где варьировала степень сжатия от 8 до 16. Мотор развивал мощность 218 л.с. и крутящий момент 300 Нм. До 2003 года двигатель испытывался на автомобиле Audi A6, но в серию не пошел.

          Не слишком удачливой оказалась и обратная система, также изменяющая высоту подъема поршней, но не за счет управления коленвалом, а путем подъема блока цилиндров. Действующий мотор подобной конструкции продемонстрировал в 2000 году Saab, и также тестировал его на модели 9-5, планируя запустить в серийное производство. Получивший название Saab Variable Compression (SVC) пятицилиндровый турбированный двигатель объемом 1,6 л, развивал мощность 225 л. с. и крутящий момент 305 Нм, при этом расход топлива при средних нагрузках снизился на 30%, а за счет регулируемой степени сжатия мотор мог без проблем потреблять любой бензин — от А-80 до А-98.

          Система двигателя Saab Variable Compression, в которой степень сжатия изменяется за счет отклонения верхней части блока цилиндров

          Задачу подъема блока цилиндров в Saab решили так: блок был разделен на две части — верхнюю с головкой и гильзами цилиндров, и нижнюю, где остался коленвал. Одной стороной верхняя часть была связана с нижней через шарнир, а на другой был установлен механизм с электроприводом, который, как крышку у сундука, приподнимал верхнюю часть на угол до 4 градусов. Диапазон степени сжатия при поднимании — опускании мог гибко варьироваться от 8 до 14. Для герметизации подвижной и неподвижной частей служил эластичный резиновый кожух, который оказался одним из самых слабых мест конструкции, вместе с шарнирами и подъемным механизмом. После приобретения Saab корпорацией General Motors американцы закрыли проект.

          Проект МСЕ-5 в котором применен механизм с рабочим и управляющим поршнями, связаными через зубчатое коромысло

          На рубеже веков свою конструкцию мотора с изменяемой степенью сжатия предложили и французские инженеры компании MCE-5 Development S.A. Показанный ими турбированный 1.5-литровый мотор, в котором степень сжатия могла варьироваться от 7 до 18, развивал мощность 220 л. с. и крутящий момент 420 Нм. Конструкция тут довольно сложная. Шатун разделен и снабжен наверху (в части, устанавливаемой на коленвал) зубчатым коромыслом. К нему примыкает другая часть шатуна от поршня, оконечник которой имеет зубчатую рейку. С другой стороной коромысла связана рейка управляющего поршня, приводимого в действие через систему смазки двигателя посредством специальных клапанов, каналов и электропривода. Когда управляющий поршень перемещается, он воздействует на коромысло и высота поднятия рабочего поршня изменяется. Двигатель экспериментально обкатывался на Peugeot 407, но автопроизводитель не заинтересовался данной системой.

          Теперь свое слово решили сказать конструкторы Infiniti, представив двигатель с технологией Variable Compression-Turbocharged (VC-T), позволяющей динамически изменять степень сжатия от 8 до 14. Японские инженеры применили траверсный механизм: сделали подвижное сочленение шатуна с его нижней шейкой, которую, в свою очередь, связали системой рычагов с приводом от электромотора. Получив команду от блока управления, электродвигатель перемещает тягу, система рычагов меняет положение, регулируя тем самым высоту подъема поршня и, соответственно, изменяя степень сжатия.

          Конструкция системы Variable Compression у мотора Infiniti VC-T: а - поршень, b - шатун, с - траверса, d - коленвал, е - электродвигатель, f - промежуточный вал, g - тяга. 

          За счет данной технологии двухлитровый бензиновый турбомотор Infiniti VC-T развивает мощность 270 л.с., оказываясь на 27% экономичнее других двухлитровых двигателей компании, имеющих постоянную степень сжатия. Японцы планируют запустить моторы VC-T в серийное производство в 2018 году, оснастив ими кроссовер QX50, а затем и другие модели.

          Заметим, что именно экономичность выступает сейчас основной целью разработки моторов с изменяемой степенью сжатия. При современном развитии технологий наддува и впрыска, нагнать мощности в моторе для конструкторов не составляет больших проблем. Другой вопрос: сколько бензина в супернадутом двигателе будет вылетать в трубу? Для обычных серийных моторов показатели расхода могут оказаться неприемлемы, что и выступает ограничителем для надувания мощности. Японские конструкторы решили этот барьер преодолеть. Как считают в компании Infiniti, их бензиновый двигатель VC-T, способен выступить как альтернатива современным турбированным дизелям, показывая тот же расход топлива при лучших характеристиках по мощности и более низкой токсичности выхлопа.

          Каков итог?

          Работы над двигателями с изменяемой степенью сжатия ведутся уже не один десяток лет — этим направлением занимались конструкторы Ford, Mercedes-Benz, Nissan, Peugeot и Volkswagen. Инженерами исследовательских институтов и компаний по обе стороны Атлантики получены тысячи патентов. Но пока ни один такой мотор не пошел в серийное производство.

          Не все гладко и у Infiniti. Как признаются сами разработчики мотора VC-T, у их детища пока остаются общие проблемы: возросла сложность и стоимость конструкции, не решены вопросы с вибрацией. Но японцы надеются доработать конструкцию и запустить ее в серийное производство. Если это произойдет, то будущим покупателям осталось только понять: сколько придется переплатить за новую технологию, насколько такой мотор будет надежен и сколько позволит экономить на топливе.

          Как рассчитать потребляемую мощность двигателя

          В этой статье мы разберем, что такое мощность трехфазного асинхронного двигателя и как ее рассчитать.

          Понятие мощности электродвигателя

          Мощность – пожалуй, самый важный параметр при выборе электродвигателя. Традиционно она указывается в киловаттах (кВт), у импортных моделей – в киловаттах и лошадиных силах (л.с., HP, Horse Power). Для справки: 1 л.с. приблизительно равна 0,75 кВт.

          На шильдике двигателя указана номинальная полезная (отдаваемая механическая) мощность. Это та мощность, которую двигатель может отдавать механической нагрузке с заявленными параметрами без перегрева. В формулах номинальная механическая мощность обозначается через Р2.

          Электрическая (потребляемая) мощность двигателя Р1 всегда больше отдаваемой Р2, поскольку в любом устройстве преобразования энергии существуют потери. Основные потери в электродвигателе – механические, обусловленные трением. Как известно из курса физики, потери в любом устройстве определяются через КПД (ƞ), который всегда менее 100%. В данном случае справедлива формула:

          Р2 = Р1 · ƞ

          КПД в двигателях зависит от номинальной мощности – у маломощных моделей он может быть менее 0,75, у мощных превышает 0,95. Приведенная формула справедлива для активной потребляемой мощности. Но, поскольку электродвигатель является активно-реактивной нагрузкой, для расчета полной потребляемой мощности S (с учетом реактивной составляющей) нужно учитывать реактивные потери. Реактивная составляющая выражается через коэффициент мощности (cosϕ). С её учетом формула номинальной мощности двигателя выглядит так:

          Р2 = Р1 · ƞ = S · ƞ · cosϕ

          Мощность и нагрев двигателя

          Номинальная мощность обычно указывается для температуры окружающей среды 40°С и ограничена предельной температурой нагрева. Поскольку самым слабым местом в двигателе с точки зрения перегрева является изоляция, мощность ограничивается классом изоляции обмотки статора. Например, для наиболее распространенного класса изоляции F допустимый нагрев составляет 155°С при температуре окружающей среды 40°С.

          В документации на электродвигатели приводятся данные, из которых видно, что номинальная мощность двигателя падает при повышении температуры окружающей среды. С другой стороны, при должном охлаждении двигатели могут длительное время работать на мощности выше номинала.

          Мы рассмотрели потребляемую и отдаваемую мощности, но следует сказать, что реальная рабочая потребляемая мощность P (мощность на валу двигателя в данный момент) всегда должна быть меньше номинальной:

          Р 2 1

          Это необходимо для предотвращения перегрева двигателя и наличия запаса по перегрузке. Кратковременные перегрузки допустимы, но они ограничены прежде всего нагревом двигателя. Защиту двигателя по перегрузке также желательно устанавливать не по номинальному току (который прямо пропорционален мощности), а исходя из реального рабочего тока.

          Современные производители в основном выпускают двигатели из ряда номиналов: 1,5, 2,2, 5,5, 7,5, 11, 15, 18,5, 22 кВт и т.д.

          Расчет мощности двигателя на основе измерений

          На практике мощность двигателя можно рассчитать, прежде всего, исходя из рабочего тока. Ток измеряется токовыми клещами в максимальном рабочем режиме, когда рабочая мощность приближается к номинальной. При этом температура корпуса двигателя может превышать 100 °С, в зависимости от класса нагревостойкости изоляции.

          Измеренный ток подставляем в формулу для расчета реальной механической мощности на валу:

          Р = 1,73 · U · I · cosϕ · ƞ, где

          • U – напряжение питания (380 или 220 В, в зависимости от схемы подключения – «звезда» или «треугольник»),
          • I – измеренный ток,
          • cosϕ и ƞ – коэффициент мощности и КПД, значения которых можно принять равными 0,8 для маломощных двигателей (менее 5,5 кВт) или 0,9 для двигателей мощностью более 15 кВт.

          Если нужно найти номинальную мощность двигателя, то полученный результат округляем в бОльшую сторону до ближайшего значения из ряда номиналов.

          Р2 > Р

          Если необходимо рассчитать потребляемую активную мощность, используем следующую формулу:

          Р1 = 1,73 · U · I · ƞ

          Именно активную мощность измеряют счетчики электроэнергии. В промышленности для измерения реактивной (и полной мощности S) применяют дополнительное оборудование. При данном способе можно не использовать приведенную формулу, а поступить проще – если двигатель подключен в «звезду», измеренное значение тока умножаем на 2 и получаем приблизительную мощность в кВт.

          Расчет мощности при помощи счетчика электроэнергии

          Этот способ прост и не требует дополнительных инструментов и знаний. Достаточно подключить двигатель через счетчик (трехфазный узел учета) и узнать разницу показаний за строго определенное время. Например, при работе двигателя в течении часа разница показаний счетчика будет численно равна активной мощности двигателя (Р1). Но чтобы получить номинальную мощность Р2, нужно воспользоваться приведенной выше формулой.

          Другие полезные материалы:
          Степени защиты IP
          Трехфазный двигатель в однофазной сети
          Типичные неисправности электродвигателей

          Калькулятор рабочего объема двигателя

          — Объем двигателя

          Калькулятор рабочего объема двигателя помогает определить объем или значение см3 для двигателя. Этот калькулятор двигателя куб.см рассчитает объем двигателя, используя размеры цилиндра и поршневой системы. Вы когда-нибудь задумывались, что означает куб.см или кубических дюймов рядом с двигателем или как найти куб.см двигателя? Прокрутите вниз и прочтите наше руководство, чтобы лучше понять.Как только вы узнаете мощность двигателя, вы также можете рассчитать степень его сжатия.

          Что означает cc в двигателе — Что такое cc в номенклатуре двигателей?

          Вы, должно быть, читали о двигателе 2 литра или мотоцикле 100 куб.см . куб.см в двигателе относится к двигателю рабочим объемом в кубических сантиметрах. Эта производительность оценивается на основе объема , охватываемого поршнем , то есть объема цилиндра. Этот параметр указывает мощность, вырабатываемую двигателем, и количество потребляемого топлива.Например, типичный двигатель гоночного автомобиля Formula One имеет объем 1600 куб.см или 1,6 л . Объем двигателя измеряется в кубических сантиметрах (куб. См) и кубических дюймах (куб. Дюймах) . Для двигателя с цилиндрами N , каждый из которых имеет диаметр отверстия D и глубину L , рабочий объем двигателя может быть записан как:

          V = N * L * π * D 2 /4

          Глубина цилиндра L также может быть записана как длина хода.Длина хода — это расстояние, пройденное поршнем внутри цилиндра. Интересно, если вы заметите термин:

          π * D 2 * L / 4 = Объем

          Следовательно, рабочий объем двигателя может обозначаться также как:

          Объем двигателя = Число цилиндров * Объем одного цилиндра Система поршневого цилиндра с объемом цилиндра (V)

          Как пользоваться калькулятором рабочего объема двигателя?

