Срок службы галогеновой лампы: Срок службы галогеновых ламп. Принцип работы галогенной лампы

Содержание

Как существенно увеличить срок службы галогеновых ламп

Многие сталкивались с такой проблемой, как поломка  автомобильной галогеновой лампы. Все из-за того, что у них очень маленький срок службы. Производители говорят, что лампы работают только 200 – 500 часов. Эти цифры установлены при проверки на напряжении 13,2 В.

В автомобиле в бортовой сети наблюдается 14 В. При таком высоком питании срок службы ламп уменьшается в несколько раз. Помимо этого при включении лампы происходит кратный бросок в холодном состоянии. Из-за этого лампа перегорает при включении.

Для того, чтобы продлить жизнь лампы создали блок, которые защищает.

Блок выполняет три функции:

  1. Понижает напряжение на лампе до необходимой.
  2. Обеспечит плавный разогрев нити.
  3. Ограничивает скачки напряжения.

БЗЛ продляет жизнь лампы в несколько раз. Из-за этого если водитель использует дорогие лампы, то благодаря блоку, он сэкономит, определенное количество денежных средств.

Способы долговечности автомобильных ламп

Если поставить лампу в авто с высоким бортовым напряжением, то долговечность данной лампы увеличиться.

Важно: лампа ломается из-за скачков напряжение. Чем меньше их будет, тем дольше продержаться в рабочем состоянии лампа.

Еще один совет: лампу необходимо включать через пару минут, после того как, заработал мотор.

В фары головного света автомобиля часто устанавливают галогеновые лампы накаливания. В их колбу закачан инертный газ с парами йода или брома под избыточным давлением. Эти меры помогают значительно увеличить срок службы автолампы и улучшить другие ее характеристики.

Есть три вида ламп. Среди всех видов, необходимо подобрать такую лампу, которая подойдет под марку авто, кто приобретает лампу.

Лампы с увеличенным сроком службы

У этого вида стандартный световой поток. Однако, чем они хороши, у них очень высокий срок службы.

Если приобретать такой вид ламп, они прослужат очень долго.

Лампы с увеличенной цветовой температурой

У этих ламп цвет исходит белый. Он более схож с дневным, из-за этого его тоже берут, так как в отличие от других, он не раздражает глаза. Кроме этого, такой цвет, делает внешний вид автомобиля привлекательным.

Лампы с увеличенным световым потоком

Благодаря такому виду, водителю ехать безопаснее и комфортнее, потому что он светит очень ярко.

Скорее всего в этот момент многие водители задались вопросом, что стоит придумать одну универсальную лампу, которая будет включать в себя в три функции, о которых говорили ранее. Если посмотреть характеристики и принять во внимание физику, то можно сделать универсальную лампу. Однако, она не будет галогеновой.

Если лампа не проработала даже обещанного срока, то это скорее всего из-за неправильного подключения. После того, как самостоятельно заменили лампу, необходимо про диагностировать автомобиль у электриков, и только после этого продолжать ездить.

В противном случае, водителю придется, очень много тратить денег и времени на покупку и замену ламп.

Специалисты Philips отвечают на вопросы, которые возникают у вас перед покупкой автомобильных ламп

Что такое цветовая температура? В чём разница между люксами и люменами? Как конструкция колбы и расположение нити накаливания галогенной лампы влияют на качество освещения дорожного полотна, и почему дешёвая ксеноновая лампа может привести к возгоранию автомобиля? Мы собрали информацию, которая поможет автомобилистам понять какие характеристики автомобильных ламп влияют на количество и качество света на дороге, а также каким критериям должны соответствовать качественные галогенные и ксеноновые источники света.

Раздел 1. Основные характеристики автомобильных источников света.
Задачей любой автомобильной лампы является излучение света, а его основными единицами измерения являются люмены (лм) и люксы (лк). Люмен — это единица измерения светового потока, которая представляет собой общее количество света, излучаемого лампой. В свою очередь в Люксах измеряют яркость и то количество света, которое непосредственно достигает поверхности дороги. Ну а интенсивность света — это свет, проецируемый на дорогу рефлектором либо линзой фары и измеряется он в канделах (кд). Яркость — важная характеристика автомобильных ламп. Она определяет количество света, излучаемого на единицу поверхности. Чем выше яркость, тем больше света может быть спроецировано фарой на дорогу. А вот единицей измерения силы света является кандела (кд) на квадратный метр (м²). Выбирая автомобильные лампы по цвету, который они излучают, водители руководствуются цветовой температурой.

 

Раздел 2. Галогенные автомобильные лампы
В среде водителей широко распространено мнение, якобы автомобильные галогенные лампы с улучшенными характеристиками производятся с более высоким показателем люменов для обеспечения большей видимости на дороге. На самом деле всё намного сложнее.

Основные характеристики галогенных ламп
При производстве галогенных ламп производители обязаны руководствоваться принятым в ООН и действующим в Европе стандартом ECE-R37. Данным стандартом определено, помимо прочего, сколько люмен может излучать лампа определенного типа, поверхность какого размера она должна освещать, цоколем какого типа она должна быть оснащена, в каком положении должна находиться нить накаливания. Например, для лампы H7 — это 1500 лм ±10%. Для обеспечения большей видимости на дороге, нити накаливания ламп с улучшенными характеристиками делаются немного короче и немного тоньше, что приводит к повышению температуры нити накаливания. Иными словами, нить накаливания излучает более яркий свет, благодаря чему рефлектор или линза фары используется максимально эффективно. Если при этом нить накаливания будет находиться в идеальном положении, дорога будет прекрасно освещена. Обратной стороной такого усовершенствования является снижение срока службы источника света.

Частично нивелировать этот недостаток позволяет более высокое давление газов в лампе.

Как конструкция колбы и положение нити накаливания влияют на характеристики галогенных ламп
Современные галогенные лампы изготавливаются из кварцевого или твердого стекла. При изготовлении всех ламп Philips применяется особо устойчивое к давлению кварцевое стекло, которое выдерживает давление газа до 15 бар, что значительно превышает показатели обычного твердого стекла. От давления газов внутри колбы в значительной степени зависит ее срок службы, особенно в случае с лампами с улучшенными характеристиками. Чем выше давление, тем медленнее изнашивается нить накаливания. Ещё одним фактором, который имеет решающее значение для эксплуатационных характеристик галогенных источников света, является точность позиционирования нити накаливания относительно цоколя лампы. Для достижения максимальной яркости освещения на дороге нить накаливания всех галогенных ламп Philips находится под правильным углом с максимальным отклонением от идеального положения не более чем на 0,2 миллиметра.

Срок службы галогенных ламп и факторы, которые на него влияют
Стандартный срок службы высококачественной лампы h5 (комплектующие для первичного рынка) составляет приблизительно 700 часов; для H7 — 550 часов. Технические характеристики всех произведенных ламп указаны при напряжении 13,2 В. Самое негативное воздействие на срок службы лампы оказывает перенапряжение. При перенапряжении даже на 5 % (13,86 В) срок службы лампы сокращается вдвое.

Раздел 3. Ксеноновые лампы.
Ксеноновая система включает в себя лампу, стартер и блок розжига. Лампа состоит из двух электродов на расстоянии 4,2 мм друг от друга. Электрическая дуга зажигается между электродами с помощью стартера, который формирует пики высокого напряжения 20–25 кВт. После воспламенения управление светоизлучающей дугой переходит на блок розжига.

Компания Philips выпускает исключительно оригинальные ксеноновые лампы с цоколем D (discharge), которые применяются в автомобилях, штатно укомплектованных данной осветительной системой.

Основные характеристики ксеноновых ламп


Все ксеноновые лампы изготавливаются из кварцевого стекла. В круглой части лампы содержатся электроды, смесь солей и различные металлы, которые нужны для обеспечения той или иной цветовой температуры лампы. Производство ксеноновых ламп также, как и в случае с галогенными источниками света, строго регламентируется. В стандарте ECE-R99 определено, помимо прочего, сколько люмен может излучать лампа определенного типа, поверхность какого размера она должна освещать, цоколем какого типа она должна быть оснащена, в каком положении должна находиться электрическая дуга. Так, световой поток ксеноновой лампы составляет 3200 люмен ± 10%. В зависимости от типа лампы, её цветовая температура колеблется от 4100К до 5000К, а при включении лампы в течение приблизительно 2–5 секунд она горит ярким голубым светом, который затем приобретает более желтый оттенок.

Каким должен быть срок службы ксеноновых ламп
Со временем цветовая температура ксеноновой лампы увеличивается, становится белее и к концу срока службы может приобрести розовый или фиолетовый оттенок.

Как правило, такие изменения начинают происходить, когда срок работы лампы вплотную приближается к 3000 часов. Стоит отметить, что все показатели срока службы измеряются в лаборатории и поэтому не могут быть установлены для каждой конкретной модели автомобиля. А износ ксеноновой лампы главным образом зависит от количества ее включений. В связи с этим автомобильные лампы на такси служат гораздо меньше, поскольку они включаются и выключаются намного чаще.

В интернете можно купить дешевые ксеноновые лампы. Качественные ли они?
К сожалению, как и в случае галогенных ламп, они производят гораздо меньше света и обладают меньшим сроком службы. Используйте качественные лампы от поставщика комплектующих для первичного рынка, чтобы получить максимальное количество света и продолжительный срок службы.

Опасно ли устанавливать ксеноновые лампы низкого качества в автомобиль?
На рынке зачастую продаются неисправные лампы низкого качества. Как правило, основной дефект связан с неправильными геометрическими параметрами цоколя, из-за чего происходит неправильный электрический пробой. Кроме лампы, обычно повреждаются детали фары и разъем, в связи с чем требуется дорогой ремонт. В худшем случае фара может загореться.

Сведения о компании Royal Philips
Royal Philips (NYSE: PHG, AEX: PHIA) – это ведущая технологическая компания, нацеленная на улучшение качества жизни людей на всех этапах континуума здоровья – от ведения здорового образа жизни, профилактики и ранней диагностики до лечения и ухода на дому. Philips обладает глубокой экспертизой в сфере потребительских товаров и здравоохранении и использует передовые технологии для предоставления комплексных решений. Компания занимает лидирующие позиции в области медицинской визуализации, мониторинга пациентов и ИТ-систем, а также решений для персонального ухода и техники для дома. Штаб-квартира Philips находится в Нидерландах, в 2016 году объем продаж решений Philips для здоровья и здравоохранения составил 17,4 млрд евро. В компании работают 73 000 сотрудников более чем в 100 странах. Новости о компании Philips вы сможете найти на веб-сайте http://www. philips.ru/newscenter.

Сведения о компании «Lumileds»
Lumileds является мировым лидером в области технологий светотехники. Компания разрабатывает, производит и распространяет инновационные светодиоды и автомобильные осветительные приборы. Обладая более 60 летней историей, Lumileds имеет уникальные возможности для успешного продвижения освещения в будущем, поддерживая неизменное внимание к качеству, инновациям и надежности. Чтобы узнать больше о нашем портфеле продуктов, посетите сайт lumileds.com. Lumileds является дочерней компанией Royal Philips.
(NYSE: PHG, AEX: PHIA).

Долгий срок службы, прожектора самолета в аэропорту галогенной лампы

описание продукта
Самолет лампу С. УСТАНОВКА М прожектор на крыше
PAR36 4752 28V60W
CBCP: 2000
Время работы: 800 перестали принимать участие в
Основание: Винтовые клеммы
Лампы накаливания: 2C-6

Упаковка продукта
Белое окно или как по  Мере необходимости
Существует 24 ПК в одной упаковке.
Размер коробки — 40*30*22CM.
GW/картона 6кг.






Часто задаваемые вопросы
Q: Вы на заводе или торговой компании?
  A: Мы профессиональный производитель  Создана в 1996 году в целях обеспечения высокого качества и  Специальных галогенных ламп.

Q: Вашей продукции?
A: Этап галогеновая лампа/инфракрасная лампа/локомотива лампа/воздушных и морских лампы освещения/лампы щитка приборов/металлогалогенные лампы/светодиодный светильник.

Q: Если Я хочу купить лампы, какие параметры  Должны быть предоставлены?
A: Напряжение, мощность, Общая  длина, оптического центра, диаметром, в, Количество.

Q: Какой срок оплаты?
A: Мы принимаем T/T, L/C, Вестерн Юнион.

Q: Как ваша на заводе сделать в отношении контроля качества?
A: Качество является приоритетом. Нашего завода не  100% инспекции  На каждом производственном процедуры, и мы делаем 2 раундов проверка освещения во время производства и  3-го испытания до упаковки.

Q: Как вы доставки грузов и сколько времени уйдет на?
A: Мы обычно поставляются с DHL, UPS, FEDEX, EMS или TNT. Он обычно занимает  3-5 дней до прибытия. Авиакомпании и каботажных перевозок является необязательным.
 

Галогенные лампы и их блоки защиты

Сегодня мы с вами поговорим о том, как защитить галогенные лампы, и о том, что это такое. Галогенные лампы подвержены перегоранию в момент запуска гораздо больше других ламп. Причина кроется в принципах работы, но о них чуть позже. Представьте, что, если этот самый блок может продлить срок службы в несколько раз. Да-да это не сказка, и не просто так вам их пытаются навязать в каждом магазине. Возможно покупка такого блока не окупиться сразу, но со временем, он себя покажет. Помимо продления срока лампы, он способен поддерживать ваше спокойствие. Представьте, вы установили шикарную новую кухню, с очень хорошей подсветкой. Но через полгода, лампы в подсветке начали перегорать, обидно, не правда ли? И самое печальное, не то, что лампа стоит дорого, а то, что её нужно менять. Все это осложняется тем, что галогенные лампы очень часто имеют разные цоколи, и из-за их разнообразия, нужную лампу может быть найти не просто. Но будь блок защиты галогенных ламп установлен вместе с кухонным гарнитуром, голова бы болела гораздо меньше. Давайте теперь переходить к сути разговора.

Галогенные лампы, по своей конструкции — это обычные лампы накаливания. В галогенных лампах, как и в накаливания есть тело накала, которое и излучает свет. Обычно его делают из вольфрама. Но колба галогенной лампы заполнена парами галогенов — йода, брома и остаточного кислорода. Срок службы галогенной лампы в несколько раз больше чем источника света «Ильича». И разница в сроке службы, как раз и заключается в наличии паров галогенов в колбе лампы. Как это происходит? В момент работы лампы она сильно нагревается, и начинает испарять с поверхности тела накала вольфрам. Частицы вольфрама, при высокой температуры вступают в обратимую реакцию с йодом и бромом. Поскольку реакция обратимая, вольфрам при остывании возвращается в исходное положение. При этой реакции, вольфрам распадается на атомы, и поскольку его держит йод и бром, он не улетает далеко от нити накаливания и не оседает на внутренних стенках колбы. После выключения лампы, атомы вольфрама постепенно возвращаются на тело накала. Таким образом тело накала гораздо медленнее изнашивается. Значит лампа может работать при большей температуре, а это больший световой поток. В лампе накаливания, нить разогревается при помощи сопротивления. Вольфрамовые проводники имеют одно из самых больших сопротивлений. Сопротивление в теле начала, прямо пропорционально температуре. Это значит, что сопротивление растёт вместе с температурой, а значит увеличивается нагрузка на тело накала. Из-за этого появляется проблема перегорания ламп при запуске. В момент включения через лампу проходит серьезный ток, который практически не встречает сопротивления. А значит, когда очередной раз кто-нибудь включит свет, тело накала не выдержит и пойдёт прахом, а вместе с ним и вся лампа. Решить эту проблему можно с помощью блоков защиты галогенных ламп. Об этом уже в следующем абзаце.

Поговорим о том, что такое блок защиты галогенных ламп. Это устройство, которое обеспечивает максимально плавный пуск лампы. Помните в первом абзаце мы говорили про резкое включение? Так вот, блок защиты постепенно увеличивает мощность, и доводит её до максимальной примерно за 1–2 секунды. Это и называется плавным пуском. Такие блоки работают как с напряжением 220 вольт, так и 12. Лампы на 12 вольт будут работать с блоком защиты, только при наличии между этими двумя звеньями цепи понижающего трансформатора. Он как раз и призван понизить напряжение с 220 до 12 вольт. Блоки защиты галогенных ламп рассчитаны на определенную мощность подключаемых к ним ламп. Есть один совет по монтажу блоков защиты ламп — старайтесь не прятать их далеко. Сами по себе, блоки защиты галогенных ламп, это небольшие устройства, которые не сложно спрятать. Это можно сделать даже в подрозетнике выключателя, или в любом другом легко доступном месте. Почему? Спросите вы. Это делается для того, чтобы в случае выхода устройства из строя его можно было легко заменить. Ведь если блок защиты выйдет из строя, то скорее всего не будет гореть ни одна лампа, подключенная к нему. Из плюсов таких устройств, можно выделить пластиковый корпус. На первый взгляд кажется сомнительным, но он имеет маленький вес, а значит не перегружает конструкцию. Так же плюсом таких блоков питания является широкий диапазон рабочих температур от-5 до +40 градусов. Хорошие производители, несущие ответственность за свою продукцию, дают гарантию около года на подобные устройства. Это плюс, так как даже если устройство сгорит не из-за брака, а из-за скачков напряжения, его заменят по гарантии.

Переходим к выбору блоков защиты. Тут всего одна характеристика, но в неё стоит вникнуть основательно. Характеристика эта — мощность. Все блоки защиты галогенных ламп рассчитаны на определенную мощность, причем как на максимальную, так и на минимальную. Это значит, что блок питания имеет мощность 500 ватт, к нему не получиться подключить лампу на 25. Потому, что он не будет работать при суммарной мощности менее 50 ватт. На это внимательно стоит обращать внимание. И так же, как и случае со светодиодной лентой, стоит оставлять запас мощности процентов в двадцать. Это позволит блоку питания работать в спокойном режиме, что продлит его срок службы. А блок защиты, в свою очередь сильно продлит срок службы галогенной лампы, так как избавит ее от пускового напряжения. Блоки питания бывают на мощность от 100 до 1000 ватт. Помните, что мощность блока питания — это сумма всех ламп, а не какой-то одной.

Вот, казалось бы, как продлить срок галогенной лампе? Это же та же лампа накаливания, но с йодом и бромом, и работать ей осталось всего 2–3 тысячи часов. Но тут появляется блок защиты галогенных ламп и продлевает срок ее службы, в среднем, в четыре раза. Разве не чудо? Главное, чтобы происходило такое чудо, не стоит покупать не качественные блоки защиты. А то чудо произойдет такое, что перегорят все лампы.

До новых встреч.

Плюсы и минусы галогеновых ламп

Безопасность на дороге, особенно в темное время суток, во многом зависит именно от качества освещения дороги. Существует несколько видов осветительных приборов, но в данной статье хотелось бы рассказать именно о галогеновых лампах, их достоинствах и недостатках.

Как появились галогеновые лампы?

Изначально в машины ставились обычные лампы накаливания, которые довольно долго использовалисьв качестве единственного источника освещения проезжей части, но не отличались хорошими показателями яркости и долгим сроком службы. С развитием новых технологий были разработаны галогеновые лампы, которые и пришли на смену стандартным лампам накаливания. Пик их популярности приходится на 80-е годы. Такая популярность этих ламп объясняется, в первую очередь, небольшой ценовой политикой, которая полностью соответствует световым характеристикам ламп. Сегодня галогеновые лампы используют как источник ближнего и дальнего света, а также как противотуманные и габаритные фары.

Галогеновые лампы

Обычные галогеновые лампы – это лампы, которые имеют две нити накаливания для ближнего и дальнего света. В основном, они отличаются от обычных ламп накаливания тем, что наполнены парами газов, в данном случае это пары бора или йода. Срок службы таких ламп небольшой, но при правильной эксплуатации они смогут вам прослужить полтора, два года. Такие лампы изготавливаются из кварцевого стекла, но стоит отметить, что оно иногда реагирует на вибрации и встряски, что может привести к быстрому выходу из строя самой лампы. Галогеновые лампы отличаются своей компактностью и являются прекрасным вариантом освещения для автомобилей разных марок. 

Галогеновые лампы. Плюсы и минусы

Плюсы

Повышенная светоотдача.
Она на 60% превышает показатели обычных ламп накаливания и составляет 25 Лм/Вт. Все это обеспечивается благодаря инертному газу, который изначально находится в колбе, а после закачивания в нее паров йода или брома увеличивается температура накала вольфрамовой нити.

Хорошая яркость.
Свет галогеновых ламп имеет желтоватый поток, который обеспечивает качественную видимость дорожного полотна в ночь и при непогодных условиях. Достаточно неплохая яркость позволяет осветить не только дорогу перед автомобилем, но и захватить обочину, что позволяет заранее увидеть пешеходов или животных, предотвратив аварию.
Широкий выбор цветов.
Благодаря нанесению на поверхность стеклянной колбы напыления разных оттенков, достигаются различные цвета галогеновой лампы, а именно, синий или желтый. 
Эксплуатационный период.
Время работы галогеновых немного выше, чем у обычных ламп накаливания. В лучшем случае и при правильной эксплуатации, такие лампы смогут вам прослужить до двух лет. 
Минусы Высокая температура.
Колба галогеновой лампы нагревается до высокой температуры, причиной чего является большая светоотдача и сильный разогрев вольфрамовой нити. 
Качество лампы.
Это касается не всех ламп, так как некоторые производители, чтобы снизить стоимость продукта, которая и так небольшая, делают галогеновые лампы низкого качества по низкой цене.
Низкая экономия энергии.
Галогеновые лампы не являются экономными, так как потребляют большое количество энергии.
Дополнительный уход.
Такие лампы смогут нормально функционировать только в идеальных условиях эксплуатации. 

Многих водителей интересует вопрос, почему галогеновые лампы быстро перегорают? Сейчас мы попытаемся выяснить основные причины этой проблемы. 

Причины, почему галогеновые лампы быстро перегорают


  • Скачок напряжения. Дело в том, что галогенки могут быть подключены напрямую в сеть или через специальный трансформатор.  Если лампы подключены к сети, то при каждом их включении происходит сильный скачек напряжения, который и может привести к перегоранию галогеновых ламп.
  • Неправильная установка. Если проводить монтаж галогеновых ламп неосторожно и без перчаток, то это может привести к быстрому их выходу из строя. Использование перчаток рекомендуется для того, чтобы ограничить цоколь и саму колбу лампы от отпечатков пальцев, так как из-за этого колба может лопнуть.
  • Неисправный генератор, от которого и возникают скачки напряжения.

Устройство и работа галогенок

Большинство автолюбителей прекрасно знают, что такое галогеновые лампы, но многие не знают, чем они отличаются от других осветительных приборов. Сегодня мы хотели бы разрушить этот стереотип и больше рассказать, как о самой галогеновой лампе, так и о принципе ее работы. 

Галогеновые лампы. Принцип работы

Галогеновые лампы – это следующее поколение стандартных ламп накаливания. Огромную популярность они получили в начале 80-х годов и до сих пор являются хорошим выбором многих автолюбителей.

Что же такое галогеновая лампа? Это стандартная лампа, в которой находится буферный газ. В основном, это пары брома или йода. У таких ламп небольшой эксплуатационный период, который в определенных случаях достигает отметки в 1500 рабочих часов. Галогенки способны намного быстрее и сильней разогреть нить накаливания, что обеспечит прекрасную видимость проезжей части в любое время суток. Принцип работы галогеновых ламп немного отличается от обычной лампы накаливания. Здесь пары галогена в смеси с инертным газом обеспечивают нити накала защиту от окисления и разрушения, а попутно, и яркое свечение. Также это отображается и на эксплуатационном периоде лампы. Хоть галогеновые лампы и имеют прекрасные технические показатели, но все же они имеют свои недостатки.

Преимущества галогеновой лампы


  • Хорошая светоотдача
  • Небольшие размеры
  • Ближний/дальний режимы света (не для всех цоколей)
  • На протяжении всего срока службы галогеновый лампы сохраняется та же яркость
  • Безопасная установка и работа

Недостатки галогеновой лампы


  • Высокая вероятность перегорания лампы из-за скачков напряжения
  • Высокая температура колбы лампочки во время работы и вероятность взрыва колбы

Галогеновые лампы – устройство на самом деле уникальное, так как в автомобильной оптике используются исключительно все поколения галогеновых ламп, и каждый вид используется только по своему прямому назначению. Их установка не требует каких-то специальных знаний, достаточно лишь сохранить в чистоте саму колбу. Галогеновые лампы – оптимальное решение в автомобильной оптике. 

Ксеноновые лампы от Philips – история и описание!

11 листопада 2015

Откройте для себя новую полностью переработанную линейку от Philips компании-производителя №1 по мнению европейских потребителей. Ксеноновые лампы из новой линейки дают еще больше света на дороге, удовлетворяя нужды самых требовательных водителей, не теряя при этом своего оригинального качества и производительности.

Сейчас настали времена ксеноновых ламп. Первая газоразрядная ксеноновая лампа для автомобиля была разработана не кем-нибудь, а фирмой Philips, и носила она аскетичное имя D2S (R). HID-лампы (High Intensity Discharge или в простонародье «ксеноновая лампа») стали применяться в автомобильных осветительных приборах с 1992 года. Ксеноновый световой поток высокой интенсивности получается за счет свечения газа, инициированного дуговым разрядом между двумя электродами. Электроды лампы находятся в колбе, заполненной ксеноном и солями металлов под большим давлением. Ксеноновая лампа имеет цветовую температуру около 4.300 градусов по Кельвину. Чтобы стало совсем понятно, — цветовая температура свечения имеет ключевое значение при освещении. Так, Солнце имеет цветовую температуру порядка 5.000 — 6.000 градусов по Кельвину. Ксеноновая лампа обладает максимально приближенным к солнечному свету спектром излучения, обеспечивая наиболее естественное освещение.

Какая потребляемая мощность у HID ламп (ксеноновых ламп)? В среднем 35W потребляет ксеноновая лампа. 55W и более — обычная. Световой поток, обеспечиваемый ксеноном — 3.000 люменов против 1.550 у стандартной галогеновой лампы мощностью 55Вт.

Каков средний срок службы ксеноновых ламп? Средний срок службы ксеноновых ламп D2S (R), например, составляет порядка 2.800 – 4.000 часов. Гарантированный срок службы галогеновых 100 — 500 часов.

Как переносят ксеноновые фары наши дороги? Высокая вибростойкость обеспечивается отсутствием нити накаливания. Мораль такова: «нет нити — нечему обрываться».

Действительно ли обзорность лучше при ксеноновом освещении? Да, лучше. Все мы знаем, как важна обзорность в темное время суток, дождливую, туманную или снежную погоду. Свет, излучаемый ксеноновой лампой, имея по сравнению с обычным в 2,5 раза большую интенсивность, значительно помогают водителю улучшить видимость дороги. Геометрия освещенного участка дороги также улучшается, поскольку пучёк света фары, оснащенной ксеноновой лампой, шире. Немаловажным также является то, что «ксеноновый» свет в силу особенности своего спектрального состава позволяет водителю увидеть объекты, находящиеся на проезжей части и обочинах дороги (включая дорожные знаки) на значительно большем расстоянии.

Не слепит ли отраженный от снега и дождя яркий ксеноновый свет? Даже в дождь и туман ксеноновые фары не создают перед Вашими глазами «световую стену». Лучи ксенонового света легко «пробивают» туман и освещают не капли дождя или тумана, а именно полотно дороги.

Сильно ли греется ксеноновая лампа? Ксеноновая лампа греется намного меньше чем галогенная. Так при потребляемой мощности в 35 Вт у ксенона в тепло уходит порядка 7% энергии, в то время, как у галогеновой лампы при потреблении минимум 55 Вт в тепло уходит около 40% энергии.

Какие ксеноновые лампы вам нужны?


Галогеновые лампочки накаливания | Галогенные лампы

Разновидности галогенных ламп накаливания.

Галогенные лампы сегодня обладают наиболее качественной цветопередачей из всех существующих источников света. Они яркие и обладают направленным излучением, имеют в несколько раз большую световую отдачу и удвоенный срок службы, чем лампы накаливания.

Основные достоинства галогенных ламп

Галогенные лампы являются источниками искусственного освещения нового поколения. Название получили от галогенов. Это смесь газа, паров фтора, йода, брома, хлора. Галогены сокращают испарение вольфрама, поэтому лампа служит дольше, примерно в два раза. В них применяют кварцевое стекло. Оно имеет фильтрующее нанесение, которое предохраняет от ультрафиолетовых лучей. Тепловое излучение выводят за пределы поверхности, которую освещают. Яркость излучения регулируют отражателями. У них различная форма и диаметр.

Типы галогенных ламп:

1. Капсульные галогенные лампы — это революционно новая концепция светильников. Их компактные размеры — до 10 мм в диаметре — при высокой светоотдаче и высокой цветопередаче позволяют использовать такие лампы во всех сферах жизни — от освещения офисов до точечной подсветки домашнего уголка для чтения. Средний срок службы таких ламп — 4000 часов. Цоколь штырьковый, цифра, следующая за буквой, означает расстояние между штырьками. Для работы с представленными в каталоге капсульными лампами может потребоваться трансформатор.

2. Линейные галогенные лампы — это прямой аналог стандартных трубчатых галогенных ламп. Нить накаливания в виде спирали и бесцветная трубка из кварцевого стекла, два цоколя. Держатели нити накаливания очень прочные, им не страшны механические воздействия. Лампочки мощностью 500 Вт, располагают по своему усмотрению, а большей – только горизонтально. Они сохраняют естественное белое свечение, отлично передают цвет. Их можно мгновенно перезапустить и отрегулировать яркость свечения. В них значительно снижено количество выбросов CO2 и теплопроизводительность. Поэтому такие лампы можно использовать для акцентирования отделки помещений, подсветки уличных дорожек, садов, офисных помещений, музеев, картинных галерей, квартир, а также для освещения автостоянок, рекламных щитов, производственных и строительных объектов и даже проезжей части — светят они очень ярко. Служат 2000 часов.

3. Лампы галогенные с отражателями подходят для направленного и общего освещения, и еще их встраивают в мебель. Ассортимент очень широк — в нашем каталоге вы можете подобрать лампу с подходящим вариантом цоколя и размерами. Цветовая температура галогеновых ламп в среднем составляет 2700K (желтый свет).

4. Галогенные лампы с параболическим стеклянным отражателем. Он покрыт алюминием. Лицевая сторона стеклянной поверхности рифленая. Она способствует созданию эффекта «искрения» света, охраняет лампу от пыли и контакта с руками людей. Подобные лампы освещают общественные и жилые здания.

Особенности галогенных ламп:

1. Используют мало электроэнергии, а дают максимальное освещение.

2. Длительный срок эксплуатации.

3. Широкий ассортимент, нестандартные формы и размеры светильников позволяют создавать интерьер любого стиля.

4. Галогенные лампы устойчивы к изменениям атмосферного давления, перепадам температур.

5. Имеют большую яркость, способны передавать различные цветовые оттенки, распространять свет на большие площади.

6. Длительный срок эксплуатации позволяет использовать их в сушильных камерах, холодильниках и другой технике.

7. Миниатюрные конструкции этих ламп помогают в ремонте техники, где есть труднодоступные места.

8. Галогенные лампы безопасны и надежны даже при пониженной влажности.

Отличаются галогенные лампы от обычных аналогов способностью сохранять яркость на протяжении всего периода эксплуатации. Свет у них яркий ровный, сравним с естественным освещением. При таком свете сохраняется натуральный цвет обоев, стен, мебели, кожи человека.

Галогенные лампы производства компании Osram представлены также в классической и форме мини свечей. У них такой же приятный свет, как и у ламп накаливания, и моментальная подача всей мощности светового потока без задержки на розжиг. Средний срок службы — 2000 часов.

Лампы Osram Halolux используются в работе бытовых холодильников и профессионального холодильного оборудования, светят чистым естественным галогенным светом (около 2 900 K).

Модель Osram Halolux с цоколем B15d — это компактные галогенные лампы для использования в миниатюрных светильниках. В нашем каталоге на сайте shop220. ru доступен широкий выбор галогенных ламп.

Анализ жизненного цикла галогенной лампы OSRAM — Веб-сайт OSRAM Group

Название продукта HALOGEN CLASSIC A ECO
Средний срок службы 2000 ч
Люмен 630
Ватт 42


Галогенные лампы работают так же, как лампы накаливания, и имеют аналогичную конструкцию. Как и лампы накаливания, они обеспечивают 100-процентный индекс цветопередачи. Однако газ, заполняющий галогенные лампы, содержит небольшие количества галогенов, таких как бром, хлор и йод.Они почти полностью предотвращают почернение лампы из-за порчи нити накала и продлевают срок службы. Таким образом, не происходит связанных потерь светового потока в течение срока службы лампы. Кроме того, используя кварц вместо стекла, колбы галогенных ламп можно сделать намного меньше, а давление наполняющего газа можно увеличить, что позволяет продлить срок службы лампы.

Влияние производства на окружающую среду

В следующей таблице показано влияние галогенной лампы на окружающую среду во время производства, включая совокупную потребность в энергии (CED) на этом этапе жизненного цикла.

Суммарная потребность в энергии на этапе использования

Накопленная (первичная) потребность в энергии на этапе использования рассчитывается на основе мощности лампы, ее среднего срока службы и структуры энергопотребления.

CED и потенциал глобального потепления на этапе использования и производства

На графиках ниже показаны совокупный спрос на энергию и потенциал глобального потепления на этапе использования по сравнению с этапом производства. Для расчета выбросов CO 2 , возникающих на этапе использования, состав электроэнергии равен 0.За основу было взято 55 кг CO 2 на кВт · ч El . Конечно, производство электроэнергии во время использования также несет ответственность за другие категории воздействия на окружающую среду, но это во многом зависит от того, где используется лампа. По этой причине мы описали только воздействие CO 2 , которое также может варьироваться в зависимости от места использования.

В равной степени, в зависимости от состава электроэнергии, использование галогенных ламп может быть причиной выбросов ртути, хотя и в меньшей степени, чем лампы накаливания.Это связано со сравнительно высокой долей угольных электростанций в некоторых электрических смесях, которые выделяют ртуть при сжигании бурого или каменного угля для производства электроэнергии.

Применимость этого анализа жизненного цикла

Основная цель этого анализа жизненного цикла — предоставить основу для сравнения различных типов бытовых ламп. Поскольку галогенные лампы по-прежнему очень популярны среди клиентов, обеспокоенных недостатками более эффективных источников света, они являются важной частью нашего портфолио, ориентированного на выбор клиентов.LCA этой лампы можно рассматривать как представление всех галогенных ламп. Из-за очень похожего состава материалов совокупная потребность производства в энергии примерно одинакова для всех типов. Для фазы использования просто необходимо пересчитать совокупную потребность в энергии на основе мощности ламп в соответствии с тремя этапами, показанными в таблице выше.

Что означает средний номинальный срок службы? | Основы освещения

В производстве лампочек средний номинальный срок службы (ARL) — это время, необходимое для того, чтобы половина лампочек в тестовой партии вышла из строя.Его также называют периодом полураспада. Например, если тестируются 100 лампочек и их ARL составляет 1000 часов, 50 ламп погасли, когда время тестирования достигло 1000 часов. Некоторые лампы могли выйти из строя в течение 50 часов, некоторые — в течение 450 часов, некоторые — в течение 700 часов и т. Д., Но половина из них погибли в течение 1000 часов.

Включение и выключение лампы, включение и выключение, включение и выключение снижает ARL. Лампы накаливания, галогенные и светодиодные лампы меньше подвержены влиянию циклов включения / выключения, чем люминесцентные, компактные люминесцентные и HID лампы.В общем, ARL для лампочки, которая включается и выключается один раз в день, будет намного длиннее, чем у лампы, которая включается и выключается много раз в день.

Имейте в виду, что тесты ARL выполняются в условиях, которые можно разумно ожидать в типичных приложениях. Если лампочка используется в жарком месте (над духовкой или под потолком), холодном (в морозильной камере или на открытом воздухе зимой), влажном (под дождем или рядом с разбрызгивателем) или вибрирующем (рядом с механизмами или хлопками) дверь) — любая «ненормальная» ситуация — ARL, скорее всего, не будет достигнута.Думайте об этом как о марафонец. Если слишком жарко, слишком холодно, слишком влажно или слишком ветрено, бегун не убежит так быстро и так далеко.

Типичный средний срок службы для различных типов ламп

Лампа накаливания 750-2000 часов
Флуоресцентный 24,000-36,000 часов
СПРЯТАННЫЙ 10,000-24,000 часов
Компактный флуоресцентный
Плагин 10,000-20,000 часов
На винтовой основе 8,000-10,000 часов
Галоген 2000-4000 часов
ВЕЛ 40,000-50,000 часов

Что такое галоген и чем он отличается от лампы накаливания?

Возможно, вы слышали о лампах, которые слишком горячие, чтобы обращаться с ними. Или, может быть, вы слышали, что их называют лампами с лампочкой внутри колбы — похоже на сон во сне, да?

Они называются галогенами.

Как галогенные лампы излучают искусственный свет? Где использовать галогенные лампы? Какое место занимает галоген в осветительной промышленности?

Давайте ответим на эти вопросы и расскажем о плюсах и минусах галогенной технологии.

Но, прежде чем мы начнем, вы можете подумать: «Итак, почему мне нужно знать о технологиях и какую пользу мне от этих знаний?» Я хочу выделить несколько преимуществ понимания технологии, прежде чем углубляться в саму технологию.

  1. Понимание того, как лампочка производит искусственный свет, помогает нам (и вам) устранять неполадки, когда сценарии идут наперекосяк.

    Пример: Знаете ли вы, что некоторые галогенные и HID лампы выглядят почти одинаково? Знание различий в технологиях поможет вам быстро определить, что у вас есть галогенная лампа в цоколе и HID .

  2. Понимание того, как лампочка производит искусственный свет, помогает нам (и вам) выбрать правильную лампу для правильного применения.

Давайте вкратце определимся с галогенными лампами, прежде чем мы начнем.

Что такое галогенный свет?

Галоген — это тип осветительной техники, который по сути является усовершенствованной версией лампы накаливания. Как и в случае с лампами накаливания, электрический ток попадает в розетку и поднимается до вольфрамовой нити, нагревая ее до накала. Галогенные лампы накаливания имеют вольфрамовые нити, помещенные в кварцевую капсулу и заполненные газами йода и брома.

Как работают галогенные лампы накаливания?

Мы классифицируем лампочки по технологии, по которой они производят искусственное освещение. Поскольку галогенные лампы являются лишь усовершенствованием технологии накаливания, мы не относим их к собственному семейству ламп. Вместо этого мы называем их подкатегорией семейства ламп накаливания.

Помните, как работают лампы накаливания? Галогены действуют аналогично.

Электрический ток течет из розетки и контактирует с цоколем лампочки.Как и в случае с лампами накаливания, электрический ток попадает в розетку и поднимается до вольфрамовой нити, нагревая ее до накала. Усовершенствование галогенных ламп заключается в том, что нить накала заключена в кварцевую капсулу, заполненную газообразным галогеном. Этот газ инертен и состоит из йода и брома.

Поток электрического тока запускает «галогенный цикл», когда частицы, выгоревшие из вольфрамовой нити, затем повторно осаждаются на нить галогеном внутри кварцевой капсулы, что позволяет «повторно использовать эти частицы».«Повторное использование частиц придает лампе более высокую светоотдачу и более длительный срок службы, чем лампы накаливания. Таким образом, галогены могут работать до 2500 часов, в то время как лампы накаливания имеют средний срок службы 800–1200 часов.

Галогенные лампы также могут работать при более высоких температурах, чем лампы накаливания. Вот почему вы часто видите маленькие галогенные кварцевые лампочки мощностью 250–300 Вт.

Описание галогенной кварцевой капсулы

Кварцевая капсула изготовлена ​​из чистейшего стекла.В то время как большинство традиционных стекол содержит другие разбавляющие материалы, кварц является чистым и позволяет стеклу работать с более высоким сопротивлением.

Осторожность с кварцевой капсулой заключается в том, что масло из наших пальцев разрушает ее. Поэтому, если вы постоянно прикасаетесь к кварцевой капсуле внутри галогенной лампочки, ваши пальцы могут повлиять на срок службы продукта.

Были ли лампы накаливания запрещены? Мы объясняем здесь.

Где вы используете галогенные лампы?

Наш генеральный директор использует в доме галогенные лампы.Галогенное качество света и цветовая температура идеально подчеркивают красивый деревенский декор в его доме.

И несмотря на то, что светодиоды вызывают много шума, многие специалисты по свету и дизайнеры рекомендуют галогенные лампы для жилых или декоративных целей.

Помимо этого, вот несколько областей применения, в которых галогенные лампы используются чаще всего:

Шкатулки

Многие ювелирные магазины используют галогенные зеркальные отражатели для выделения золотых украшений. То, как свет отражается от зеркального отражателя на украшения, придает им теплый, насыщенный и первоклассный оттенок.

Розничная торговля

Некоторые розничные магазины до сих пор используют галогенные лампы PAR для освещения дорожек. Как правило, вы видите, что они используются в розничных магазинах, у которых есть «тусклая» и теплая атмосфера, которую они пытаются достичь. Abercrombie, Hollister и PacSun — вот некоторые из немногих, в которых используются галогенные лампы.

Специальные приложения

Вы также увидите галогены, используемые для нагрева пищи или в портативных проекторах. Из-за небольшого размера кварца галогенные лампы могут быть очень полезны в этих нишевых приложениях.

Галоген за и против

Вот несколько плюсов и минусов галогенного освещения:

Галоген профи

  • Качество света

    Опять же, как лампы накаливания являются золотым стандартом качества света (по сравнению с другими источниками искусственного света), так и галогены придерживаются того же стандарта, поскольку они по-прежнему являются частью семейства ламп накаливания.

  • Компактный размер

    Поскольку кварц такой маленький, вы можете использовать галогенные лампы в некоторых уникальных приложениях — внутри инструментов, приборов и, как я уже упоминал ранее, проекторов.

  • Возможность диммирования

    Если у вас есть ресторан и в ваших встраиваемых банках для общего освещения выскочили несколько галогенных ламп PAR, вы в хорошей форме, если хотите приглушить их. Где бы вы ни хотели приглушить свет, галогены — отличный вариант.

  • Низкая стоимость

    С массовым отказом от многих традиционных продуктов накаливания галоген стал недорогим вариантом освещения.

Галогеновые минусы

  • Неэффективное использование энергии

    Хотя галогены более эффективны, чем традиционные лампы накаливания, по сравнению с искусственным светом в наши дни, галогены очень неэффективны, когда речь идет об их соотношении люмен на ватт.

  • Скрытые компоненты

    Поскольку вольфрам в галогенной лампе заключен в кварц, старинный и традиционный вид лампы накаливания теряется.

  • Распад компонентов

    Галогены чувствительны к маслам на коже, что в конечном итоге может нанести вред продукту.

Для получения дополнительной информации о технологиях освещения, ознакомьтесь с этими статьями:

Интернет-кампус ZEISS Microscopy | Лампы вольфрамово-галогенные

Введение

Источники света накаливания, в том числе более старые версии с вольфрамовой и углеродной нитью, а также новые, более совершенные вольфрамово-галогенные лампы, успешно используются в качестве высоконадежных источников света в оптической микроскопии на протяжении многих десятилетий и продолжают оставаться одними из них. предпочтительные механизмы освещения для различных методов визуализации.Старые лампы, оснащенные вольфрамовой проволочной нитью и заполненные инертным газом аргоном, часто используются в студенческих микроскопах для получения светлопольных и фазово-контрастных изображений, и эти источники могут быть достаточно яркими для некоторых приложений, требующих поляризованного света. Вольфрамовые лампы относительно недороги (по сравнению со многими другими источниками света), их легко заменить, и они обеспечивают адекватное освещение в сочетании с диффузионным фильтром из матового стекла. Эти особенности в первую очередь ответственны за широкую популярность источников света накаливания во всех формах оптической микроскопии.Вольфрамово-галогенные лампы, наиболее совершенная конструкция в этом классе, генерируют непрерывное распределение света в видимом спектре, хотя большая часть энергии, излучаемой этими лампами, рассеивается в виде тепла в инфракрасных длинах волн (см. Рисунок 1). Из-за относительно слабого излучения в ультрафиолетовой части спектра вольфрамово-галогенные лампы не так полезны, как дуговые лампы и лазеры, для исследования образцов, которые необходимо освещать с длинами волн менее 400 нанометров.

Несколько разновидностей вольфрамово-галогенных ламп в настоящее время являются источником освещения по умолчанию (и предоставляются производителем) для большинства учебных и исследовательских микроскопов, продаваемых по всему миру.Они отлично подходят для исследования в светлом поле, микрофотографии и цифровой визуализации окрашенных клеток и срезов тканей, а также для многочисленных применений отраженного света для промышленного производства и разработки. В поляризованных световых микроскопах, используемых для идентификации частиц, анализа волокон и измерения двойного лучепреломления, а также в рутинных петрографических геологических приложениях, обычно используются вольфрамово-галогенные лампы высокой мощности для обеспечения необходимой интенсивности света через скрещенные поляризаторы.Стереомикроскопы также используют преимущества этого повсеместного источника света как в моделях начального, так и в продвинутых моделях. Для визуализации живых клеток с помощью методов усиления контраста (в основном дифференциального интерференционного контраста ( DIC ) и фазового контраста) в составных микроскопах проходящего света наиболее распространенным в настоящее время источником света является вольфрамово-галогенная лампа мощностью 100 Вт. . В долгосрочных экспериментах (обычно требующих от сотен до тысяч снимков) эта лампа особенно стабильна и при нормальных условиях эксплуатации подвержена лишь незначительным уровням временных и пространственных колебаний выходной мощности.

Первые коммерческие лампы накаливания с вольфрамовой нитью были представлены в начале 1900-х годов. Эти передовые нити, которые можно было наматывать, скручивать и эксплуатировать при очень высоких температурах, оказались гораздо более универсальными, чем их предшественники на основе углерода и осмия. Углеродные лампы страдают от быстрого испарения нити накала при температурах выше 2500 ° C и, следовательно, должны работать при более низких напряжениях для получения света с относительно низкой цветовой температурой (желтоватый).Напротив, вольфрам имеет температуру плавления приблизительно 3380 ° C и может быть нагрет почти до этой температуры в стеклянной оболочке для получения света, имеющего более высокую цветовую температуру и срок службы, чем любой из предыдущих материалов, используемых для нити ламп. Основная проблема с вольфрамовыми лампами заключается в том, что во время нормальной работы нить накала постоянно испаряется, образуя газообразный вольфрам, который медленно уменьшает диаметр нити накала и в конечном итоге затвердевает на внутренней стороне стеклянной колбы в виде почерневшего, покрытого сажей отложений.Со временем мощность лампы уменьшается, поскольку остатки осажденного вольфрама на стенках внутренней оболочки становятся толще и поглощают все большее количество более коротких видимых длин волн. Точно так же потеря вольфрама из нити накала уменьшает диаметр, делая ее настолько тонкой, что в конечном итоге она выходит из строя.

Вольфрамово-галогенные лампы были впервые разработаны в начале 1960-х годов путем замены традиционной стеклянной колбы на кварцевую колбу с более высокими характеристиками, которая была больше не сферической, а трубчатой.Кроме того, внутри оболочки были запечатаны незначительные количества паров йода. Замена стекла с более низкой температурой плавления на кварцевое была необходима, потому что цикл регенерации галогена лампы (подробно описанный ниже) требует, чтобы оболочка поддерживалась при высокой температуре (превышающей допустимую для обычного стекла), чтобы предотвратить образование галогеновых соединений вольфрама. от затвердевания на внутренней поверхности. Из-за новых компонентов эти усовершенствованные лампы первоначально назывались термином: иодид кварца .Хотя лампы, содержащие галогены, представляли собой значительное улучшение по сравнению с обычными вольфрамовыми лампами, которые они заменили, новые лампы имели легкий розоватый оттенок, характерный для паров йода. Кроме того, кварц легко подвергается воздействию слабых щелочей, образующихся во время работы, что приводит к преждевременному выходу из строя самой оболочки. В последующие годы соединения брома заменили йод, и оболочка была изготовлена ​​из более новых сплавов боросиликатного стекла для производства вольфрамово-галогенных ламп с еще более длительным сроком службы и более высокой мощностью излучения.

Как обсуждалось ранее, в традиционных лампах накаливания испаренный газообразный вольфрам из нити накала переносится через паровую фазу и непрерывно осаждается на внутренних стенках стеклянной колбы. Этот артефакт затемняет внутренние стенки лампы и постепенно снижает светоотдачу. Чтобы поддерживать потери света на минимально возможном уровне, обычные вольфрамовые лампы накаливания помещают в большие колбы, имеющие достаточную площадь поверхности, чтобы минимизировать толщину осажденного вольфрама, который накапливается в течение срока службы лампы.Напротив, трубчатая оболочка в вольфрамово-галогенных лампах заполнена инертным газом (азотом, аргоном, криптоном или ксеноном), который во время сборки смешивается с небольшим количеством соединения галогена (обычно бромистого водорода; HBr ). и следовые уровни молекулярного кислорода. Соединение галогена служит для инициирования обратимой химической реакции с вольфрамом, испаренным из нити, с образованием газообразных молекул оксигалогенида вольфрама в паровой фазе. Температурные градиенты, образующиеся в результате разницы температур между горячей нитью накала и более холодной оболочкой, способствуют перехвату и рециркуляции вольфрама в нить накала лампы благодаря явлению, известному как цикл регенерации галогена (проиллюстрирован на Рисунке 2).Таким образом, испаренный вольфрам реагирует с бромистым водородом с образованием газообразных галогенидов, которые впоследствии повторно осаждаются на более холодных участках нити, а не накапливаются медленно на внутренних стенках оболочки.

Цикл регенерации галогена можно разделить на три критических этапа, которые показаны на рисунке 2. В начале работы оболочка лампы, заполняющий газ, парообразный галоген и нить накала изначально находятся в равновесии при комнатной температуре. Когда к лампе подается питание, температура нити накала быстро повышается до ее рабочей температуры (в районе 2500–3000 ° C), в результате чего также нагревается наполняющий газ и оболочка.В конце концов, оболочка достигает стабильной рабочей температуры, которая колеблется от 400 до 1000 C, в зависимости от параметров лампы. Разница температур между нитью накала и оболочкой создает температурные градиенты и конвекционные токи в заполняющем газе. Когда температура оболочки достигает примерно 200–250 ° C (в зависимости от природы и количества паров галогена), начинается цикл регенерации галогена. Атомы вольфрама, испаренные из нити накала (см. Рис. 2 (а)), вступают в реакцию с парами газообразного галогена и остаточными количествами молекулярного кислорода с образованием оксигалогенидов вольфрама (рис. 2 (б)).Вместо того, чтобы конденсироваться на горячих внутренних стенках оболочки, оксигалогенидные соединения циркулируют конвекционными токами обратно в область, окружающую нить, где они разлагаются, оставляя элементарный вольфрам, повторно осаждающийся на более холодных областях нити (рис. 2 (c)). ). После освобождения от связанного вольфрама соединения кислорода и галогенидов диффундируют обратно в пар, чтобы повторить цикл регенерации. Непрерывная рециркуляция металлического вольфрама между паровой фазой и нитью обеспечивает более равномерную толщину проволоки, чем это было бы возможно в противном случае.

Преимущества цикла регенерации галогенов включают возможность использования меньших по размеру конвертов, которые поддерживаются в чистом состоянии без отложений в течение всего срока службы лампы. Поскольку колба меньше, чем в обычных вольфрамовых лампах, дорогой кварц и родственные стеклянные сплавы могут быть более экономичными при производстве. Более прочные кварцевые оболочки позволяют использовать более высокое внутреннее давление газа, чтобы помочь в подавлении испарения нити накала, тем самым позволяя повышать температуру нити, что приводит к большей светоотдаче, и смещать профили излучения, чтобы обеспечить большую долю более желательных длин волн видимого диапазона.В результате вольфрамово-галогенные лампы сохраняют свою первоначальную яркость на протяжении всего срока службы, а также преобразуют электрический ток в свет более эффективно, чем их предшественники. С другой стороны, вольфрам, испарившийся и повторно осаждаемый в цикле регенерации галогена, не возвращается на свое первоначальное место, а скорее скатывается на самых холодных участках нити, что приводит к неравномерной толщине. В конечном итоге лампы выходят из строя из-за уменьшения толщины нити накала в самых жарких регионах. В противном случае вольфрамово-галогенные лампы могут иметь практически бесконечный срок службы.

Ранние исследования показали, что добавление фторидных солей к парам, запечатанным внутри вольфрамово-галогенных ламп, дает на выходе самый высокий уровень видимых длин волн, а также осаждение вторичного вольфрама на участках нити накала с более высокими температурами. Это открытие вселило надежду на то, что вольфрамовые нити могут иметь более однородную толщину в течение значительного увеличения срока службы этих ламп. Кроме того, смещение выходного профиля излучения лампы для включения большего количества видимых длин волн было весьма желательно по сравнению с более низкими цветовыми температурами, обеспечиваемыми аналогичными лампами, имеющими альтернативные галогенные соединения (йодид, хлорид и бромид).К сожалению, было обнаружено, что фторидные соединения агрессивно воздействуют на стекло (обратите внимание, что фтористоводородная кислота обычно используется для травления стекла), что приводит к преждевременному разрушению оболочки. Таким образом, фторидные соединения не подходят для коммерческих ламп. Как следствие, обсуждаемые выше бромидные соединения по-прежнему являются предпочтительным реагентом для производства вольфрамово-галогенных ламп, но производители ламп продолжают исследовать применение новых смесей заполняющего газа и галогенов для этих очень полезных источников света.

Вольфрамово-галогенные лампы накаливания работают как тепловые излучатели, что означает, что свет генерируется путем нагрева твердого тела (нити накала) до очень высокой температуры. Таким образом, чем выше рабочая температура, тем ярче будет свет. Все лампы на основе вольфрама демонстрируют спектральные профили излучения, напоминающие профили излучения излучателя с черным телом, а спектральный профиль выходной мощности вольфрамово-галогенных ламп качественно аналогичен профилям ламп накаливания с вольфрамовой и углеродной нитью накаливания.Большая часть излучаемой энергии (до 85 процентов) находится в инфракрасной и ближней инфракрасной областях спектра, при этом 15-20 процентов попадают в видимую область (от 400 до 700 нанометров) и менее 1 процента — в ультрафиолетовых длинах волн. (ниже 400 нм). Мягкая стеклянная оболочка обычных ламп накаливания поглощает большую часть ультрафиолетового излучения, генерируемого вольфрамовой нитью, но оболочка из плавленого кварца в вольфрамово-галогенных лампах поглощает очень мало излучаемого ультрафиолетового света выше 200 нанометров.

Значительная часть электроэнергии, потребляемой накаленными вольфрамовыми проволочными волокнами, выводится в виде электромагнитного излучения, охватывающего диапазон длин волн от 200 до 3000 нанометров. Математически полное излучение увеличивается как четвертая степень температуры проволоки, что смещает спектральное распределение в сторону все более коротких (видимых) длин волн в колоколообразном профиле по мере увеличения температуры (см. Рисунки 1 и 3). Несмотря на то, что пиковые длины волн имеют тенденцию перераспределяться из ближнего инфракрасного диапазона ближе к видимой области с более высокими температурами нити накала, точка плавления вольфрама не позволяет большей части выходного излучения смещаться в видимую область спектра.При наивысших практических рабочих температурах пиковое излучение составляет примерно 850 нанометров, при этом около 20 процентов общего выходного излучения приходится на видимый свет. Инфракрасные волны, составляющие большую часть выходного сигнала, должны рассеиваться как нежелательное тепло. В результате по сравнению со спектром дневного света (5000+ K), излучаемого ртутными, ксеноновыми и металлогалогенными дуговыми лампами, в галогенидных лампах всегда преобладают красные участки спектра.

В случае идеального радиатора blackbody воспринимаемая цветовая температура равна истинной (измеренной) температуре материала радиатора.Однако на практике общее излучение обычных источников излучения (таких как лампы накаливания) меньше, чем можно было бы ожидать от черного тела. Цветовая температура выражается в Кельвинах ( K ), в то время как фактическая измеренная температура более практично выражается в градусах Цельсия ( C ). Два числа различаются на 273,15 линейных единиц градусов, при этом значение Кельвина равно Цельсию плюс 273,15. Более высокие цветовые температуры соответствуют белее свету, который больше напоминает солнечный свет, тогда как более низкие цветовые температуры имеют тенденцию смещать цвета в сторону желтых и красноватых оттенков.Вольфрам не является истинным черным телом в том смысле, что полное испускаемое излучение меньше, чем могло бы наблюдаться в идеальном случае, однако вольфрам является лучшим излучателем (и более близко приближается к истинному черному телу) в более короткой видимой области длин волн, чем в более длинные волны. Для значительной части видимого диапазона длин волн цветовая температура вольфрама выше, чем эквивалентная истинная температура в градусах Цельсия. Таким образом, для измеренной температуры нити накала 3000 C цветовая температура составляет примерно 3080 K.Предел цветовой температуры вольфрама определяется температурой плавления, которая составляет чуть более 3350 ° C или приблизительно 3550 К.

Таким образом, в качестве излучателей накаливания вольфрамово-галогенные лампы генерируют непрерывный спектр света, который простирается от центрального ультрафиолета до видимого и инфракрасного диапазонов длин волн (см. Рисунки 1 и 3). По сравнению со спектром излучения солнечного света и теоретическим излучателем черного тела 5800 K (как показано на рис. 3 (а)), в вольфрамово-галогенных лампах всегда преобладают более длинноволновые области.Однако по мере увеличения температуры нити в вольфрамово-галогенной лампе профиль излучения света смещается в сторону более коротких длин волн, так что по мере приближения температуры к предельной точке плавления вольфрама доля видимых длин волн, излучаемых лампой, существенно увеличивается. Этот эффект проиллюстрирован на рисунке 3 (b) путем нормализации выходного распределения излучения лампы при цветовых температурах 2800 K и 3300 K на тот же световой поток. В дополнение к значительно меньшей доле излучения в инфракрасном диапазоне, кривая 3300 K показывает гораздо больший выход в видимом диапазоне длин волн.

Фотометрические характеристики для оценки характеристик источников света несколько необычны в том смысле, что две системы единиц существуют параллельно для определения важных переменных, связанных с яркостью и спектральным выходом. Физическая фотометрическая система рассматривает свет исключительно как электромагнитное излучение с точки зрения яркости (яркости), связанной с единицами длины и угла и измеряемой в ваттах. Физиологическая фотометрическая система учитывает способ, которым гипотетический человеческий глаз оценивает источник света.Поскольку каждый человеческий глаз несколько по-разному реагирует на видимый спектр света, стандартный глаз определен международным соглашением. Основной характеристикой этого стандарта является чувствительность к разным цветам света, основанная на максимальном отклике на 550-нанометровый (зелено-желтый) свет, измеряемом в единицах люмен, , а не ваттах. Физиологическая система подойдет, если датчиком света является человеческий глаз, цифровая камера, фотопленка или какое-либо другое устройство, которое реагирует аналогичным образом.Однако эта система выйдет из строя, если анализируемый свет попадет в ультрафиолетовую или инфракрасную область, невидимую для человеческого глаза. В этом случае для измерений и анализа необходимо использовать физическую фотометрическую систему.

Технические характеристики вольфрамово-галогенной лампы для микроскопии

Номинальная
Мощность
(Вт)
Номинальное
Напряжение
(В)
Световой
Поток
(лм)
Нить накала
Размер
Ш x В (мм)
Средний срок службы

(часы)
10 6 150 1.5 х 0,7 300
20 6 480 2,3 х 0,8 100
30 6 765 1,5 x 1,5 100
30 12 750 2.6 х 1,3 50
50 12 1000 3,0 x 3,0 1100
100 12 3600 4,2 x 2,3 2000
Таблица 1

В таблице 1 представлены электрические характеристики, размеры нити накала, типичный срок службы и фотометрическая мощность некоторых из самых популярных вольфрамово-галогенных ламп, используемых в настоящее время в оптической микроскопии.Среди наиболее важных терминов, используемых для сравнения этих ламп, — световой поток , который представляет собой общий излучаемый свет, измеренный в люмен (). Световой поток увеличивается пропорционально его физическому фотометрическому эквиваленту в ваттах. Другая важная величина, известная как сила света , — это та часть светового потока, которая измеряется телесным углом в одном направлении. Сила света в единицах кандел и используется для оценки характеристик лампы в оптической системе.Лампы также оцениваются с точки зрения световой отдачи () при использовании люмен на ватт электроэнергии (относящейся к физическим и физиологическим системам) для определения эффективности преобразования электроэнергии в видимое излучение. Теоретический максимум световой отдачи составляет 683 люмен на ватт, но на практике вольфрамово-галогенные лампы обычно достигают предела в 37 люмен на ватт. Чтобы более четко понять электрические характеристики вольфрамово-галогенных ламп, обычно можно применять следующие обобщения: на каждые 5 процентов изменения напряжения, подаваемого на лампу, срок службы либо удваивается, либо сокращается вдвое, в зависимости от того, находится ли напряжение. уменьшилось или увеличилось.Кроме того, каждые 5 процентов изменения напряжения сопровождаются 15-процентным изменением светового потока, 8-процентным изменением мощности, 3-процентным изменением тока и 2-процентным изменением цветовой температуры.

Большое разнообразие конструкций вольфрамово-галогенных ламп включает встроенные отражатели, которые служат для эффективного сбора фронтов световых волн, излучаемых лампой, и их упорядоченного направления в систему освещения. Эти предварительно собранные блоки, получившие название рефлекторных ламп (см. Рисунок 4), нашли широкое применение в качестве внешних осветителей для приложений стереомикроскопии.Свет от осветителя может быть направлен в любую область образца с помощью гибкого оптоволоконного световода. Рефлекторные лампы сильно различаются по конструкции в зависимости от характеристик и геометрии рефлектора, а также от положения лампы внутри рефлектора. Тем не менее, все лампы с отражателем включают однотактные лампы, которые устанавливаются в центре оптической оси отражателя с цоколем, вклеенным в вершину отражателя. Конфигурация нити накала обычно определяется характеристиками луча, необходимыми для конкретной оптической системы, для которой предназначена лампа.В рефлекторных лампах используются все конструкции нити накала, включая поперечную, осевую и плоскую.

Рефлекторные лампы обычно подключаются к патронам с молибденовыми штырями, выступающими наружу из задней части рефлектора, и устанавливаются с керамическими крышками. В некоторых случаях используются специальные кабельные соединения, чтобы пространственно отделить электрический контакт от источника тепла (лампы). Поскольку рефлекторные лампы обычно встраиваются как часть точно выровненной оптической системы, электрическое соединение только изредка используется как часть крепления.Существует несколько методов установки отражателей, в том числе установка держателя на переднем крае отражателя, использование давления на заднюю часть крышки отражателя, центрирование края отражателя в конусе и регулировку края отражателя на угловом упоре. В большинстве случаев конструкция основания рефлектора и механизм крепления используются для обозначения конкретного класса рефлекторной лампы. Внешний диаметр переднего отверстия рефлектора является определяющим критерием для рефлекторных ламп, и производители установили два основных размера.Они обозначены как MR 11 и MR 16 , причем буквы представляют собой аббревиатуру для металлического отражателя , а цифры относятся к диаметру отражателя в восьмых долях дюйма. Таким образом, рефлекторная лампа MR 16 имеет диаметр приблизительно 50 миллиметров, тогда как лампы MR 11 имеют диаметр почти 35 миллиметров.

Вольфрамово-галогенные отражатели предназначены для фокусировки или коллимирования света, излучаемого лампой, как показано на рисунке 4.Фокусирующие отражатели концентрируют свет в небольшом пятне (фокусной точке) в центральной оптической оси на определенном расстоянии от отражателя (см. Рисунок 4 (b)). Этот тип отражателя имеет эллиптическую геометрию, что требует, чтобы нить накала лампы располагалась в первой фокусной точке эллипсоида так, чтобы проецируемое световое пятно концентрировалось во второй фокусной точке. При проектировании светильников для фокусирующих отражателей важнейшим критерием является установка лампы на надлежащем расстоянии от входной апертуры оптической системы.Коллимирующие отражатели имеют параболическую геометрию, чтобы генерировать параллельный луч света, характеристики луча которого определяются параметрами лампы и размером отражателя (см. Рисунок 4 (c)). Угол выхода луча в первую очередь определяется размером нити накала лампы и свободным отверстием отражателя. В большинстве случаев осевая нить накала с круглым сердечником обеспечивает осесимметричный луч.

Отражатели обычно изготавливаются из стекла, но некоторые из них также изготавливаются из алюминия.Их внутренние стенки могут быть гладкими или иметь фасетки для контроля распределения света. Внутренняя структура варьируется от мелких, едва заметных зерен до крупных, выложенных плиткой граней (см. Рис. 4 (а)). В стеклянных отражателях внутренняя поверхность куполообразного отражателя покрывается (обычно осаждением из паровой фазы) для получения требуемых отражающих свойств. Стабильность размеров стеклянных отражателей превосходит стабильность металлических отражателей, а возможность выбора конкретных материалов покрытия, в том числе тех, которые могут изменять спектральный характер отраженного света, делает эти отражатели гораздо более универсальными.Металлические отражатели намного проще и дешевле изготавливать, но они ограничены в управлении спектральным выходом и более подвержены колебаниям геометрических допусков во время работы.

Если требуется весь спектр излучения, излучаемого лампой, или в случаях, когда полезен инфракрасный свет, оптимальным выбором будут металлические или стеклянные отражатели с тонким золотым покрытием. Однако там, где необходимо использовать определенные отражательные свойства для выбора длин волн посредством интерференции, оптимальными являются дихроичные тонкопленочные покрытия на стеклянных отражателях.Эти покрытия состоят примерно из 40-60 очень тонких слоев, каждый из которых составляет всего четверть длины волны света, и состоят из чередующихся материалов, имеющих высокий и низкий показатель преломления. Точная настройка толщины и количества слоев позволяет разработчикам генерировать широкий спектр выходных спектральных характеристик. Среди ламп с дихроичным отражателем наиболее полезным для микроскопии является отражатель холодного света , потому что только видимый свет в диапазоне длин волн от 400 до 700 нанометров направляется в оптическую систему (рис. 4 (d)).Инфракрасные волны излучаются через заднюю часть отражателя и отводятся от фонаря с помощью электрического вентилятора. Применение подходящих отражателей холодного света снижает общую тепловую нагрузку на систему освещения и дает свет, который можно записывать с помощью пленочных и цифровых камер.

Базовая анатомия одноцокольной вольфрамово-галогенной лампы, обычно используемой для освещения в оптической микроскопии, показана на рисунке 5. Общая длина измеряется от конца штифта основания до точки герметичной выхлопной трубы.Важным критерием для размещения лампы по отношению к системе коллекторных линз является длина светового центра (рис. 5 (а)), при которой центр нити накала соответствует определенной плоскости отсчета в цоколе лампы. Другими важными параметрами являются диаметр колбы (самая толстая часть оболочки), ширина основания (обычно немного больше диаметра колбы) и размеры поля нити накала (высота и ширина). Эффективный размер источника освещения, используемого при проектировании выходной оптической системы, определяется высотой и шириной нити накала (поле нити накала).Допуски и положение поля накала имеют решающее значение и не должны отклоняться более чем на 1 миллиметр от оси симметрии лампы (определяемой плоскостью штырей основания и центральной линией лампы). Допуски по полю нити разработаны для конкретной архитектуры нити и должны измеряться, когда нить накала горячая.

Чрезмерно высокие рабочие температуры вольфрамово-галогенных ламп требуют существенно более прочных и толстых прозрачных колб, чем обычные вольфрамовые и угольные лампы.Стекло из кварцевого стекла из кварцевого стекла является стандартным материалом, используемым при производстве вольфрамово-галогенных ламп, поскольку этот материал может выдерживать температуру оболочки до 900 C и рабочее давление до 50 атмосфер. В целом оптическое качество кожухов кварцевых ламп значительно ниже, чем у ламп из дутого стекла, используемых для производства обычных ламп накаливания. Этот артефакт связан с тем, что кварц труднее обрабатывать (в первую очередь из-за более высокой температуры плавления).Кварц, предназначенный для огибающих ламп, начинается с цилиндрической трубки, которую сначала обрезают до нужной длины, а затем присоединяют меньшую выхлопную трубу. Позже в процессе производства, после того, как нить накала и выводные штифты вставлены и зажаты, оболочка заполняется соответствующим газом и галогеновым соединением, прежде чем выхлопная труба будет удалена и запломбирована в процессе, называемом наконечник , который оставляет видимый дефект на конверте. Вольфрамово-галогенные лампы, используемые в микроскопии, обычно имеют выступающее пятно, расположенное в верхней части оболочки в области, которая не влияет на оптическое качество света, излучаемого лампой (рис. 5 (а)).Предварительно изготовленные внутренние конструктивные элементы лампы (нить накала, соединитель из фольги и штыри) вставляются в трубчатый кварц до того, как свинцовые штыри герметично запечатываются в оболочке путем защемления. Форма внешней поверхности зажима обеспечивает максимальную механическую прочность.

После защемления выводов штифта (этот процесс проводится, когда оболочка продувается инертным газом, чтобы избежать окисления), колба заполняется через выхлопную трубу соответствующим газом, содержащим 0.От 1 до 1,0 процента галогенового соединения. Инертный наполняющий газ может быть ксеноном, криптоном, аргоном или азотом, а также смесью этих газов, имеющей наивысший средний атомный вес, совместимый с желаемым сопротивлением дуге. Галоген, используемый для вольфрамово-галогенных ламп, используемых в микроскопии, обычно представляет собой HBr, CH 3 Br или CH 2 Br 2 . Высокое внутреннее давление в лампе достигается за счет заполнения оболочки до желаемого давления и погружения лампы в жидкий азот для конденсации заполняющего газа.После герметизации выхлопной трубы на выходе наполняющий газ расширяется по мере того, как он нагревается до температуры окружающей среды. В высокоэффективных вольфрамово-галогенных лампах, производимых Osram (Сильвания, США), используется технология Xenophot , в которой газ криптон заменяется ксеноном, который имеет более высокую атомную массу, чем криптон и другие газы-наполнители. Ксенон обеспечивает лучшее подавление испарения вольфрама, обеспечивает более высокую температуру нити накала и увеличивает световую отдачу примерно на 10 процентов (что соответствует увеличению цветовой температуры примерно на 100 K).Лампы Xenophot продаются с использованием аббревиатуры HLX , которая образована от терминов H алоген, L напряжение тока и X энон. Большинство вольфрамово-галогенных ламп, используемых в исследовательских микроскопах, оснащены лампами Osram / Sylvania HLX или их эквивалентами.

Вольфрам всегда используется для изготовления проволочной нити в современных лампах накаливания. Чтобы быть пригодной для вольфрамово-галогенных ламп, необработанная вольфрамовая проволока должна пройти сложный процесс легирования и термообработки, чтобы придать пластичность, необходимую для обработки, и гарантировать, что нить накала не деформируется в течение длительных периодов высокой температуры во время работы лампы.Провод также необходимо тщательно очистить, чтобы предотвратить выброс вредных газов после герметизации лампы. Длина нити накала определяется рабочим напряжением, при более высоком напряжении требуется большая длина. Диаметр определяется уровнями мощности лампы и желаемым сроком службы. Для высоких уровней мощности требуются более толстые волокна, которые к тому же механически прочнее. Геометрия нити в значительной степени определяет фотометрические свойства вольфрамово-галогенных ламп. Лампы, используемые в микроскопии, обычно имеют геометрию нити с плоским сердечником, при которой проволока сначала наматывается в форме прямоугольного стержня, а затем зажимается поперек длинной оси.Вместо диаметра и длины нити с плоским сердечником измеряются по длине и ширине плоской стороны нити и по толщине прямоугольной формы. Характеристики светового излучения ламп накаливания с плоским сердечником значительно отличаются от характеристик излучения других геометрических форм. Наиболее значительная часть излучаемого света излучается перпендикулярно плоской поверхности нити накала, которая совмещена с собирающей оптикой для максимальной пропускной способности. В некоторых конструкциях ламп используется специальная нить накала с плоским сердечником, у которой светоизлучающая поверхность имеет квадратную форму.Эти лампы являются предпочтительными источниками освещения в микроскопии проходящего света.

Одним из критических факторов при производстве вольфрамово-галогенных ламп является герметизация внутренних элементов, чтобы изолировать их от внешней атмосферы. Подводящие провода (молибденовые штыри; рис. 5 (b)) выходят из цоколя лампы через уплотнение, чтобы установить и закрепить лампу в гнезде, подключенном к источнику питания. Наиболее важным аспектом создания уплотнения является разница в коэффициентах теплового расширения кварцевых и вольфрамовых нитей накала.Кварц имеет очень низкий коэффициент расширения, тогда как у вольфрама намного выше. Без надлежащего уплотнения подводящие провода будут быстро расширяться, когда лампа нагревается, и разбивают окружающее стекло. В современных вольфрамово-галогенных лампах очень тонкая молибденовая фольга (шириной от 2 до 4 миллиметров и толщиной от 10 до 20 микрометров; рис. 5 (b)) заделана в кварц, и каждый конец фольги приварен к коротким соединительным проводам из молибдена, которые в свою очередь приварены к нити накала и подводящему штифту.Молибден используется в уплотнении, потому что острые кромки позволяют безопасно врезать его в кварц во время операции зажима. Лампы, используемые для микроскопии, имеют односторонние основания, имеющие либо молибденовые штыри, выступающие из зажима, либо вольфрамовые штыри, которые изнутри связаны с молибденовой фольгой, как описано выше. Расстояние между штифтами стандартизовано и составляет от 4 до 6,35 миллиметра (обозначается как G4 и G6.35; G для стекла). Диаметр штифта колеблется от 0.От 7 до 1 миллиметра.

Поскольку технология производства вольфрамово-галогенных ламп настолько развита на данный момент, срок службы обычной лампы внезапно заканчивается, обычно при включении холодной лампы накаливания. В течение среднего срока службы современные вольфрамово-галогенные лампы не чернеют и претерпевают лишь незначительные изменения в фотометрических выходных характеристиках. Как и в случае с другими лампами накаливания, срок службы вольфрамово-галогенных ламп определяется скоростью испарения вольфрама из нити накала.Если нить накала не имеет постоянной температуры по всей длине проволоки, а вместо этого имеет области с гораздо более высокой температурой, возникающие из-за неравномерной толщины или внутренних структурных изменений, то нить обычно выходит из строя из-за преждевременного обрыва в этих областях. Даже несмотря на то, что испаренный вольфрам возвращается в нить за счет цикла регенерации галогена (обсужденного выше), материал, к сожалению, откладывается на более холодных участках нити, а не в тех критических горячих точках, где обычно происходит утонение.В результате практически невозможно предсказать, когда какая-либо конкретная нить накала выйдет из строя в лампах, которые работают непрерывно. В тех лампах, которые часто включаются и выключаются, можно с уверенностью предположить, что они выйдут из строя в какой-то момент при включении.

Вольфрамово-галогенные лампы могут работать с источниками питания постоянного или переменного тока, но в большинстве исследовательских приложений микроскопии используются источники питания постоянного тока ( DC ). Самые современные источники питания для вольфрамово-галогенных ламп имеют специализированную схему, обеспечивающую стабилизацию тока и подавление пульсаций.Критическая фаза для вольфрамово-галогенной лампы — это когда напряжение впервые подается на холодную нить накала, период, когда сопротивление нити примерно в 20 раз ниже, чем при полной рабочей температуре. Таким образом, когда напряжение питания мгновенно подается на лампу при ее включении, течет очень высокий начальный ток (до 10 раз выше, чем в установившемся режиме; называемый броском тока , ток), который медленно падает по мере того, как температура нити накала и электрическое сопротивление увеличивать. Пиковый уровень тока достигается в течение нескольких миллисекунд после запуска, но обычно заканчивается примерно за полсекунды.К сожалению, высокий пусковой ток, возникающий при холодном запуске, отрицательно сказывается на ожидаемом сроке службы лампы. Специализированная схема источника питания (часто называемая схемой плавного пуска ) используется для компенсации высоких пусковых токов в самых передовых приложениях (включая микроскопию), в которых вольфрамово-галогенные лампы используются для проведения логометрических измерений.

На рисунке 6 показана типичная вольфрамово-галогенная лампа мощностью 100 Вт, используемая в микроскопии проходящего света.Лампа оснащена охлаждающими отверстиями, которые позволяют конвекционным потокам омывать лампу более прохладным воздухом во время работы. Металлический отражатель, покрывающий внутреннюю часть светильника, помогает сферическому отражателю направлять максимально возможный уровень светового потока в систему коллекторных линз для подачи на оптическую цепь микроскопа. Этот усовершенствованный фонарик содержит запасной патрон и сменный пластиковый инструмент, который оператор может использовать для захвата корпуса лампы во время переключения лампы.Регулировка положения лампы по отношению к оптической оси сферического отражателя и коллектора может быть выполнена с помощью винтов с внутренним шестигранником, которые перемещают основание. Лампа прикрепляется к осветителю микроскопа с помощью запатентованного монтажного фланца, который соединяет лампу с вертикальным или инвертированным микроскопом (хотя большинство ламп не взаимозаменяемы с одной марки микроскопа на другую). Инфракрасный (тепловой) фильтр перед системой коллекторных линз поглощает значительное количество нежелательного излучения, и дополнительные фильтры обычно могут быть вставлены в световой тракт (используя прорези держателя фильтра в осветителе микроскопа) для поглощения выбранных диапазонов видимых длин волн, регулировки цветовой температуры или добавить нейтральную плотность (уменьшение амплитуды света).Большинство ламп для микроскопии не оснащены диффузионными фильтрами, но они часто требуются для достижения равномерного освещения по всему полю обзора и обычно помещаются производителем в осветительный прибор микроскопа.

Вольфрамовые галогенные лампы и газонаполненные лампы

Применение и технические примечания


Ниже приводится техническая информация и информация по применению вольфрамовых галогенных и газонаполненных ламп ILT. Многие из наших ламп можно приобрести прямо в нашем интернет-магазине.Чтобы поговорить с одним из наших экспертов по лампам, узнать о лампе, изготовленной по индивидуальному заказу, или попросить образец, свяжитесь с нами, используя форму здесь.

ILT предлагает большой выбор газонаполненных ламп различных размеров, цоколей и типов газа, включая цоколи T-1 3/4, G4-G10, двухштырьковые, проволочные выводы, сборки отражателей MR3 — MR11 с газами. включая галоген, ксенон, аргон и криптон


<Назад ко всем источникам света

Лампы обзора

Настроить мою лампу


Как работают вольфрамовые галогенные лампы (краткий обзор)

Вольфрамовые галогенные лампы по конструкции аналогичны обычным газонаполненным лампам с вольфрамовой нитью, за исключением небольшого следа галогена (обычно брома) в заполняющем газе.

Газообразный галоген вступает в реакцию с вольфрамом, который испарился, мигрировал наружу и отложился на стенке лампы. Когда температура стенки кварцевой оболочки достигает примерно 250 ° C, галоген вступает в реакцию с вольфрамом с образованием галогенида вольфрама, который отделяется от стенки лампы и возвращается обратно к нити накала.

Галогенид вступает в реакцию на нити накала, где температура около 2500 ° C вызывает диссоциацию вольфрама и галогена. Вольфрам осаждается на более холодных частях нити, а галоген высвобождается для продолжения цикла.

Нить накала вольфрамовой галогенной лампы служит двум целям. Один из них предназначен для генерации света, а второй — для выработки тепла, необходимого для получения температуры стенок выше 250 ° C.

Эти лампы были разработаны для поддержания требуемой температуры стенок при работе с расчетным напряжением. Снижение напряжения более чем на 10% от расчетного, вероятно, приведет к падению температуры стенок ниже требуемых 250 ° C.

Испытания показывают, что в большинстве случаев эти пониженные рабочие условия не влияют на работу лампы.К тому времени, когда температура стенки упадет до точки, при которой цикл галогена перестает функционировать, температура нити снизится до точки, при которой испарение вольфрама будет незначительным. Если наблюдается почернение стен, следует избегать диапазона рабочего напряжения, при котором это происходит. Сжигание лампы при расчетном напряжении в течение короткого периода времени обычно может устранить почернение лампы из-за временной эксплуатации в таком диапазоне напряжений.

Однако в редких случаях вольфрамовые галогенные лампы со снижением номинала более чем на 10% могут испытывать неблагоприятную реакцию коррозионного воздействия галогена на вольфрамовую нить, что приводит к преждевременному выходу лампы из строя.Не рекомендуется использовать вольфрамовые галогенные лампы при напряжении, превышающем расчетное, поскольку лампы обычно рассчитаны на свои максимальные пределы. Температура уплотнения лампы не должна превышать 350 ° C, в противном случае произойдет окисление молибденовой ленты, что приведет к преждевременному выходу лампы из строя.


Вольфрамовые галогенные лампы — идеальные источники света для спектрофотометров, поскольку они обеспечивают широкополосное спектральное излучение от ультрафиолетового, видимого и инфракрасного до пяти микрон.Некоторый выход излучения может быть получен при 320 и 340 нм. По этой причине ILT НЕ блокирует УФ-излучение от наших вольфрамовых галогенных ламп.


Выход спектрального излучения для вольфрамовых ламп накаливания

Типы нитей


Подробная техническая информация — вакуумные, газонаполненные и вольфрамовые галогенные лампы

Вакуумные лампы (ссылка на таблицу продуктов)


Вольфрамовая нить вакуумной лампы накаливания нагревается до температур, при которых излучается видимый свет за счет резистивного нагрева.Нить накала действует как электрический резистор, который рассеивает мощность пропорционально приложенному напряжению, умноженному на ток через нить накала. Когда этого уровня мощности достаточно, чтобы поднять температуру выше 1000 градусов Кельвина, излучается видимый свет. По мере увеличения рассеиваемой мощности количество света увеличивается, а пиковая длина волны света смещается к синему. Типичные вакуумные лампы могут иметь температуру нити накала от 1800 до 2700 градусов Кельвина. Свет от низкотемпературных ламп кажется красновато-желтым, в то время как высокотемпературные лампы выглядят более белыми.

Вольфрамовая нить накала испаряется быстрее, чем выше температура нити. Частицы испаренного вольфрама имеют тенденцию осаждаться на стеклянной оболочке, что со временем приводит к увеличению светового препятствия. В зависимости от области применения препятствие для выхода света может быть достаточно высоким, чтобы закончить срок службы лампы. В конце концов, материал нити накаливания испарится в количестве, достаточном для разрыва нити, что полностью завершит срок службы лампы. Оба эти эффекта сильно зависят от температуры нити накала, поэтому долговечные вакуумные лампы, как правило, работают в нижнем диапазоне температур, и свет имеет желтоватый оттенок.

Первоначально электрическое сопротивление вольфрамовой нити при комнатной температуре довольно низкое. Когда к лампе впервые подается электрическое питание, большой пусковой ток вызывает быстрый нагрев нити накала. Сопротивление нити накала увеличивается до значения, в пять-десять раз превышающего сопротивление холоду, что приводит к стабилизации силы тока, потребляемого лампой, и к тому, что лампа излучает стабильный световой поток. В зависимости от размера нити накала период пуска может составлять от десятков миллисекунд до сотен миллисекунд.Это требование пускового тока следует учитывать при выборе источника питания для конкретного применения лампы.

Газонаполненные лампы (ссылка на таблицу продуктов)

Газонаполненные лампы излучают свет от нити накаливания, работающей в атмосфере инертного газа. Добавление инертного газа подавляет испарение вольфрамовой нити, что увеличивает срок службы лампы или позволяет работать при более высоких температурах в течение того же срока.В качестве обычных газов используются азот, аргон, криптон и ксенон. Стоимость резко возрастает по мере использования более редких газов, особенно для ксенона, из-за их очень низкого естественного содержания. Преимущество газов с более высоким атомным весом состоит в том, что они подавляют испарение вольфрамовой нити более эффективно, чем газы с более низким весом. Это позволяет нити накала газонаполненных ламп работать при температурах до 3200 градусов Кельвина и достигать разумного срока службы. Свет от этих ламп имеет высокое содержание синего цвета, что придает свету чисто-белый вид.

Газонаполненным лампам требуется больше энергии для достижения той же температуры нити накала, чем вакуумным лампам. Окружающий газ охлаждает нить накала, подавляя испарение и уменьшая миграцию испаренного вольфрама на стенку лампы. Более высокая рабочая температура газонаполненных ламп обеспечивает большую светоотдачу на ватт входной мощности, что оправдывает их использование в критических приложениях.

Вольфрамовые галогенные лампы (ссылка на таблицу продуктов)

Вольфрамовая галогенная лампа похожа на лампу, заполненную инертным газом, за исключением того, что она содержит небольшое количество активного газообразного галогена, такого как бром.Инертный газ подавляет испарение вольфрамовой нити, в то время как газообразный галоген снижает количество вольфрама, покрывающего внутреннюю стенку лампы. Газообразный галоген вступает в реакцию с вольфрамом, который испаряется, мигрирует наружу и осаждается на стенке лампы. Когда температура стенки лампы достаточна, галоген вступает в реакцию с вольфрамом с образованием бромида вольфрама, который отделяется от стенки лампы и мигрирует обратно к нити накала. Соединение бромида вольфрама реагирует на нити накала лампы, где температура, близкая к 2500 ° C, вызывает рассеивание вольфрама и галогена.Вольфрам осаждается на нити накала и освобождается, чтобы повторить цикл снова. К сожалению, вольфрам не осаждается в той же зоне, где происходило испарение, поэтому нить накала все равно становится тоньше и в конечном итоге выходит из строя.

Вольфрамовая нить накала галогенной лампы служит двум целям. Один из них — генерировать свет, а второй — генерировать тепло, необходимое для получения температуры стенок выше 250 ° C. Эти лампы спроектированы таким образом, чтобы поддерживать требуемую температуру стенок при работе с расчетным напряжением.Снижение напряжения более чем на 10% от расчетного, вероятно, приведет к падению температуры стенок ниже требуемых 250 ° C. Испытания показывают, что в большинстве случаев эти пониженные рабочие условия не влияют на работу лампы. К тому времени, когда температура стенки упадет до точки, при которой цикл галогена перестает функционировать, температура нити снизится до точки, при которой испарение вольфрама будет незначительным. Если наблюдается почернение стен, следует избегать диапазона рабочего напряжения, при котором это происходит.Сжигание лампы при расчетном напряжении в течение короткого периода времени обычно может устранить почернение лампы из-за временной эксплуатации в таком диапазоне напряжений. Однако в редких случаях галогенные лампы с пониженными характеристиками более чем на 10% могут испытывать неблагоприятную реакцию коррозионного воздействия галогена на вольфрамовую нить, что приводит к преждевременному выходу лампы из строя.

Светоотдача вольфрамовой галогенной лампы более стабильна, чем у негалогенной газовой лампы, благодаря очищающему действию газообразного галогена на колбу лампы.Эта особенность в сочетании с высокой цветовой температурой света и долгим сроком службы делает эти лампы очень востребованными для многих промышленных и научных приложений. Ограничение рабочего цикла из-за требования поддерживать температуру оболочки лампы, достаточную для запуска галогенного цикла, является недостатком. Однако в приложениях с непрерывным режимом работы относительно легко обеспечить правильную вентиляцию, чтобы обеспечить надлежащую рабочую температуру.


Не рекомендуется эксплуатировать вольфрамовые галогенные лампы при напряжении, превышающем расчетное, поскольку лампы обычно рассчитаны на свои максимальные пределы.Температура уплотнения лампы не должна превышать 350 ° C, в противном случае произойдет окисление молибденовой ленты, что приведет к преждевременному выходу лампы из строя.

Вольфрамовые галогенные лампы — идеальные источники света для спектрофотометров, поскольку они обеспечивают широкополосное спектральное излучение в диапазоне от ультрафиолетового, видимого и инфракрасного до пяти микрон. Некоторый выход излучения может быть получен при 320 и 340 нм.

Срок службы при проектном и рабочем напряжении

Срок службы лампы, выраженный в часах, рассчитан при расчетном напряжении и в идеальных лабораторных условиях.Отклонение от расчетного напряжения приведет к уменьшению или увеличению срока службы лампы. Это отклонение также изменит значения потребления тока, яркости и цветовой температуры. Эти отклонения должны использоваться инженером-проектировщиком для улучшения технических характеристик лампы для конкретного применения.

На рис. 1 показаны процентные изменения тока, цветовой температуры и яркости, когда рабочее напряжение отличается от расчетного.

Указанный здесь номинальный срок службы выражается в часах.Номинальный срок службы рассчитывается при расчетном напряжении, переменном токе и в идеальных лабораторных условиях. При фактическом использовании срок службы может сократиться в результате агрессивных сред, таких как удары, вибрация и экстремальные температуры. Срок службы можно существенно увеличить, выбрав рабочее напряжение меньше расчетного. Это снижение напряжения по сравнению с расчетным также приведет к более холодной нити накала, обеспечивающей повышенную устойчивость к ударам и вибрации.

Из-за незначительных различий в производстве миниатюрных ламп и в составных частях невозможно, чтобы каждая отдельная лампа работала в течение того срока, на который она была рассчитана.Срок службы лампы оценивается как средний срок службы большой группы ламп.


Схема калькулятора Rapid Lamp

Эта диаграмма позволяет пользователю определить зависимость тока, средней сферической канделы и срока службы от значения напряжения, приложенного к лампе, в процентах от расчетного напряжения для этой лампы. Проведите горизонтальной линией через процентное значение расчетного напряжения, которое будет использоваться, и прочтите значение рассчитанных параметров в правой части диаграммы.

Определение срока службы лампы — Электронные изделия

Номинальный срок службы лампы
зависит от нескольких переменных

ДИАН БЕЛЛ и ДУГ РУТАН
Welch Allyn Lighting Products
Skaneateles Falls, NY

При выборе ламп накаливания и дуговых ламп для освещения критически важно определить срок их службы.Хотя большинство технических характеристик электронных компонентов, представленных в каталогах продукции, универсальны, это не относится к номинальному сроку службы галогенных, вакуумных, газонаполненных и металлогалогенных ламп.

Например, галогенная лампа мощностью 15 Вт от одного производителя может рассчитывать на значительно более длительный срок службы, чем такая же лампа от другого производителя. Определение того, как эти производители определяют срок службы лампы, может повлиять на производительность конечного продукта.

Лампы накаливания

Самый распространенный метод проверки ламп накаливания — это испытание нескольких ламп в стойке в контролируемой среде при постоянном напряжении.Количество ламп, используемых при испытании, определяется путем статистической выборки для обеспечения требуемого уровня качества. Многие разработчики и разработчики могут не осознавать, что показатели срока службы лампы, указанные в каталогах, могут представлять собой либо среднее (среднее значение), либо медианное значение (среднее число в серии), в зависимости от ожидаемого срока службы лампы.

Лампы, рассчитанные на срок менее 1000 часов, оставляют включенными, пока все не перегорят. Затем рассчитывается ожидаемый срок службы с использованием среднего времени перегорания. Однако лампы, рассчитанные на срок более 1000 часов, работают до тех пор, пока не произойдет значительное количество отказов (обычно 50%) для расчета среднего срока службы лампы.Проба отбирается, когда заранее определенное количество ламп вышло из строя.

Медиана также может быть найдена с помощью распределения Вейбулла (см. рис. 1 ), которое является более общей формой экспоненциального распределения. Когда определенное количество ламп вышло из строя, берется образец данных и выполняется анализ.

Рис. 1. Лампы накаливания и дуговые лампы используют распределение Вейбулла — более общую форму экспоненциального распределения
, конкретным примером которого является нормальное распределение
— для определения среднего срока службы лампы, измеряемого в часах.

Дуговые лампы

Дуговые лампы испытывают так же, как и лампы накаливания в стойке, при постоянном напряжении в контролируемых лабораторных условиях. Во время тестирования выход из строя лампы неравномерно распределяется по временным рамкам; некоторые лампы могут быстро выйти из строя, в то время как другие могут прослужить значительно дольше. В результате срок службы дуговых ламп также рассчитывается с использованием распределения Вейбулла для определения среднего срока службы лампы.

Дуговые лампы обычно испытываются с использованием длительных рабочих циклов, что подходит для большинства газоразрядных ламп высокой интенсивности, которые остаются включенными в течение продолжительных периодов времени.Дуговые лампы меньшей мощности, такие как лампа Solarc от Welch Allyn, испытываются с использованием более коротких рабочих циклов. В результате номинальный срок службы лампы дает пользователю более точное представление о фактическом сроке службы лампы.

Хотя с помощью этих методов можно получить точную информацию, несколько других факторов, которые часто не отражаются в сроках службы лампы, могут повлиять на фактический срок службы лампы:

Рабочий цикл . Частота включения и выключения лампы — ее рабочий цикл — может вызвать значительную нагрузку на ее нить из-за пускового тока.

Горящая позиция . Обычно лампы испытывают либо в вертикальном, либо в горизонтальном положении. Если испытательное положение лампы отличается от положения лампы при фактическом использовании, это может повлиять на срок службы лампы.

Удары и вибрации . Хрупкая природа нити накала галогенной лампы также делает ее чувствительной к внезапным ударам и определенным вибрациям. При фактическом использовании лампы часто подвергаются более сильным ударам, чем в испытательной среде, что может привести к преждевременному выходу из строя.Кроме того, нити накаливания лампы могут быть сверхчувствительны к определенным частотам и вибрациям, возникающим во время использования, что также может привести к преждевременному выходу лампы из строя.

Контроль напряжения . Все лампы рассчитаны на работу при заданном напряжении. Если приложенное напряжение отличается от расчетного, реальный срок службы лампы будет отличаться от указанного. Например, работа на 10% выше или ниже указанного приложенного напряжения приведет к уменьшению или увеличению срока службы лампы с 50% до 65%.

Рабочая температура и теплоотвод . Для правильной работы галогенные лампы обычно должны иметь определенную температуру. Обычно эта температура достигается, когда внутренняя стенка конверта достигает 250 ° C. Когда галогенная лампа выходит из строя при оптимальных условиях, это обычно является результатом утончения центральной катушки (см. , рис. 2, ).

Рис. 2. Когда галогенная лампа выходит из строя при оптимальных условиях,
это обычно происходит из-за утонения центральной катушки.

Если галогенные лампы работают слишком холодно — обычное явление, когда лампы сильно нагреваются, — техническое обслуживание сокращается, и оболочка темнеет в результате неправильной работы химикатов. Кроме того, если лампа работает в течение короткого рабочего цикла, она может не достичь рабочей температуры, что может вызвать преждевременное потемнение. Однако газонаполненные лампы не подвержены влиянию рабочей температуры и могут использоваться с сильным теплоотводом и короткими рабочими циклами.

Износ лампы

Распространенное заблуждение состоит в том, что светоотдача лампы в конце срока службы такая же, как при первом включении.Фактически, техническое обслуживание лампы, то есть ее способность поддерживать световой поток в течение всего срока службы, может снизиться до точки, при которой светоотдача не будет достаточной для эффективного выполнения своей работы.

Приложения, требующие, чтобы лампа постоянно работала с указанной выходной мощностью, например спектрометры, должны учитывать срок службы лампы и техническое обслуживание, чтобы определить, будет ли лампа работать в течение всего номинального срока службы.

Помимо технического обслуживания, цветовая температура лампы может изменяться со временем.Это также может повлиять на характеристики продукта, для которого требуется определенная цветовая температура.

Производители ламп

Хороший производитель объяснит срок службы лампы, указанный в его каталоге. В то время как многие производители очень оптимистично оценивают часы, другие консервативны. В любом случае лампы должны соответствовать указанному в каталоге сроку службы и всем остальным спецификациям (таким как обслуживание, цвет и температура).

Кроме того, лампы с более длительным сроком службы могут действительно иметь более длительный срок службы, но могут не соответствовать другим перечисленным характеристикам в течение указанного срока службы.Чтобы определить, какая лампа лучше всего подходит для применения, некоторые производители, такие как Welch Allyn, предлагают услуги инженеров по применению ламп, чтобы полностью изучить область применения, рекомендовать соответствующий протокол испытаний и выбрать лучшее решение для освещения.

Срок службы лампы (La vita bella) | Освещение Futures | Программы

Том 4 Номер 3
Copyright © 2000 Политехнический институт Ренсселера

La vita и egrave bella

  Джон Д.Буллоу  

Маловероятно, что Роберто Бениньи когда-либо снимет художественные фильмы, превозносящие достоинства долговечных ламп и систем освещения. Однако в последнее время многие представители осветительной отрасли были более чем готовы обсудить этот аспект освещения, и, похоже, многие другие будут делать это в будущем. Возникло растущее понимание экономики освещения, а вместе с ним и понимание того, что световая отдача, или люмен на ватт, не единственная важная переменная при проектировании и поддержании рентабельного и качественного освещения.

Срок службы лампы — одна из других важных переменных. Жизнь все больше становится движущей силой в разработке новых ламп и систем освещения. Все больше производителей ламп используют жизнь, чтобы отличить свою продукцию от продукции своих конкурентов. Но является ли жизнь просто еще одной линейкой, по которой мы можем измерять освещение? Насколько это важно на самом деле?

Растущий интерес
Буквально за последние несколько лет интерес к проблеме жизни вырос. Согласно обзору журнальных статей в базе данных LEXIS-NEXIS с 1996 по первую половину 1999 года (см. , рис. 1 ), срок службы ламп становится все более популярной темой.В течение первой половины 1996 года менее 1% этих статей упоминали срок службы лампы. Для сравнения: срок службы лампы обсуждается более чем в 3,5% статей в первой половине 1999 года. Этот неуклонный рост свидетельствует о растущем осознании вопросов, связанных с жизнью.

Что за жизнь?
Мы привыкли к упаковке ламп, на которой указан заводской определение срока службы лампы, называемого номинальным сроком службы, обычно в часах, различных источники света. Возможно, наиболее прямая интерпретация этих рейтингов что они говорят нам, как долго лампа проработает, прежде чем выйдет из строя («горит из »).Но определение жизни у разных типов ламп разное. Кроме того, условия, при которых измеряется срок службы лампы, могут иметь большое значение. влияние на фактический срок службы лампы. Чтобы сделать проблему еще более сложной, стандартные условия тестирования, используемые для измерения срока службы лампы, редко соответствуют к реальным условиям, в которых люди используют лампы. Даже с этими ограничениями однако расчетный срок службы дает важную информацию для прогнозирования общего экономическая стоимость и влияние системы освещения.
Лампы накаливания
Мы проверяем срок службы ламп накаливания, непрерывно работая с образцом ламп в заданном положении и при заданном напряжении (в диапазоне 0,25%). Иногда лампы можно снимать, чтобы можно было измерить их индивидуальные фотометрические характеристики. Количество часов горения, при котором половина ламп вышла из строя, считается номинальным сроком службы ламп. Однако любые две одинаковые лампы накаливания с одинаковым номинальным сроком службы могут иметь очень разные фактические сроки службы даже в одинаковых условиях.Типичные кривые смертности от ламп накаливания на рис. , рис. 2 , показывают, что может быть очень большой разброс в часах между лампами с ранним выходом из строя и лампами с длительным сроком службы с таким же номинальным сроком службы.
Перепечатано с разрешения IESNA

Как указано в Справочнике по освещению IESNA Общества инженеров по освещению Северной Америки, 9-е издание (2000 г.), срок службы лампы накаливания, не включая отказ от удара или разрушения, во многом зависит от испарения вольфрамовой нити лампы.Лампы накаливания генерируют свет, пропуская ток через вольфрамовую нить накаливания, которая нагревается и, в свою очередь, излучает свет. При этом вольфрам медленно и постепенно испаряется. Стеклянная колба темнеет, поскольку на ней осаждаются частицы испаряющегося вольфрама, что снижает светоотдачу. Это испарение истончает нить накала до точки, где она разрывается, нарушая электрическую цепь и приводя к перегоранию лампы. Типичный срок службы лампы накаливания составляет от нескольких сотен до 1500 часов.

В 1960-х годах производители разработали галогенные лампы, добавив йод или другой химикат из семейства галогенов для увеличения срока службы вольфрамовой лампы накаливания. Газ и нить накала заключены в другую маленькую грушу, которая позволяет увеличить давление газа. Это более высокое давление замедляет испарение вольфрама и снижает почернение колбы. Некоторые вольфрамово-галогенные лампы служат более 5000 часов.

Работа ламп накаливания при напряжении, отличном от напряжения лампы рассчитан на использование, так называемое номинальное напряжение, сильно влияет на срок их службы.Как показано в Рисунок 3 , лампа работает при 120% рекомендованного напряжения сократит срок его службы до 10–15% от номинального. С другой стороны, уменьшение рабочее напряжение до 90% от рекомендуемого напряжения продлит срок службы в 4 раза. Это полезно при проектировании фонарей для светофоров, указателей, и другие приложения, где важен долгий срок службы. Производители могут увеличить срок службы лампы за счет разработки ламп на более высокое, чем необходимо, напряжение.Например, они могут увеличить сопротивление нити накала, и лампа будет охлаждаться. Если нить накала длиннее, чем необходимо для напряжения, ее сопротивление выше. Нить также может быть толще, если ее сделать еще длиннее. Из-за более низкого рабочая температура и более толстая нить накаливания увеличивает срок службы лампы. Однако компромисс заключается в более низкой эффективности и светоотдаче, чем при номинальном значении. Напряжение. Срок службы лампы светофора составляет 8000 часов, поскольку она рассчитан на гораздо более высокое напряжение, чем фактическое напряжение, используемое для питания напольная лампа.

Перепечатано с разрешения IESNA
Люминесцентные лампы
Люминесцентные лампы требуют другого теста на срок службы, чем лампы накаливания, потому что на их срок службы влияют разные факторы. Люминесцентные лампы испытываются при работе при указанной температуре (25 ° C / 77 ° F) в непрерывном цикле включения 3 часа и отключения 20 минут со стандартной схемой балласта, контролирующей ток. Как и в случае с лампами накаливания, номинальный срок службы — это количество отработанных часов, в течение которых половина ламп в образце перегорела, что означает, что фактический срок службы отдельных ламп варьируется.Типичный расчетный срок службы люминесцентных ламп составляет от 7500 до 20 000 часов, что значительно больше, чем у ламп накаливания.

Продолжительность цикла включения-выключения, используемого при проверке срока службы люминесцентных ламп, чрезвычайно важна. В отличие от ламп накаливания, при работе с которыми лампа обычно перегорает, основным фактором в конце срока службы люминесцентных ламп является потеря излучающего покрытия электродов. В то время как излучающее покрытие медленно испаряется во время работы лампы, запуск лампы ускоряет процесс.Когда люминесцентная лампа запускается, балласт прикладывает высокое напряжение к электродам лампы, разрушая покрытие электрода. Часто переключаемые люминесцентные лампы теряют покрытие электродов быстрее и не запускаются раньше, чем редко переключаемые люминесцентные лампы. На рис. 4 показано увеличение срока службы люминесцентной лампы, если лампа работает при более длительных циклах переключения, чем при стандартном цикле: 3 часа включения и 20 минут выключения. На рис. 5 показано сокращение срока службы компактных люминесцентных ламп, вызванное рабочими циклами, которые намного короче, чем цикл тестирования 3 часа включения и 20 минут перерыва.Это были результаты испытаний, проведенных при поддержке Исследовательского института электроэнергетики, Управления энергетических исследований и разработок штата Нью-Йорк (NYSERDA) и Национальной информационной программы по осветительной продукции (NLPIP).

Перепечатано с разрешения IESNA

Из-за относительно длительного срока службы люминесцентных ламп и количества времени, необходимого для проверки срока службы лампы (проверка лампы на 20000 часов может занять почти три года), недавнее исследование проверило, может ли ускоренное испытание люминесцентных ламп быть полезным в прогнозирование срока службы лампы и других рабочих характеристик системы освещения.Испытание нескольких комбинаций люминесцентных ламп и пускорегулирующего устройства показало, что для люминесцентных ламп с быстрым запуском, работающих в цикле 5-минутное включение и 5-минутное отключение, важным параметром для прогнозирования срока службы лампы было соотношение сопротивления горячего электрода (RH ) к сопротивлению холодного электрода (RC). Когда это соотношение RH / RC было близко к 4,25, лампы прослужили дольше (см. , рис. 6, из «Тестирования совместимости люминесцентных ламп и балластных систем»; Юнфен Джи, Роберт Дэвис, Конан О’Рурк и Эдмунд Чуи. Исследовательского центра освещения, опубликовано в Трудах Института инженеров по электротехнике и электронике [IEEE] 32-го ежегодного собрания Общества промышленных приложений, 1997 г.).RH / RC указывает, совместимы ли лампа и балласт, что является важным, но не единственным показателем срока службы лампы. Это исследование спонсировалось Empire State Electric Energy Research Corporation (ESEERCO), NYSERDA и NLPIP.

© 1997 IEEE

Отношение RH / RC не применяется к люминесцентным лампам с мгновенным запуском, поскольку их электроды не нагреваются. Тао Инь из Исследовательского центра освещения показала в своей дипломной работе, что срок службы ламп с мгновенным запуском, которые работают в цикле 5-минутное включение и 5-минутное отключение, коррелирует с интегрированным пусковым напряжением.Интегрированное пусковое напряжение рассчитывается путем измерения напряжения электрода в течение времени между подачей питания и запуском лампы (см. , рис. 7, ).

В каждом из этих исследований использовались одни и те же типы ламп с разными балластами, и было обнаружено, что срок службы ламп различается для разных балластов. Это демонстрирует важность совместимости лампы с балластом, то есть соответствия характеристик лампы характеристикам балласта, который запускает и управляет ею. Одна и та же лампа, работающая с разными балластами, может иметь очень разные характеристики срока службы.Это последнее исследование, вероятно, повлияет на разработку тестов на срок службы люминесцентных ламп с использованием быстрого переключения. Такие испытания позволят более оперативно распространять информацию о сроке службы ламп и проблемах совместимости люминесцентных ламп и балластов. Однако в настоящее время невозможно определить совместимость лампы и балласта без проведения этих измерений для отдельных ламп и балластов.

Светотехническая промышленность попыталась преодолеть некоторые ограничения, присущие электродной системе люминесцентных ламп, разработав несколько безэлектродных ламп, которые сейчас присутствуют на рынке.Лампа QL от Philips Lighting, Icetron от OSRAM SYLVANIA и лампа Genura от GE Lighting являются примерами безэлектродных ламп. Они работают с помощью электромагнитной энергии для возбуждения газового наполнителя, а не электрического поля, создаваемого между двумя металлическими электродами, как в обычной люминесцентной лампе. Это создает разряд ртути, который, в свою очередь, возбуждает люминофор и генерирует свет так же, как люминесцентная лампа. Такие лампы, поскольку у них нет электродов, невосприимчивы к потерям в покрытии из-за излучения обычных люминесцентных ламп, и производители заявили, что расчетный срок службы составляет от 50 000 часов до 100 000 часов.

Срок службы электродов — не единственный важный фактор в длительной эксплуатации люминесцентных систем освещения. Люминофор, покрывающий внутреннюю часть лампы, и стекло, из которого изготовлена ​​лампа, портятся после длительного использования. На деградацию люминофора и трубки влияют несколько факторов, включая плотность тока, тип люминофора, ультрафиолетовый поток, температуру стенок и материал стенок. В результате светоотдача люминесцентной лампы снизится до 60–90% от ее первоначальной светоотдачи через 10 000 часов и продолжит уменьшаться.Большинство дизайнеров по свету учитывают эту характеристику, известную как снижение люминесцентного люка, в своих проектах, но установки, которые не обслуживаются или заменяются лампами, могут включать в себя несколько ламп, которые кажутся исправными, но на самом деле производят почти половину первоначального количества света. предназначены. Это может быть особенно актуально для безэлектродных ламп, у которых нет электродов, которые могут выйти из строя раньше.

Газоразрядные лампы высокой интенсивности
Ресурсные испытания газоразрядных ламп высокой интенсивности, таких как ртутные, металлогалогенные и натриевые под высоким давлением, во многом такие же, как и для люминесцентных ламп, за исключением того, что стандартный рабочий цикл отличается.Поскольку эти лампы часто используются в таких областях, как промышленные объекты, склады или автостоянки, где они включаются в начале периода использования и остаются включенными в течение 8 часов или более, цикл переключения составляет 11 часов включения, 1 час выключения. . Для металлогалогенных ламп, которые все чаще используются в обычном внутреннем освещении из-за их хороших цветопередающих свойств, цикл 11 часов включения и 1 часа отключения может быть неподходящим для прогнозирования срока службы лампы из-за частого переключения.

Как и люминесцентные лампы, газоразрядные лампы высокой интенсивности часто выходят из строя из-за потери в эмиссионном покрытии электродов. Металлогалогенные лампы имеют конкретное препятствие, потому что электроды должны быть совместимы с химические вещества в потоке галогенидной дуги. Потому что галогениды металлов несовместимы с материалами, используемыми для покрытия электродов, в металлогалогенных лампах обычно используются вольфрамовые электроды без покрытия, которые разрушаются быстрее, чем вольфрамовые электроды с покрытием.В натриевых лампах высокого давления по мере приближения также возникают неисправности электродов. конец жизни и часто циклически включаются и выключаются, прежде чем они окончательно выйдут из строя. Типичный Срок службы ртутных ламп — от 20 000 до 24 000 часов; срок службы металлогалогенной лампы обычно намного короче, от 7500 до 15000 часов; и натрий высокого давления Срок службы ламп составляет около 24 000 часов.

Для всех трех типов газоразрядных ламп высокой интенсивности наблюдается уменьшение светового потока лампы из-за отложений электродного материала на стенке дуговой трубки и, в случае металлогалогенных ламп, из-за изменения химического состава дугового потока.Вот почему сообщается, что многие металлогалогенные лампы претерпевают заметные изменения цвета лампы с возрастом. Это может быть важно, если в конкретной осветительной установке требуется однородный цветовой охват: при замене одной лампы она может заметно отличаться от старых ламп. Поскольку у всех газоразрядных ламп высокой интенсивности наблюдается некоторое уменьшение светового потока, необходимо соблюдать график регулярного технического обслуживания и замены ламп. Как и люминесцентные лампы, газоразрядная лампа высокой интенсивности может не работать должным образом, даже если стороннему наблюдателю кажется, что она включена.

Светодиоды
Светодиоды (LED) — это твердотельные полупроводниковые устройства, излучающие свет. В прошлом они использовались в основном в таких приложениях, как световые индикаторы, для которых требовалось лишь небольшое пятно света, но в последнее время они использовались для таких приложений, как знаки выхода и светофоры. Поскольку эти источники света являются относительно новыми для индустрии освещения, стандартных определений срока службы ламп не существует. Они не терпят неудачу в том смысле, в каком это делают другие источники.Однако со временем их светоотдача уменьшается до тех пор, пока они перестают быть полезными. Таким образом, срок службы светодиодов еще не определен. Как показано на рисунках 8 и 9 , светодиоды производят только от 50 до 70% своей первоначальной светоотдачи за 100 000 часов при определенных условиях. Световой поток первых светодиодов, используемых в знаках выхода и светофорах, в которых использовались материалы на основе арсенида алюминия-галлия (AlGaAs), в некоторых случаях сократился вдвое всего за 15000 часов.
Предоставлено Agilent Technologies

Более современные технологии с использованием фосфида алюминия, галлия, индия (AlGaInP) и нитрида индия-галлия (InGaN) оказались более стабильными в отношении долговременной светоотдачи.Эти светодиоды по-прежнему необходимо тщательно контролировать на предмет светоотдачи, особенно в знаках выхода и светофорах, видимость которых имеет решающее значение для безопасности людей.

Поскольку для светодиодов требуется гораздо меньшее напряжение постоянного тока, еще одним фактором, сокращающим кажущийся долгий срок службы светодиодов, является необходимость во вспомогательной электронике и оборудовании для размещения и эксплуатации этих источников. Поскольку в США коммерчески доступная электроэнергия поступает в виде переменного тока, для светодиодов требуются преобразователи постоянного тока.Такие устройства могут иметь номинальный срок службы значительно короче, чем светодиоды, с которыми они используются, поэтому разработчикам спецификаций необходимо учитывать номинальный срок службы всего продукта или системы, а не только потенциально многообещающий длительный расчетный срок службы светодиодов. Более высокое напряжение и высокие температуры также могут увеличить износ светодиода.

Экономические последствия
Срок службы — важный фактор, определяющий долгосрочное экономическое воздействие системы. Рассмотрим простую концепцию, используемую IESNA, известную как «стоимость света».Эта метрика оценивает стоимость обеспечения освещения и выражается в единицах долларов на миллион люмен-часов, которая учитывает необходимое количество света и стоимость как операционных систем освещения в течение этого периода времени, так и замены ламп по окончании срока их службы. жизнь. Согласно 9-му изданию IESNA Lighting Handbook, стоимость света может быть определена следующим простым уравнением:
U = (10 / Q) x [(P + h) / L + WR]
Где:
U — стоимость света на миллион люмен-часов в долларах
Q — средний световой поток лампы
P — цена лампы в центах
ч — трудозатраты на замену одной лампы в центах
L — средний расчетный срок службы лампы в тысячах часов.
Вт — входная мощность лампы в ваттах (включая балластную мощность, если применимо).
R — стоимость энергии в центах за киловатт-час.

Представьте себе две гипотетические лампы, которые идентичны во всех отношениях, за исключением их номинального срока службы: лампа 1 имеет номинальный срок службы 1000 часов, а лампа 2 имеет номинальный срок службы 10 000 часов.В этом примере давайте рассмотрим стоимость света для системы освещения, используя следующие параметры:

Q = 3000 люмен
P = 5 долларов или 500 центов
ч = 5 долларов или 500 центов
L = 1 для лампы 1 (1000 часов)
L = 10 для лампы 2 (10000 часов)
Вт = 40 Вт
R = 10 центов за киловатт-час

Для первой лампы с номинальным сроком службы 1000 часов стоимость света на миллион люмен-часов составляет 4,67 доллара. Для второй лампы с номинальным сроком службы 10 000 часов соответствующая стоимость света составляет 1 доллар США.67 — чуть больше одной трети стоимости света первой лампы. Хотя этот пример и расчет стоимости света в целом не учитывают временную стоимость денег, влияние инфляции или другие переменные, которые могут существенно повлиять на экономику осветительной установки, он показывает, насколько значительным может быть срок службы даже без учета энергоэффективности (помните, в нашем примере использовались гипотетические лампы с эквивалентной светоотдачей).

В целом, однако, гораздо труднее реально предсказать потенциальную экономию на обслуживании.Обследование муниципалитетов, проведенное Комиссией по энергетике Калифорнии об использовании сигналов светофора (Ответы городов и округов на обследование светодиодных сигналов движения, апрель 1999 г.), показало, что относительно небольшое количество муниципалитетов определили потенциальную экономию на обслуживании как причину использования светодиодных светофоров, а не ламп накаливания. . Затраты на техническое обслуживание светофоров являются прямым следствием различного срока службы светодиодов и ламп накаливания, используемых в этих типах сигналов.

По сравнению с сокращением потребления энергии от 80% до 90%, достижимым за счет использования светодиодных светофоров в качестве замены сигналов накаливания, любая дополнительная экономия из-за снижения требований к техническому обслуживанию может показаться просто глазурью на торте. Однако расчетная экономия на обслуживании в нескольких городах, включая Сент-Пол, Миннесота, и Боулдер и Денвер, Колорадо, составляет от 51% до 88% фактической экономии в долларах, которая связана только с экономией энергии.

Что дальше?
Что нас ждет в будущем в отношении срока службы лампы? Как показано на Рисунке 1, интерес специалистов по освещению и индустрии освещения к этому вопросу будет расти.Этот интерес будет способствовать исследованиям и маркетинговым усилиям, направленным на повышение возможных выгод от увеличения продолжительности жизни, в том числе
  • Разработка систем люминесцентного освещения — лампы и пускорегулирующие устройства, а не только лампы, параметры запуска которых (соотношение RH / RC для быстрого пуска или характеристики пусковое напряжение-время для мгновенного пуска) будут способствовать увеличению срока службы.
  • Усовершенствование технологии металлогалогенных ламп для увеличения срока службы за счет улучшенных материалов электродов и стабильности светоотдачи и цвета на протяжении всего срока службы.
  • Усовершенствование конструкции осветительных приборов, в которых используются светодиоды, чтобы светодиоды и электронное устройство, управляющее ими, стали более интегрированными, а жизнь охватила всю систему.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *