Вентиляция Картера — Система Очистки Двигателя, Схема и Устройство, Назначение и Принцип Работы, Как Почистить Или Промыть, Где Находится Клапан
Принцип работы двигателей внутреннего сгорания основан на сжигании смеси углеводородного топлива и атмосферного воздуха в замкнутом объеме. За счет теплового расширения этого объема и выполняется полезная работа. Если подача горючей смеси и отвод отработавших продуктов есть технически организованные процессы, то проникновение выхлопных газов в механическую часть двигателя является побочным продуктом, для удаления которого и существует система вентиляции картера двигателя.
Эти лишние газы ещё называются картерными, а вот для чего их нужно удалять и как работает вентиляция картера, и постараемся разобраться далее.
Устройство и принцип работы
Системы вентиляции картера для разных типов ДВС имеют несколько разное устройство, но все они обязательно состоят из нескольких основных деталей и узлов таких, как:
- воздушные патрубки;
- клапан вентиляции, назначение которого заключается в интенсивности отсасывания газов в зависимости от силы разряжения во впускном коллекторе;
- маслоотделитель.
Причем, вне зависимости от типа двигателя, принудительная вентиляция устроена так, что ее схема имеет две части:
- малую ветвь;
- большую ветвь.
Первая – отбирает газы из-под клапанной крышки, вторая – отводит нежелательный выхлоп непосредственно из картера.
Принцип работы системы отвода картерных газов у карбюраторного, инжекторного и дизельного двигателя также может существенно отличаться, но при этом весь процесс можно описать следующей последовательностью:
- Забор выхлопных газов из картера двигателя;
- Очистка этих побочных газов в маслоотделителе от паров масла и других механических продуктов сгорания;
- Передача уже очищенного газа по воздушным патрубкам в структуру впускного коллектора;
- Смешивание картерных газов с подготовленной горючей смесью и сгорание ее в рабочих цилиндрах.
Из-за возможности попадания определенного объема газа в постоянный круговорот от п. 1 до п. 4 и использования части выхлопных газов технологически для подготовки топливной смеси – отбор выхлопных газов из картера двигателя еще называют системой рециркуляции отработанных газов.
Возможные неисправности, их диагностика
Проблемы вентиляции картера, как правило, не носят очевидного характера, но до тех пор, пока не произойдет полное засорение какой-нибудь детали воздушного тракта отвода отработанных газов таких, как: штуцер, резиновый шлаг, часть внутреннего пространства маслоотделителя или сам механизм клапана.
Такая фатальная неисправность станет причиной откровенно плохо работающего двигателя, либо из-за повышенного внутреннего давления просто будет выдавливать масло через резиновые прокладки поддона картера и клапанной крышки. В этом случае, уже простой промывкой маслоотделителя и клапана решить проблему не получится так, как потребуется полная чистка системы вентиляции картера.
Однако до полного засорения элементов вентиляции картера должны обязательно начать проявляться следующие симптомы:
- постепенное снижение мощности двигателя;
- небольшое возрастание расхода топлива, особенно в городском цикле;
- провалы в работе педали акселератора;
- появление выделения масла на прокладках и манжетах корпуса двигателя.
Методы устранения засоров и чистка вентиляции
При проявлении выше перечисленных симптомов в первую очередь проводиться проверка элементов маслоотделителя и клапана, а также всех находящихся там деталей на предмет различных побочных отложений от продуктов сгорания. Даже если, на ваш взгляд, там все в порядке и чистить как бы незачем, то в любом случае прочистите хотя бы масляный отделитель от находящегося там масла, особенно это актуально для дизеля.
Очистка вентиляции картера представляет собой периодическую профилактическую работу, несколько грязную и мазутную, но осуществить которую вполне по силам даже неспециалисту.
Если как проверить маслоотделитель вполне понятно, то простого осмотра внешнего вида клапана вентиляции будет недостаточно. Работающим клапан считается тогда, когда заслонка хорошо двигается и на обратной ее стороне нет никаких механических отложений, в противном случае она неисправная.
Имейте в виду, что после очистки и промывки штока заслонки, его лишь протирают насухо и ни в коем случае не смазывают.
Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них
Вентиляция картера в двигателе
В процессе работы двигателя в его картер прорываются газы, состоящие из горючей смеси и продуктов полного и частичного сгорания смеси. Количество картерных газов увеличивается по мере износа поршней, поршневых колец и цилиндров. В газах содержатся загрязняющие масло-сернистые соединения и пары воды, что ухудшает качество масла, оказывает коррозирующее действие на подшипники. Весьма нежелательно проникновение картерных газов в кузов или кабину автомобиля, так как эти газы токсичны. Вентиляция картера двигателя позволяет уменьшить вредное влияние картерных газов.
Вентиляция картера в двигателе может быть выполнена с отводом газов наружу — открытая система или в систему питания двигателя — закрытая система, для дожигания их в цилиндрах.
При открытой системе вентиляции картера двигателя устанавливается эжекционная трубка, конец которой имеет косой срез (направлен противоположно движению автомобиля).
При закрытой системе вентиляции пространство картера соединяется с впускным трубопроводом. Газы отводятся через маслоуловитель и перепускной клапан во впускной трубопровод. Свежий воздух поступает в картер через фильтр маслозаливной горловины.
Во время работы двигателя на режиме холостого хода разрежение во впускном трубопроводе сильно возрастает, что приводит к нарушению состава горючей смеси и неустойчивой работе двигателя. Для предотвращения этого устанавливается перепускной клапан.
Системы вентиляции картеров двигателей автомобилей: 1 — воздушный фильтр вентиляиии картера; 2 — воздухополводящий канал; 3 — клапан вентиляции; 4 — стакан пружины; 5 — пружина; 6 — шарик клапана; 7 — штуцер; 8 и 13 — маслоуловители; 9 — трубка вентиляции картера; 10 — впускной клапан; 11— воздушный фильтр; 12 — шланг большого диаметра; 14 шланг малого диаметра; 15 — сетчатый фильтрующий элемент; 16 — впускной трубопровод; 17 — карбюратор; 18 — щелевое отверстие.
Вентиляция картера двигателя автомобиля: как правильно организовать
Известно, что в процессе своей работы, двигатель перерабатывает топливную смесь, излишки которой, смешиваясь с воздухом должны выходить в виде отработанных газов наружу. С помощью выхлопной трубы, так все и происходит, но что бы хоть как-то минимизировать вред для окружающей среды, применяют различные фильтры. Есть свои специфические фильтры и непосредственно в двигателе, применяющиеся в системе вентиляции картера.
Картер — главная корпусная деталь двигателя, имеющая самую большую полость, в которой находится коленчатый вал, а ее верхняя часть вмещает в себя блок цилиндров. Картер также можно назвать отдельной деталью (если речь идет об небольших двигателях), такой себе коробкой, объединивший в себе все детали мотора.
При работе двигателя, часть отработанных газов из камер сгорания могут просачиваться в картер и без того уже содержащий пары топлива, масла и воды. В итоге, слившись воедино, эта смесь носит название картерных газов, сильное скопление которых значительно понижает состав и положительные свойства моторного масла, разрушая при этом металлические части двигателя.
Кроме того, эти вредные вещества попадают в атмосферу, тем самым сильно загрязняя ее. Что бы этого не случилось, существует вентиляция картера. Об конструкции и особенностях этой системы, мы расскажем в этой статье.
Особенности системы вентиляции картера ДВС
Как уже говорилось, любой современный двигатель оборудуется специальными фильтрами (можно и так назвать систему вентиляции), которые предотвращают выход из него горючих и токсичных картерных газов, путем их утилизации. Система вентиляции картера, или как ее еще называют «Система отсоса картерных газов» включает в себя большую и малую ветвь. Первая представленная в виде трубы с пламягасителем и маслоотделителем внутри (детальнее о них чуть позже), а вторая являет собой трубку, с помощью которой большая ветвь соединяется с задроссельным пространством.
В прилагающейся к автомобилю технической документации, касающееся его ремонта и обслуживания, не смотря на видимую существенную роль данной системы, ей уделяется мало внимания. А зря, ведь на современных двигателях выход из строя вентиляции картера грозит ему значительным понижением работоспособности.
Что бы система вентиляции исправно работала, необходимо учитывать такие важные моменты как наличие свежего воздуха и забор вредных газов.
Открытая вентиляционная система не работает при малых оборотах двигателя и на холостом ходу. Также, она не выполняет свое назначение на больших оборотах, а еще из-за нее возможно засасывание нефильтрированного атмосферного воздуха. Иногда, использование такой системы служит одной из причин слишком большого расхода масла и, соответственно, замасливания мотора.
Закрытая вентиляционная система картера используется в случае необходимости уменьшения степени загрязнения окружающей среды. С этой целью устанавливается специальный клапан, который выводит попавшие от принудительной вентиляции газы, во впускной коллектор мотора. Такая система имеет как плюсы, так и минусы. К первой группе следует отнести сравнительно меньший расход масла, стабильную работу двигателя зимой (входной воздух обогревается картерными газами), стойкость двигателя к детонации, так как топливно-воздушная консистенция разбавляется. Ко второй группе, включающей минусы использования относят: сильное загрязнение входных воздуховодов и карбюратора и возможность влияния на окисление масла.
Существует также классификация подобных систем в зависимости от способа отвода картерных газов. С этой точки зрения выделяют системы принудительного (подводят газы к впускному коллектору) и эжекционного (отводят газы в окружающую среду) действия.
До 1961 года все автомобилестроение применяло в выпускаемых транспортных средствах открытую систему с эжекционным принципом действия, в которых для вывода из картера газов использовали эжекционную трубку, проходящую вдоль всего двигателя к нижнему поддону картера.
Чуть позже результаты, проведенных компанией GENERAL MOTORS исследований доказали, что основное количество вредных веществ, образующиеся в следствии неполного сгорания углеводорода, выбрасывается в атмосферу именно через эжекционную трубку системы вентиляции. В следствии этого открытия, начиная с 1961 года, все автомобили, поступающие в продажу в штат Калифорния (Америка), были обязаны оборудоваться системой вентиляции принудительного действия, а с 1962 года, это требование начало действовать на всей территории США. С тех пор прошло не одно десятилетие, но двигатели именно с этой системой продолжают выпускаться и в наше время.
Конструкция вентиляционной системы картера
И так, мы уже выяснили, что в двигателях современных автомобилей применяется картерная система вентиляции принудительного действия, но разные производители, по разному подходят к вопросу ее конструкции. Наиболее сложной (но самой эффективной) является система в которой, воздух попадает в картер через отдельный воздушный фильтр.В бензиновых двигателях, при условии, что нагрузки небольшие, одна часть разбавленных воздухом газов, попадает в воздушный фильтр, находящийся за фильтрующим эллементом, а вторая часть, через регулирующий жиклер поступает в задроссельное пространство.
Детально разбирать каждый вид вентиляционной системы картера, для отдельно взятых двигателей (бензиновых, дизельных, газовых и т.д.) очень долго, да и сейчас совершенно неуместно, поэтому сосредоточим свое внимание на основных, общих для всех компонентах: маслоотделителе, воздушных патрубках (для циркуляции газов) и вентиляционных клапанах.
Маслоотделитель создан для препятствования попаданию паров масла в полость камеры сгорания. Благодаря ему уменьшается количество образования сажи. Выделяют три способа разделения масла и газа: циклический, лабиринтный и комбинированный, который в настоящее время наиболее часто применяется. Лабиринтный маслоотделитель (успокоитель) нацелен на замедление движения картерных газов. В следствии этого, большие масляные капли стекая по стенкам попадают в картер двигателя.
Дальнейшее очищение масла от картерных газов выполняет центробежный маслоотделитель, проходя через который они начинают вращаться. В итоге, под воздействием центробежной силы, частички масла оседают на стенках, а затем также стекают в картер. Что бы предотвратить турбулентность газов, после прохождения ими центробежного маслоотделителя в ход пускают выходной лабиринтный успокоитель. Именно тут проходит окончательное разделение масла и газа.
Вентиляционный клапан картера нужен для регулировки давления картерных газов, попадающих в колектор. Если разряжение во впускном канале не очень существенное — клапан открыт, но если оно довольно ощутимое, то клапан самостоятельно закрывается.
Вся система вентиляционной работы картера базируется на разряжении, возникающем во впускном коллекторе двигателя. С помощью этого процесса переработанные газы выводятся из картера в маслоотделитель, где очищаются от масла и по специальным патрубкам переходят во впускной колектор. Там, смешавшись с воздухом, они ликвидируются в камерах сгорания. Если двигатель оснащен турбонадувом, то регуляция вентиляции картера может осуществляться с помощью дроссельной заслонки.
Штуцер вентиляции картера
Названием «Штуцер» обозначают патрубки с резьбовым соединением, помогающие объеденить части трубопровода, или соединить вентили, емкости и прочие детали жидкостных и газовых преобразующих систем. Что касается системы вентиляции картера, то тут штуцер просто незаменим, а система вентиляции карбюраторных двигателей «Солекс» без него вообще работать не будет.
Такая его незаменимость объясняется достаточно просто. Бывает, что в процессе качественного удаления газов возникают проблемы. Чаще всего, причина этого кроется в недостаточном разряжении картерных газов, находящихся в воздушном фильтре.
Для того, чтоб увеличить работоспособность системы вентиляции в нее внедряют еще одну, дополнительную ветвь (малая ветвь). Она имеет вид трубки, с помощью которой задроссельная зона соединяется со штуцером, отвечающий за отвод картерных газов от двигателя внутреннего сгорания. Диаметр этой ветви совсем маленький и составляет не больше пары миллиметров. Также, штуцер может помочь в диагностике некоторых причин сбоя в вентиляции картера. Для этого на него надевают трубку, а затем дуют в нее, если воздух не проходит — значит надо прочистить каналы системы, так как они, скорее всего, засорены.
Штуцер располагается в нижней части карбюратора, рядом с дроссельной заслонкой первичной камеры, под насосом ускорения. В случае необходимости, на эту деталь натягивают шланг, выполняющий вытяжную функцию.
Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.
Что такое вентиляция картера двигателя в автомобиле
Устройство автомобилей
Вентиляция картера двигателя
Вентиляция картера предназначена для удаления картерных газов, образующихся в результате прорыва продуктов сгорания топлива через зазоры между гильзой и поршневыми кольцами и их взаимодействия с парами масла.
В газах содержатся загрязняющие масло серистые соединения и пары воды, которые образуют серную и сернистую кислоты, значительно ухудшающие качество масла. Пары воды вызывают вспенивание масла и образование эмульсии, что затрудняет поступление масла к трущимся поверхностям. Прорвавшиеся в картер газы повышают в нем давление, что может вызвать утечку масла через уплотнения картерного пространства.
Недопустимо также проникновение газов под капот двигателя, а затем в кузов и кабину автомобиля, так как содержащиеся в газах вредные вещества опасны для пассажиров и водителя. Отсос картерных газов уменьшает старение масла, а также, создавая разрежение в поддоне, предотвращает возможность утечки масла через уплотнения.
В автомобильных двигателях применяется вентиляция картера двух типов:
- открытая – с отводом картерных газов в окружающую среду;
- закрытая – с отсасыванием газов во впускную систему двигателя.
Открытая вентиляция (рис. 1) осуществляется под действием разрежения, возникающего в газоотводящей трубке вследствие относительного перемещения воздуха при движении автомобиля. Чтобы вместе с картерными газами не уносились частицы масла применяется специальный сапун лабиринтного типа, на стенках которого масляные капли оседают и стекают в поддон.
Недостатком открытой системы вентиляции картера является ее низкая эффективность, а также отравление окружающей среды вредными для здоровья человека и живой природы веществами.
В закрытых системах газы могут отводиться в воздухоочиститель до карбюратора или непосредственно во впускной трубопровод. Отвод газа через воздухоочиститель не создает требуемой интенсивности отсоса при минимальных частотах вращения коленчатого вала и полной нагрузке.
Кроме того, проход картерных газов через карбюратор вызывает осмоление его каналов, жиклеров и подвижных деталей. Поэтому более предпочтительной является система с отсосом газов непосредственно во впускной трубопровод двигателя, в котором всегда имеется разрежение.
Система вентиляции, показанная на рис. 2, работает следующим образом: под действием разрежения во впускном трубопроводе 10 картерные газы поднимаются вверх и через угольник 9 и шланг 5 попадают в корпус маслоотделителя, закрытый крышкой 1.
Между крышкой и корпусом находится резиновая мембрана 2, поджимаемая пружиной 3 к корпусу. Оседающие на дне корпуса маслоотделителя частицы масла по трубке 6 сливаются в картер двигателя.
С помощью мембраны 2, которая находится с одной стороны, под давлением атмосферного воздуха, а с другой – под давлением картерных газов и пружины, в картере поддерживается избыточное давление.
На рис. 3 показана схема вентиляции картера карбюраторного двигателя автомобилей марки «ВАЗ».
Здесь картерные газы отсасываются через маслоотделитель 7 и шланг 6 в вытяжной коллектор 4 воздушного фильтра 3. Из вытяжного коллектора на холостом ходу и при малых нагрузках двигателя (когда разрежение в воздушном фильтре невелико) картерные газы поступают через шланг 2 и золотник 1 под дроссельные заслонки карбюратора.
При остальных режимах работы двигателя картерные газы поступают в карбюратор через воздушный фильтр 3. В маслоотделителе 7 масло выделяется и по отводной трубке 8 стекает в масляный поддон.
Пламегаситель 5 предотвращает проникновение пламени в картер двигателя при возможных вспышках в карбюраторе.
Источник
Как устроена вентиляция картера
Сам термин «вентиляция картера» многие слышали, а вот устройство представляют не все. Расскажем об этом вкратце.
В предыдущей публикации мы уже говорили о том, как герметизируют камеру сгорания . Теперь уточним: какими бы совершенными ни были компрессионные кольца, хотя бы малая часть отработавших газов через них проникает. Такова природа вещей — нет на свете ничего абсолютного. Даже «абсолютный ноль» в космосе — на самом деле хоть на градус да повыше.
Когда через кольца проникает очень много отработавших газов — это уже поломка, требующая ремонта. Когда же их проникает чуть-чуть — это совершенно штатная ситуация. В картере отработавшие газы смешиваются с парами топлива и масляной взвесью. Все это в совокупности именуют «картерными газами». Оставить их в двигателе просто так нельзя — их количество прибавляется с каждым тактом работы мотора. То есть, очень скоро их давление станет высоким, и «выдавит» какие-нибудь уплотнения. Поэтому, хочешь не хочешь, а что-то делать надо.
Когда-то, на очень старых моторах, внутренние полости двигателя просто сообщались с атмосферой. Техническую проблему это решало — просто и эффективно. Однако есть еще и экология — и она очень возражает против таких решений, поскольку картерные газы довольно токсичны.
Поэтому инженеры были вынуждены разработать закрытую систему вентиляции картера. Рассмотрим схему реализации одной из таких систем:
Оговоримся сразу, что на самом деле существует много вариантов реализации такой системы. Все зависит от конкретной марки машины и конкретной модели двигателя. Поэтому мы не будем углубляться в тонкости реализации, просто пройдемся по общим принципам:
1) Суть системы в том, что картерные газы подаются во впускной коллектор. Оттуда они попадают в цилиндр, где и дожигаются.
2) Чисто технически все очень просто — внутренние полости двигателя соединены трубкой со впускным коллектором. Во впускном коллекторе постоянно присутствует разрежение, поэтому газы засасывает в него довольно активно.
3) Впускной коллектор разделен на пространства «за дросселем» и «перед дросселем». Когда педаль газа нажата (заслонка открыта), разрежение есть в обоих частях впуска. Когда педаль газа отпущена (заслона прикрыта), разрежение есть в задроссельном пространстве, а вот перед дросселем его нет. Поэтому как правило, трубки вентиляции картера подключены к обоим частям впускного коллектора.
4) Как уже говорилось, в картерных газах есть довольно большой процент масляной взвеси. Чтобы все это масло не попадало в цилиндр и не сгорало там, трубки подключены на впуск не напрямую, а через так называемые маслоуловители — устройства, в которых капельки масла оседают и стекают обратно в картер.
5) Часто со впуском соединяют отдельно верхнюю часть двигателя (трубка от клапанной крышки) и нижнюю часть двигателя (трубка от блока цилиндров).
6) В системе вентиляции картера часто также присутствует специальный клапан. Его задача — во-первых, не пропускать воздух в обратном направлении (из впуска в картер), а во-вторых — при высоких оборотах двигателя ограничивать поток картерных газов.
Интересный факт: именно вентиляция картера является причиной появления загрязнений на дроссельной заслонке. Это важный факт, который особенно полезен тем, кто склонен списывать любую проблему на «плохой бензин».
Неисправности системы вентиляции картерных газов
Система эта в целом простая, однако и здесь есть, чему ломаться.
1) Частенько забиваются маслоуловители — у многих автомобилей есть регламент по прочистке маслоуловителя. Так, например, это прописано в двигателях ВАЗ. А у автомобилей Ford маслоуловителем служит специальный поролоновый фильтрик в корпусе воздушного фильтра. При забитом маслоуловителе картерные газы не могут через него пройти — получается проблема, ради решения которой и создавалась система — повышенное давление внутри двигателя.
2) Нередки случаи поломки клапана. На автомобилях Opel, например, этот клапан имеет в своем составе тонкую резиновую мембрану, которая нередко рвется. В этом случае во впуск начинает «сосать» воздух из атмосферы — автомобиль теряет мощность и зажигает «чек энджайн» по бедной смеси.
3) Разумеется, случаются и проблемы типа порванной трубки вентиляции картера — но это скорее экзотика, потому что никаких серьезных воздействий они не испытывают (в отличие от, например, шлангов системы охлаждения, по которым гоняется горячий антифриз).
Источник
Устройство и принцип работы системы вентиляции картера двигателя
Система вентиляции картера играет одну из основных ролей в процессе газообмена внутри двигателя. Ее неисправности могут привести к поломке турбины, потерям масла через сальники. Для своевременной диагностики и обнаружения признаков неисправности крайне важно понимать принцип работы системы вентилирования картерных газов. Особое внимание уделим устройству клапана PCV (Positive Crankcase Ventilation) и методам его проверки.
Что такое картерные газы?
Картерные газы — это соединение несгоревшей топливовоздушной смеси (далее ТПВС), выхлопных газов и масляной взвеси. Даже в исправном двигателе на такте сжатия через поршневые кольца просачивается часть смеси топлива и воздуха. Уже на такте рабочего хода в картерное пространство поступают выхлопные газы, смешивающиеся с парами моторного масла.
Предназначение системы вентиляции картерных газов (ВКГ)
Вентиляция картера двигателя необходима для постоянного отвода токсичной смеси из несгоревших углеводородов, выхлопных газов и масляного тумана. До ужесточения экологических норм с этой задачей прекрасно справлялся сапун – отрезок шланга, соединяющий блок двигателя и атмосферу.
В современных реалиях вентиляция картера двигателя представляет собой систему закрытого типа. Выхлопные газы подаются во впускной коллектор, где они смешиваются со свежим зарядом и благополучно сгорают в двигателе.
Принцип работы и устройство вентиляции картера двигателя
Именно так выглядит схема вентиляции картера двигателя атмосферного бензинового двигателя. Газы из ГБЦ поступают во впускной тракт по двум патрубкам, один из которых врезается в систему перед дросселем, а второй после заслонки. Такое разделение потоков необходимо по двум причинам:
- В режиме холостых оборотов и низких нагрузок дроссельная заслонка открыта на небольшой угол. Количество воздуха, проходящее через фильтр и попадающее в задроссельное пространство минимально, а разряжение больше именно за дросселем. Поэтому избыток картерных газов всасывается во впускной коллектор в задроссельное пространство. Количество газов, проходящее через канал, регулируется односторонним клапаном ВКГ.
- В режимы средних и высоких нагрузок дроссельная заслонка открыта на большой угол и не создает препятствия для прохождения воздуха. При этом из-за повышения оборотов возрастает не только потребление двигателем кислорода, но и количество газов, прорывающихся в картер. Поскольку за дросселем и перед ним разряжение будет небольшим, для эффективного отвода картерных газов используются оба канала.
На схеме изображены элементы системы вентиляции картера турбированного двигателя, а также способ попадания газов через поршневые кольца в поддон (№5). Составляющие компоненты:
- Маслоотделитель. Препятствует попаданию во впускной коллектор паров масла.
- Клапан PCV, дозирующий количество газов.
- Интеркулер. Подмешивание горячих выхлопных газов снижает плотность свежего заряда, из-за чего падает мощность двигателя. Охладитель этот негативный фактор нивелирует.
- Турбокомпрессор.
Клапан PCV
Высокое разряжение в картерном пространстве не менее опасно для сальников, чем повышенное давление. Чтобы при малом угле открытия ДЗ, а также при резком закрытии дросселя на высоких оборотах в поддоне не создавалось избыточное разряжение, в систему включен клапан ВКГ. Состоит клапан вентиляции картера из подпружиненного плунжера, перемещающегося в гильзе определенного сечения.
В нормальном состоянии, когда двигатель заглушен, возвратные пружины отжимают плунжер, сообщая отрезки канала от коллектора к клапанной крышке. В режиме холостого хода высокое разряжение во впускном коллекторе притягивает плунжер, преодолевая сопротивление пружин. Канал для доступа картерных газов перекрывается. По мере открытия дроссельной заслонки снижается воздействие вакуума на плунжер. Усилием возвратных пружин клапан открывается, сообщая впускной тракт и картерное пространство.
Роль маслоотделителя
Маслоотделитель, нередко именуемый маслопомойкой, предназначен для улавливания крупных и мелкодисперсных частиц масла. Роль его чрезвычайно важна для правильной работы датчика массового расхода воздуха (ДМРВ). Оседая на стенках впускного тракта, масляный туман очень быстро покрывается пылью. Из-за этого нарушается работа чувствительного элемента расходомера. Блок управления двигателем получает неверные показания о количестве воздуха, поступившего во впускной тракт. Поэтому принудительная вентиляция картера современного двигателя может включать в себя маслоотделители сразу нескольких типов.
Лабиринтный маслоуловитель
При движении газов через лабиринт крупные частицы масла под действием инерционных сил выталкиваются к стенкам маслоотделителя. По сепараторным пластинам масло стекает самотеком в поддон. Схожий по принципу работы маслоуловитель, состоящий из набора пластин, устанавливается в клапанной крышке инжекторных двигателей ВАЗ.
Циклический маслоуловитель
Предназначен для улавливания мелкодисперсных частиц масляной взвеси. При прохождении картерных газов по окружности корпуса маслоотделителя капли масла смещаются наружу, оседая на стенках корпуса маслоуловителя.
Маслоотделитель с фильтрующим элементом
Внутри корпуса устанавливается фильтрующая бумага или стекловолоконный наполнитель. Проходя через фильтр, масло задерживается на стенках фильтрующего элемента, после чего стекает в поддон.
Турбулентность потоков выхлопных газов, движущихся через шланг вентиляции картера двигателя, ухудшает равномерность наполнения цилиндров. Поэтому на многих автомобилях дополнительно установлена успокоительная камера. Помимо замедлителя потока газов, камера выступает еще и в роли дополнительного маслоотделителя.
Признаки неправильной работы
- Обильные масляные запотевания в местах резиновых уплотнений. Менять прокладку ГБЦ, поддона либо сальники, без устранения причины повышенного давления картерных газов, бессмысленно. Причина может быть как в недостаточной производительности вентиляции картера, так и в критическом износе цилиндропоршневой группы (далее ЦПГ). В последнем случае в поддон просачивается больше картерных газов, нежели может пропустить через себя система вентиляции картера. На автомобилях с синтетическим фильтрующим элементом в первую очередь рекомендуем проверить состояние фильтра.
- Чрезмерный расход масла. Повышенное давление в картерном пространстве препятствует эффективной работе маслосъемных колец, из-за чего масло сгорает в цилиндрах.
- Плавающие обороты холостого хода. Причина в негерметичности системы. Трещины на шлангах, корпусе клапана PCV, неплотно затянутые хомуты – все эти факторы приводят к подсосу неучтенного воздуха.
- Стойкий запах выхлопных газов при движении на небольшой скорости и во время стоянки с заведенным двигателем. Закрытая система вентиляции картера негерметична на отрезке до клапана ВКГ, из-за чего газы прорываются в подкапотное пространство, откуда затягиваются внутрь авто салонным вентилятором.
- Большое количество масла во впускном коллекторе, патрубках и даже на воздушном фильтре. Причина в неисправном маслоуловителе.
Последствия неисправной вентиляции картера
Последствия высокого давления в картерном пространстве:
- Нарушение резиновых уплотнений коленчатого и распределительного вала. Через выдавленные сальники двигатель будет терять масло. Если вовремя не заметить резкое снижение уровня, масляное голодание может привести к износу трущихся пар, провороту вкладышей.
- Поломка турбины. После смазывания и охлаждения деталей турбокомпрессора масло самотеком должно сливаться в поддон. Если в картерном пространстве будет подпор газов (своеобразная пробка), объем моторного масла, прокачиваемого через турбину, резко снизится. Из-за ухудшения теплоотвода масло начнет коксоваться внутри каналов и на раскаленных трущихся парах. Последствие – задиры на вкладышах и валу турбины, что равнозначно глубокой реставрации либо замене картриджа/турбокомпрессора в сборе.
- Выдавливание щупа и забрызгивание маслом подкапотного пространства. В некоторых случаях щуп вылетает с такой силой, что оставляет заметную вмятину на капоте. В таком случае только мойкой подкапотного пространства не отделаться.
Видео:Система вентиляции картера
Методы диагностики
Своими руками проще всего проверить клапан PCV. Для этого достаточно подуть в клапан со стороны клапанной крышки. Если напор воздуха с обратной стороны слабый либо он и вовсе не выходит, клапан работает неправильно. Очистка системы вентиляции картера двигателя очистителем карбюратора должна исправить ситуацию. Если же клапан продувается в обе стороны, скорее всего, он заклинил в полуоткрытом состоянии, либо порвалась резиновая мембрана.
Степень загрязнения и общая эффективность работы вентиляции картера измеряется двумя основными путями:
- Замеряется давление картерных газов на разных режимах работы двигателя.
- Измеряется объем газов, который система может пропустить через себя.
Чтобы не столкнуться с последствиями неисправностей системы ВКГ, стоит периодически менять клапан PCV, фильтрующий элемент, чистить центробежный/лабиринтный маслоуловитель.
Источник
Системы смазки и вентиляции картера – Основные средства
А. Дмитриевский, канд. техн. наук
Старая истина, гласящая «не подмажешь – не поедешь», в полной мере распространяется и на дизеля. От состояния систем смазки и вентиляции картера, а также правильного выбора моторного масла зависят не только надежность и долговечность двигателя, но и пусковые качества, его топливная экономичность, а также токсичность выхлопа.
Система смазки
Главная задача системы смазки – создать для уменьшения износа и облегчения движения между трущимися поверхностями масляный слой. Образующее его масло кроме своей главной задачи удаляет из трущейся пары посторонние частицы и продукты износа, предотвращает коррозию деталей, охлаждает трущиеся поверхности, а в некоторых двигателях используется в качестве теплоносителя и охлаждает днище поршня.
В большинстве двигателей грузовых автомобилей масло в основные узлы кривошипно-шатунного и газораспределительного механизмов подается под давлением. Часть поверхностей трения смазывается разбрызгиванием. Основная часть масла проходит через подшипники коленчатого вала (до 80% в новых двигателях и до 96% – в изношенных). Чаще всего используется параллельный подвод масла к подшипникам коленчатого вала.
Схемы масляных насосов:
а – с внешним эвольвентным зацеплением; б – с внутренним эпициклоидальным зацеплением; в – с внутренним эвольвентным зацеплением
Как правило, двигатели грузовых автомобилей имеют двухсекционные шестеренные масляные насосы. Основная секция подает масло к подшипникам, а дополнительная – используется для прокачки масла через теплообменник, центрифугу и для охлаждения поршней. Шестерни насосов могут иметь как внешнее, так и внутреннее – эпициклоидальное или эвольвентное – зацепление. Насосы с внутренним зацеплением более сложны в производстве, их привод требует повышенных затрат мощности, однако имеют меньшие габариты и более низкий уровень шума, а износ их шестерен меньше сказывается на производительности.
Производительность насоса выбирается из условия обеспечения заданного давления в системе смазки даже при перегреве, а также получения необходимого теплоотвода. У новых двигателей масляный насос должен иметь двух- или даже трехкратный запас по производительности, чтобы обеспечить надежную работу системы смазки при износе деталей насоса, вкладышей коренных и шатунных подшипников, а также шеек коленчатого и распределительного валов.
Охлаждение поршней особенно важно в двигателях с высокой степенью наддува и при расположении камеры сгорания в днище поршня. Реализуется оно чаще всего с помощью нескольких типовых схем. Наиболее простая, но зато и наименее эффективная – подача масла из неподвижных распылителей, установленных в нижней части цилиндра. Другой способ – подача масла по сверлению в шатуне в его верхнюю головку и через установленный в ней распылитель – на днище поршня. Но наиболее эффективна подача масла через отверстие в шатуне и поршневой палец в полость охлаждения, выполненную в днище поршня. Для ее получения днище делают съемным, или же заливают в него трубку или специальную вставку. Такое охлаждение поршня требует и более интенсивного охлаждения масла.
Основная неисправность системы смазки – снижение давления. Оно может возникнуть из-за износа подшипников – чаще всего коренных на коленчатом валу, залегания клапанов системы в открытом состоянии, износа шестерен насоса. Каждая из перечисленных причин предполагает серьезный ремонт, но зачастую дело обходится и без него.
Причиной уменьшения давления в системе смазки может быть снижение вязкости масла из-за перегрева или попадания конденсата топлива. Эта опасность увеличивается при коротких поездках зимой на не полностью прогретом двигателе. Так, при специальных испытаниях на коррозионный износ, проводившихся на автомобиле с бензиновым двигателем, за одну неделю уровень масла в картере двигателя увеличивался на 1…1,5 литра. Чтобы «выпарить» бензин и восстановить исходную вязкость масла, приходилось проезжать несколько сот километров с максимальными скоростями. Для дизелей подобная опасность намного меньше, зато и «выпарить» дизельное топливо из масла практически невозможно.
Уход за системой смазки предельно прост: достаточно своевременно менять масло и фильтры, а также регулярно промывать двигатель. И единственная сложность состоит в периодичности смены масла. А она определяется не только особенностями двигателя, но и маркой используемого масла. Их в последние годы появилось очень много – отечественных и импортных. Вместе с ними возникла масса вопросов о возможности и целесообразности их применения в наших условиях.
Моторные масла
Качество масла, а следовательно, и его стоимость, определяются количеством присадок, его основой, степенью очистки. Наибольшее распространение сегодня имеют минеральные масла, основу которых составляет продукт прямой перегонки нефти. Для получения нужных свойств в основу вводится комплекс присадок. Он тщательно выверяется и балансируется изготовителями масел, а потому к различным присадкам и добавкам, кои следует лить в двигатель самому потребителю, надлежит относиться весьма осторожно.
Особое место среди присадок занимают металлоплакирующие (МП). В результате трения возникает разность потенциалов и ионы способствуют наращиванию слоя присадки на изношенных поверхностях, уменьшая зазор между трущимися парами. Это увеличивает ресурс двигателя, снижает угар масла, улучшает его экономические, мощностные и экологические показатели. Необходимо иметь в виду, что заметный эффект от добавки МП начинает проявляться лишь через десятки тысяч километров. Учитывая это, применение такого рода присадок для двигателей с повышенным расходом масла нецелесообразно, так как они выносятся из двигателя вместе с маслом, не успевая создать защитный слой.
Поршни дизелей с охлаждением днища маслом:
а – со съемным днищем; б – с трубкой, заливаемой в днище; в – со вставкой, заливаемой в поршень
Последнее время все большее распространение получают синтетические масла, основа которых создана искусственно. Они обладают хорошими вязкостными характеристиками, снижают износ двигателя, способны долго работать без смены. Однако высокая стоимость этих масел ограничивает их применение.
Целесообразность использования определяется в каждом конкретном случае в зависимости от степени износа двигателя и соответственно угара масла, а также установленной периодичности технического обслуживания. При повышенном расходе масла приходится постоянно доливать его, поэтому применение более дорогого масла приведет к неоправданным затратам. Использование масел, обеспечивающих увеличенный пробег до его смены, также не всегда целесообразно. Периодичность замены масла согласована с периодичностью обслуживания автомобиля в целом. Поэтому менять масло нужно либо во время очередного ТО, либо проводить дополнительное обслуживание, что для большинства фирм неприемлемо.
Свойства отечественных моторных масел характеризуются прежде всего величиной вязкости при 100°С и 0°С (для некоторых масел – при минус 18°С) и индексом вязкости – интенсивностью изменения вязкости при изменении температуры.
По эксплуатационным свойствам отечественные (согласно действующему стандарту) масла делятся на несколько групп: В1 – среднефорсированные бензиновые двигатели, В2 – среднефорсированные дизели, В – универсальное масло для среднефорсированных двигателей, Г1 – высокофорсированные бензиновые двигатели, Г2 – высокофорсированные дизели без наддува, Г – универсальное масло высокофорсированных двигателей, Д – высокофорсированные дизели с наддувом.
Масла зарубежного производства и некоторые новейшие отечественные классифицируются по системам SAE J-300 и АСЕА (Ассоциация европейских производителей автомобилей). У летних масел SAE 20, 30, 40, 50, 60 кинематическая вязкость при 1000С изменяется соответственно от 5,6 до 21,9 м2/с. В обозначении зимних масел добавляется буква W: SAE 0W, 5W, 10W, 15W, 20W, 25W. Их кинематическая вязкость при 100°С находится соответственно в пределах от 3,8 до 9,3 мм2/с.
Температурная зона применяемости каждой из этих марок определяется минимальной температурой проворачиваемости двигателя стартером ( от –30°С для 0W до –5°С для 25W).
Широкое распространение получили всесезонные масла, имеющие более пологую вязкостную характеристику в зависимости от температуры масла. Низкая вязкость при отрицательной температуре обеспечивает зимний пуск двигателя. При высокой температуре необходимая вязкость поддерживается загущающими присадками. Для этих масел к обозначениям аналогичным для зимних масел добавляются цифры справа (от 20 до 50), характеризующие «горячую вязкость».
Применимость импортных масел для тех или иных двигателей обозначается по классификации API (Американский институт нефти) или АСЕА, а зачастую и по обеим. По API для дизельных двигателей применяют масла категории С, для бензиновых -– категории S. Вторая буква характеризует уровень эксплуатационных свойств и их назначение: Е – дизели грузовых автомобилей с невысокой литровой мощностью, F – дизели легковых автомобилей и грузовых автомобилей выпуска до 1994 года и бензиновые двигатели, G – современные дизели с высокой литровой мощностью и бензиновые двигатели выпуска до 1993 года, Н – бензиновые двигатели выпуска до 1996 года и J – современные бензиновые двигатели. Масла с цифрой 2 предназначены для двухтактных двигателей. Универсальные масла (для дизелей и бензиновых двигателей) имеют двойное обозначение (например, API SG/CD).
При классификации по АСЕА первая буква обозначает тип двигателя: А – бензиновые, В – дизели легковых автомобилей и Е – дизели грузовиков. Следующая далее цифра характеризует моющие, противозадирные способности и вязкостные свойства. Наиболее высокие качества имеют масла категории 3. Например, категория Е3-96, кроме противоизносных свойств и предотвращения образования нагара на поршне обеспечивает сохранение вязкостных характеристик при высокой температуре и способность диспергировать сажу.
Этими основными сведениями о маслах мы и ограничимся, поскольку при существующем обилии марок выбор масла – скорее искусство, чем наука. И единственный бесспорный совет – опирайтесь на здравый смысл.
Вентиляция картера
По существующим требованиям к токсичности современные двигатели оборудуют системой принудительной вентиляции картера, направляющей картерные газы во впускную систему. Наиболее эффективной, но более сложной является схема, при которой воздух в картер проходит через отдельный воздушный фильтр. На бензиновых двигателях при малых нагрузках часть картерных газов, разбавленных воздухом, поступает в воздушный фильтр за фильтрующим элементом, а другая часть через регулирующий золотник или жиклер подается в задроссельное пространство.
Схема вентиляции картера дизеля:
1 – крышка фильтра системы вентиляции картера; 2 – мембрана; 3 – пружина; 4 – крышка клапана; 5 – шланг отвода картерных газов; 6 – трубка слива масла; 7 – блок-картер; 8 – крышка головки цилиндров; 9 – штуцер; 10 – впускной трубопровод
Большинство современных дизелей выпускается фактически только с системой всасывания картерных газов во впускной трубопровод. Количество картерных газов, поступающих в камеру сгорания, зависит главным образом от состояния цилиндропоршневой группы. Однако при увеличении сопротивления воздушного фильтра выше нормы и при износе сальников добавляется воздух с пылью, поступающий через них в картер. Это приводит к увеличению абразивного износа. Поэтому особенно важно следить за показаниями индикатора засоренности воздушного фильтра, которым, как правило, оборудуются двигатели большого литража, и своевременно заменять воздушный фильтр. Кроме того, необходимо систематически проводить обслуживание системы вентиляции картера (промывку каналов, дозирующих элементов, клапана).
Необходимо иметь в виду, что при износе цилиндропоршневой группы и уплотнений стеблей впускных клапанов увеличивается попадание паров масла в камеру сгорания. Это существенно повышает выброс канцерогенных веществ с отработавшими газами. Поэтому двигатели, оборудованные системой принудительной вентиляции картера, при повышенном угаре масла необходимо своевременно отправлять в ремонт.
Проблемы и неисправности вентиляции картера
Для чего предназначена система вентиляции картера двигателя, понятно из ее названия. Но почему картер необходимо вентилировать? Как показывает практика, точность ответа на этот вопрос сильно зависит от того, приходилось ли раньше тому или иному владельцу сталкиваться с проблемами, которые система вентиляции способна создавать. Если не приходилось, случается, что о том, из-за чего картер нуждается в вентиляции, равно как и том, как она реализуется, автовладелец может и не догадываться.
Все упирается в прорыв газов в картер. Как бы ни были хороши поршневые кольца, полную герметизацию пространства над поршнем, где происходит рабочий процесс, они обеспечить не могут. В результате под действием высокого давления из надпоршневого пространства в картер проникают не только продукты сгорания горючей смеси, но на такте сжатия и некоторая часть самой горючей смеси.
Если прорвавшиеся газы не отводить, давление в картере повышается, в результате чего картерные газы способны выдавить щуп масломера с последующим выбрасыванием масла из двигателя в моторное отделение и вызвать появление течей масла по прокладкам и сальникам. Вентиляция обеспечивает выравнивание давления в картере с атмосферным давлением, что позволяет избежать этих негативных последствий прорыва газов. Это и есть основная причина оснащения любого двигателя вентиляцией картера.
Однако в целую систему PCV (Positive Crankcase Ventilation) вентиляция превратилась благодаря экологии. Картерные газы токсичны. Поэтому широко применявшаяся некогда вентиляция с помощью сапуна с вытяжной трубкой, отводившей газы из картера прямо в атмосферу, примерно с середины 1960-х годов была запрещена сначала в США, а затем и в Западной Европе.
Сейчас сапуны открытого типа можно увидеть лишь на коробках передач, раздаточных коробках и других агрегатах, где их наличие обусловлено способностью воздуха от нагрева во время работы агрегата расширяться, из-за чего увеличивается давление внутри узла, что также чревато выдавливанием уплотнений и появлением течей.
В закрытых системах вентиляции, коими оборудованы все современные моторы, картерные газы отводятся во впускной коллектор, после чего возвращаются в цилиндры двигателя. Закрытые системы не сообщаются с атмосферой, а стало быть, не загрязняют окружающую среду углеводородными соединениями — несгоревшим топливом, продуктами неполного сгорания топлива, масляными парами, которыми насыщены картерные газы, а позволяют им с пользой догореть в цилиндрах.
Но только этим достоинства закрытой вентиляции не ограничиваются. Открытая вентиляция работала за счет разряжения, возникающего у среза вытяжной трубки, однако обязательным условием создания достаточного для интенсивной вентиляции разряжения было движение автомобиля — чем быстрее, тем разряжение выше. Работу закрытых систем обеспечивает разряжение во впускном коллекторе, поэтому вентиляция начинает функционировать сразу же с запуском двигателя. При этом небольшое разряжение создается и в картере, что повышает надежность уплотнений.
В недостатках — усложнение конструкции двигателя. Закрытая система вентиляции требует наличия каналов в блоке и головке цилиндров, а также патрубков и шлангов, по которым циркулируют картерные газы.
В картерных газах присутствует масляная взвесь, которую во избежание высокого расхода моторного масла на угар и загрязнения узлов системы питания, находящихся во впускном тракте, необходимо отделять. Поэтому должен быть предусмотрен маслоотделитель, иногда также называемый маслоуловителем, или маслоотстойником, и каналы, по которым собранное масло возвращается в поддон.
Помимо этого, сообщение картерного пространства с впускным коллектором оказывает влияние на работу двигателя по причине снижения разряжения в коллекторе и добавления к воздуху, поступающему в цилиндры двигателя, того или иного количества картерных газов, которое существенно изменяется в зависимости от режима работы силового агрегата.
Наконец, для нормального функционирования системы вентиляции требуется подвод свежего воздуха в картерное пространство, иначе вместо повышенного давления в картере, с которым вентиляция призвана бороться, возможен обратный эффект — чрезмерное разряжение.
Это общие положения, относящиеся к системам вентиляции, но что касается их исполнения на том или ином двигателе, то тут, как говорится, сколько производителей, столько и вариантов. Кроме того, на исполнение влияет экологический класс силового агрегата, тип двигателя — бензиновый или дизельный, наличие турбонаддува.
Например, маслоотделители могут быть встроенными в двигатель и при этом располагаться внутри клапанной крышки либо в блоке цилиндров, а могут быть выполнены как отдельный узел, расположенный на моторе.
В маслоотделителях используются лабиринтные и инерционные принципы улавливания масла. В первом случае поток картерных газов движется по каналам, резко изменяющим направление. При этом капельки масла оседают на стенках лабиринта, затем объединяются в крупные капли и стекают вниз, где попадают в сливные каналы и возвращаются в поддон двигателя.
В маслоотделителях центробежного типа капельки масла под действием сил инерции отбрасываются и прилипают к стенкам, а далее опять-таки стекают вниз.
Способы согласования работы системы вентиляции с работой двигателя тоже бывают разными. В карбюраторных моторах, двигателях с моновпрыском и нередко при распределенном впрыске вопрос решался с помощью двух каналов подвода картерных газов, один из которых выводили перед дроссельной заслонкой, а второй, заканчивающийся калиброванным отверстием (жиклером), — за ней. При работе на холостом ходу газы поступали по каналу с жиклером за дроссельной заслонкой, но когда по мере открытия дроссельной заслонки и увеличения оборотов коленвала разряжение за заслонкой уменьшалось, но количество газов, прорвавшихся в картер, увеличивалось, из-за чего этот канал переставал справляться со своими обязанностями, в дело вступал первый канал.
Однако наибольшее применение получили клапанные системы регулирования. В них проходное сечение в трубопроводе подвода картерных газов изменяется с помощью клапана в обратной зависимости от разряжения во впускном коллекторе — чем сильнее разряжение, тем меньше проходное сечение клапана и наоборот.
Клапаны PCV в свою очередь бывают золотниковые и мембранные. С точки зрения более точного дозирования количества картерных газов мембранные считаются лучшими, но, впрочем, это не так уж и важно. Важно, что неисправность клапана ведет к нарушению состава горючей смеси. Отсюда начинаются проблемы, которые в эксплуатации способна создавать вентиляция картера.
Клапаны, как известно, могут потерять подвижность или, говоря проще, заклинить в каком-то положении. У мембранных клапанов сомнение вызывает также надежность и долговечность материала мембраны. Заклинить клапан может из-за засорения. В картерных газах присутствуют мелкодисперсные частички сажи и нагара. Чем хуже техническое состояние двигателя, тем их больше. Опять же в мелких капельках масла могут находиться еще более мелкие инородные включения. Чем хуже обслуживается двигатель, тем включений больше. Эта грязь откладывается не только в клапане PCV, но и в калиброванных отверстиях, патрубках системы вентиляции. Опять же патрубки могут прорваться — их материал отнюдь не вечен.
Коварство системы вентиляции заключается в том, что неполадки в ней могут не оказывать сильно заметного влияния, а если и начинают сказываться уменьшением мощности, увеличением расхода топлива, слишком быстрым загрязнением дроссельной заслонки, регулятора холостого хода, замасливанием воздушного фильтра и прочими проблемами, то их списывают на неисправности других систем, прежде всего систем питания и зажигания.
По словам специалистов, некоторые модели двигателей, отвечающих экологическим требованиям от Евро-4 и выше, при неполадках с вентиляцией способны «свалиться» на работу в аварийном режиме, однако и при этом компьютерная диагностика не указывает на истинного виновника. Поэтому чаще всего лишь когда система засорилась настолько, что картерным газам не остается ничего другого, как выдавить щуп масломера и выгнать масло из двигателя, на вентиляцию наконец-то обращают внимание.
Но в зимний период эксплуатации вентиляция способна на настоящие подлости. Ко всему прочему в картерных газах содержатся водяные пары. Откуда им взяться? Из атмосферного воздуха, поступающего в двигатель, разумеется.
Перемещаясь по системе, пар может конденсироваться в «закоулках», после чего при низких температурах окружающей среды влага изменяет агрегатное состояние, превращаясь в лед. Он в свою очередь закупоривает какое-то «узкое место» системы. Картерным газам опять-таки не остается ничего другого, как выдавить щуп масломера и начать выгонять наружу моторное масло. Причем если засорения системы вентиляции нагаром при исправной работе силового агрегата и его своевременном обслуживании качественными расходными материалами можно ждать бесконечно долго, то обмерзание — вопрос очень короткого времени.
Проблема обмерзания известна разработчикам двигателей, о чем свидетельствует наличие встроенных в систему вентиляции обогревов. На приведенной выше схеме системы вентиляции дизелей 1.6 и 2.0 TDI Volkswagen функцию обогрева выполняет нагревательный резистор. К сожалению, нередко этими обогревами оборудуется вентиляция картера только тех моторов, которые предназначены для автомобилей, продающихся в странах с холодным климатом, — так называемое северное исполнение. Если подогрев не предусмотрен или он неисправен — жди сюрпризов.
И опять-таки, к сожалению, не во всех инструкциях по эксплуатации есть указания по уходу за системой вентиляции картера. Он должен заключаться в периодической очистке полостей вентиляционных шлангов, маслоотделителя, калиброванных отверстий и других узких мест в системе.
При этом обслуживание системы в существующих указаниях по уходу рекомендуется проводить одновременно с очередной заменой масла в двигателе либо через одну замену. Однако как часто подобные рекомендации используются на СТО, в гаражах, владельцами, самостоятельно обслуживающими свои машины? Как в такой ситуации говорят философы, вероятность есть всегда, в данном случае она равна нулю.
Сергей БОЯРСКИХ
Фото автора
ABW.BY
Благодарим за помощь в организации фотосъемки Ресурсный центр на базе автомеханического колледжа имени академика М.С.Высоцкого
Найти и купить необходимые запчасти вы можете, воспользовавшись поиском сайта-агрегатора BAMPER.BY. Здесь собрано более 287.000 предложений от крупнейших белорусских поставщиков с фотографиями и ценой каждой детали. Поиск любой запчасти — в три клика.
Проверка системы вентиляции картера
В этой статье говориться о теме, которая незаслуженно не пользуется большим уважением или вниманием у большинства специалистов автосервиса, а именно о системах вентиляции картера двигателя.
Многие специалисты считают эти системы довольно простыми и безотказными, но их часто упускают из виду несмотря на их важность, а также способность вызывать довольно запутанные проблемы на современных двигателях. В этой статье владелец автомастерской из Чикаго Скотт Манна делится своим опытом и дает рекомендации по работе з системами вентиляции картера. Его цель — показать важность учета системы вентиляции картера во время диагностики неисправностей и описать процесс проверки давления в картере, для определения правильности ее работы.
Важность системы вентиляции картера двигателя
Вентиляция картера так же стара, как двигатели внутреннего сгорания, и должна применяться в любом современном двигателе с контролем выбросов. До введения стандартов контроля выбросов картер двигателя был соединен с атмосферой через компонент, называемый дорожной тяговой трубой. Трубка была подсоединена к боковой части блока цилиндров или крышки клапана и проложена вниз, чуть ниже дна двигателя в потоке двигателя. Когда автомобиль двигался, воздух, проходящий мимо трубки, создавал область низкого давления, и свежий воздух попадал в двигатель через сапун, который обычно был встроен в крышку масляной заливной горловины. Это позволяло выхлопным газам двигателя вытягиваться из картера и выпускаться наружу.
Пока все было просто, были проблемы. Когда автомобиль не двигался, вентиляция картера отсутствовала, а при движении на высоких скоростях система слишком эффективна, и масло вытягивалось из двигателя вместе с картерными газами, образуя черную маслянистую полосу по центру шоссе. Но главная проблема с этим типом системы — выброс несгоревших углеводородов в атмосферу.
Картерные газы считались одной из основных причин смога в бассейне Лос-Анджелеса в 1950-х и 60-х годах. В 1961 году системы принудительной вентиляции картера (PCV) стали обязательными в Калифорнии, и в 1964 году все новые автомобили были оснащены этой системой. Системы PCV позволяют направлять газообразные продукты сгорания во впускной коллектор двигателя для сжигания с поступающей смесью воздуха и топлива. Эти системы в основном управляются вакуумом, так как при низких нагрузках двигателя поток воздуха будет меньше, и больший поток будет в условиях дорожной нагрузки при увеличении обдува.
Многие современные силовые установки покончили с общим клапаном PCV и теперь используют системы с фиксированным отверстием или встроенный клапан регулирования потока и маслоотделитель.
Так много теории и истории, давайте посмотрим, что не так с этими системами и как их протестировать.
Методика проверки системы вентиляции картера
Первым признаком того, что с вентиляцией картера может быть что-то не так, является чрезмерное количество конденсата в картере, и это обычно наблюдается во время замены масла в виде молочных отложений, обнаруженных на крышке заливного отверстия для масла или внутри самого отверстия.
Проблемы, которые меня больше всего беспокоят, — это когда проблемы с вентиляцией картера приводят к загоранию лампы «Check Engine», которая чаще всего отображается в виде кодов настройки топлива. На ум приходит одно конкретное транспортное средство, которое было отправлено мне из другой мастерской. У Chevy S-10 Blazer 2001 года с двигателем 4,3 VIN W были установлены коды ошибок неисправностей связанные с обеднением смеси. Был обнаружен отсоединенный вакуумный шланг, но даже после подключения шланга показатели нехватки топлива были очень высоки на холостом ходу.
Новый датчик массового расхода воздуха, который был заменен раньше, уже был опробован и ничего не изменил в значениях настройки топлива. Зная, что ложный воздух или неизмеренный воздух могут исказить топливную регулировку, было решено отсоединить шланг подачи воздуха картера, чтобы проверить, не изменились ли значения настройки на холостом ходу. Они остались неизменны.
Подача воздуха из картера осуществляется после датчика массового расхода воздуха, что позволяет измерять этот воздух. Если воздух втягивается в картер двигателя из-за утечки, этот воздух не может быть измерен, и смесь будет обедненной.
После этого была сделана последняя проверка. К трубке щупа был подсоединен вакуумметр, и на холостом ходу двигателя был заблокирован впуск свежего воздуха PCV на крышке клапана. Вакуума практически не было, что свидетельствует о наличии утечки воздуха в картер.
Когда в картер двигателя был добавлен дым из дымовой машины, проблема стала очевидной. На двигателе со стороны пассажира была неправильно установлена прокладка крышки клапана. Замена прокладки скорректировала высокие значения настройки топливоподачи.
Эта проблема многократно повторялась на разных автомобилях и привела к большому количеству ненужных замен деталей, потому что многие специалисты не рассматривают утечки в картере как возможную причину кодов настройки топливной системы и не измеряют давление в картере.
Давление, вакуум или и то и другое?
В то время как я упоминал об измерении давления в картере, обычно наблюдается отрицательное давление или частичный вакуум. Это связано с тем, что на картер двигателя подается регулируемый вакуум для вытягивания картерных газов. При проведении измерений вакуума в картере следует помнить, что впуск свежего воздуха должен быть заблокирован и что для создания вакуума в картере потребуется несколько секунд.
Не позволяйте двигателю работать длительное время после того, как вакуумметр стабилизируется до стабильных значений, так как избыточное или чрезмерное давление может повредить некоторые уплотнения или прокладки!
Это напоминает еще одну теорию о давлении в картере. Я помню, как давно покупал инструмент у моего поставщика Snap-on, который называется расходомер потока MT-383. Этот инструмент измерял величину потока картерных газов, выходящих из картера. Клапан PCV был снят с крышки клапана, и на его место был установлен расходомер. Впускное отверстие для свежего воздуха было перекрыто, и двигатель работал на холостых и высоких оборотах. Чистый градуированный расходомер измерял расход в стандартных литрах в минуту.
Теория заключается в том, что по мере износа двигателя, особенно из-за износа поршневых колец и цилиндров, будет происходить увеличение давления в картере из-за прорыва большего количества картерных газов, и это можно измерить для определения износа. Это приводит к тому, что могут быть как условия избыточного давления в картере, так и условия пониженного давления. Если износ двигателя вызывает слишком высокое давление в картере двигателя, это приведет к перегреву системы PCV и к чрезмерным утечкам масла. Избыточное давление в картере двигателя также может возникнуть, если подача вакуума в системе PCV становится ограниченной. Чрезмерное пониженное давление в картере (вакуум) может возникнуть, если вход свежего воздуха ограничен или используется неправильный клапан PCV.
Турбины и вентиляция картера
Когда на двигателе установлен турбокомпрессор, система вентиляции картера становится несколько более сложной из-за того, что направление продувочных газов в картере должно изменяться, когда двигатель находится под давлением наддува из-за отсутствия всасывающего вакуума. Я буду использовать пример с BWM с турбонаддувом, чтобы проиллюстрировать эту проблему.
Говоря о BMW, эти автомобили ясно показывают необходимость измерения давления в картере, когда возникают проблемы с управляемостью. В отличие от многих автомобилей, последние модели BMW с системой контроля подъема впускного клапана Valvetronic имеют регулируемый вакуум во впускном коллекторе. Целевой уровень вакуума на любом двигателе BMW Valvetronic составляет всего 50 миллибар или около 1,5 дюймов ртутного столба. С этим небольшим количеством вакуума давление в картере двигателя строго регулируется и может оказать существенное влияние на работу этих двигателей на холостом ходу.
Для измерения давления в картере большинства европейских автомобилей и любых автомобилей BMW я использую цифровой ручной манометр Dwyer серии 475. Инструмент измеряет давление в дюймах водяного столба, но его легко преобразовать в миллибары, что является спецификацией BMW. Существует сервисный бюллетень № 11 05 98, в котором подробно описывается проверка давления в картере на автомобилях BMW. Я настоятельно рекомендую распечатать его и держать под рукой, если вы работаете с этими транспортными средствами.
Вы можете измерять давление в картере не только с помощью вакуумметра или манометра, вы также можете использовать точный датчик давления, такой как Pico WPS500, для измерения давления в картере с помощью осциллографа. Датчик объема и давления также может показывать импульсы давления внутри картера, что может быть вызвано чрезмерной утечкой в результате прорыва картерных газов.
На рисунках показано измерение давления в картере двигателя BMW X-5 2016 года с шестицилиндровым двигателем N55 с турбонаддувом. Нижняя осциллограмма представляет собой давление в картере, а верхняя — это сигнал катушки зажигания цилиндра № 1, чтобы вы могли видеть, когда двигатель запускался и выключался. База времени довольно медленная — 10 секунд на деление. Когда двигатель выключен, требуется около 75 секунд, чтобы давление в картере вернулось к атмосферному. Это плотно закрытый картер!
Здесь я также должен упомянуть, что, хотя BMW TSB в основном озабочен слишком большим давлением или отсутствием разрежения в картере, что указывает на утечку, существует также проблема слишком большого разрежения! Многие неисправности двигателя BMW Valvetronic могут привести двигатель в режим управления дроссельной заслонкой, и вакуум во впускном коллекторе будет очень высоким, как у обычного двигателя. Система вентиляции картера не рассчитана на высокий вакуум в коллекторе, поэтому отрицательное давление в картере также будет очень высоким. Если вы столкнулись с маслозаливной крышкой, которую практически невозможно снять при работающем двигателе, или с высоким свистом во время работы двигателя, проверьте наличие неисправностей, мешающих нормальной работе Valvetronic.
В нашей следующей публикации Вы подробно узнаете о процессе проверки системы вентиляции картера на примере диагностики неисправностей двигателя BMW.
Объяснение вентиляции картера — Нет данных
Объяснение вентиляции картера — Нет данных
Бен Феннер
Если вы читаете это, вы, вероятно, задавали вопрос о вентиляции картера размещение, правильная прокладка шлангов PCV и т. д. Возьмите себе напиток по своему выбору, расслабьтесь и расслабьтесь. Продолжайте читать, чтобы получить ответы на все свои вопросы.
Чтобы понять, что вы делаете, модифицируя или ремонтируя заводскую систему вентиляции картера, вы должны знать, как работают заводские системы, прежде чем приступать к ее модификации или ремонту.Также было бы неплохо понять историю и эволюцию системы вентиляции картера. Я собираюсь использовать семейство двигателей SR20DE / VE и начну с ранней системы SR20DE, а затем буду работать дальше.
Вот заводская система:
Теперь позвольте мне объяснить, что здесь происходит. Поршневые кольца не герметичны, поэтому через них проходит воздух, и мы называем это прорывом. Этот продувочный воздух создает давление в картере, вызывая серьезные проблемы, такие как выход из строя масляного уплотнения, и его необходимо решать.Создание вакуума в картере двигателя очень хорошо, так как оно способствует уплотнению кольца и снижает потери на ветер (сопротивление вращающемуся кривошипу, вызванное облаком масла в картере). Поскольку вакуум в картере двигателя — это хорошо, а давление — плохо, мы должны как-то избавиться от давления.
Воздух контактирует с большим количеством масла в картере и в основном превращается в смесь воздуха и масла (вместе с небольшим количеством бензина и воды). Эта воздушно-масляная смесь представлена красными стрелками в картере картера, и по мере удаления масла по всей системе я сместил цвет в сторону , синий .Я даже показал маленькие капельки масла, конденсирующиеся из воздуха, когда он проходит через масляный сепаратор. Я не показывал их повсюду во всех перегородках, но вы можете представить себе, что то же самое происходит везде, где вы видите перегородки.
Количество воздуха и масла может быть весьма значительным. Чтобы справиться с этим большим количеством воздуха и масла, Nissan проложил два важных пути, по которым давление выходит из картера двигателя и направляется в воздух для надлежащей эвакуации. Слева воздух и масло могут выходить из картера двигателя вверх по части цепи привода ГРМ в крышку клапана.Это обычный путь, по которому забирается воздух.
Справа масляный воздух может выходить из картера (в случаях, когда возникает избыточное давление для откачивания) через отверстие сбоку блока, вверх через маслоотделитель (уловитель), выходя из картера.
Цель состоит в том, чтобы в картере двигателя был вакуум. Это достигается на некоторых автомобилях с масляной системой с сухим картером, но на обычных автомобилях впускной коллектор используется в качестве источника вакуума. В основном двигатель настроен на потребление собственных картерных газов.Не самая лучшая идея, потому что она покрывает впускной канал масляными остатками и снижает эффективное октановое число вашего топлива, но, безусловно, эффективна, практична и полезна для окружающей среды.
Как продувка снижает октановое число? Прочные газы с любым количеством масла в них снизят эффективное октановое число вашего топлива, потому что испаренное масло воспламеняется при более низких уровнях энергии, чем бензин с октановым числом 87 (R + M / 2). Чем больше его вы позволите попасть в цилиндр, тем больше вам придется беспокоиться о детонации.Обычно это не вызывает большого беспокойства для двигателей без наддува, но, очевидно, с принудительной индукцией — совсем другое дело.
Если вы обратили внимание, у нас теперь есть картерные газы, выходящие из картера и в крышку клапана. Газы будут продолжать поступать через небольшой порт PCV (принудительная вентиляция картера) в верхнем левом углу крышки клапана, который включает односторонний обратный клапан, поэтому все может только выходить (а не входить). Газы выходят из порта PCV во впускной коллектор, где они всасываются обратно в двигатель, где они потребляются и выталкиваются из выхлопной трубы.Достаточно просто.
Теперь к газам примешано немного масла, выходя из крышки клапана, он проходит через лабиринт перегородок, предназначенных для конденсации масла и сбора масла из воздуха. Чем больше площадь поверхности, на которой должно прилипать масло, тем больше масла отделяется от воздуха. Собранное масло стекает обратно в клапанный механизм и в конечном итоге возвращается в масляный поддон.
Сопутствующие товарыОткрытая вентиляция картера | Cummins Filtration
Системы вентиляции картера Cummins Filtration представляют собой инновационные продукты, использующие запатентованные технологии для контроля капель масла и выбросов из картера дизельных двигателей.Системы открытой вентиляции картера (OCV) обеспечивают превосходную аэрозольную фильтрацию выхлопных газов картера, широко известную как прорыв. Прорыв — это результат выхода газов и масел под высоким давлением вокруг поршневых колец в атмосферу. Этот маслянистый туман притягивает пыль и взвешенные в воздухе частицы, что приводит к накоплению загрязняющих веществ как на двигателе, так и на поверхности под ним. Это условие увеличивает объем необходимой очистки моторного отсека, а также приводит к появлению неприглядных капель масла на автомагистралях, водоемах, парковках, посевах, полах гаражей и проездах.
Cummins Filtration предлагает полную линейку OCV для дизельных двигателей мощностью от 60 до 640 л.с. Преимущества систем:
Практически исключает подтекание масла
Снижает расход масла
Превосходная фильтрация и сбор аэрозолей
Сокращает время технического обслуживания и простоя двигателя
Обслуживание не требуется
Срок службы системы = Срок службы двигателя
Гарантия — 3 года
Cummins Filtration Закрытая вентиляция картера ( CCV) Retrofit Kit защищает двигатель и обеспечивает лучшее решение для удаления выхлопных газов, помогая снизить расход масла за счет устранения тумана, паров аэрозоля и капель масла в моторном отсеке.
Одобрено / одобрено OEM
Фильтрует до 99% капель масла из продувки
Фильтрует до 95% паров аэрозоля из продувки
Удаляет 100% паров моторного отсека
Применяется для большинства дизельных двигателей объемом до 10 л рабочий объем двигателя (или до 12 футов3 / мин (340 л / мин) продувки картера)
Для некоторых двигателей OEM комплект для модернизации может применяться в двигателях с рабочим объемом до 15 л.
Компактная конструкция легко устанавливается в моторном отсеке
Up в 3 раза дольше, чем у конкурентов.
Для федерального / государственного финансирования модернизации используйте номер детали ** Комплект CV51118
Агентство по охране окружающей среды (EPA) Подтверждено
Проверка применяется при использовании с дизельным катализатором окисления Cummins Emission Solutions
Высокоэффективный коалесцирующий фильтр в сборе
Картер Регулятор депрессии (CDR) Клапан, который регулирует давление между картером двигателя и входом в турбокомпрессор
CDR Кронштейн клапана
Слив масла обратно в e масляный поддон двигателя
** Дополнительное оборудование (шланги, хомуты, маслосливные обратные штуцеры и т. д.)) требуется для завершения установки.
CCV Kit в сочетании с дизельным катализатором окисления (DOC)
Эта комбинация продуктов Cummins Emission Solution проверена Агентством по охране окружающей среды (EPA), чтобы не только снизить выбросы, но и обеспечить более чистую и безопасную рабочую среду для дизельных двигателей модели 1991 года. -2003, независимо от производителя двигателя. Кликните сюда, чтобы узнать больше.
Ecovent Crankcase Ventilation
Система Ecovent Crankcase Ventilation поставляется на рынок судовых и стационарных двигателей более двадцати лет.Сегодня он используется почти во всех основных моделях промышленных дизельных двигателей и двигателей, работающих на природном газе. Они использовались и определялись:
ВМС США
Береговой охраной
Больницами
Иностранными правительственными агентствами
Владельцы яхт и судостроители
Производители двигателей и упаковщики для морского и промышленного применения
ПРИМЕЧАНИЕ: Если природный газ или топливо, содержащее серу или используются галогеновые химикаты, не возвращайте масло в двигатель.
Жизнь в вакууме: тестирование системы вентиляции картера
В этой статье я буду говорить о предмете, который не пользуется большим уважением и вниманием среди большинства автомобильных техников, а именно о системах вентиляции картера двигателя.Многие технические специалисты считают эти системы довольно простыми и безотказными, но их часто упускают из виду из-за их важности, а также их способности вызывать довольно запутанные проблемы на современных платформах трансмиссии. Моя цель — показать вам важность учета системы вентиляции картера в вашей диагностической программе и того, как проверить давление в картере, чтобы определить, правильно ли работает система.
Общие сведения о вентиляции картера
Вентиляция картера такая же старая, как двигатели внутреннего сгорания, и ее необходимо решать в любой современной трансмиссии с регулируемыми выбросами.До введения федеральных стандартов по контролю за выбросами из картера двигателя выводился воздух через компонент, называемый тяговой трубой. Трубка была подсоединена к боковой стороне блока цилиндров или крышки клапана и проложена немного ниже нижней части двигателя в воздушном потоке транспортного средства. Когда автомобиль двигался, воздух, проходящий мимо трубы, создавал зону низкого давления, и свежий воздух попадал в двигатель через сапун, который обычно был крышкой маслозаливной горловины. Это позволит отводить картерные газы двигателя из картера и отводить их наружу.
Пока все просто, но были проблемы. Когда автомобиль не движется, вентиляция картера отсутствует, а при движении на высоких скоростях система работает слишком эффективно, и масло вытягивается из двигателя вместе с картерными газами, образуя черную маслянистую полосу по центру шоссе. . Но основная проблема этого типа систем — выброс несгоревших углеводородов в атмосферу.
Выбросы из картера двигателя считались одной из основных причин смога в бассейне Лос-Анджелеса в 1950-х и 60-х годах.В 1961 году системы принудительной вентиляции картера стали обязательными в Калифорнии, а в 1964 году все новые автомобили были оснащены этой системой. Системы PCV позволяют перенаправлять картерные газы во впускной коллектор двигателя для сжигания вместе с поступающей воздушно-топливной смесью. Эти системы в основном регулируются вакуумом, поэтому при низких нагрузках на двигатель поток будет меньше, а поток в условиях дорожной нагрузки будет больше, а поток газа увеличивается.
Многие современные силовые установки отказались от обычного клапана PCV и теперь используют системы с фиксированной диафрагмой или интегрированный клапан управления потоком и маслоотделитель.Итак, что касается теории и урока истории, давайте посмотрим, что не так с этими системами и как их проверить.
Проверка работы системы вентиляции картера
Первым признаком того, что что-то не так с вентиляцией картера, является чрезмерное количество конденсата в картере, и это обычно наблюдается во время замены масла в виде молочных отложений на крышке маслозаливной горловины или внутри маслозаливного отверстия.
Рисунок 1 — Чрезмерные отложения конденсата из-за плохой вентиляции картера. |
Проблемы, которые меня больше беспокоят, — это когда проблемы с вентиляцией картера вызывают световой сигнал «Проверьте двигатель», который чаще всего проявляется в виде кодов корректировки топливоподачи. На ум приходит один конкретный автомобиль, который мне прислали из другого магазина. У Chevy S-10 Blazer 2001 года с двигателем 4.3 VIN W были коды регулировки обедненного топлива, установленные для обоих банков. Обнаружен отсоединившийся вакуумный шланг, но даже после его закупорки значения корректировки топливоподачи были очень высокими на холостом ходу — каждый ряд был положительным 24 процента.
Рисунок 2 — Коды неисправностей, хранящиеся на Chevy S-10 Blazer. |
Новый датчик массового расхода воздуха на замену уже был опробован без изменения значений коррекции топлива. Зная, что ложный воздух или неизмеряемый воздух может исказить топливную коррекцию, было решено отсоединить впускной шланг для воздуха в картер, чтобы проверить, изменились ли значения дифферента на холостом ходу. Они не.
Подача воздуха в картер осуществляется после датчика массового расхода воздуха, так что этот воздух измеряется.Если воздух втягивается в картер из-за утечки, то этот воздух невозможно измерить, и система будет обедненной.
Рисунок 3 — Впускной шланг свежего воздуха PCV, подключенный к трубке корпуса дроссельной заслонки после датчика массового расхода воздуха. Отсоединение этого шланга от крышки клапана не привело к изменению значений топливной коррекции. |
Была произведена одна последняя проверка. К трубке маслоизмерительного щупа был подсоединен вакуумметр, и вход свежего воздуха PCV на крышке клапана был заблокирован при работе двигателя на холостом ходу.Показания вакуума показаны на рисунке 4. Вакуума почти не было, что указывает на утечку воздуха в картер. Когда в картер попали дым от дымовой машины, проблема стала очевидной. Неправильно установлена прокладка клапанной крышки со стороны пассажира двигателя. Замена прокладки скорректировала высокие значения корректировки топливоподачи.
Рисунок 4 — Показания вакуума в картере при негерметичной прокладке клапанной крышки. |
Рисунок 5 — Негерметичная прокладка крышки клапана на правом берегу двигателя, вызывающая утечку воздуха в картер. |
Эта проблема повторялась много раз на разных автомобилях и вызвала замену большого количества ненужных деталей, поскольку многие технические специалисты не рассматривают утечки в картере как возможную причину кодов корректировки топлива и не измеряют давление в картере
Рисунок 6 — Это значение вакуума после замены прокладки клапанной крышки, большая разница! |
Давление, вакуум или и то, и другое?
Хотя я уже упоминал об измерении давления в картере, обычно наблюдается отрицательное давление или частичный вакуум.Это связано с тем, что в картер двигателя создается регулируемое разрежение для отвода картерных газов. При измерении вакуума в картере помните, что необходимо перекрыть забор свежего воздуха и что потребуется некоторое время, чтобы вакуум образовался в картере.
Не позволяйте двигателю поработать более короткого времени после того, как вакуумметр установится на стабильные показания, поскольку избыточное пониженное или избыточное давление может повредить некоторые уплотнения или прокладки!
Это заставляет вспомнить еще немного теории о давлении в картере.Я помню, как давно купил у своего поставщика оснастки инструмент под названием «Тестер продувки MT-383». Этот инструмент измерял количество потока картерного газа, выходящего из картера. Клапан PCV был снят с крышки клапана и на его место установлен расходомер. Впуск свежего воздуха был закрыт, и двигатель работал как на холостом ходу, так и на высоких оборотах. Четкий градуированный расходомер измеряет расход в стандартных литрах в минуту.
Теоретически, когда двигатель изнашивается, особенно из-за износа поршневых колец и цилиндров, будет повышаться давление в картере из-за большего прорыва, и это можно измерить, чтобы определить износ.Это приводит к тому, что может быть как состояние избыточного давления в картере, так и состояние пониженного давления. Если износ двигателя вызывает слишком высокое давление в картере, это приведет к перегрузке системы PCV и приведет к чрезмерным утечкам масла. Избыточное давление в картере также может возникать, если подача вакуума в систему PCV становится ограниченной. Чрезмерное пониженное давление в картере (разрежение) может возникнуть, если поступление свежего воздуха становится ограниченным или используется неправильный клапан PCV.
Рисунок 7 — Счетчик обдува, подключенный к двигателю Chevy V8. |
Турбины и вентиляция картера
Когда к двигателю добавляется турбонагнетатель, система вентиляции картера несколько усложняется из-за того, что направление картерных газов должно измениться, когда двигатель находится под давлением наддува из-за отсутствия разрежения на впуске. Я буду использовать пример из BWM с турбонаддувом, чтобы проиллюстрировать эту проблему.
Говоря о BMW, эти автомобили четко демонстрируют необходимость измерения давления в картере при возникновении проблем с управляемостью.В отличие от многих автомобилей, последние модели BMW с системой управления подъемом впускного клапана Valvetronic имеют регулируемый вакуум во впускном коллекторе. Целевой уровень вакуума на любом двигателе BMW Valvetronic составляет всего 50 миллибар или около 1,5 дюймов ртутного столба. При таком небольшом доступном вакууме давление в картере тщательно регулируется и может существенно повлиять на работу этих двигателей на холостом ходу.
Я использую цифровой портативный манометр Dwyer серии 475 для измерения давления в картере большинства европейских автомобилей и любых автомобилей BMW.Инструмент измеряет давление в дюймах водяного столба, но его легко преобразовать в миллибар, что является спецификацией, предоставленной BMW. Адаптер, показанный на рисунке, можно приобрести у компании AGA tools, или вы можете сделать тестовый адаптер из старой масляной крышки. Существует сервисный бюллетень № 11 05 98, в котором подробно описывается проверка давления в картере автомобилей BMW. Я настоятельно рекомендую распечатать его и держать под рукой, если вы работаете с этими транспортными средствами.
Рисунок 8 — Измерение давления в картере двигателя BMW X-3, N52 |
Вы можете не только измерять давление в картере с помощью вакуумметра или манометра, но также можете использовать точный датчик давления, такой как Pico WPS500, для измерения давления в картере с помощью осциллографа.Осциллограф и датчик давления также могут показывать импульсы давления внутри картера, которые могут быть вызваны чрезмерной утечкой от стенки цилиндра до сжатия поршня, которая выходит в картер.
На рисунках 9 и 10 показаны испытания под давлением в картере, проведенные на BMW X-5 2016 года с шестицилиндровым двигателем N55 с турбонаддувом. Нижняя осциллограмма — это давление в картере, а верхняя осциллограмма — срабатывание катушки зажигания цилиндра №1, поэтому вы можете видеть, когда двигатель был запущен и выключен. База времени довольно медленная — 10 секунд на деление.Когда двигатель заглушен, требуется 75 секунд, чтобы давление в картере вернулось к атмосферному. Это плотно закрытый картер!
Рис. 9. Использование осциллографа Pico и датчика давления для измерения давления в картере BMW X-5 2016 года выпуска с двигателем N55. |
Рисунок 10 — Объемный захват давления в картере в вакууме после запуска двигателя.При выключении происходит медленное повышение давления до атмосферного. |
Я должен также упомянуть здесь, что, хотя BMW TSB в основном озабочен слишком большим давлением или недостатком вакуума в картере, который указывает на утечку, существует также проблема слишком большого вакуума! Многие неисправности двигателя BMW Valvetronic могут привести к тому, что двигатель перейдет в режим управления дроссельной заслонкой, и разрежение во впускном коллекторе будет очень высоким, как в обычном двигателе. Система вентиляции картера не рассчитана на высокий вакуум в коллекторе, поэтому отрицательное давление в картере также будет очень высоким.Если вы столкнулись с крышкой маслозаливной горловины, которую практически невозможно снять при работающем двигателе, или с пронзительным свистом при работающем двигателе, проверьте наличие неисправностей, препятствующих нормальной работе Valvetronic.
Несколько примеров из практики BMW
В магазин привезли интересный проблемный автомобиль, наглядно демонстрирующий необходимость проверки давления в картере. Автомобиль был BMW X-3 2007 года выпуска с шестицилиндровым двигателем N52, оборудованным Valvetronic. Жалоба заключалась в резком скачке холостого хода, который также приводил к случайной остановке двигателя на холостом ходу.
Двигатель работал нормально при движении на крейсерских скоростях. При первой проверке было 14 кодов, связанных с управлением двигателем. Все четыре нагревателя датчика кислорода устанавливали коды, был код вялого движения серводвигателя Valvetronic, все шесть цилиндров устанавливали коды пропусков зажигания, а также был код системы воздушных масс и код правдоподобия холостого хода при холодном запуске. При таком большом количестве кодов трудно определить, с чего начать. Коды были сброшены, и была выполнена процедура определения пределов Valvetronic, после чего двигателю дали поработать на холостом ходу в течение нескольких минут.На холостом ходу двигателя не было изменений, и коды сбрасывались быстро, что видно на Рисунке 11.
Рисунок 11 — Скриншот кодов, которые сбрасываются на X-3 после нескольких минут работы. |
Посмотрев на данные эксцентрикового вала Valvetronic, было замечено, что положение эксцентрикового вала колеблется взад и вперед, и это наверняка приведет к скачку оборотов двигателя. Вопрос в том, почему DME не может должным образом управлять холостым ходом?
Рисунок 12 — Это измерение давления в картере двигателя BMW X-3. |
Утечка воздуха, безусловно, может повлиять на регулирование холостого хода, но перед тем, как вынуть дымовую машину для проверки утечек в системе впуска, сначала выполняется измерение давления в картере. Результат — неудачный тест — давление в картере колеблется от -2,5 до 4 дюймов водяного столба. Это диапазон от -7 до 10 миллибар, что значительно ниже спецификации для этого двигателя, которая составляет -30 миллибар, плюс-минус 5 миллибар. Если в картере меньше вакуума, это будет состоянием повышенного давления, что означает утечку воздуха в картер.
Этот ложный воздух не измеряется датчиком массового расхода воздуха. К тому же контрольному штуцеру, который использовался для измерения давления в картере, был подключен дымовой автомат, и дым начал выходить из-за шкива коленчатого вала двигателя. При снятии шкива было видно повреждение переднего сальника коленчатого вала. Уплотнение было повреждено из-за серпантинного отказа приводного ремня, который является распространенной проблемой на этих платформах, но никто не потрудился сообщить нам, что ремень недавно вышел из строя. После замены сальника коленвала двигатель работал нормально, хотя проблема с нагревателем датчика кислорода не была устранена! Заказчику просто было достаточно, и ему сказали, что двигатель может выйти из строя, если в двигателе останется больше материала приводного ремня.Конечно, они заявили, что продают автомобиль в.
Рисунок 13 — Старый материал приводного ремня вытягивается из-за поврежденного уплотнения коленчатого вала. |
Очень интересная проблема была замечена на другом автомобиле BMW, который был диагностирован для другого магазина, который заявил, что BMW 335xi 2011 года был доставлен в их магазин из-за неудавшегося теста на выбросы OBD. Магазин искал общий код P112F или код BMW 28A0.Код BMW предназначен для абсолютного давления во впускном трубопроводе, правдоподобия, слишком высокого давления, общее описание кода — это проблема корреляции угла дроссельной заслонки и давления в коллекторе.
Эти описания кодов не позволяют быстро понять, что не так с этим автомобилем. После замены корпуса дроссельной заслонки и датчика давления на впуске коды остались. Техническая горячая линия сказала цеху провести повторное обучение, запустив двигатель на холостом ходу в течение 15 минут с отсоединенным клапаном продувки адсорбера.Это не решило проблему. В этот момент меня попросили взглянуть на машину.
Заводское описание диагностического прибора ISTA для кода 28A0 содержит интересную информацию, которая до сих пор была упущена из виду и показана на рисунке 14.
Рисунок 14 — Информация об описании кода BMW 28A0, найденная на заводском сканирующем приборе |
В подчеркнутом заявлении упоминается, что неисправность распознается, когда контролируемый массовый расход превышает предельное значение.Это означает, что измеряется слишком большой воздушный поток для заданного положения дроссельной заслонки. Это заявление эффективно исключает любые ложные утечки воздуха во впускную систему, такие как утечки во впускном коллекторе или любой водопроводной системе турбонагнетателя. Если воздушный поток слишком большой, датчик массового расхода воздуха должен иметь возможность его измерить, поэтому я ищу, как это возможно. Как вы уже догадываетесь, я решил провести проверку давления в картере.
Давление составляет -7 IWC или -17 миллибар.Это давление слишком высокое и указывает на утечку в картер. Стрелка на рис. 15 указывает на шланг вентиляции картера, который подсоединяется к впускной трубе турбокомпрессора. Он расположен ниже по потоку от датчика массового расхода воздуха, и расход воздуха через эту трубу может быть измерен датчиком массового расхода воздуха. В плане проверки диагностического прибора для этого кода упоминается, что сначала необходимо проверить утечку воздуха, а затем проверить систему вентиляции картера, см. Рисунок 16.
Рисунок 15 — Проверка давления в картере двигателя BMW 335xi 2011 года с кодом 28A0.Показание равно 17 мбар, слишком высокое давление в картере означает наличие утечки. |
Рисунок 16. Скриншот плана тестирования средства сканирования, в котором перечислены элементы для проверки кода 28A0. Номер 2 — проверка вентиляции картера. |
После осторожного снятия шланга сапуна с клапанной крышки и закрытия отверстия большим пальцем давление в картере значительно падает. Давление показано на рисунке 17.
Это шланговое соединение используется для отвода паров картера во входящий воздушный поток, когда двигатель работает с форсированным двигателем.На холостом ходу через эту трубку не должно быть потока воздуха. Взглянув на схему вентиляции картера, найденную в учебном пособии BMW, можно увидеть, как система работает в условиях нормальной нагрузки и наддува, когда во впускном коллекторе присутствует давление, а не вакуум. Пункт номер 12 на схеме — это обратный клапан, который открывается во время режима турбонаддува. Это нормально закрытый клапан, но на этом BMW он застрял в открытом положении.
Рисунок 17 — Отсоединение шланга сапуна картера, используемого при работе автомобиля в режиме наддува. |
Рисунок 18 — Схема системы вентиляции картера двигателя BMW N55. Предоставлено BMW. |
Ремонт на этом BMW заключался в замене клапанной крышки на новую деталь, клапанная крышка содержит большинство компонентов системы вентиляции картера. Последний пункт, который следует упомянуть об этой проблеме, можно увидеть из информации плана тестирования для этого кода, показанной на рисунке 19.
Рисунок 19 — Снимок экрана BMW, на котором перечислены элементы «Действия в обслуживании» и тот факт, что неисправность «отсутствует».Обратите внимание, что «Информация для водителя» — это включение сигнальной лампы выбросов. |
В двух нижних элементах упоминается замена деталей, это то, что привлечет внимание большинства технических специалистов. В верхнем пункте говорится о проверке утечек воздуха во впускной системе и картере. Если у вас нет средств для проверки герметичности картера, этот шаг наверняка будет упущен из виду или полностью пропущен. Я надеюсь, что это обсуждение измерения давления в картере поможет вам диагностировать некоторые неприятные проблемы с приводом и добавит еще один тест в ваш набор диагностических инструментов.
Фильтры вентиляции картера — KLM Performance
Для чего нужен фильтр вентиляции картера?Система вентиляции картера — это односторонний канал для газов, вырабатываемых дизельным двигателем, для контролируемого выхода из картера двигателя внутреннего сгорания. Фильтры вентиляции картера защищают двигатель, обеспечивая лучшее решение для полного удаления твердых частиц. Вентиляционный фильтр картера снижает расход масла за счет устранения масляного тумана, паров аэрозоля и капель масла в моторном отсеке.Система вентиляции картера — это некоторые двигатели с электронным управлением для обеспечения оптимальной эффективности двигателя. Система вентиляции картера не добавляет к двигателю каких-либо паразитных нагрузок или сложности. Эти коалесцирующие фильтры легко обслуживаются. Система вентиляции картера нуждается в замене только каждые два года, 2500 часов или 60 000 миль.
Сегодня используются два типа систем фильтрации вентиляции картера Fleetguard. Оба типа фильтров предназначены для выполнения одинаковой работы по защите двигателя и окружающей среды от паров аэрозолей и капель масла в моторном отсеке.Эти вентиляционные фильтры картера относятся к категории:
.- Закрытые вентиляционные фильтры картера Fleetguard
- Фильтры для открытой вентиляции картера Fleetguard
Фильтр вентиляции картера или CCV стал необходим, потому что внутреннее сгорание неизбежно связано с небольшим, но постоянным количеством прорывов, которые происходят, когда часть газов сгорания проходит мимо поршневых колец (то есть продувается ими) до конца. внутри картера, вызывая повышение давления в картере.Для активного контроля твердых частиц под давлением внутри картера эти газы передаются на фильтр CCV. Вентиляционный фильтр картера улавливает летящие по воздуху газы, содержащие пары масла. Эти газы фильтруются и очищаются от дымовых газов; затем они возвращаются в цикл сгорания для максимального контроля выбросов.
В чем разница между закрытой системой вентиляции картера и открытой системой вентиляции картера?- Открытая система вентиляции картера позволяет картеру и дымовым газам выходить прямо в атмосферу.
- Закрытая система вентиляции картера улавливает масляный туман картера, капли размером с аэрозоль, сажу и возвращает ее в масляный поддон. Эта система CCV также улавливает прорыв и возвращает его в камеру сгорания для повторного сжигания. Закрытие системы вентиляции картера означает улавливание картерного газа обратно в поступающий заправочный воздух для горения и подачу его непосредственно в двигатель.
В связи с растущим значением защиты окружающей среды в современных высокопроизводительных дизельных двигателях используется эта эффективная система фильтрации вентиляции картера.Поскольку полный контроль выбросов дизельных двигателей все чаще регулируется, использование фильтра системы вентиляции картера имеет решающее значение для производителей оригинального оборудования дизельных двигателей (OEM). Будущие нормы выбросов дизельных двигателей во всем мире потребуют от производителей оригинального оборудования продолжать снижать общие выбросы твердых частиц. Текущие нормы выбросов во многих странах и сегментах рынка охватывают общие выбросы двигателя, включая выхлопную трубу и картер. Выбросы, выбрасываемые картером двигателя, могут составлять до 25% от общего объема выбросов; контроль над этим источником загрязнения воздуха имеет решающее значение для защиты окружающей среды Земли.
Эти системы вентиляции картера Cummins Filtration представляют собой инновационные продукты, использующие запатентованные технологии для контроля капель масла и выбросов из картера дизельных двигателей. Системы открытой вентиляции картера (OCV) обеспечивают превосходную аэрозольную фильтрацию выхлопных газов картера, широко известную как прорыв. Прорыв — это результат выхода газов и масел под высоким давлением вокруг поршневых колец в атмосферу. Этот маслянистый туман притягивает пыль и взвешенные в воздухе частицы, что приводит к накоплению загрязняющих веществ как на двигателе, так и на поверхности под ним.Это условие увеличивает объем необходимой очистки моторного отсека, а также приводит к появлению некрасивых капель масла на автомагистралях, водоемах, парковках, посевах, полах гаражей и проездах.
Следующая серия турбодизельных двигателей Cummins включает CCV Filte RS:
- ISX Cummins
- ISM Cummins
- 5,9 л Cummins
- 6,7 л Cummins
- ISL9 Cummins
- ISB 6.7L Двигатель
- X12 Cummins
- N14 Cummins
Fleetguard предлагает систему закрытой вентиляции картера (CCV), дооснащение Kist для защиты вашего двигателя и окружающей среды.Эта система Fleetguard включает комплекты для модернизации системы вентиляции картера (CCV), которые являются лучшим решением для снижения выбросов современных дизельных двигателей. Установка комплекта закрытой вентиляции картера (CCV) снижает расход масла за счет устранения тумана, паров аэрозоля и капель масла в моторном отсеке.
Cummins Filtration предлагает полную линейку открытых и закрытых систем вентиляции картера для дизельных двигателей. В этих системах вентиляции картера используются настоящие технологии для повышения производительности и более чистой окружающей среды для дизельных двигателей мощностью от 60 до 640 л.с.
Преимущества систем вентиляции картера CCV:- Практически исключает подтекание масла
- Снижает расход моторного масла
- Превосходная фильтрация и сбор аэрозолей
- Сокращает время простоя и техническое обслуживание двигателя
- Обслуживание CCV не требуется, пока не истечет интервал замены фильтра.
- Одобрено / одобрено OEM
- Фильтрует до 99% капель масла из картера
- Отфильтровывает до 95% паров аэрозоля от прорывов
- Удаляет 100% дыма в моторном отсеке Фильтры
- CCV используются в дизельных двигателях объемом до 10 л.
- Только для двигателей OEM комплект для модернизации может применяться в двигателях с рабочим объемом до 15 л.
- Компактная конструкция легко устанавливается в моторном отсеке.
- Интервалы обслуживания до 3 раз больше, чем у конкурентов.
- Высокоэффективный коалесцирующий фильтр в сборе.
- Клапан регулятора давления в картере (CDR), который регулирует давление между картером двигателя и впускным отверстием турбокомпрессора.
- Позволяет уловившемуся маслу стекать обратно в масляный поддон двигателя
Эти фильтры также упоминаются как:
- фильтр закрытой вентиляции картера
- фильтр вентиляции картера
- CCV, OCV, CV
- блок-картер
- коалесцентный фильтр
- фильтр технологический ударный
- фильтр картера,
- воздушный фильтр,
- Сапун картера
- комплект для открытой модернизации
- элемент сапуна картера
- Фильтр вентиляции картера дизельного двигателя
- Вентиляционное отверстие картера
В этих фильтрах управления вентиляцией картера двигателя Fleetguard для дизельных двигателей Cummins используются усовершенствованные маслоотделительные среды для контроля аэрозольных картерных газов.Эти разные и уникальные полимерные полотна фильтрующего материала, разработанные и изготовленные Cummins Filtration с использованием запатентованной среды разной плотности, предназначены для оптимального удаления капель масла из картерных газов. Разные размеры волокон обеспечивают эффективную градиентную структуру, гарантирующую полную фильтрацию. Расположение фильтрующего материала обеспечивает оптимальный захват и коалесценцию частиц для защиты окружающей среды и системы забора воздуха.
Эти фильтры вентиляции картера Fleetguard позволяют вашему двигателю дышать.Поэтому убедитесь, что фильтр вентиляции картера чистый и правильно выполняет свою работу, чтобы ваш двигатель мог работать с максимальной эффективностью.
Фильтр вентиляции картера должен быть частью вашего регулярного графика технического обслуживания, так как его необходимо заменять с рекомендованной периодичностью, чтобы обеспечить надлежащую работу двигателя. Стоимость этого фильтра фильтра вентиляции картера экономична по сравнению с ценой нового турбокомпрессора. Невозможность замены этого фильтра может привести к гораздо более дорогостоящему и отнимающему много времени ремонту вашего двигателя.Завершение профилактического обслуживания в противоположность реактивному ремонту, когда проблемные поверхности не обеспечивают работу вашего грузовика.
Каковы признаки того, что мой фильтр CCV нуждается в обслуживании?
Следующие признаки могут стать преобладающими, когда необходимо изменить интервал фильтрации. Эти предупреждающие знаки нельзя игнорировать.
- Ваш верхний идиотский свет показывает, что интервал обслуживания фильтра истек.
- Насыщенный фильтр вентиляции картера может привести к утечке масла.Фильтр картера удаляет картерные газы, чтобы убедиться, что они чистые, прежде чем они будут возвращены во впускной коллектор двигателя. Со временем фильтр может загрязняться и ограничивать воздушный поток и, следовательно, способность системы сбрасывать давление. Если давление в картере становится слишком высоким, это может привести к разрыву прокладок и уплотнений, что приведет к утечке масла.
- Повышенная частота вращения двигателя на холостом ходу — потенциальная проблема с вентиляционным фильтром картера. Если фильтр картера поврежден или полностью пропитан, что приведет к утечке масла или вакуума.
- Заметное снижение производительности двигателя — еще один признак проблемы с фильтром вентиляции картера. Если фильтр засоряется и вызывает какие-либо утечки вакуума, это может вызвать снижение производительности двигателя из-за нарушения воздушно-топливного отношения.
Фильтр картера является одним из немногих компонентов системы вентиляции картера и поэтому важен для поддержания полной функциональности системы. По этой причине, если вы подозреваете, что у вашего вентиляционного фильтра картера может быть проблема, обратитесь для обслуживания автомобиля к профессиональному технику, например, из YourMechanic.Они смогут заменить ваш вышедший из строя фильтр вентиляции картера и выполнить любые услуги, которые могут потребоваться для автомобиля.
Фильтр картера просто фильтрует картерные газы, чтобы убедиться, что они чистые, прежде чем они будут возвращены во впускной коллектор автомобиля. Со временем фильтр может загрязняться и ограничивать воздушный поток и, следовательно, способность системы сбрасывать давление. Если давление будет слишком высоким, это может привести к разрыву прокладок и уплотнений, что приведет к утечке масла.
Эти фильтры вентиляции картера Fleetguard имеются на складе и готовы к немедленной отправке. Установка нового фильтра вентиляции картера Fleetguard позволяет всему двигателю дышать. Поэтому убедитесь, что фильтр вентиляции картера чистый и выполняет свою работу.
Эти фильтры CCV используются в дизельных двигателях Cummins 5,9 л, 6,7 л и 15 л.
KLM Performance содержит эти фильтры CCV для обеспечения высокого уровня фильтрации, необходимого для поддержания вашей топливной системы в чистоте, эффективности и мощности.Если вы не видите нужные дизельные фильтры, пожалуйста, позвоните нам или свяжитесь с нами.
Показать больше
Вентиляция картера
~~~Роб писал — В картере вокруг вала шкива есть отверстие, которое предназначено для втягивания свежего (нефильтрованного!) Воздуха.
Если вы снимете шкив двигателя, то увидите пару кольцевых пазов в корпусе вокруг вала.Сам вал имеет спиральную канавку, вырезанную в нем, поэтому он «вкручивает» воздух в картер. Это обеспечивает постоянное небольшое избыточное давление в картере, которое в сочетании с небольшим разрежением в системе впуска карбюратора втягивает пары масла и т. Д. В карбюратор и повторно сжигает их. Вы можете услышать, как мальчики-багги на пляже говорят о «песчаных уплотнениях», и это устройства типа заглушек, которые закрывают эти щели, чтобы пыль и песок не попали в отстойник.
Вокруг вала сразу за этими пазами имеется большая шайба, которая действует как пластина для разбрызгивания масла, и, поскольку воздух втягивается в картер, он способствует тому, чтобы масло стекало обратно в картер и поддон, а не заставляло его выход из положения.
~~~ Вентиляция картера как источник масла в моторном отсекеПредполагается, что картер втягивает небольшое количество свежего воздуха через прорези за шкивом коленчатого вала. Кольцевое отверстие вокруг ступицы шкива является обычным ВПУСКОМ для системы вентиляции картера. На коленчатом валу имеется спиральная канавка, через которую «закачивается» воздух. Это сделано специально для создания положительного давления в картере, которое заставляет любые сгоревшие газы (протекающие через кольца) подниматься вверх через сапун и через карбюратор.Таким образом, масло меньше загрязняется газами цилиндра, и любое избыточное вспенивание масла и т. Д. Может быть сожжено, а не выброшено на дорогу.
Выход из системы проходит через основание генератора / генератора, а оттуда — в зону низкого давления внутри воздухоочистителя. Но когда вы поднимаете ногу — закрываете дроссельную заслонку — нет низкого давления для поддержания потока воздуха через картер. Если у вас возникла проблема с прорывом газа (газы сгорания проходят через изношенные кольца и направляющие клапана), давление внутри картера может быть достаточно большим, чтобы сломать маслоотражатель, выбрасывая масляный пар во впускное отверстие, где находится шкив. хорошая работа по распределению его по моторному отсеку.
Если вы не используете стандартный воздухоочиститель, возможно, у вас недостаточно вакуума для всасывания масляных паров через стойку генератора, в результате чего туман выдувается назад через вентиляционные прорези за шкивом коленчатого вала. Взгляните — любые признаки масла (полосы и т. Д.) Внутри очистителя будут указывать на то, что он правильно вытягивает масляный воздух.
Вы ДОЛЖНЫ подсоединить трубку маслозаливной горловины к воздухоочистителю и иметь воздухоочиститель, который создает небольшой вакуум внутри фильтрующего элемента.
На многих послепродажных воздухоочистителях не предусмотрена установка вентиляционной линии от башни маслозаливной горловины. А те, у которых есть соединение, могут не создавать достаточного вакуума, в результате чего масло будет выходить из картера, куда должен поступать воздух.
«Быстрый Джим» предложил следующий тест —
Очистите все как следует, чтобы обнаружить источник. Попробуйте следующее: на холостом ходу снимите крышку маслозаливной горловины и слегка удерживайте ее над отверстием.Он должен просто трепетать, чтобы его не сдуло. Если сдувать, происходит чрезмерный прорыв.
Роб ответил — Были предложены три других возможных источника утечки масла в моторный отсек — датчик давления масла, масляный щуп и маслозаливная горловина. Переключатель давления масла НЕ ДОЛЖЕН иметь прокладку или уплотнительное кольцо. Может помочь обернуть шнур под колпачком масляного щупа. Крышка маслозаливной горловины должна плотно прилегать.
Дэйв рассказал о проблеме масла в моторном отсеке в группе новостей RAMVA — назойливый вопрос — что могло быть источником масла на жестяной банке двигателя вокруг задней части двигателя? Мы заменили реле давления масла и уплотнение вала распределителя, затянули крышку маслозаливной горловины — о, да, и набили шнур вокруг внутренней части манжеты щупа.
Боб Гувер написал — У вас может быть проблема с прорывом. Кольцевое отверстие вокруг ступицы шкива является обычным ВПУСКОМ для системы вентиляции картера. Выход осуществляется через динамо-башню в зону низкого давления внутри воздухоочистителя. Но когда вы поднимаете ногу — закрываете дроссельную заслонку — нет низкого давления для поддержания потока воздуха через картер. Если у вас есть проблема с прорывом — негерметичные кольца или, что более вероятно, изношенные направляющие клапана — давление внутри картера может быть достаточно большим, чтобы сломать маслоотражатель, выпуская поток масляных паров во впускное отверстие, где находится шкив отлично распределяет его по моторному отсеку.
Роб прокомментировал — Я понимаю, что говорит Боб Гувер, но не думаю, что это ваша проблема — двигатель «свежий», поэтому изношенные направляющие клапана или поршневые кольца маловероятны.
Если это проблема прорыва, я все еще считаю, что нестандартный воздухоочиститель может быть, по крайней мере, частью проблемы (Боб также упоминает об этом как о зоне низкого давления).
Только одна мысль — спиральная канавка на коленчатом валу работает таким образом, чтобы «перекачивать» небольшое количество свежего воздуха, и для предотвращения вытекания масла таким же образом имеется шайба большого диаметра, которая действует как масло. slinger (см. комментарии Боба об этом), поэтому любое масло, попавшее в область спиральной канавки, ударяет по вращающейся шайбе, которая отталкивает его от коленчатого вала — центробежный барьер для потока масла из задней части двигателя.Если этого не было …
Мне сказали, что вы можете увидеть его через отверстия за шкивом (я никогда не смотрел), как только шкив снят — вы можете проткнуть его тонкой отверткой, и он должен немного сдвинуться назад и вперед ( он «плавает» на валу).
Итог —
Дэйв заменил свой модный хромированный послепродажный воздухоочиститель на стандартный, прикрепил шланг от маслозаливной горловины и вакуумную линию к отверстию на впускном коллекторе, и вуаля! Нет больше масла на жестяной банке двигателя (а значит, капающего под машину).Стандартный воздушный фильтр — ваш лучший выбор (я знаю, маленькие хромированные детали выглядят круто? 🙂
* * * * *Основы вентиляции картера
MGA With An AttitudeОСНОВЫ ВЕНТИЛЯЦИИ КАРТЕРА — CV-100
Сначала небольшое предостережение.Если вентиляция картера не выполнена должным образом, это может серьезно испортить работу двигателя (и может привести к повреждению двигателя). При замене карбюраторов и впускных коллекторов вентиляцию картера часто упускают из виду или делают неправильно (или не делают вообще). Для работы вентиляции картера необходим источник вакуума низкого уровня для втягивания воздуха через картер и воздухозаборное отверстие в картер (можно надеяться, что всасываемый воздух отфильтрован).
Для всех MGA и ранних MGB (двигатели 18G с 1962 г. по начало 1964 г.) воздухозаборник представлял собой 1/2-дюймовый шланг от воздушного фильтра до крышки клапана, в то время как очень низкий уровень вакуума создавался за счет 1/2-дюймовой тяги трубку на передней крышке толкателя (во время движения).Обратите внимание на специальную толстую распорную шайбу за P-образным зажимом на вытяжной трубе. Эта прокладка часто отсутствует (вот почему моя вытяжная труба имеет изгиб и вмятину, где она упирается в нижний фланец блока цилиндров). MGA Twin Cam имеет вытяжную трубу на задней крышке толкателя.
Вентиляционный шланг воздухоочистителя к крышке клапана Тяговая труба выходит из крышки толкателя
Для следующей системы (двигатели 18GA / GB / GF конца 1964-1968 гг.) Передняя крышка толкателя была соединена с клапаном PCV, который был соединен с впускным коллектором.Клапан PCV регулировал постоянный низкий уровень вакуума в картере и принимал любое (переменное) количество картерных газов. Чтобы предотвратить чрезмерный поток свежего воздуха через картер во впускной коллектор, забор воздуха был ограничен небольшим отверстием в крышке маслозаливной горловины (а также имел воздушный фильтр в крышке заливной горловины).
В двигателе 18GH в 1969 году клапан PCV был удален, а вакуум низкого уровня обеспечивался источником вакуума Вентури на карбюраторах. Воздух поступал в картер через закрытую и отфильтрованную крышку маслозаливной горловины.
С 1970 года использовалась система улавливания паров топлива с помощью угольного баллона. Затем крышка маслозаливной горловины была закрыта, и воздух для выпуска отработанных газов втягивался в картер через ограниченный фитинг на задней части крышки клапана, который был соединен с баллоном с углем (который также служил фильтром всасываемого воздуха).
Идея всего этого состоит в том, что через картер двигателя должен циркулировать свежий воздух для удаления водяного пара (который является побочным продуктом сгорания). Без поступления свежего воздуха в картер вода будет накапливаться с образованием эмульгированной воды / масляной пены в картере (выглядит как грязный майонез на крышке клапана), и вода может загрязнять и разбавлять моторное масло.
Активная вентиляция картера для максимальной эффективности
Мировая инновация Blue.tron впервые запускается в серийное производство в 6-цилиндровом дизельном двигателе BMW
Будущие нормы выбросов предъявляют строгие требования к разработке двигателей. Бензиновые и дизельные двигатели с низким уровнем выбросов и современными процессами сгорания требуют отличных показателей отделения масла для воздуха в картере. Следовательно, технологическая тенденция направлена на активную вентиляцию.Дисковый сепаратор с электрическим приводом Blue.tron от Hengst с высокоэффективным отделением масла и активным картерным конвейером является одним из самых передовых решений. Мировая инновация является премьерой в грядущем поколении 6-цилиндровых дизельных двигателей BMW объемом 3,0 л; Серийное производство легковых автомобилей для BMW 3-й серии начнется в марте 2020 года, а в апреле — для моделей X5 и X6.
Специально адаптировано к требованиям 6-цилиндрового дизельного двигателя BMW; в своем первом приложении серии Blue.tron имеет специально разработанный для этого высокоскоростной привод. Связь с блоком управления двигателем обеспечивается протоколом LIN. Специально разработанный пакет дисков используется для легковых автомобилей. Давление точно регулируется с помощью мембранного клапана в зависимости от давления окружающей среды.
Одновременно более высокий КПД и меньшие выбросы: электрический дисковый сепаратор Blue.tron отвечает обоим этим требованиям — с высокоэффективным отделением масла и активной продувкой для вентиляции картера.Уменьшение попадания масла во впускную систему двигателя позволяет повысить уровень давления наддувочного воздуха. Таким образом, мощность и эффективность двигателя могут быть увеличены вместе.
Современные высокоэффективные двигатели чувствительны к мелким частицам; это означает, что требуется отделение сверхмелкозернистых частиц. Благодаря Blue.tron происходит меньшее копчение системы впуска. Это обеспечивает работу двигателя и улучшает характеристики выбросов в системе привода на протяжении всего срока службы двигателя.