          Выполните следующие действия, чтобы узнать, как определить рабочий объем двигателя с помощью нашего оригинального калькулятора рабочего объема двигателя:

          • Шаг 1: Подсчитайте количество цилиндров двигателя, N .

          • Шаг 2: Введите диаметр отверстия D .

          • Шаг 3: Введите длину хода, L .

          • Шаг 4: Калькулятор объема двигателя вернет значение рабочего объема двигателя в кубических сантиметрах (куб. См) или кубических дюймах (куб. Дюймах) .

          Пример: использование калькулятора объема двигателя

          Рассчитайте объем цилиндрового двигателя 4 с внутренним диаметром 50 мм и длиной хода 250 мм в кубических дюймах.

          Дано, нет. цилиндров, Н = 4 ; посадочный диаметр D = 50 мм ; и длина хода L = 250 мм . Также для постановки задачи требуется объем двигателя в кубических дюймах. Давайте установим единицу для двигателя объемом на у.е. из .

          • Шаг 1: Определите количество цилиндров и введите соответствующее значение как N = 4 .

          • Шаг 2: Введите диаметр отверстия, D = 50 мм .

          • Шаг 3: Используйте длину хода, L = 250 мм .

          • Шаг 4: Калькулятор кубических дюймов двигателя теперь возвращает значение рабочего объема двигателя, например:

          V = 4 * 250 * π * 50 2 /4 = 1 963 495 мм³ ≡ 119,82 куб. дюймы

          В качестве альтернативы вы можете рассчитать диаметр цилиндра по длине хода, используя рабочий объем двигателя. Да! Калькулятор объема двигателя может работать в обратном направлении.Например, определим диаметр цилиндра для 2-цилиндрового двигателя рабочим объемом 200 куб. См, с длиной хода 150 мм.

          Дано, нет. цилиндров, Н = 2 ; длина хода, L = 150 мм ; и объем двигателя V = 200 куб. см .

          • Шаг 1: Введите объем двигателя V = 200 куб. См .

          • Шаг 2: Введите номер. цилиндра как 2 и длина хода как 150 мм .

          • Шаг 3: Калькулятор куб.см двигателя предоставит вам диаметр отверстия, который составляет 23,15 мм .

          Расчет производится как:

          D = √ ((4 * V) / (N * π * L)) = √ ((4 * 200000) / (2 * π * 150)) = 23,15 мм

          Что такое рабочий объем двигателя? объем двигателя восемь с …

          Рабочий объем двигателя — это общий объем цилиндров двигателя, сложенный вместе. Чтобы вычислить общий объем двигателя, вам нужно знать диаметр отверстия, который является диаметром каждого цилиндра, ход поршня, который проходит от нижней мертвой точки (НМТ) до верхней мертвой точки (ВМТ), и количество цилиндров в блоке двигателя.Общий объем, через который поршень проходит вверх и вниз, равен объему двигателя в кубических дюймах. Этот объем можно представить как объем правого кругового цилиндра. Одна из самых важных вещей, которые следует помнить при расчете рабочего объема поршня, заключается в том, что вы измеряете общий объем одного поршня и умножаете его на количество цилиндров двигателя.

          Чтобы рассчитать рабочий объем двигателя, вам необходимо использовать следующую формулу для измерения общего объема двигателя: Объем поршня = π x (Радиус x 2) x Ход x Число цилиндров.Вот пример формулы, используемой для образца двигателя: Диаметр цилиндра = 40 мм, Ход = 80 мм, Количество цилиндров = 4. Радиус = Диаметр цилиндра / 2 = 40 ÷ 2 = 20 мм. Расчет объема двигателя / поршня = π x (радиус) x 2 x ход x количество цилиндров = 3,14 x (20) x 2 x 80 x 4 = 40,192 мм. Двигателям обычно задается размер рабочего объема в сантиметрах, обычно называемый кубическими сантиметрами или сокращенно CC. Чтобы преобразовать ваш ответ в CC, разделите ответ на 1000 мм. В этом примере у вас будет 40 192 мм ÷ 1000 мм, что даст вам ответ 40.192 см или 40,192 куб. Некоторые двигатели могут измеряться в кубических сантиметрах или кубических дюймах. Чтобы преобразовать 40,192 см или куб. См в дюймы, все, что вам нужно сделать, это умножить 40,192 куб. См на 0,061 куб. Дюйм = 40,192 куб. Ответ будет 2,452 Ки.

          Объем двигателя можно изменить путем увеличения диаметра цилиндров, увеличения хода поршня или увеличения количества цилиндров в двигателе. Их можно изменить путем обработки отверстия двигателя большего размера и установки поршней большего размера или замены коленчатого вала для увеличения хода поршня, чтобы поршень двигался выше в ВМТ и ниже в НМТ.Чтобы увеличить количество цилиндров в двигателе, вам придется заменить двигатель с 4-х цилиндрового на 6- или 8-цилиндровый.

          Формулы

          Объем двигателя / рабочий объем

          Требуемая информация: 1. Диаметр цилиндра, 2. Ход коленчатого вала, 3. Количество цилиндров
          Расчет: 0,7854 x отверстие x отверстие x ход x количество цилиндров.
          Пример: Диаметр отверстия = 81 мм (8.1 см), ход = 77,6 мм (7,76 см), цилиндры = 4
          Решение: 0,7854 x 8,1 x 8,1 x 7,76 x 4 = 1599,5 куб. См

          В приведенном выше примере мы использовали сантиметры для вычисления вместимости в кубических сантиметрах.
          Чтобы найти смещение в кубических дюймах, просто замените измерения в дюймах:
          8,1 см = 3,189 дюйма и 7,76 см = 3,055 дюйма, получая 0,7854 x 3,189 дюйма x 3,189 дюйма x 3,055 дюйма x 4 = 97,6 куб. Дюйма.
          Для быстрого преобразования из cc на cu. дюймы разделить на 16.387, а от у.е. в cc. Умножить на 16,387


          Ход коленвала

          Требуемая информация: 1. Размер отверстия, 2. Объем двигателя, 3. Количество цилиндров
          Расчет: Разделите объем двигателя на: (0,7854 x диаметр отверстия x диаметр цилиндра x количество цилиндров)
          Пример: 4-цилиндровый двигатель объемом 1600 куб. См с диаметром цилиндра 81 мм
          Решение: 1600 ÷ (0,7854 х 8.1 x 8,1 x 4) = 1600 ÷ 206,12 = 7,76 см (77,6 мм)

          Степень сжатия

          Требуемая информация:
          1) Емкость ОДНОГО цилиндра
          2) Сжатый объем

          Объем цилиндра — это общий рабочий объем двигателя, разделенный на количество цилиндров.
          Например. 4-цилиндровый двигатель объемом 1600 куб. См = 400 куб. См на цилиндр.

