Что такое гидротрансформатор в акпп: Что такое Гидротрансформатор и зачем он нужен?

Содержание

Что такое Гидротрансформатор и зачем он нужен?

Гидротрансформатор — устройство, необходимое автомобилям с автоматической коробкой передач для отделения трансмиссии от двигателя, заменяя сцепление.

Краткое описание


Гидротрансформатор дает возможность машинам с автоматической трансмиссией работать на холостых оборотах, благодаря полному отсоединению трансмиссии от двигателя. Располагается гидротрансформатор между двигателем и трансмиссией.

В данном устройстве для передачи движения от двигателя трансмиссии используется жидкость. При работе двигателя на малых оборотах (остановка на светофоре и т.д.) входящий крутящий момент мал, поэтому для удержания машины на месте достаточно лишь слегка удерживать педаль тормоза.

Внутри гидротрансформатор состоит из 4 элементов:

  • насос
  • турбина
  • реактор
  • трансмиссионная жидкость

 

Корпус гидротрансформатора прикреплен болтами к маховику двигателя, поэтому скорость его вращения равна скорости вращения двигателя.

Плавники (они создают давление масла в гидротрансформаторе) так же  соединены с корпусом, поэтому их скорость вращения, тоже совпадает со скоростью работы двигателя.

 

Соединение гидротрансформатора  с трансмиссией и двигателем


Принцип работы насоса в гидротрансформаторе основан на принципе работы центрифуги. Когда происходит вращение гидротрансформатора, то жидкость отбрасывается наружу, создавая разреженное давление в центре и притягивая, тем самым, жидкость к центру. Все это очень напоминает принцип действия стиральной машины, в которой белье и вода прижимаются к стенкам барабана.

Жидкость попадает на лопасти турбины, соединенной с трансмиссией. Таким образом турбина вызывает вращение трансмиссии и машина начинает движение.

 

Достоинства и недостатки наличия гидротрансформатора


Современные гидротрансформаторы могут обеспечивать увеличение крутящего момента в 2-3 раза. Добиться этого возможно только если двигатель работает гораздо быстрее гидротрансформатора.

При движении с высокой скоростью частота вращения трансмиссии уравнивается с частотой работы двигателя. Разница скоростей вращения ведет к потере энергии. Эта причина приводит к перерасходу топлива (по сравнению с машинами с механическими трансмиссиями).

Для устранения данного эффекта в  некоторые машины дополнительно к  гидротрансформатору устанавливают блокировочную муфту. Когда обе половины гидротрансформатора набирают скорость, эта муфта соединяет их жестко, ликвидируя возможные потери производительности.

 

Буксует гидротрансформатор: причины, признаки и ремонт

Как известно, подавляющее большинство так называемых «классических» гидромеханических АКПП отличаются высокой надежностью и имеют большой ресурс (при условии соблюдения ряда правил эксплуатации и обслуживания коробки автомат). Однако, гидротрансформатор или «бублик» АКПП, который является неотъемлемой частью данного агрегата и часто считается самой коробкой автомат, может выходить из строя намного раньше, чем сама автоматическая трансмиссия.

На практике, если говорить о многих современных автоматах, АКПП может пройти 200-250 тыс. км. и более, в то время как ГДТ нуждается в ремонте или замене уже к 120-150 тыс. км. При этом важно обращать внимание на признаки, которые указывают, что с гидротрансформатором АКПП возникли проблемы. В противном случае «бублик» может вывести из строя и коробку, что значительно усложняет ремонт и увеличивает расходы.

Зачастую, одним из важных симптомов, которые говорят о неисправности ГДТ, является пробуксовка гидротрансформатора. В этой статье мы поговорим о том,  почему возникает пробуксовка гидротрансформатора, что это такое, а также как понять, что буксует гидротрансформатор во время диагностики АКПП.

Содержание статьи

Проскальзывание гидротрансформатора: почему происходит и основные признаки

Итак, гидротрансформатор или гидромуфта АКПП представляет собой сцепление автоматической коробки передач. При этом данное устройство сильно отличается от привычного механического сцепления, которое устанавливается на МКПП и большом количестве роботизированных КПП с одним сцеплением.

Чтобы было понятно,  принцип работы гидротрансформатора заключается в том, что корпус гидротрансформатора через особую переходную пластину прикреплен к маховику двигателя. Вращение корпуса происходит вместе с маховиком. Кстати, сам ГДТ герметичен, внутри корпуса «бублика» АКПП находится трансмиссионная жидкость ATF.

Так вот, маховик раскручивает специальное насосное колесо, расположенное внутри гидротрансформатора. В результате масло проходит через реактор гидротрансформатора, затем попадает на турбину (турбинное колесо), заставляя ее вращаться. Турбина передает энергию на первичный вал АКПП. Как видно, гидротрансформатор играет роль сцепления между двигателем и коробкой, однако жесткой связи нет, так как энергия передается через масло.

Такое решение позволяет не только передавать, но и дополнительно преобразовывать крутящий момент от двигателя, что позволяет оптимизировать усилие, добиться мягкого включения передач АКПП, снизить вибрации, ударные нагрузки и т.д.  Также в современных ГДТ активно используется блокировка гидротрансформатора.

Блокировка ГДТ необходима для минимизации потерь, неизбежно возникающих по причине отсутствия жесткой связи и передачи момента через жидкость внутри гидротрансформатора. Также к снижению КПД приводит и то, что рабочая жидкость (масло ATF) сильно разогревается.  В двух словах, в определенных режимах внутри ГДТ срабатывает механическая блокировка, которая по своему принципу напоминает механическое сцепление.  

Блокировка «бублика» позволяет передавать крутящий момент от двигателя напрямую, а не через жидкость, что обеспечивает повышение КПД, лучшую топливную экономичность, более интенсивный разгон автомобиля и т.д.

  • Как видно, устройство данного элемента достаточно сложное, а также работает ГДТ под нагрузками. Вполне очевидно, что часто возникают поломки и преждевременный износ. Зачастую, первые признаки неисправности гидротрансформатора выглядят так, что машина теряет в динамике, хуже реагирует на нажатие педали газа,  увеличивается расход топлива и т.д.

Ранний признак проблем с ГДТ, когда обороты ДВС немного повышены при езде, то есть, например, если в норме на третьей передаче и скорости 60 км/ч было 2500 или 3000 об/мин при движении по ровной дороге, то стало 3500 и больше при движении в точно таких же условиях с той же скоростью (третья передача,  ровная дорога, отсутствие дополнительной загрузки и т.

д.).

Также среди начальных признаков можно выделить проскальзывание гидротрансформатора (пробуксовку гидротрансформатора). Если буксует гидротрансформатор или проскальзывает, это проявляется так, что, например, при езде на той или иной передаче и разгоне на ней обороты двигателя растут не плавно, а резко увеличиваются (подскакивают на 500-600  об/мин и выше).

Если, например, автомобиль с АКПП стал плохо разгоняться, пропала динамика и коробка работает шумно, частой причиной является неисправность обгонной муфты реактора внутри ГДТ. Также нужно обратить внимание на симптом, когда при включении R или D не едет машина, причем водитель жмет на газ и обороты мотора явно повышаются, однако мотор крутится немного «тяжелее», чем при нажатии на газ на нейтральной передаче N.

В таком случае высока вероятность того, что шлицы турбины гидротрансформатора срезало. Если же двигатель глохнет при включении D  на АКПП или обороты мотора падают или скачут, проблема может быть связана с блокировкой гидротрансформатора.

Данная неисправность на многих авто диагностируется путем подключения сканера.

Если определяется ошибка типа «муфта блокировки гидротрансформатора, нет передачи крутящего момента», это указывает на то, что буксует гидротрансформатор. Причины могут быть разными, хотя часто виновником оказывается клапан (соленоид) блокировки ГДТ, который «залипает» или полностью не работает.  В любом случае, такая неисправность приводит  к тому, что блокировка не срабатывает, передача момента не осуществляется напрямую, возникают потери в ГДТ, падает динамика разгона и т.д. 

Дефектовка и ремонт гидротрансформатора

В случае появления признаков поломки «бублика», не следует сразу спешить менять  ГДТ на новый или контрактный гидротрансформатор. С учетом высокой стоимости данного устройства, оптимально выполнить его переборку. Другими словами, нужно знать, где ремонтируют гидротрансформаторы с гарантией, а также продают отдельные детали (например, крышка гидротрансформатора, сальники и другие составные элементы).

Также без должного опыта не рекомендуется пытаться снять или установить гидротрансформатор на машину своими руками. Операция не сильно сложная, однако ряд ошибок при снятии и обратной сборке может привести к поломкам не только ГДТ, но и АКПП или даже ДВС.  Лучше всего комплексно выполнять все работы в сервисе, который специализируется на ремонте АКПП.

При этом важно понимать, что во многих сервисах осуществляется только снятие гидротрансформатора и последующая установка, причем для ремонта «бублик» передается в другое место. Это значит, что если напрямую выйти на сервис, который сам ремонтирует гидротрансформаторы «под ключ», зачастую можно сэкономить до 15-25% на общей стоимости ремонта.

Рекомендуем также прочитать статью о том, что такое блокировка гидротрансформатора и как она работает. Из этой статьи вы узнаете, как блокируется «бублик» АКПП, а также для чего нужна блокировка гидротрансформатора коробки передач.

Также не следует приобретать новый гидротрансформатор по низкой цене. Для справки, новое устройство для самых простых АКПП стоит минимум 900-1000 у.е. Если же якобы новый «бублик» АКПП отдают заметно дешевле, под видом нового реализуется так называемый восстановленный б/у гидротрансформатор, который перед продажей попросту окрашен свежей краской.

  • Сам ремонт гидротрансформатора является сложным процессом, в рамках которого герметичный корпус ГДТ сначала разрезается, после чего осуществляется мойка внутренних деталей и производится дефектовка. Затем изношенные и поврежденные элементы меняются на новые, восстанавливаются накладки блокировки гидротрансформатора, осуществляется замена сальников, уплотнительных колец и т.д.

Если же изначально проблемой была течь гидротрансформатора, в этом случае дефект заваривают или «пересыпают» внутренности в новый корпус. Так или иначе, важно правильно заварить все разрезы и дефекты для полного восстановления герметичности.

При этом просто заварить корпус недостаточно, так как необходимо выполнять тщательную балансировку гидротрансформатора перед установкой на авто, чтобы исключить биение.

Что в итоге

С учетом приведенной выше информации становится понятно, что «бублик» АКПП (гидротрансформатор) является важнейшим элементом в устройстве коробок передач данного типа. Данное устройство не просто связывает между собой мотор и коробку подобно сцеплению, но и является преобразователем крутящего момента.

Более того, современные ГДТ имеют систему блокировки под управлением электроники, что также заметно усложняет общее устройство гидротрансформатора. Так или иначе, необходимо понимать, что любые проблемы с ГДТ заметно сокращают ресурс и самой АКПП. Грязь и мусор из «бублика» попадает в масло, проскальзывание и пробуксовка гидротрансформатора приводят к толчкам АКПП, масло ATF перегревается при неработающей блокировке и т.д.

При этом оптимальным решением является своевременная диагностика, после чего выполняется ремонт гидротрансформатора коробки автомат, который позволяет полностью восстановить работоспособность устройства по цене до 30-35% от общей стоимости нового ГДТ.

Как правило, после качественного ремонта гидротрансформатор имеет ресурс около  60-70% по сравнению с новым. Главное, все работы должны выполнять опытные специалисты, которые имеют необходимое специализированное оборудование и предоставляют расширенную гарантию.

     

Читайте также

Гидротрансформатор акпп, его устройство и принцип работы

Одним из важных и непонятных для простых водителей механизмов АКПП является гидротрансформатор акпп. Когда-то, основываясь на его внешних визуальных признаках, с легкой руки, а точнее языка мастеров гидротрансформатор получил название бублик акпп. Действительное сходство с большим бубликом не позволяет усомниться в важности роли, которую выполняет гидротрансформатор акпп.

Гидротрансформатор акпп в разрезе

 

На самом деле трансформатор является усовершенствованной гидромуфтой. Если простая гидромуфта выполняет простейшую задачу по передаче вращения, то бублик акпп еще и увеличивает вращающий момент в 2 – раза. Поэтому и называется по научному – гидротрансформатор.

 

Устанавливается трансформатор, как и положено по логике вещей между двигателем, который производит вращающий момент, на трансмиссию, которая преобразует вращающий момент двигателя во вращение ведущих колес в конечном итоге. В данном материале мы не будем вдаваться в подробности, где и каким образом устанавливается гидротрансформатор АКПП. Эти моменты мы рассмотрим в следующих материалах. Здесь мы рассмотрим общие

Бублик акпп в разрезанной коробке

принципы.

 

Если посмотреть на бублик в разрезе, то видна сложность его устройства. По краям располагаются насосные и турбинные колеса, а между ними встроен так называемый реактор. В функции реактора входит направление движения трансмиссионной жидкости, а вращающий момент передается вращением жидкости, на лопатки ведомого колеса, которым является турбинное колесо. Для увеличения коэффициента передачи момента конструкция турбинного колеса имеет сложный профиль, позволяющий распределять энергию трансмиссионной жидкости от центра к периферии. За счет такого распределения увеличивается КПД. Следует отметить, что производство всех составляющих деталей требует особой точности. В разделе ремонт гидротрансформатора остановимся на моменте точности.

Бублик акпп устройство

 

Переднее насосное колесо, которое жестко соединено с валом двигателя захватывает трансмиссионную жидкость и начинает ее продавливать через реактор на лопатки турбинного колеса. Реактор в своем составе имеет обгонную муфту, которая при больших оборотах как бы выводит из работы реактор, блокируя его вращение. Получается аналог прямой передачи. Кинематика движения жидкости в описанном процессе достаточно сложная, поэтому мы рассмотрим ее только в случае необходимости.

 

Гидротрансформатор выполняет также демпфирующие функции при передаче крутящего момента. Однако возникающие потери эффективности при практически постоянной разнице в скорости вращения ведущего и ведомого колес привели к необходимости встроить в ступицу турбинного колеса автоматическую блокировочную муфту. При достижении автомобилем скорости около70 км, происходит блокировка, и теперь

Гидротрансформатор акпп в разрезе

вращающий момент передается через демпфирующие пружины (на рисунке эти пружины хорошо видны). Получается, что блокировочная муфта выполняет полезную работу по предотвращению повышения расхода топлива. В момент выравнивания частоты вращения колес в действие вступает нажимной диск, соединенный с поршнем муфты, который прижимается к фрикционной накладке. Странно, но в некоторых форумах можно набрести на высказывания знатоков о том, что в бублике нет фрикционов, однако откуда тогда берутся абразивные крошки, которые разносятся по всей системе трансмиссионной жидкостью (помимо крошек, которые образуются дальше в самой коробке).  Мы еще будем говорить о принципах ремонта гидротрансформаторов, почему их надо ремонтировать, в каких случаях и где. Это все важные вопросы, впрямую влияющие на качество работы акпп и длительность ее безремонтного пробега.

 

Если у вас появились вопросы, то позвоните прямо сейчас и задайте их

Виктору Павловичу                          +7 928 11 800 22

или Андрею                           +7 928 11 800 33

Если вам необходим ремонт, то лучше созвониться и ехать по адресу:

г. Ростов-на-Дону, ул. В.Черевичкина, 106/2

Удачи вам всем и безремонтной езды!

все об устройстве и неисправностях — Рамблер/авто

Гидротрансформатор – это далеко не новое изобретение для автомобильной индустрии. Впервые он появился порядка ста лет назад, но за долгое время своего существования устройство претерпело значительные изменения. Сегодня гидротрансформаторы используют для передачи крутящего во многих отраслях промышленности. Разумеется, автомобильная промышленность исключением не стала. Об особенностях устройства гидротрансформаторов, принципе их работы, а также неисправностях вы сможете узнать из материала Avto. pro.

Экскурс в историю

Прообраз современных гидротрансформаторов был создан еще в 1905 году Германом Феттингером – талантливым немецким инженером, который работал над устройствами для передачи передачи крутящего момента. Свой механизм он назвал гидромуфтой. Изначально его планировалось использовать в судах. Суть работы муфты сводилась к передаче крутящего момента с помощью рециркуляции жидкости, которая заполняла пространство между парой лопастных колес. Такое техническое решение должно было решить проблемы обратной нагрузку на валы, двигатель и их соединительные элементы – жидкость решила бы недостатки жесткой связи между агрегатами и смежными с ними деталями.

Первый автомобиль, оснащенный гидротрансформатором, выпустил концерн General Motors. Это была модель Oldsmobile Custom 8 Cruiser 1939 года. Автолюбители отметили, что управление данным автомобилем было очень легким, простым и, разумеется, комфортным. Чуть позже аналогичные устройства начали применять и в других моделях личного транспорта. Сегодня гидротрансформатор является верным спутников автоматических коробок передач. Автолюбители часто называют его «бубликом» из-за специфической геометрии.

Достоинства и недостатки

Прежде чем мы начнем изучать устройство гидротрансформаторов, давайте разберемся, почему их вообще стали применять. Трансмиссия с жестким соединением первичного вала с двигателем имеет серьезный недостаток: в определенных режимах работы двигателя на трансмиссию приходятся сильные нагрузки, которые становятся причиной ускоренного износа деталей. Трансформатор решил эту проблему. Но у него есть и другие достоинства. Среди них:

Обеспечение плавного троганья с места;

Потенциальная возможность увеличения крутящего момента от автомобильного двигателя;

Устройство практически не нуждается в обслуживании.

Где есть достоинства, там есть и недостатки. Главная особенность гидротрансфортматора – передача момента посредством движения жидкости – является и его главным недостатком. Вот почему автоконцерны продолжают работать над его улучшением:

Устройство имеет относительно невысокий КПД;

Оно пагубно сказывается на динамике автомобиля;

Стоимость устройства довольно высока.

Так как на раскручивание жидкости в гидротрансформаторе требуется время и мощность, динамика автомобиля может пострадать. Кроме того, проектирование и сборка гидротрансформатора требует больших экспертных мощностей и денежных трат. Автомобиль, оснащенный АКПП с трансформатором стоит дороже моделей с наиболее простой механической трансмиссией. Но с учетом того, что устройтсво не только делает работу трансмиссии более плавной, но и увеличивает ее эксплуатационный ресурс, денежные траты окупаются.

Подробнее о принципе работы

Принцип работы гидротрансформатора сводится к передаче момента от двигателя к автомобильной трансмиссии без создания жесткой связи. Момент передается посредством рециркуляции жидкости. По сути, работает трансформатор АКПП так же, как и гидравлическая муфта. Но не стоит путать два этих устройства – гидротрансформатор несколько сложнее. Он состоит из таких элементов:

Насосное колесо / насос;

Статор / реактор;

Обгонная муфта;

Механизм блокировки / плита блокировки;

Турбинное колесо / турбина.

Если разобрать гидротрансформатор, то можно увидеть следующее: на одной оси размещено турбинное, насосное и реакторное колесо, а весь внутренний объем механизма заполнен трансмиссионной жидкостью. Между каждым из лопастных колес нет жесткого соединения, но оно и не требуется. Насосное колесо имеет жесткое соединение с коленвалом, а значит, при запуске двигателя оно будет проворачиваться вместе с ним. Турбинное колесо имеет жесткое соединение с первичным валом автомобильной АКП. Между этими колесами расположен реактор, иначе называемый статором. Сам же реактор имеет смежный элемент – муфту свободного хода, которая не дает ему вращаться в двух направлениях. Кстати, в обычных гидравлических муфтах, которые часто сравнивают с гидравлическими трансформаторами, статора и муфты нет.

Лопасти всех колес имеет особую геометрию, которая позволяет им захватывать как можно больший объем трансмиссионной жидкости. Работает устройство так: при включении двигателя и по ходу повышения оборотов насосное колесо начинает вращаться со все большей скоростью, постепенно раскручивая и жидкость. Так как турбинное колесо имеет схожую геометрию лопастей, оно начнет вращаться, увлекаемое трансмиссионной жидкостью. Выделяется здесь только реактор – он придает жидкости ускорение. Это становится возможным благодаря особой конструкции лопаток. Они имеют специфический профиль с сужающимися межлопаточными каналами. Жидкость, входя в сужающиеся каналы, выбрасывается в сторону выходного вала с увеличенной скоростью.

Формирование потока жидкости в гидротрансформаторе напрямую определяется скоростью насосного колеса. Скорость вращения последнего, в свою очередь, зависит от скорости вращения коленчатого вала. Как только лопастные колеса синхронизируется, гидротрансформатор начинает работать как гидромуфта – он не увеличивает крутящий момент. Если же нагрузка на выходной вал увеличивается, турбинное колесо немного замедляется. Реактор (статор) блокируется, начиная трансформировать поток трансмиссионной жидкости.

Режимы работы

Для полного понимания принципов работы гидротрансформатора стоит уделить внимание режимам его работы. Как стало понятно из предыдущих разделов, этот агрегат передает крутящий момент без жесткого соединения вращающихся деталей. Однако в силу отсутствия такого соединения агрегат имеет несколько недостатков. В частности, уже упомянутые низкий КПД и посредственная динамика автомобиля. Проблемы удалось решить на конструктивном уровне – введением механизма блокировки, иначе называемого блокировочной плитой. У современных гидротрансформаторов есть несколько режимов работы:

Проскальзывание.

Блокировочная плита соединена с турбинным колесом, а значит, и с первичным валом коробки передач при помощи пружин демпфера крутильных колебаний. Получив команду от блока управления трансмиссией, она прижимает к внутренней поверхности корпуса агрегата под действием давления жидкости. Так как на плите расположены фрикционные накладки, она может обеспечить жесткое соединение и передачу крутящего момента от силового агрегата трансмиссии даже без участия жидкости. Блокировка может включаться на любой из передач.

Блокировка гидротрансформатора может быть и частичной. Если плита прижимается к корпусу устройства неполностью, гидротрансформатор переходит в режим проскальзывания. Крутящий момент при этом передаваться как через механизм блокировки, так и через циркулирующую жидкость. В этом режиме автомобиль имеет достойные динамические характеристики, а его трансмиссия продолжает работать плавно. Электроника включает частичную блокировку при разгоне и отключает при понижении скорости. У данного режима есть только один недостаток: частое его включение приводит к истиранию фрикционной накладки плиты. Продукты износа попадают в трансмиссионное масло, что отрицательно сказывается на его рабочих свойствах.

Применение гидротрансформаторов

Возьмем пример того, когда гидротрансформатор упрощает пользование автомобилем. Предположим, начинается подъем на гору после движения по ровному участку дороги. Водитель забыл о манипуляциях с педалью акселератора. Так как нагрузка на ведущие колеса увеличилась, а автомобиль сбросил скорость, частота вращения турбины должна уменьшиться. При этом уменьшилось гидравлическое сопротивление – скорость циркуляции трансмиссионного масла в гидротрансформаторе увеличилась. Это означает, что крутящий момент, передаваемый валу турбинного колеса, вырос. Водитель обнаружит, что пока лопастные колеса не синхронизировались, автомобиль двигается так, будто произошел переход на низшую передачу, как это делается в автомобилях с механической коробкой передач.

Пытливый автолюбитель может обнаружить следующее: крутящий момент может преобразовываться гидротрансформатором слишком большое число раз. Что при этом происходит? Необходимая скорость уже достигнута, однако жидкость продолжает набирать скорость вращения. Здесь на выручку приходит механизм блокировки. Он создает жесткую связь между ведущим и ведомым валом. Блокировка устроена так, что потери мощности будут минимальными. При этом гидротрансформатор не увеличит расход топлива как до, так и после блокировки.

Вот еще один вопрос: если гидротрансформатор сам может менять величину крутящего момента, зачем присоединять его к автоматической коробке передач? Дело в том, что коэффициент изменение крутящего момента данного устройства равен 2,0 – 3,5 (обычно 2,4). Это не тот диапазон передаточных чисел, который нужен для эффективной работа автомобильной трансмиссии. К тому же, гидротрансформатор никак не поможет в движении задним ходом или в случаях, когда ведущие колеса разъединены с двигателем.

Неисправности гидротрансформаторов

Конструкция гидротрансформатора не кажется слишком сложной. Да, каждая деталь устройства спроектирована с учетом того, что к ней будут прилагаться большие нагрузки. Однако учтите тот факт, что в тандеме с трансформатором работает и электроника. Механические и электронные компоненты рано или поздно выходят из строя, причем у разных моделей авто могут быть свои специфические неисправности. Чаще всего автолюбители отмечают следующее:

Появление посторонних звуков при работе трансмиссии без приложения нагрузки. Причина: износ опорных или промежуточных подшипников;

Появление вибрации на высоких скоростях, реже – во всех режимах работы АКПП. Причина: засоренность масляного фильтра и загрязнение трансмиссионной жидкости;

Выход реактора из строя и падение динамике автомобиля. Здесь стоит проверить обгонную муфту;

Скрежет, стук гидротрансформатора. Причина: разрушение лопастей;

Самопроизвольное переключение ступеней АКПП. Причина: неисправность электронной системы управления;

Полный выход трансмиссии из строя. Такое может произойти при обрыве соединения колеса с первичным валом коробки передач. Иногда помогает восстановление шлицевого соединения.

Отдельно стоит сказать об опасности перегрева гидротрансформатора. Если автолюбитель игнорировал необходимость замены трансмиссионного масла, трансформатор будет страдать от сухого трения и перегрева. Также стоит уделять внимание остаточному ресурсу фильтра АКПП и чистоте системы охлаждения агрегата. Обычно проблема устраняется заменой расходников, чисткой и заливкой нового масла. В запущенных случаях требуется замена отдельных узлов гидротрансформатора.

Общие признаки выхода гидротрансформатора из строя: повышенный расход топлива, рывки при движении на постоянной скорости, а также при торможении двигателем, плохое состояние масла при замене. Как правило, масло в агрегате с изношенным гидротрансформатором имеет черный цвет. Некоторые неисправности могут указывать на поломку других деталей автоматической коробки передач, так что если вы заметили ненормальную работу трансмиссии, скорее обращайтесь к специалисту для диагностики своего авто.

Выбор нового агрегата

Найти новый гидротрансформатор не так уж сложно. Автолюбителям важно понимать, что при подборе нельзя допускать ошибок – если он выберет неподходящий агрегат, его не получится установить на свой автомобиль. Как результат, устройство нужно будет возвращать продавцу и начинать поиски снова. Чтобы не допустить ошибку, гидротрансформатор обычно ищут по:

Коду имеющегося агрегата.

Особняком стоит поиск по параметрам автомобиля. Он не всегда дает точный результат, но если вести поиски в проверенных электронных каталогах, то вероятность ошибки становятся меньше. Необходимо указывать практически все технические параметры транспортного средства – от марки, модели и года выпуска до характеристик двигателя и коробки передач.

Отдельно стоит рассказать о ремонте гидротрансформатора. Новое устройство в сборе стоит от 600 до 1000$, а иногда и больше. Ремонт же обходится в среднем в 4-6 раза дешевле. Впрочем, важно учитывать и стоимость снятия коробки передач. Как правило, мастера проводят мойку и дефектовку деталей, меняют уплотнители, гидроцилиндры, фрикционные накладки блокировочной плиты, а также по необходимости балансируют лопаточные колеса. Полный выход гидротрансформатора из строя – это запущенный случай. Автолюбителям достаточно менять расходники и вовремя проводить диагностику.

Гидротрансформатор – это один из важных компонентов автоматических коробок передач, который делает эксплуатацию автомобиля еще более простой и комфортной. В силу относительной простоты устройства и применения деталей с большим эксплуатационным ресурсом, он редко выходит из строя. Но не стоит думать, что довести дело до капитального ремонта будет сложно. Если водитель игнорирует необходимость регулярной замены масла и фильтров, поломка случится в самый неожиданный момент. Впрочем, даже изношенный гидротрансформатор можно отремонтировать. Добиться полного выхода устройства из строя нелегко. Если вы заметили, что трансмиссия начала работать ненормально, мы советуем для начала обратиться к специалисту. Он локализует проблему и выяснит, подлежат ли компонента АКП ремонту. Так как новый гидротрансформатор стоит немалых денег, ремонт будет предпочтительнее.

Основные отличия гидротрансформаторной АКПП от робота

Автоматические коробки передач сегодня представлены как стандартными гидротрансформаторными АКПП, так и роботизированной трансмиссией. Эти коробки передач имеют существенные отличия как в своей конструкции, так и в последующей эксплуатации автомобиля. Считается, что гидротрансформатор будет более надежным, чем робот, поэтому большинство потенциальных автовладельцев предпочитают выбирать машины с обычной АКПП, а не с роботом или вариатором. Поговорим поподробнее о том, в чём отличия таких роботизированных и гидротрансформаторных коробок передач.


Отличительные особенности робота и гидротрансформатора

Классические коробки автомат с гидротрансформатором появились около 50 лет назад. Такие трансмиссии были призваны упростить эксплуатацию машин, избавив водителя от необходимости постоянно выжимать сцепление и вручную выбирать скорости. За работой таких АКПП следила автоматика, которая определяла текущие показатели оборотов двигателя и скорость машины, и в зависимости от этого выбирала конкретную ступень.

Роботизированные коробки передач первоначально использовались в мире автоспорта, а в последующем начали внедряться и в серийное автомобилестроение. Основное их назначение — сделать переключение скоростей максимально плавным, однако такие требования существенно усложнили конструкцию, что привело к появлению различного рода поломок. Сегодня крупные автопроизводители пытаются разрабатывать свои собственные модели роботизированных КПП, которые устанавливаются как на машины премиум-класса, так и на бюджетные авто.


Основной отличительной особенностью АКПП от робота является динамика автомобиля и плавность хода. За счёт более сложной конструкции и продвинутой автоматики робот позволяет лучше реализовывать динамические характеристики двигателя, обеспечивая при этом максимально плавное переключение передач, которые практически не ощущаются водителем и пассажиром. В плане динамики такие авто с роботом будут даже превосходить машины, которые оснащены обычными механическими коробками передач.

Ещё одной существенной отличительной особенностью такой трансмиссии является необходимость на роботе часто активировать нейтральную ступень, в особенности когда водитель на 30 секунд и более останавливается на светофоре или в пробке. Первоначально переводить селектор в режим нейтраль требовалось вручную, однако в последующем эту работу стала выполнять автоматика, которая несколько упростила эксплуатацию машины. Необходимо подобное для предупреждения нагрузки на КПП, исключая повреждение сцепления и других жизненно важных узлов на роботизированной автоматической коробке.


Многие АКПП с гидротрансформатором имеют так называемый ползущий режим, когда коробка, будучи на Драйве, даже без нажатия на педаль газа передаёт небольшой крутящий момент на ведущие колеса и автомобиль начинает движение. Фактически, водителю нужно лишь отпустить педаль тормоза, после чего машина сразу начнет медленно двигаться вперёд. Подобное крайне удобно в пробках, всё что нужно сделать водителю — это просто отпускать тормоз или зажимать его при необходимости остановки машины. Тогда как на роботе такой ползущий режим отсутствует, соответственно требуется не только отпускать тормоз, но и нажимать на педаль газа.

 

Роботизированные трансмиссии имеют более сложную конструкцию, что отрицательно сказывается на показателях надежности. Несмотря на все заявления автопроизводителей о том, что они смогли создать по-настоящему надёжный и беспроблемный в эксплуатации роботизированный автомат, все же по этому показателю такая трансмиссия не дотягивает до классического гидротрансформатора. В итоге, не редкость необходимость выполнения капитального ремонта уже на пробеге в 150 000 километров. Это существенно увеличивает расходы автовладельца, когда как такие работы на гидротрансформаторе потребуются при пробегах в 250-300 тысяч километров.


Старые роботы, которые появились в середине двухтысячных годов, имели многочисленные глюки электроники, их прошивки не были оптимизированы для использования в условиях большого города. В пробках или же при необходимости резких ускорений робот мог быть чрезмерно задумчивым, автомобиль, что называется тупил, а машина медленно разгонялась, после чего происходил сильный рывок. Все это делало управление автомобилем вовсе опасным. Однако в последующем управляющая автоматика была улучшена, а сегодня подобные проблемы полностью решены.


Подведём итоги

Если говорить об отличиях робота от автомата, следует отметить плавность хода и лучшую динамику, необходимость постоянной активации на роботе нейтральной передачи, а также отсутствие у такой трансмиссии ползущего режима. По данным статистики, гидротрансформаторная АКПП всё же надёжнее роботизированной, поэтому неудивительно, что она пользуется сегодня наибольшей популярностью у покупателей.

17.04.2020

Ремонт гидротрансформатора АКПП — АКПП 44 Сервис

Мы предлагаем услуги по ремонту гидротрансформаторов, а так же принимаем заказы на
доставку уже восстановленных ГТ.

Гидротрансформатор – «Бублик» так называемый в народе, служит для передачи крутящего момента от
двигателя к автоматической коробке передач и,
несмотря на свой простой внешний вид, является сложным агрегатом. Он состоит
из насосного, турбинного и реакторного колес, устройство блокировки ГТ,
обгонной муфты, подшипников. Плюсом ко всему, добавляется еще одна сложность
ремонта ГТ – этот агрегат неразборный. Чтобы качественно отремонтировать ГТ,
необходимо как минимум 7 станков.

Наиболее часто встречающимися неисправностями ГТ являются:

  1. Обрыв ступицы турбинного колеса
  2. Поломка или изгиб лопаток
  3. Проворачиваниеr обгонной муфты реактора
  4. Износ или подгорание накладки блокировки
  5. Износ уплотнения поршня блокировки
  6. Выход из строя подшипников и т. д.

 

Все эти неисправности напрямую влияют на правильность работы автоматической коробки передач, вплоть до невозможности
передвижения на а/м.

Хотим остановиться еще на одном, часто задаваемом вопросе – «Если а/м прекрасно двигался вперед, но пропала задняя передача, значит ГТ исправен, зачем при ремонте АКПП его ремонтировать?» Причина выхода из строя задней передачи может быть сгоревший и осыпающийся фрикцион, обрыв барабана,
отвечающего за эту передачу.

В результате остатки этих фрикционов, стальная и алюминиевая стружка ,попадает в поддон, где находится масло и перемешивается с ним. Масло в автоматической коробке движется по следующей схеме – насос забирает масло с продуктами износа из поддона и сначала закачивает его в ГТ, потом в систему охлаждения, а затем в механизм АКПП. И все продукты износа попадают в ГТ, а оттуда в гидравлический блок, что приводит к поломке коробки . А так как масло из ГТ невозможно полностью слить, поэтому отремонтировав КПП, но сэкономив на ремонте ГТ вы рискуете повторно оказаться в сервисе с неисправной АКПП.

 

Запишитесь прямо сейчас на «Ремонт гидротрансформатора АКПП»

причин успеха в автомобильной промышленности

1. Название

В традиционной автоматической коробке передач преобразователь крутящего момента устанавливается между двигателем и трансмиссией. Этот основной компонент содержит рабочее колесо, турбинное колесо и направляющее колесо. Приводимая двигателем, лопасть крыльчатки улавливает масло в корпусе, которое создает поток, который задерживает движение турбинного колеса. Этот принцип обеспечивает плавный запуск и отделяет трансмиссию от вибраций двигателя (называемых отклонениями двигателя).

2. Планетарная передача

Автоматическая трансмиссия с гидротрансформатором содержит несколько связанных планетарных шестерен. Каждый состоит из солнечной шестерни и трех планетарных шестерен. Различные способы соединения вращающихся компонентов (разъединение или торможение) создают различные передаточные числа или переключения. Сегодня планетарные редукторы выделяются своей высокой эффективностью, которая стала возможной благодаря интеллектуальному управлению и высокоэффективным компонентам. Таким образом, миллионы планетарных шестерен могут быть изготовлены всего за несколько секунд, как показано в этом видео:

3.Разработка автоматических преобразователей крутящего момента

Автоматические преобразователи крутящего момента помогают обеспечить высочайший уровень комфорта водителя при вождении. Автомобиль запускается и приводится в движение очень плавно (с помощью гидротрансформатора), при этом поддерживаются постоянно комфортные условия вождения. В последние годы количество шестерен, встроенных в трансмиссии, увеличивалось, что позволяет двигателю полностью соответствовать скорости вращения колес. Это позволяет двигателю работать в оптимальном диапазоне оборотов даже на относительно высоких оборотах. Это, естественно, приводит к снижению расхода топлива и повышению комфорта водителя.

4. Будущее автоматических преобразователей крутящего момента

Подключаемые гибридные двигатели все чаще используют автоматические преобразователи крутящего момента. Они сочетают в себе мощность двигателей внутреннего сгорания и электродвигателей. В результате эксперты прогнозируют, что в будущем потребуется меньше передач. Это связано с тем, что электродвигатели будут управлять движением автомобиля в зависимости от конкретных дорожных ситуаций (т.е. при запуске автомобиля). Следовательно, двигатель внутреннего сгорания будет использоваться реже, и количество необходимых передач уменьшится. Например, автоматические преобразователи крутящего момента в некоторых современных подключаемых гибридах используют только шесть передач.

5. Проникновение на рынок автоматических гидротрансформаторов

Проникновение гидротрансформаторов на рынок в Европе и Северной Америке на протяжении десятилетий было неодинаковым. Согласно статье в немецком автомобильном журнале за 2016 год Automobilwoche , всего 16.7% легковых автомобилей в Европе оснащены автоматическим преобразователем крутящего момента, по сравнению с 73,7% в США. Однако рыночная доля автоматических трансмиссий в Европе постоянно увеличивается. Для некоторых автомобилей класса люкс механические коробки передач доступны только для ограниченного числа типов двигателей. Многие эксперты считают, что гибридизация, электрификация и системы автономного вождения будут продолжать расти на рынке.

Конкуренция

(Рынок) Конкуренция между автоматическими преобразователями крутящего момента и трансмиссиями с двойным сцеплением доминирует в производстве автоматических трансмиссий в течение многих лет.В этом контексте коробки передач с двойным сцеплением выделяются среди других своей эффективностью и быстрым переключением передач, а автоматические преобразователи крутящего момента отличаются повышенным комфортом.

Производство трансмиссий: пять фактов об автоматических преобразователях крутящего момента Последнее изменение: 18 марта 2021 г., Маркус Исгро

МОМЕНТНЫЙ ПРЕОБРАЗОВАТЕЛЬ: ФУНКЦИИ, ДЕТАЛИ, ПРИНЦИПЫ РАБОТЫ И ТИПЫ

Гидротрансформатор — это тип гидравлической муфты, которая используется для передачи крутящего момента от двигателя транспортного средства к трансмиссии.В автоматической коробке передач он заменяет механическое сцепление. Его основная функция — обеспечить изоляцию нагрузки от основного источника питания. Он находится между двигателем и трансмиссией. Он выполняет ту же функцию, что и сцепление в механической коробке передач. Поскольку сцепление отделяет двигатель от нагрузки при его остановке, таким же образом оно также изолирует двигатель от нагрузки и поддерживает работу двигателя при остановке транспортного средства.

Автомобили с автоматической коробкой передач не имеют сцепления, поэтому им нужен способ, позволяющий двигателю продолжать работать, пока колеса и шестерни трансмиссии останавливаются. В автомобилях с механической коробкой передач используется муфта, отключающая двигатель от трансмиссии. В автоматических трансмиссиях используется гидротрансформатор.

Когда двигатель работает на холостом ходу, например, на стоп-сигнале, величина крутящего момента, проходящего через преобразователь крутящего момента, мала, но все же достаточна, чтобы потребовать некоторого давления на педаль тормоза, чтобы остановить движение автомобиля. Когда вы отпускаете тормоз и нажимаете на газ, двигатель ускоряется и закачивает больше жидкости в преобразователь крутящего момента, в результате чего на колеса передается большая мощность (крутящий момент).

ФУНКЦИИ ПРЕОБРАЗОВАТЕЛЯ МОМЕНТА

Его основные функции:

1. Он передает мощность от двигателя на входной вал коробки передач.
2. Приводит в действие передний насос трансмиссии.
3. Он изолирует двигатель от нагрузки, когда автомобиль неподвижен.
4. Увеличивает крутящий момент двигателя и передает его на трансмиссию. Выходной крутящий момент увеличивается почти вдвое.

ДЕТАЛИ МОМЕНТНОГО ПРЕОБРАЗОВАТЕЛЯ

Гидротрансформатор состоит из трех основных частей

1.Рабочее колесо или насос

Рабочее колесо соединено с корпусом, а корпус соединен с валом двигателя. Он имеет изогнутые и наклонные лопатки. Он вращается с частотой вращения двигателя и состоит из жидкости для автоматической коробки передач. Когда он вращается вместе с двигателем, центробежная сила заставляет жидкость двигаться наружу. Лопасти крыльчатки сконструированы таким образом, что она направляет жидкость к лопаткам турбины. Он действует как центробежный насос, который всасывает жидкость из автоматической коробки передач и подает ее на турбину.

2. Статор:

Статор расположен между рабочим колесом и турбиной. Основная функция статора состоит в том, чтобы задавать направление возвращающейся жидкости из турбины так, чтобы жидкость поступала в рабочее колесо в направлении его вращения. Когда жидкость входит в направлении рабочего колеса, она увеличивает крутящий момент. Таким образом, статор способствует увеличению крутящего момента за счет изменения направления жидкости и позволяет ей поступать в направлении вращения рабочего колеса. Статор изменяет направление жидкости почти на 90 градусов.На статоре установлена ​​односторонняя муфта, которая позволяет вращать его в одном направлении и предотвращает его вращение в другом. Турбина подключена к системе трансмиссии автомобиля. А статор находится между крыльчаткой и турбиной.

3. Турбина

Турбина соединена с входным валом АКПП. Он присутствует со стороны двигателя. Он также состоит из изогнутых и наклонных лопастей. Лопасти турбины сконструированы таким образом, что она может полностью изменять направление жидкости, ударяющей по ее лопаткам.Изменение направления жидкости заставляет лопасти двигаться в направлении рабочего колеса. Когда турбина вращается, входной вал трансмиссии также вращается и заставляет автомобиль двигаться. Турбина также имеет блокировочную муфту сзади. Муфта блокировки срабатывает, когда гидротрансформатор достигает точки сцепления. блокировка устраняет потери и повышает эффективность преобразователя.

ПРИНЦИП РАБОТЫ ПРЕОБРАЗОВАТЕЛЯ МОМЕНТА

Для понимания принципа работы гидротрансформатора возьмем два вентилятора.Один вентилятор подключен к источнику питания, а другой не подключен к источнику питания. Когда первый вентилятор, подключенный к источнику питания, начинает двигаться, воздух от него перетекает во второй вентилятор, который неподвижен. Воздух от первого вентилятора ударяется о лопасти второго вентилятора, и он также начинает вращаться почти с той же скоростью, что и первый. Когда второй вентилятор останавливается, он не останавливает первый. Первый вентилятор продолжает вращаться.

По такому же принципу работает гидротрансформатор.При этом крыльчатка или насос действует как первый вентилятор, который соединен с двигателем, а турбина действует как второй вентилятор, который соединен с системой трансмиссии. Когда двигатель работает, он вращает крыльчатку и за счет центробежной силы масло внутри гидротрансформатора в сборе направляется в сторону турбины. Когда он ударяется о лопатки турбины, турбина начинает вращаться. Это заставляет трансмиссию вращаться, а колеса автомобиля двигаться. Когда двигатель останавливается, турбина также перестает вращаться, но крыльчатка, подключенная к двигателю, продолжает двигаться, и это предотвращает остановку двигателя.

Имеет три этапа операций

1. Стойло:

Во время остановки (остановки) транспортного средства двигатель передает мощность на крыльчатку, но турбина не может вращаться. Это происходит, когда транспортное средство стоит на месте, и водитель держал ногу на тормозной колодке, чтобы она не двигалась. В этом состоянии происходит максимальное увеличение крутящего момента. Когда водитель убирает ногу с педали тормоза и нажимает на педаль акселератора, крыльчатка начинает двигаться быстрее, и это заставляет турбину двигаться. В этой ситуации разница между частотой вращения насоса и турбины больше. Скорость крыльчатки намного больше скорости турбины.

2. Время разгона:

Во время разгона скорость турбины продолжает увеличиваться, но все же существует большая разница между скоростью крыльчатки и скоростью турбины. По мере увеличения скорости турбины умножение крутящего момента уменьшается. При ускорении транспортного средства увеличение крутящего момента меньше, чем достигается в условиях сваливания.

3. Сцепление:

Это ситуация, когда турбина достигает примерно 90% скорости рабочего колеса, и эта точка называется точкой сцепления. Увеличение крутящего момента прекращается и становится равным нулю, а преобразователь крутящего момента ведет себя так же, как простая гидравлическая муфта. В точке соединения включается муфта блокировки и блокирует турбину с крыльчаткой преобразователя. Это заставляет турбину и крыльчатку двигаться с одинаковой скоростью. Муфта блокировки включается только при достижении точки сцепления. Во время сцепления статор также начинает вращаться в направлении вращения крыльчатки и турбины.

ПРИМЕЧАНИЕ:

1. Максимальное увеличение крутящего момента происходит во время остановки.
2. Статор остается неподвижным до точки соединения и способствует увеличению крутящего момента. По мере образования муфты статор прекращает умножение крутящего момента и начинает вращаться вместе с крыльчаткой и турбиной.
3. Муфта блокировки включается, когда достигается точка соединения, и устраняет потери мощности, что приводит к повышению эффективности.

ВИДЫ ПРЕОБРАЗОВАТЕЛЕЙ МОМЕНТА

1. Одноступенчатые преобразователи крутящего момента

Прелесть одноступенчатых преобразователей заключается в их прочной и надежной простоте. Каждый преобразователь состоит в основном из трех элементов: турбины, статора и крыльчатки. Одноступенчатые преобразователи выпускаются в двух типах корпусов — стационарном и вращающемся. В зависимости от модели одноступенчатые гидротрансформаторы обладают различными возможностями: Одноступенчатые гидротрансформаторы с бесступенчатым приводом с приводом отбора мощности идеально подходят для применений с коробками передач с переключением под нагрузкой и приводом вспомогательных гидравлических насосов. Преобразователи рационов с высоким крутящим моментом и стационарным корпусом обладают исключительными возможностями подъема и опускания. Гидравлические преобразователи Type Four разработаны специально для нефтегазовой промышленности.

2. Трехступенчатые преобразователи крутящего момента

В трехступенчатых гидротрансформаторах используются три кольца лопаток турбины, а также два комплекта лопаток реактора или статора. Эффект от этой конструкции — увеличенный крутящий момент — до пяти раз больше крутящего момента двигателя, фактически, когда двигатель заглох.В зависимости от конкретной конструкции трехступенчатые преобразователи рассчитаны на ряд двигателей, включая 335 л.с. при 2400 об / мин, 420 л.с. при 2200 об / мин и 580 л.с. при 2200 об / мин. Трехступенчатые преобразователи также бывают как в стационарном, так и в вращающемся корпусе.

Преимущества

 Выдает максимальный крутящий момент по сравнению с автомобилем со сцеплением.
 Снимает педаль сцепления.
 Облегчает управление транспортным средством.

Недостатки

 Низкая топливная эффективность по сравнению с автомобилем с механической коробкой передач.

Приложение

 Гидротрансформатор используется в автомобиле с автоматической коробкой передач. Он также используется в промышленных передачах энергии, таких как приводы конвейеров, лебедки, буровые установки, почти все современные вилочные погрузчики, строительное оборудование и железнодорожные локомотивы.
 Используется в морских силовых установках.

Гидротрансформатор — Осмотр автомобиля

Автоматическая коробка передач

Описание

Блок гидротрансформатора может увеличивать крутящий момент двигателя.Рабочее колесо (иногда называемое насосом) имеет специально изогнутые лопатки и приводится в движение коленчатым валом двигателя. Турбина также имеет специально изогнутые лопатки и соединена с входным валом трансмиссии. Добавление третьего элемента, статора (также называемого реактором), придает сборке возможности, в честь которых она названа.

Статор имеет лопатки и установлен на односторонней муфте, что позволяет ему свободно вращаться только в одном направлении. Узел статора расположен между рабочим колесом и турбиной и перенаправляет масло, которое отскакивает от турбины.Сила перенаправленного масла помогает вращать турбину, что приводит к увеличению крутящего момента. Когда частота вращения крыльчатки высокая, а частота вращения турбины низкая, крутящий момент может быть увеличен до 2: 1. Когда частота вращения крыльчатки и частота вращения турбины примерно одинаковы, крутящий момент может передаваться почти 1: 1. Примерно с 1980 года автопроизводители пошли дальше гидротрансформатора, добавив функцию блокировки. Блокирующие преобразователи также содержат фрикционную муфту, которая блокирует рабочее колесо преобразователя с турбиной, как правило, на более высоких передачах.Масляный канал, управляемый соленоидом, управляемый модулем управления силовым приводом (PCM) автомобиля, блокирует и разблокирует преобразователь в зависимости от условий движения.

Назначение

Гидротрансформатор, соединенный с первичным валом трансмиссии / трансмиссии, соединяет, умножает и прерывает поток крутящего момента двигателя в трансмиссию. Гидротрансформатор передает крутящий момент на входной вал трансмиссии двумя разными способами: гидравлический и механический (только для гидротрансформаторов).Гидравлический вход поступает от турбины преобразователя крутящего момента, и величина входного крутящего момента может варьироваться в зависимости от условий эксплуатации преобразователя. Механический вход возникает, когда срабатывает функция блокировки преобразователя. Конечным результатом является лучшая экономия топлива, поскольку все проскальзывания гидротрансформатора устраняются при его блокировке. Гидротрансформатор также помогает сглаживать импульсы мощности двигателя, как и маховик на автомобиле с механической коробкой передач.

Советы / предложения по обслуживанию

Гидротрансформатор не требует регулярного обслуживания или регулировки, но можно заменить трансмиссионную жидкость в гидротрансформаторе путем слива (если он оборудован сливом) или с помощью машины для промывки и наполнения трансмиссии. Большая часть трансмиссионной жидкости остается в преобразователе, и, поскольку преобразователь выделяет огромное количество тепла (враг трансмиссионной жидкости), есть веская причина для его замены, если это возможно.

Проблемы с гидротрансформатором

делятся на две категории:

  • проблемы в самом гидротрансформаторе, или
  • проблемы в муфте гидротрансформатора.
Если вы подозреваете, что проблема связана с преобразователем или трансмиссией, обратитесь к квалифицированному специалисту по трансмиссии.Учитывая сложность современных трансмиссий и гидротрансформаторов, нет места для догадок.

Как работают преобразователи крутящего момента?

Вы когда-нибудь задумывались, что у автоматической коробки передач вместо сцепления? Он называется гидротрансформатором, и он делает всю тяжелую работу за вас

Передача мощности от любой трансмиссии к трансмиссии может быть довольно сложным процессом с сотнями движущихся частей, которые необходимо синхронизировать одновременно. Из кабины вы просто нажимаете на педаль и перемещаете рычаг переключения передач или, может быть, просто переворачиваете весло, но все, что происходит под днищами пола, тщательно спроектировано и разработано, чтобы обеспечить плавное соединение длинного списка компонентов, чтобы ваша машина была на месте. двигаться.

В автомобиле с ручным управлением у вас есть узел сцепления, который позволяет соединять и разъединять двигатель и трансмиссию — и, следовательно, приводить к колесам. У двигателей есть холостой ход, который устанавливается с помощью дроссельной заслонки, обозначающей минимальную частоту вращения двигателя, при которой двигатель может работать, прежде чем он заглохнет из-за нехватки воздушно-топливной смеси, поступающей в цилиндры.

Таким образом, без сцепления при замедлении до остановки двигатель заглох бы, поскольку нагрузка от трансмиссии затащила бы его ниже допустимого предела оборотов. Сцепление обеспечивает отключение, необходимое для поддержания работы двигателя, а затем повторное включение вместе с некоторым дросселем, чтобы автомобиль снова заработал.

Гидротрансформатор во всей красе

Однако в автомобиле с автоматической коробкой передач надлежащего сцепления нет — вместо него установлен гидротрансформатор.Он должен выполнять ту же работу, что и сцепление — позволяя двигателю продолжать работать, пока трансмиссия и колеса замедляются до полной остановки, — но он делает это по-другому и довольно изобретательно. Гидротрансформатор — это так называемая гидравлическая муфта — устройство, используемое для передачи механической энергии вращения посредством движения жидкости от одной механической движущейся системы к другой.

Он может заменить сцепление, поскольку позволяет двигателю свободно вращаться за счет значительного уменьшения передачи крутящего момента от трансмиссии к трансмиссии. Он никогда не отключается полностью, так как вы можете почувствовать «ползание», которое возникает, если вы снимаете ногу с тормоза автомобиля с автоматической коробкой передач из неподвижного состояния.

Управление крутящим моментом достигается за счет использования насоса, который перекачивает жидкость вокруг преобразователя крутящего момента в зависимости от вращения коленчатого вала. Внутри преобразователя крутящего момента находится турбина, которая вращается, когда перекачиваемая жидкость входит в контакт с лопатками турбины, таким образом измеряя величину крутящего момента, который передается на передачу через входной вал.

Koenigsegg Regera использует систему, аналогичную гидротрансформатору, чтобы обеспечить плавное переключение между выходной электрической мощностью и внутренним сгоранием.

Корпус гидротрансформатора соединен с маховиком (который, следовательно, вращается с той же скоростью, что и коленчатый вал), а внутри корпуса находится турбина, гидравлический центробежный насос (или рабочее колесо) и статор.Центробежный насос эффективно перекачивает трансмиссионную жидкость в лопасти турбины, которая, в свою очередь, вращается и передает крутящий момент на трансмиссию. Статор служит препятствием для сброса жидкости обратно в турбину, а не обратно в насос, что значительно увеличивает эффективность системы.

На этом вырезе показаны лопатки центробежного насоса вместе с муфтой блокировки, зажатой посередине и закрывающей обзор турбины.

Таким образом, на холостом ходу скорость жидкости, перекачиваемой в турбину, очень мала, что означает, что очень небольшой крутящий момент передается от двигателя к трансмиссии.Затем, когда коленчатый вал вращается быстрее с увеличением дроссельной заслонки и, в свою очередь, вращает маховик, больше жидкости перемещается с большей скоростью от насоса в турбину.

При этом турбина вращается быстрее, передавая на трансмиссию больший крутящий момент. К сожалению, передача энергии от насоса к турбине никогда не может быть эффективной на 100 процентов — через эту систему происходят дополнительные потери энергии, которые усиливаются, когда крутящий момент двигателя также передается через коробку передач и из дифференциала.