          Сжатый объем — это область над днищем поршня, когда поршень находится в своей наивысшей точке или в верхней мертвой точке (ВМТ).
          Эта область включает:
          1) камеру сгорания (обычно в головке блока цилиндров, как показано, но также может быть в головке поршня),
          2) толщину прокладки головки,
          3) область между лицевой стороной блока цилиндров и головка поршня, обычно называемая «высотой деки».


          Процедура:
          Измерьте объем цилиндра и / или поршневой камеры с помощью подходящей бюретки, заполненной парафином. Вычислите объем прокладки и площадей по высоте и добавьте их к объему камеры, чтобы получить общий сжатый объем. Некоторые двигатели с неправильной формой днища поршня, особенно с выступами, могут быть трудными для количественной оценки с любой степенью точности. В таких случаях лучше всего измерять сжатую площадь с установленной головкой блока цилиндров.Убедитесь, что поршень находится в ВМТ, и закройте зазор между стенкой цилиндра и поршнем консистентной смазкой (это предотвратит просачивание через кольца, дающее ложные показания).
          Установите на место прокладку и головку блока цилиндров и измерьте объем через отверстие для свечи зажигания.
          ПРИМЕЧАНИЕ: При выполнении этой процедуры отверстие для свечи зажигания должно находиться в самой высокой точке.

          Расчет: (Объем цилиндра + сжатый объем) ÷ сжатый объем.
          Пример: 4-цилиндровый двигатель объемом 2000 куб. См со сжатым объемом 54 куб. См.
          Решение: Один цилиндр = 2000cc ÷ 4 = 500cc
          (500cc + 54cc) ÷ ​​54cc = 554cc ÷ 54 = 10.26 или 10,26: 1 степень сжатия

          Размер клапана

          Максимальный поток воздуха через любой клапан возникает, когда он поднимается на 25% своего диаметра. Например, для клапана 38 мм (1,5 дюйма) потребуется подъем не более 9,5 мм (0,375 дюйма), а для клапана 45 мм (1,770 дюйма) — подъем на 11,25 мм (0,443 дюйма) для достижения максимальной пропускной способности.

          Как рассчитать степень сжатия и рабочий объем двигателя

          При создании двигателя с нуля расчет степени сжатия (CR) является необходимым шагом по любому количеству причин, начиная от соблюдения правил гонок и заканчивая получением форы на старте. тюнинг.

          По определению, степень сжатия — это общий рабочий объем цилиндра с поршнем в нижней мертвой точке (НМТ), деленный на общий сжатый объем с поршнем в верхней мертвой точке (ВМТ). Вскоре мы обсудим процедуры и формулы для определения рабочего объема и объема сжатия; но сначала давайте рассмотрим последствия незнания CR двигателя. На степень сжатия существенно влияет объем зазора деки, расстояние между головкой поршня в ВМТ и высотой поверхности деки.Сначала установите поршень в ВМТ, затем обнулите циферблатный индикатор на поверхности деки блока цилиндров. Переместите индикатор в плоскость деки поршня, чтобы узнать, насколько далеко поршень находится ниже или выше деки блока. В этом примере это 0,005 дюйма. напишите номер на поршне в качестве проверки для облегчения сравнения.

          «Слишком слабое сжатие обычно приводит к неудовлетворенным ожиданиям производительности. На стороне высокого давления [слишком сильное сжатие] возникает больший риск при настройке и потенциальный отказ компонентов, если не используется должным образом лучшее топливо », — говорит Алан Стивенсон из JE Pistons.«В приложениях с принудительной индукцией (FI) ошибиться на низкой стороне намного безопаснее, чем испытать удачу на высокой стороне. Окно настройки расширяется и обеспечивает большую безопасность в случае возникновения проблем с давлением или подачей топлива, или даже в случае плохой партии газа. И, если мощности недостаточно, еще один-два фунта наддува легко восполнит разницу ».

          На объем зазора деки будут влиять высота деки блока, ход коленчатого вала, длина штока и высота сжатия поршней.Обратите внимание на то, как отверстие под палец находится дальше от головки поршня слева. Поршень с меньшей высотой сжатия справа позволяет использовать более длинные штоки, больший ход или меньшую высоту деки. Производитель поршня предоставит вам высоту сжатия для ваших расчетов.

          Ряд санкционирующих органов ограничивают степень сжатия двигателя в зависимости от класса или области применения. Если CR рассчитывается неправильно, гонщик может быть оштрафован за мошенничество, если судьи обнаружат, что он слишком высок.С другой стороны, если CR ниже допустимого максимума, гонщик теряет мощность. Даже если нет правил для CR, гонщик может быть ограничен определенным видом топлива. Знание CR обеспечит прочную основу для стратегии настройки.

          Для измерения объема камеры сгорания необходимы бюретка и специальные приспособления. Как и при измерении объема купола поршня, ключом является герметизация камеры прозрачной пластиной и измерение количества жидкости, необходимой для заполнения камеры.

          Для тех, кто не занимается гонками, неплохо знать и понимать данные, необходимые для расчета CR, особенно при создании двигателя с нуля. Например, при заказе поршней техническим представителям компании необходимо знать ряд факторов, чтобы обеспечить желаемую или, по крайней мере, безопасную степень сжатия. Если у вас есть использованный блок и вы не знаете высоту платформы, или вы приобрели набор головок и не знаете объем камеры сгорания, то вероятность возникновения проблем, упомянутых Стивенсоном, вполне вероятна.

          Чтобы рассчитать объем купола: сначала поместите поршень на измеренное расстояние в цилиндр, убедившись, что купол находится ниже деки. В этом примере поршень находится на 0,150 дюйма в отверстии. Рассчитайте выставленный объем цилиндра. Объем = (π) x (квадрат радиуса отверстия) x (открытая высота цилиндра). В этом примере диаметр отверстия (4,600 дюйма) и выступающего цилиндра 1,5 дюйма равен 40,9 куб. Используя бюретку и прозрачную пластину настила, заполните цилиндр жидкостью и отметьте, сколько было необходимо.Здесь было около 35,8 куб. Вычтите количество использованной жидкости из рассчитанного объема цилиндра. Разница в объеме купола.

          Делаем математику

          Раньше вычисление CR означало использование логарифмической линейки (очень давно) или работу с набором формул на портативном калькуляторе. Сегодня поиск онлайн-калькуляторов, которые быстро выдадут результаты, находится на расстоянии одного клика от Google. Но, как гласит старая пословица, компьютер хорош настолько, насколько хорош качество информации, которую он получает.

          Измерения, необходимые для определения CR:

          • Диаметр отверстия цилиндра
          • Длина хода коленчатого вала
          • Диаметр отверстия прокладки головки
          • Толщина сжатой прокладки головки
          • Объем камеры сгорания
          • Объем поршневого купола
          • Объем поршневого зазора деки

          В Интернете есть пара высокотехнологичных калькуляторов, которые требуют еще большего, например, длину штока и расстояние от первого компрессионного кольца до верха поршня.Последнее поможет обеспечить объем над верхним кольцом, но это измерение обычно не оказывает существенного влияния на окончательный расчет и используется только в очень важных приложениях.

          Большинство прокладок, таких как этот блок JE Pro Seal, предоставляют значения объема прокладки и толщины в сжатом состоянии, чтобы помочь вычислить CR.

          Онлайн-калькуляторы обычно предлагают выбор ввода всех измерений в дюймах или метрических единицах, за исключением объемов камеры сгорания и купола поршня, которые всегда вводятся в кубических сантиметрах или кубических сантиметрах.

          Многие из сегодняшних поставщиков послепродажного обслуживания предоставляют свои соответствующие размеры для стандартных деталей, что является более чем половиной успеха в быстром определении CR вашего двигателя с разумной точностью.

          «Слишком много людей зацикливаются на десятых долях балла CR, но не понимают влияния гидродинамики, например, из-за правильного выбора кулачка и фазировки», — говорит Стивенсон. «Если все остальное хорошо согласовано, разница в 0,1 коэффициента будет незначительной для всего, что не относится к профессиональным гонкам с максимальными усилиями.”

          Это декорировано?

          Высота настила — это единственное измерение, которое изготовитель двигателя должен произвести для точного расчета. Даже с новым блоком цилиндров, новыми шатунами и новыми поршнями может быть значительная разница, если сложить высоту платформы и попытаться вычесть половину хода, длины штока и высоты сжатия. И если блок используется, а вы не уверены в его истории, есть вероятность, что поверхность его могла быть фрезерована, что изменило бы высоту настила.

          Для расчета CC головки блока цилиндров используйте кусок прозрачного акрила с отверстием. Слегка наклоните голову так, чтобы отверстие оказалось в самой высокой точке. С помощью бюретки измерьте, сколько жидкости нужно для заполнения камеры сгорания.

          «Самый упускаемый из виду размер — это высота блока. Это критически важно для точности степени сжатия, поскольку разница в зазоре деки в 0,020 дюйма приводит к значительному изменению CR », — предупреждает Стивенсон.

          Опять же, CR рассчитывается путем деления общего рабочего объема на общий сжатый объем.Вот что необходимо для определения каждой из этих сумм:

          Рабочий объем равен объему цилиндра + объем зазора + объем поршня + объем прокладки + объем камеры. Сжатый объем равен зазору + объем прокладки + объем поршня + объем камеры.

          Все коэффициенты должны иметь одно и то же числовое значение. При ручном вычислении это обычно кубические сантиметры или CC. Большинство онлайн-калькуляторов автоматически конвертируют стандартные измерения в метрические и вычисляют такие значения, как зазор, если вы правильно ввели диаметр цилиндра и зазор по высоте платформы.Онлайн-калькуляторы также могут определить объем прокладки с правильной толщиной и диаметром отверстия, но многие производители прокладок предоставляют эту информацию в своих каталогах или на упаковке.

          Используйте циферблатный индикатор для определения верхней мертвой точки. Магнитное основание делает эту работу быстрой и точной.

          Определение объемов говорящих

          Опять же, производственные компании послепродажного обслуживания обычно поставляют необходимое количество новых деталей. Производители поршней будут указывать объем купола / тарелки в + или — CC, а производители головок цилиндров предлагают свои продукты с разными объемами, чтобы помочь достичь желаемой степени сжатия.Однако никогда не помешает подтвердить собственными измерениями.

          «По необходимости, двигатели внутреннего сгорания требуют достаточно жесткого контроля размеров для надежной работы, поэтому отклонения в размерах должны находиться в пределах допустимых допусков. Контроль качества на уровне производства предотвращает выпуск несоответствующей продукции в эксплуатацию », — поясняет Стивенсон. «Конечно, ничто не может быть стопроцентным, поэтому тщательные измерения являются стандартной практикой для механических цехов и производителей двигателей. Предполагать, а не измерять, почти гарантирует дорогостоящий и неприятный результат.”

          Опытные производители двигателей имеют все необходимые инструменты для выполнения всех необходимых измерений, такие как измеритель внутреннего диаметра и индикатор часового типа. Самые утомительные измерения — это объем поршня и объем камеры сгорания. Требуются бюретка, цветная жидкость и приспособления для решения конкретных задач, как указано на прилагаемых фотографиях.

          Варианты обработки могут повлиять на зазор деки поршня. По этой причине важно проверить каждый поршень и записать измеренный зазор на заводной головке.

          Пример Chevy с большими блоками

          В качестве примера давайте вычислим CR для популярного приложения Chevy с большими блоками. Начиная с внутреннего диаметра 0,060 дюйма (4,130 дюйма) и хода 4,250 дюйма, рабочий объем каждого цилиндра составляет 62,006 куб. См, что соответствует 496 куб. Дюйм V8.

          Завершают вращающийся узел штоки и поршни диаметром 6,385 дюйма с высотой сжатия 1,270 дюйма и куполом объемом 18 см3. Мы используем закаленный блок, который требует небольшой отделки поверхности, поэтому итоговая высота настила равна 9.780. Выбранные головки цилиндров имеют камеры сгорания объемом 118 куб. См, а прокладка головки цилиндров имеет диаметр отверстия 4,375 и толщину в сжатом состоянии 0,040. Производитель заявляет, что объем прокладки составляет 9,854 куб. См.

          При такой высоте деки и вращающемся узле зазор деки равен 0,000. Вставив все эти числа в онлайн-калькулятор, мы получим 10,25: 1. Если бы у двигателя был новый блок со стандартной высотой деки 9,800 дюйма, CR упал бы до 9,86: 1, потому что был бы зазор деки 0,020 дюйма.

          Если рассчитать вручную, вот как формула будет работать с моделью настила на поверхности:

          • Объем цилиндра = 1016.094cc [(диаметр ÷ 2) 2 x 3,1416 x ход x 16,387]
          • Зазорный объем = 0,000cc [(диаметр ÷ 2) 2 x 3,1416 x высота платформы x 16,387]
          • Объем прокладки = 9,9854cc [от производитель, но формула (диаметр отверстия ÷ 2) 2 x 3,1416 x толщина прокладки x 16,387]
          • Объем камеры = 118 куб. см [Значение от производителя, но может быть определено и / или подтверждено путем измерения]
          • Объем поршня = -18 куб. от производителя, но может быть определено и / или подтверждено путем измерения.Выражается как отрицательный объем, потому что форма поршня имеет куполообразную форму. Если бы поршень имел выпуклый или плоский верх с предохранительными клапанами, это было бы положительно.]

          С этими числами мы складываем рабочий объем как 1016,094 + 0,000 + 9,985 + 118 — 18 = 1126,079. Сжатый объем 0,000 + 9,985 + 118 — 18 = 109,985. Разделив развернутый объем на сжатый, мы получим 10,24: 1. Небольшая разница между ручным вычислением и онлайн-калькулятором, вероятно, объясняется тем, что последний использует больше десятичных знаков в уравнении.

          После расчета CR у изготовителя двигателя есть несколько вариантов его изменения без других деталей или дополнительной обработки. Более толстая прокладка немного снизит сжатие, а более тонкая прокладка немного повысит сжатие. В противном случае придется заказывать другие поршни или головку блока цилиндров придется фрезеровать для уменьшения объема камеры сгорания и увеличения CR.

          Изменение толщины прокладки головки блока цилиндров помогает точно настроить степень сжатия.

          Статическое и динамическое сжатие

          В заключение, эти расчеты будут вычислять степень сжатия двигателя статическая . Также следует учитывать степень сжатия динамический , которая имеет отношение к фазе газораспределения. Двигатель с высоким CR потеряет часть этого давления сжатия, если впускной клапан останется открытым t после того, как поршень начнет такт сжатия. Это называется точкой закрытия впускного клапана.

          «Физика диктует формулу, используемую для расчета CR, и ни одна из констант, вводимых в эту формулу, не изменяется с RPM», — объясняет Стивенсон. «Единственным исключением является изменение зазора палубы из-за растяжения стержней, особенно с алюминиевыми стержнями, и отклонения компонентов, таких как прогиб кривошипа».

          Объем двигателя

          Определение рабочего объема двигателя вашего автомобиля дает вам представление о выходной мощности вашего двигателя и расходе топлива Объем двигателя — это величина, которая широко используется для рекламы частоты вращения и мощности двигателя транспортного средства.Вам могут быть интересны следующие часто задаваемые вопросы:

          • Что такое рабочий объем двигателя?

          • Как я могу рассчитать рабочий объем двигателя?

          • Где я могу узнать объем моего двигателя?

          • Почему рабочий объем двигателя имеет значение?

          Чтобы упростить себе жизнь и сэкономить время, в этой статье мы углубимся в ответы на каждый вопрос выше.

          Что такое рабочий объем двигателя?

          Объем двигателя — это измерение всасывания топливовоздушной смеси за один такт, которое двигатель может втянуть в течение одного полного цикла двигателя.Что касается поршневого двигателя (двигателя, который использует поршни для выработки мощности), смещение означает определение объема воздуха в цилиндре, который вытесняется однопоршневым двигателем. При вращении коленчатого вала поршень перемещается вверх и вниз вместе с цилиндром. Когда поршни проходят через камеру сгорания, объем каждого цилиндра изменяется. Кроме того, определение смещения для поршневого двигателя означает определение рабочего объема воздуха, который перемещается при перемещении поршня от верхнего центра к нижнему центру.

          Как я могу рассчитать рабочий объем двигателя?

          Рабочий объем обычно выражается в кубических сантиметрах (см3), кубических дюймах (CI) или литрах (L).Для стандартного поршневого двигателя с возвратно-поступательным движением объем двигателя определяется путем умножения трех различных переменных. Умножьте длину хода (расстояние, пройденное поршнем) на диаметр цилиндра (круговую площадь цилиндра) на общее количество цилиндров во всем двигателе. Формула для определения рабочего объема двигателя в целом приведена ниже:

          Эта формула предназначена только для стандартных поршневых двигателей. Использование его для расчета рабочего объема на двигателях Ванкеля или овальных поршневых двигателях, таких как те, что используются в мотоциклах Honda NR, может привести к неточным данным.Для двигателей, отличных от поршневых, производители и регулирующие органы разрабатывают уникальную формулу для расчета рабочего объема двигателя.

          Следующая ссылка предназначена для цифрового калькулятора объема двигателя. Все, что вам нужно сделать, это ввести:

          . У вас есть возможность использовать британские или метрические измерения, и этот калькулятор определит объем вашего двигателя в кубических дюймах.

          Какой пример расчета рабочего объема двигателя?

          Используйте следующие переменные:

          Где я могу найти объем двигателя?

          Объем двигателя указан под описанием двигателя автомобиля.Возьмем описание:

          RAM 1500 Tradesman 3.6L

          20202 Объем двигателя — 3,6 л. Это показывает, насколько мощен двигатель этой оперативной памяти. Чем больше рабочий объем, тем больше мощность.

          Вы можете представить себе рабочий объем двигателя проще, используя только информацию, содержащуюся в рекламе автомобиля. Вам понадобится следующая информация о двигателе транспортного средства:

          Разделите количество литров вашего двигателя на общее количество поршней, чтобы узнать, сколько литров воздуха вытесняет один поршень.

          Например:

          RAM 1500 Tradesman 3.6L 2020 года представляет собой цилиндровый двигатель V6

          3,6 / 6 = 0,6 литра воздуха на один такт всасывания одного поршня

          Чтобы представить этот калькулятор в перспективе, воздухозаборник каждого поршня равен. 6, поэтому, когда вы умножаете 0,6 на 6, вы получаете 3,6. Этот ответ означает, что двигатель всасывает 3,6 литра воздуха. Это то, что обозначает 3,6 л в описании двигателя автомобиля.

          Почему рабочий объем двигателя имеет значение?

          Объем двигателя часто используется для сравнения максимальной мощности двигателя автомобиля.Это также представление о размере двигателя и максимальном расходе топлива. Он сообщает потребителям, сколько лошадиных сил и крутящего момента производит двигатель. Чем выше рабочий объем двигателя, тем больше топлива он может потреблять, а меньший объем двигателя показывает, что двигатель не может потреблять столько топлива. Двигатели с более высоким потреблением топлива могут генерировать больше мощности, чем двигатели с более низким потреблением топлива. По сути, более крупные двигатели имеют большую мощность, а двигатели меньшего размера более эффективны, поскольку они имеют лучшую экономию топлива.

          В некоторых странах измерения рабочего объема двигателя используются как фактор при налогообложении транспортных средств. Несмотря на то, что Соединенные Штаты не взимают налоги на основе рабочего объема, автомобиль с более высоким рабочим объемом двигателя стоит дороже.

          Думали ли вы о рефинансировании автокредита?

          Только что купили новую машину или хотите снизить оплату за старую машину? Узнайте, как снизить платежи по кредиту с помощью WithClutch! Скорее всего, если вы получили ссуду на автомобиль в автосалоне, вы можете сильно переплатить.WithClutch может помочь людям сэкономить деньги и время, позволяя им рефинансировать, не выходя из дома, менее чем за 20 секунд. WithClutch помог различным владельцам автомобилей от Mustang, Mercedes-Benz, Chevy, Ford и многим другим добиться более низких ежемесячных платежей. Следуйте этим простым шагам, чтобы начать путешествие по рефинансированию!

          Добро пожаловать. | Департамент образования

          Предупреждающее сообщение

          В вашем поиске используется слишком много выражений И / ИЛИ.В этот поиск были включены только первые 7 терминов.

          К сожалению, страница, которую вы ищете, больше не существует, была перемещена или в настоящее время недоступна. Мы выполнили поиск по ключевым словам на основе страницы, которую вы пытаетесь открыть. Соответствующие варианты поиска представлены ниже.

          1. Ежемесячный информационный бюллетень ESEA

            … Вторник, 13 апреля: свяжитесь с Шерил.Lang @ maine . gov или региональный координатор программы для… непосредственно от Джеки Годбаут по электронной почте, пожалуйста, свяжитесь с ней по телефону jackie.godbout @ maine . gov . Заключительный грант…

          2. Ежемесячный информационный бюллетень ESEA

            … Время работы: вторник, 9 марта: свяжитесь с Cheryl.Lang @ maine . gov или координатор вашей региональной программы по… ​​планам для общекшкольного управления Title I должны быть переданы группе федеральных программ ESEA Maine DOE к 1 июля.В противном случае…

          3. Написание для обработки опыта COVID: выпуск, обновление и переориентация

            … Целевая аудитория Все Преподаватели … Описание Мэн искусства педагога провели последние 15 месяцев… Для получения дополнительной информации Джейсон Андерсон, DOE Специалист по визуальному и исполнительскому искусству …

          4. В центре внимания школьная безопасность

            … Программа Центра безопасности школ Мэн демонстрирует школы и… пожалуйста, свяжитесь со Стивом Коннолли по телефону Стив.Коннолли @ мэн . gov или (207) 441- 6943 Все материалы будут… практическими занятиями по управлению школами в чрезвычайных ситуациях. MSSC и DOE не поддерживают «плату за обслуживание». Видео фокус…

          5. Информация о COVID-19 для людей с астмой

            людей с астмой могут иметь повышенный риск тяжелого заболевания COVID-19 на . … Астма во время пандемии.Астма и COVID-19 ( Мэн DOE ) Информация о COVID-19 для лиц с…

          6. Информация для оповещения о Саре

            Sara Alert Информация … Sara Alert ™ (PDF) Отказ школы Sara Alert ( Maine DOE | 12.22.20): Английский | Арабский | Китайский…

          7. Зачем преподавать климатологию?

            … »будет адресовано место изменения климата в новых Мэн научных и инженерных стандартах (NGSS), принятых в апреле … будет пересмотрен до официального запуска новой Мэн DOE климат образовательной веб-страницы, которая прожекторы Мэн Мэн Департамент образования шари.Templeton @ , штат Мэн, . gov

          8. Поддержка преподавателей из штата Мэн: форум по укреплению психического здоровья в наших школах

            Поддержка Мэн Педагоги: Форум по укреплению психического здоровья в наших… Эксперт: Карен Барнс, доктор философии, DOE Мэн Центр безопасности школ … Мэн Департамент образования w.Bear.shea @ Мэн . gov Быстрые ссылки: ССЫЛКА НА ПРЕЗЕНТАЦИЮ:…

          9. Возможности для летних встреч 2021

            … и удаленные летние занятия для учащихся всех классов. АСИНХРОННОЕ ПСИХИЧЕСКОЕ ЗДОРОВЬЕ… Согласовано с CASEL, учебная программа SEL, принадлежит и поддерживается Мэн DOE ЛОСЬ MOOSE предлагает более…

          10. История штата Мэн и Интернет-ресурсы

            Мэн История и Интернет-ресурсы … Использование наборов первичных источников (совместно представлено Мэн DOE , Мэн Историческое общество, Мэн Государственный архив ,… Мэн Государственные служащие Talking Civics и Gov ‘t с сенатором Ангусом Кингом Talking Civics и…

          Автозапчасть | Что такое рабочий объем двигателя и почему он имеет значение?

          С бриллиантами больше не всегда лучше.Часто речь идет о цвете, чистоте и огранке. Точно так же с двигателями больше не обязательно означает лучше. Хотя большинство людей думают, что двигатели большого размера всегда лучше, это не обязательно правильно. Недавно мы увидели современные двигатели меньшего размера с низким расходом топлива и передовыми технологиями, которые столь же мощны, как и более крупные двигатели.

          Что означают цифры

          Вы, должно быть, заметили такие элементы, как 1,8 л, куб. См или рабочий объем двигателя, просматривая технические характеристики двигателя.Что ж, все эти термины полезны при описании объема двигателя, который вы определяете по общему объему его цилиндров. Количество цилиндров в двигателе обычно варьируется от 3 до 12 для большинства автомобилей. Однако на рынке есть и другие нетрадиционные автомобили с 16 или всего двумя цилиндрами.

          Как правило, суперкары — это те, у которых в двигателе много цилиндров.

          Но что означает объем двигателя? Рабочий объем двигателя связан с множеством вопросов, в том числе как он связан с экономией топлива, как он влияет на характеристики автомобиля и почему это имеет значение.

          Мы проясним эти вещи, чтобы в следующий раз, когда вы купите машину , вы знали, что получаете.

          Сегодня задают тренд небольшие двигатели с меньшими цилиндрами для экономии топлива. Эти двигатели затем соединяются с турбонагнетателем, чтобы компенсировать их небольшой размер. Как правило, небольшие двигатели с турбонаддувом вырабатывают больше мощности по сравнению с большими двигателями без турбонаддува.

          Турбокомпрессоры

          Турбокомпрессоры — это устройства, прикрепляемые к двигателям, особенно двигателям малой мощности, для увеличения вырабатываемой ими мощности.Они также способствуют топливной экономичности, поскольку эти меньшие двигатели потребляют меньше топлива, но производят такую ​​же мощность, как и более крупные двигатели.

          Вы можете быстро идентифицировать двигатель с турбонаддувом по букве «T» рядом со спецификацией рабочего объема. Например, «1.8T» обозначает двигатель объемом 1,8 л с турбонагнетателем.

          Какой объем двигателя?

          Термины двигателя иногда могут сбивать с толку и утомлять. Хотя не все являются автолюбителями или разбираются в механиках автомобилей, люди, которые хотят владеть автомобилем или водить его, должны знать основы двигателя.

          Объем двигателя — это комбинированный объем воздуха, вытесненный (или вытесненный) в результате подъема и опускания поршней в цилиндрах. В этом повторяющемся вертикальном движении поршни достигают самой высокой точки (верхней мертвой точки) до самой низкой (нижней мертвой точки), а затем возвращаются обратно. Независимо от количества цилиндров в вашем двигателе, расчет рабочего объема выполняется по той же процедуре.

          Помимо количества цилиндров, необходимо также учитывать диаметр отверстия и ход поршня. Отверстие цилиндра относится к его диаметру.Под ходом понимается расстояние, которое поршень преодолевает при движении вверх и вниз.

          Объем двигателя выражается в литрах. Например, большинство современных автомобилей работают на 2,0-литровом четырехцилиндровом двигателе, что означает, что каждый цилиндр имеет объем в пол-литра или 500 куб. См. Круто, правда?

          Итак, что это значит?

          Аббревиатура «cc» обозначает кубические сантиметры, также записывается как «cm 3 ». Это единица измерения мощности двигателя.

          Проще говоря, 1 см 3 обозначает объем куба с размерами 1 см × 1 см × 1 см.

          Термины «объем двигателя» и «объем двигателя» взаимозаменяемы, что объясняет, почему объем двигателя иногда выражается в литрах или соответствующем кубическом кубе.

          Двигатель с рабочим объемом 1000 см3 имеет объем 1000 см3 или 1 литр, так что:

          1000 см3 = 1000 см³ = 1 литр = 1,0 л

          Как рассчитать объем двигателя

          Вы можете узнать двигатель мощность любого автомобильного двигателя по математической формуле ниже:

          Объем = π / 4 x (D) ² xhx N

          Где D = Диаметр цилиндра или Диаметр цилиндра
          h = Ход
          N = Количество цилиндров в двигателе

          Как видите, отдельные мощности всех цилиндров объединяются для получения мощности двигателя.

          Если у вашего автомобиля четыре цилиндра и объем двигателя 1,0 л, то 1,0 л относится к совокупному объему четырех цилиндров. Это означает, что все четыре двигателя могут вместить максимальный объем воздуха / топлива 1,0 л.

          Гипотетически, если бы у того же автомобиля был одноцилиндровый двигатель, это означало бы, что этот цилиндр имеет объем 1,0 л. Интересно знать, что у Mercedes Benz MotorWagen двигатель объемом 1,0 л (954 куб. См, если быть точным) имел один цилиндр.

          До 1980-х годов стандартной единицей измерения рабочего объема двигателя были кубические дюймы.Один литр эквивалентен 61 кубическому дюйму.

          Как объем двигателя влияет на производительность автомобиля

          Если вы еще не поняли, объем двигателя играет решающую роль в определении мощности, крутящего момента, а также пробега вашего автомобиля. Мощность (выраженная в л.с. или кВт) и крутящий момент (выраженная в Нм) — часто используемые единицы измерения силы, развиваемой двигателем.

          Эти два измерения иногда неправильно понимают. Крутящий момент относится к силе вращения, представляющей тяговое усилие.Вы можете думать о мощности как о функции крутящего момента и частоты вращения двигателя, которые представляют максимальную мощность, которую может развить двигатель.

          Автомобили с двигателями большой мощности и низким крутящим моментом запускаются медленно, но набирают скорость по мере того, как двигатель начинает вращаться быстрее. С другой стороны, автомобили с двигателями с высоким крутящим моментом и малой мощностью запускаются очень сильно, но медленно гаснут по мере увеличения скорости двигателя.

          Если в спецификации двигателя указано, что он имеет номинальную мощность 100 л.с., это означает, что при работающем двигателе он вырабатывает 100 лошадиных сил.

          Возвращаясь к размеру двигателя, автомобиль с большим двигателем сможет производить больше мощности, потому что он способен сжигать больше топлива, чем двигатель меньшего размера.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *