Для чего нужны микроконтроллеры – Микроконтроллер — Википедия

Содержание

что это такое и зачем нужны

Сегодня я хотел бы написать о микроконтроллерах в целом, чтобы свои знания подтянуть и заодно другим рассказать.

Для работы с микроконтроллерами, такими как Ардуино или Iskra JS и подобными, нужны дополнительные знания, которые мы постепенно будем познавать.

Что такое микроконтроллеры?

Микроконтроллер представляет собой микросхему, которая используется для управления электронными устройствами. В типичном микроконтроллере имеются функции и процессора, и периферийных устройств, а также содержится оперативная память и/или ПЗУ (постоянное запоминающее устройство). Если говорить кратко, то микроконтроллер - это компьютер, функционирующий на одном кристалле, который способен выполнять относительно несложные операции.

Микроконтроллеры широко используются в вычислительной технике (процессоры, материнские платы, контроллеры дисководов, накопители HDD/FDD), бытовой электронике (стиральные машины, микроволновые печи, телефоны и т.д.), в промышленности и т.д. Рассмотрим, как проходит подключение и управление микроконтроллером, а также другие нюансы, связанные с ними.

Подключение микроконтроллера

Нижеописанная схема является упрощенным вариантом подключения микроконтроллера AVR.

AVR — это семейство восьмибитных микроконтроллеров фирмы Atmel. Год разработки — 1996.

По-хорошему, необходимо добавить еще несколько дополнительных внешних элементов в схему.

Упрощенная схема подключения микроконтроллера

Провод, который указан на схеме пунктиром, использовать не обязательно в том случае, если питание микроконтроллера идет от внешнего источника.

Вывод AREF используется как вход для опорного напряжения АЦП - сюда подается напряжение, относительно которого будет высчитываться АЦП. Допустимо использование внутреннего источника опорного напряжения на 2.56В, или же использовать напряжение от AVCC.

АЦП (Аналого-цифровой преобразователь) — электронное устройство, преобразующее напряжение в двоичный цифровой код

На вывод AREF рекомендуется подключить конденсатор, который позволит увеличить качество напряжения АЦП и, тем самым, позволит провести правильные измерения АЦП. Между AVCC и GND установлен конденсатор и дроссель, а между GND и VCC установлен керамический конденсатор с емкостью 100 нФ (поближе к выводам питания схемы) для сглаживания кратких импульсов помех, образующихся в результате работы микросхемы.

Также между GND и VCC устанавливается ещё один конденсатор с емкостью в 47 мкФ для того, чтобы сгладить возможные броски напряжения.

Управление микроконтроллером

Микроконтроллеры AVR оснащены Гарвардской архитектурой. Каждая из областей памяти располагаются в своем адресном пространстве. Память данных в контроллерах осуществляется посредством регистровой, энергонезависимой и оперативной памяти.

Микроконтроллер AVR

Регистровая память предусматривает наличие 32 регистров общего назначения, которые объединены в файл, а также служебные регистры для ввода и вывода. И первые, и вторые располагаются в пространстве ОЗУ, однако не являются его частью.

В области РВВ (регистров ввода и вывода) находятся различные служебные регистры - состояния, управления микроконтроллером и т.д., а также регистры, которые отвечают за управление периферийных устройств, являющихся частью микроконтроллера. По сути, управление данными регистрами и является методом управления микроконтроллером.

Устройства на микроконтроллерах

Микроконтроллеры AVR являются простыми в использовании, имеют низкую потребляемую мощность и высокий уровень интеграции.

Как правило, такие микроконтроллеры могут использоваться на самых разных устройствах, в том числе системах общего назначения, системах оповещения, для ЖК-дисплеев, плат с ограниченным пространством.

Также они используются для измерителей уровня заряда аккумулятора, аутентификации, в автомобильной электронике, для защиты от короткого замыкания и перегрева и т.д. Кроме промышленных целей, микроконтроллеры могут использоваться (и чаще всего используются новичками) для создания следующих устройств:

  • Регистратор температуры на Atmega168;
  • Кухонный таймер на Attiny2313;
  • Термометр;
  • Измеритель частоты промышленной сети на 50 Гц;
  • Контроллер светодиодного стоп-сигнала на Attiny2313;
  • Светодиодные лампы и светильники, реагирующие на температуру или звук;
  • Электронные или сенсорные выключатели.

Отметим, что для разных устройств используются разные модели микроконтроллеров. Так, 32-разрядные микроконтроллеры AVR UC3 (а также XMEGA, megaAVR, tinyAVR и т.д.) подойдут для систем общего назначения с технологиями picoPower, QTouch, EEPROM, системами обработки событий и самопрограммированием.

Микроконтроллеры для начинающих

Если вы собираетесь программировать микроконтроллеры, такие как Ардуино, например, а также собирать устройства, которые предусматривают их наличие в схеме, необходимо учитывать некоторые правила и рекомендации:

  • Перед решением любых задач следует делить их на более мелкие, вплоть до базовых действий.
  • Не следует пользоваться кодогенераторами и прочими "упрощающими" материалами, хотя бы на начальных этапах.
  • Рекомендуется изучить язык С и Ассемблер - это упростит понимание принципа работы микроконтроллеров и программ.

Для того, чтобы новичок мог заниматься микроконтроллерами, рекомендуется изучать базовые материалы. К таким материалам можно отнести следующие книги:

  • "Применение микроконтроллеров AVR: схемы, программы и алгоритмы" Баранов В.Н., 2006 год,
  • "Микроконтроллеры AVR: вводный курс", Дж. Мортон, 2008 год,
  • "Программирование микроконтроллеров ATMEL на языке С" Прокопенко В.С, 2012 год.

Данные книги являются практическим руководством, в котором затрагиваются аспекты и основы цифровой логики, а также рассматриваются примеры программ для микроконтроллеров, написанных на языке С с различными имитаторами схем, компиляторами и средами.

arduinoplus.ru

назначение, область применения, принцип работы

Ардуино – популярнейший микроконтроллер на сегодняшний день, с которым знаком каждый инженер, а большая часть даже вплотную работала. Вся прелесть его заключается в том, что ПО под свои проекты нет необходимости писать с нуля, ведь изначально в МК загружены пресеты, которые вы можете применять по необходимости.

В большинстве случаев достаточно даже просто скачать уже готовую библиотеку, которую можно найти в свободном доступе на нашем сайте. Но те, кто ещё не встречался с данным устройством, могут недоумевать во многих нюансах его использования. Давайте же приоткроем ширму тайны и разберём микроконтроллеры для начинающих.

История появления

Начиналась вся эта эра микроконтроллеров, которые мы сегодня используем во всех видах техники, с микро-ЭВМ или Электро-Вычислительных-Машин. Они, по сути, и были первыми контроллерами, что традиционно означает – управляющее устройство, но строились на платформе одного кристалла.

Впервые данное изобретение было запатентовано в 1971 году М. Кочреным, который разместил на одном кристалле сразу и процессор, и память с возможностью ввода-вывода обрабатываемой информации.

На сегодняшний день простейшим примером МК будет процессор, который установлен у каждого из вас в ноутбуке или ПК. Там есть некоторые нюансы в терминологии, но по своей сущности он является именно микроконтроллером.

Назначение и область применения микроконтроллера

Но давайте разберёмся, чем smd микроконтроллеры 14 pin отличаются от 12 пиновых и как применять микроконтроллеры для чайников.

Для начала стоит обозначить, что область применения МК – гигантская, каждый современный автомобиль, холодильник и любой электрический прибор, если не учитывать различные адаптеры и модули, содержат в себе тот самый однокристальный (чаще поликристальный) чип. Ведь без него было бы невозможно, в принципе, контролировать приборы и каким-либо образом ими манипулировать.

А назначение устройства выплывает напрямую из терминологии, описанной выше, ведь любой МК, по своей сути, – маленький процессор, обрабатывающий команды, способный принимать и передавать данные, а в исключительных случаях, даже сохранять их в постоянной памяти.

Соответственно, прямое назначение такого устройства – контроль всего, что происходит на его платформе, например, в вашем ПК процессор является сердцем и ядром системы, ведь любой код компилируется в двоичный, дабы уже МК мог обрабатывать данные и выводить результаты.

Без этого ни одно приложение бы не запустилось. Но это лишь конкретная область применения, на деле, с помощью Ардуино и похожих систем, можно контролировать любые переменные, включая свет по хлопку или раздвигание штор при изменении освещения на улице. Вот и выходит, что назначение МК – это контроль любых переменных и изменение системы под их состояние, возможно, с последующим выводом промежуточных данных, для проверки работоспособности.

Но давайте разберёмся, почему любая разработка ПО для микроконтроллеров с помощью специальных сред в итоге компилирует (превращает) код в двоичный, и зачем это нужно?

Принцип работы

В предыдущих пунктах мы оперировали абстрактными понятиями, теперь пришло время перейти к реальным и практическим примерам. Принцип работы любого, даже самого сложного контроллера, сводится к следующему алгоритму:

  1. Он принимает определённые переменные или другие данные, которые прежде должны быть преобразованы в двоичный сигнал. Это необходимо, поскольку на низшем уровне система способна воспринимать лишь 2 состояния – есть сигнал или нет сигнала. Такой принцип называют аналоговым. Существует аналогичный алгоритм, когда сигнал присутствует постоянно, но меняется по частоте – цифровой. У них множество различий, как в областях применения, так и в особенностях работы сигнала, но суть одна – процессор способен воспринимать лишь значения 0 и 1, или true и false, и не важно, какими путями микропроцессоры и микроконтроллеры будут их считывать.
  2. Во внутренней памяти устройства хранится набор специальных инструкций, который позволяет, путем базовых математических преобразований, выполнять какие-то действия с полученными данными. Именно эти базовые операнды и берутся на вооружение компилируемых языков программирования, когда необходимо написать библиотеку готовых функций. Остальные нюансы языков программирования – это уже синтаксис и теория алгоритмов. Но в результате, всё сводится к базовым операндам, которые превращаются в двоичный код и обрабатываются внутренней системой процессора.
  3. Всё, что было получено и сохранено после обработки, выдается на выход. На самом деле, данный пункт выполняется всегда, единственная разница, что выходом может быть и преобразование состояния объекта какой-то системы. Простейшим примером станет замыкание электрической цепи, в случае, если на специальный датчик подать ток, вследствие чего загорится лампочка. Здесь всё зависит от типа устройства, так, 8051 микроконтроллер может выполнять несколько видов выводов, имея 14 пинов, а какой-то другой – всего один, ведь у него 1 пин на выход. Количество выходов влияет на многопоточные свойства девайса, иными словами, возможность выводить информацию сразу на несколько устройств или совершать несколько действий одновременно.

В целом, любой моно или поликристальный блок работает по этому алгоритму, разница лишь в том, что второй – способен параллельно выполнять несколько расчетов, а первый имеет конкретный список действий, который должен выполнить последовательно.

Это напрямую влияет на скорость работы устройств, и именно из-за этой характеристики 2-ух ядерные девайсы мощнее, чем 1-ядерные, но имеющие большую герцовку (способность выполнять большее количество преобразований за единицу времени).

Но почему микроконтроллер овен не способен выполнять некоторые действия, характерные для 8051, и какая классификация вообще существует в данной сфере?

Виды микроконтроллеров

На самом деле, в отличие от вспомогательных девайсов, у микроконтроллеров нет какой-то стандартизированной классификации, из-за чего их виды, зачастую, разделяют по следующим параметрам:

  1. Количеству аналоговых и цифровых пинов.
  2. Общему количеству пинов.
  3. Количеству ядер, которые присутствуют в МК.
  4. Скорости выполнения операций или герцовке.
  5. Объему оперативной и постоянной внутренней памяти.
  6. Размерам.

В зависимости от изменения тех или иных параметров, можно рассчитать подключение нагрузки к микроконтроллеру и подобрать устройство, идеально подходящее к вашему конкретному проекту, как по характеристикам, так и по функционалу.

Особенности микроконтроллеров Ардуино

Но всё же у большинства, при упоминании МК, в памяти всплывает название «Ардуино», и это не удивительно. Ведь у данной разновидности поликристальных чипов есть характерные особенности, выгодно выделяющие ее на фоне конкурентов:

  1. Низкий порог входа. Так как программная среда уже написана и протестирована за вас, никаких «велосипедов» придумывать не нужно.
  2. Оптимизация под конкретные задачи. У создателей есть целая линейка разнообразных чипов, которые сильно различаются по характеристикам, благодаря чему будет проще подобрать подходящий.
  3. Готовая платформа и множество решений различных проблем или задач в открытом доступе.

Подключение и управление

Подключаются чипы через специальные разъемы, называемые пинами. Те, в свою очередь, распределяются на:

  1. Отвечающие за питание. Стандартное сочетание из нуля, фазы и заземления. Последнее чаще всего игнорируют.
  2. Отвечающие за ввод данных.
  3. Отвечающие за вывод данных. Их можно разделить на аналоговые и цифровые, о главном различии уже упоминалось выше, и каждый из выходов имеет свои достоинства и недостатки.

С помощью всех этих «ножек» и происходит управление системой, а их необходимое количество напрямую зависит от поставленной задачи.

Микроконтроллеры для начинающих

Лучшим примером МК для начинающих инженеров станет именно плата Ардуино, по уже упомянутым причинам. В ней вы сможете быстро разобраться, благодаря низкому порогу входа, но также, по желанию, изучить различные интересные паттерны проектирования и решения задач.

Всё это позволит новичку развиться, познакомиться ближе с миром радиотехники, а возможно, и программирования, что в дальнейшем станет хорошей базой для изучения более сложных вещей и воплощения в жизнь крупных проектов. Поэтому другой, более подходящей платформы для начинающих, – не найти.

Пример применения микроконтроллера Ардуино

Выбирая свой первый проект, вы, скорее всего, самостоятельно просмотрите немало разнообразных примеров применения Ардуино, но мы же можем привести наиболее популярные:

  1. Системы смарт-хауса. Это различные умные переключатели, занавески, вентиляторы и разнообразные сигнализации. Они позволяют сделать ваше взаимодействие с жильем более интерактивным.
  2. Автоматические теплицы.
  3. Разнообразные датчики, вплоть до специального ошейника для домашнего любимца, показывающего его местоположение и пульс.

В целом же, в вопросе применения вы ограничиваетесь лишь собственной фантазией!

Производители микроконтроллеров

А вот производителей данных устройств – тысячи, и здесь вам стоит самостоятельно окунуться в данный вопрос. Ведь, в зависимости от ваших целей и навыков, список подходящих производителей может как расширяться, так и сужаться. Основными на данный момент являются:

Главное, не забывайте читать отзывы об устройствах и заранее прочесывать наш сайт в поисках готовых решений проблем.

arduinoplus.ru

Разработка электроники. О микроконтроллерах на пальцах / Хабр

Задумывая технологический стартап, вы совсем не обязаны быть асом в электронике, гораздо больше шансов на хорошую идею имеет узкий специалист со знанием основ маркетинга, но, даже заказывая кому-то разработку, ориентироваться в возможностях современной элементной базы и представлять цену решения необходимо обязательно. Иначе можно потребовать невозможного, либо получить устройство с завышенной себестоимостью на устаревшей элементной базе.
Под катом попытка кратко и просто рассказать о возможностях современных микроконтроллеров людям от них далёким. Для тех, у кого есть идея нового электронного устройства, но отсутствует представление о том, что такое микроконтроллер. Те, кто хочет сделать первый шаг от занимательных экспериментов с платформой ардуино к проектированию собственных устройств, также могут найти в ней простые, но полезные советы. Я старался, не останавливаясь на технических подробностях, для этого и книги не достаточно изложить суть и дать несколько простейших, но полезных советов по схемотехнике, чтобы предостеречь от элементарных ошибок начинающих.

Краткое содержание статьи:


Как микроконтроллеры завоевали мир
Архитектура ARM — сегодняшний лидер рынка микроконтроллеров
Конкуренция с младшими братьями
Об укладке асфальта, пользе сна и его разновидностях
Совсем коротко о технологии изготовления и о том, как появляются серии микроконтроллеров
Периферия простейшего ARM микроконтроллера за пол бакса
Самый дешёвый способ получить дополнительные функции
А что добавит переход на Cortex-M4, кроме возросшей в пару раз цены?
Cortex-M7 — когда хочется большего…

Защита кода, возможность его обновления и многообразие помогли микроконтроллерам завоевать мир

Любой умный прибор требует управления. В большинстве случаев сегодня этим занимаются микроконтроллеры — чипы, которые совмещают в себе микропроцессорное ядро, память и периферийные модули, отвечающие за связь с остальными компонентами устройства и внешним миром.

Микроконтроллеры — мастера на все руки. Один микроконтроллер способен заменить десятки специализированных микросхем, которые были бы необходимы для выполнения требуемых функций в случае, если бы роль вычислителя занимал микропроцессор.

Одно из неоспоримых преимуществ микроконтроллера — программа, под управлением которой он работает, скрыта внутри его корпуса (в секции под названием “память программ”) и очень хорошо защищена от взлома, конечно, в случае, если разработчик микрокода об этом позаботился, активизировав встроенные механизмы защиты. Таким образом, вы получаете защиту интеллектуальной собственности настолько большую, насколько это возможно в наши дни.

Что нельзя взломать — то можно скопировать. Зачем пытаться считать код, встроенной в микроконтроллер программы, с помощью дорогостоящих хитроумных приспособлений, если проще и дешевле найти профессионала, который может написать его заново? Возможно результат будет даже лучше, а функционал богаче чем у прототипа. Да это стоит денег, но содержание FLASH памяти сегодняшних микроконтроллеров настолько хорошо защищено, что попытки грубого “взлома” обойдутся ещё дороже. Кроме того, решается проблема интеллектуальной собственности, а вы, вместе с исходными кодами программы, получаете возможность развивать и совершенствовать своё устройство.

Память программ, в современных универсальных микроконтроллерах, является перезаписываемой, причём процесс перезаписи можно повторять не один десяток тысяч раз. Напрашивается использование этого факта для обновления программного обеспечения с целью устранения найденных в нём ошибок или расширения функций уже работающего устройства. Это достаточно просто реализовать — добавив в программу специальный участок кода под названием “бутлоадер”, вы получаете возможность обновлять программное обеспечение вашего прибора различными способами: в пункте сервисного обслуживания (если устройство имеет специальный, скрытый внутри корпуса от посторонних глаз, разъём), подключив к компьютеру по USB, через сетевой или даже беспроводной интерфейс. Главное, предусмотреть в приборе необходимую для этого периферию. Предоставляя возможность обновления ПО, всегда следует думать о безопасности, если этот процесс недостаточно защищён, мало того, что злоумышленники могут похитить ваш код, они могут модифицировать его и использовать в своих не исключено, что коварных целях. Например, взять под контроль вещи вашего “умного дома” или шпионить с помощью, установленной вами же у себя дома, WEB камеры.

Архитектура ARM — сегодняшний лидер рынка микроконтроллеров

Со времён Царя Гороха микроконтроллеры принято разделять по разрядности данных, над которыми они проводят операции. В подавляющем большинстве случаев, сегодня, в новых разработках, стоит останавливать свой выбор на 32 битных микроконтроллерах с ядром АRM. Существует огромное количество их модификаций и всегда можно подобрать экземпляр, наилучшим образом подходящий для решения вашей задачи. В зависимости от набора функций и производительности, цена чипа может составлять от десятков центов до десятков долларов.
Микроконтроллеры(MCU), в зависимости от архитектуры вычислительного ядра, принято разделять на крупные семейства. На сегодняшний день, для разработок устройств малой и средней сложности, наиболее популярны микроконтроллеры c ядрами от Cortex-M0 до Cortex-M7. Чем больше цифра, тем больше вычислительные (и не только) возможности, цена и максимальное энергопотребление. Не последнюю роль в популярности ARM сыграла преемственность архитектуры. Разработчик может с минимальными издержками модифицировать программный код своих предыдущих наработок, переходя от микроконтроллеров одного производителя к чипам другого и мигрируя между ядрами с разной производительностью.
Конкуренция с младшими братьями

Однако ARMы «рулили» не всегда. Я хорошо помню времена, когда абсолютными лидерами рынка были 8 битные микроконтроллеры и, с занятых позиций, их безуспешно пытались оттеснить 16 битные коллеги, но, по иронии судьбы, удалось сделать это только 32 битным старшим братьям. Так сложилось, что к моменту их появления, технологии изготовления чипов сильно удешевили интеграцию в них больших объёмов FLASH памяти. Воспользовавшись удобным случаем, программисты стали переходить с ассемблера на язык более высокого уровня — Си, структура которого отлично ложилась на 32 битную архитектуру. В результате 32 битные микроконтроллеры выполняли вычисления гораздо быстрее своих 8 и 16 битных коллег, но была одна проблема — у них был выше ток потребления.

Поэтому, поначалу, они использовались в случаях, когда требовалась большая вычислительная производительность.

Известно, что средний ток потребления вычислительного ядра микроконтроллера существенно увеличивается с поднятием его тактовой частоты. Поначалу 8 битные модели микроконтроллеров отличались заметно меньшим потреблением при сходной частоте и, кроме того, были способны работать от низкой тактовой частоты, вплоть до 32 кГц.

Энергопотребление микроконтроллеров сильно зависит от тактовой частоты ядра и периферии, чтобы её регулировать, для генерации стали использовать, широко применявшийся в радиопередающих устройствах, узел формирования тактовой частоты на основе ФАПЧ. Это позволило в широких пределах изменять тактовую частоту, не меняя задающий кварцевый резонатор. Периферийным модулям совсем не обязательно иметь такую же тактовую частоту, что и вычислительному ядру. Чтобы снизить их энергопотребление, частоту на них стали подавать через делители с программно-регулируемым коэффициентом деления. Ввели возможность отключать неиспользуемые модули. Эти меры сильно уменьшили энергопотребление, но оно по прежнему оставалось существенно больше, чем у 8 битных.

На короткое время сложился паритет — 32 битные MCU захватили нишу топовых приложений, а 8 битные уверенно удерживали позиции в устройствах, для которых было важно низкое энергопотребление. Он сохранялся до тех пор, пока 32 битные MCU не освоили в совершенстве «импульсный» режим работы.

8-битники, к тому времени, тоже научились это делать, но, из-за низкой производительности, бодрствовать им приходилось гораздо больше и, как результат, они начали проигрывать по энергопотреблению, особенно в задачах, требующих расчётов, что иллюстрирует картинка ниже.

Об укладке асфальта, пользе сна и его разновидностях

Итак, микроконтроллеры настолько хорошо научились считать, что стали выполнять свою работу очень быстро и большинство времени были вынуждены “бить баклуши”, пожирая энергию для выполнения холостых циклов. В устройствах с автономным питанием это сильно сокращает ресурс батарей или время работы от одной зарядки аккумуляторов.

Понаблюдайте за строительными рабочими которые кладут асфальт. Они резко активизируют свою работу, когда пришёл грузовик с новой порцией асфальта, а после его укладки снижают темп. Так и микроконтроллеры умеют повышать и снижать частоту тактирования ядра. Однако, им это даётся не так просто, как рабочим — одновременно изменится и частота работы всей внутренней периферии, поэтому, чувствительные к этому её части придётся перенастраивать.
Не проще ли, выполнив быстро всю работу, немного поспать. Зачастую, да. Причём виды сна микроконтроллеров отличаются ещё более драматично, чем у человека.

Можно просто вздремнуть. В этом случае наш чип всегда наготове и как только зазвенел будильник таймера или его потревожило внешнее прерывание, он просыпается практически мгновенно. Как человек во время дремоты может снять напряжение, но не выспаться толком, когда тебя постоянно дёргают, так и микроконтроллер может снизить своё энергопотребление в этом режиме “всего” раз в 10, называют этот режим SLEEP.

Лучший способ хорошо выспаться — раздеться, лечь в постель, задёрнуть шторы на окне и включить будильник. Однако, после такого сна, уже моментально в работу не включишься. Придётся, как минимум, предварительно ополоснуться холодной водой и одеться. Есть такой режим и у микроконтроллера, когда он ограничивает количество внешних раздражителей и выключает основной тактовый генератор. Это режим STOP. В нём можно уменьшить потребление в 1000 раз, но и на выход из него уже потребуется существенное время.

Теперь, представьте себе, что вы перед сном выпили изрядную дозу снотворного, отключили будильник и телефон, закрыли все окна и двери. Это будет режим STAND BY. Вывести из такого режима микроконтроллер можно только с помощью особых выводов и большая часть памяти о том, чем он занимался перед таким сном будет потеряна навсегда, придётся начинать работу заново. Зато находясь в таком режиме MCU потребляет ещё в два раза меньше.

Последний, весьма экзотический режим, напоминает уже кому, из которой нельзя выйти без специального оборудования. В этом случае работает только специальный генератор тем не менее, являющийся частью микроконтроллера на отдельном часовом кварце, который может функционировать от собственного источника питания и иметь буквально несколько байт оперативной памяти, предназначение которой напомнить микроконтроллеру о том, из какого состояния он в эту кому впал. Если остальные части микроконтроллера, при этом, отключить от питания, то энергопотребление может составить уже одну десятитысячную часть от активного режима.

Выбирая режим экономии энергопотребления необходимо помнить о последствиях применения:

  • чем глубже сон, тем дольше пробуждение
  • чем глубже сон, тем меньше способов вывести из него микроконтроллер
  • чем глубже сон, тем меньше остаётся информации о предыдущем состоянии микроконтроллера
  • для достижения минимальных заявленных значений, во многих режимах необходимо принимать дополнительные меры, например — отключения периферии
  • для минимизации энергопотребления устройства в целом необходимо грамотно спроектировать схемотехнику всего устройства
  • для минимизации энергопотребления устройства в целом, нужно позаботиться о том, чтобы остальные компоненты и цепи также имели микропотребление в неактивном режиме. Глупо предпринимать огромные усилия для того, чтобы опустить потребление микроконтроллера ниже одного микроампера и, при этом, применять в устройстве дешёвый стабилизатор с током собственного потребления в 100 микроампер но встречается такое сплошь и рядом
  • для успешного использования режимов глубокого сна не только программа, но и схемотехника, должны быть тщательно продуманы, иначе, вместо экономии, можно получить весьма серьёзные проблемы — редко случающееся, зато “мёртвое” зависание устройства по необъяснимой причине, либо слишком частое пробуждение и, как результат, потребление на порядки выше ожидаемого


Если ваши программист со схемотехником не первый день винят друг друга в криворукости и, вместе, производителя в публикации нереальных цифр в даташитах на микроконтроллер, а ваше устройство сажает батарейки на порядок быстрее, чем вы рассчитывали, это повод, по крайней мере, обратиться к независимым высококвалифицированным экспертам.
Совсем коротко о технологии изготовления и о том, как появляются серии микроконтроллеров

Физически активная часть микроконтроллера, как и подавляющее количество других микросхем, обычно сформирована на пластине монокремния (назовём его, в данном контексте, ЧИП). Чипы занимают очень маленькую площадь, технологически же выгодно производить пластины большого диаметра, поэтому, обычно большое количество чипов, как соты, размещают на одной большой пластине и формируют, в ходе одного технологического процесса. В последствии пластины нарезают на кусочки, получая уже отдельные чипы, которые и помещают в корпуса. Разработка топологии и отладка технологических процессов нового чипа стоит очень дорого, а занимаемое на пластине одним чипом место, как правило, не велико. Производителям выгодно выпускать чипы крупными партиями, но пользователям требуются микроконтроллеры в разных корпусах — кому то важно получить корпус поменьше и подешевле, другому наоборот требуется побольше выводов, чтобы управлять LCD или внешней памятью с параллельным интерфейсом. Производителям выгодно перекрывать все ниши, чтобы клиенты не перебегали к конкурентам, не найдя оптимальной для себя модели.

Очень часто бывает выгодней выпустить крупной партией один универсальный чип и помещать его в разные корпуса, чем запускать десяток различных. У чипов, помещённых в корпуса с малым количеством выводов, часть портов (в данном контексте, под портами будем понимать контактные площадки на поверхности чипа, служащие для общения с внешним миром) просто останутся неподсоединёнными. Часто производители идут дальше — чтобы поднять спрос и цену на микроконтроллеры с большим количеством ножек, они искусственно обрезают функциональность тех, у которых их меньше — отключают некоторые функции, ограничивают объём доступной памяти и т. п.

Так на основе одного чипа формируют серии микроконтроллеров, существенно отличающиеся по объёму памяти и набору периферийных модулей, иной раз и в разы по цене. При этом чипы, в них установленные, могут нарезаться из одних и тех же пластин. Поскольку площадь, на которой размещается один чип, невелика, вклад её в себестоимость конечного изделия также мал и им можно пожертвовать. Становится выгодным отключение дополнительной памяти и других функций, например, на этапе тестирования — либо с помощью однократно программируемых битов конфигурации, либо пережиганием перемычек лазером. Лишь для наиболее массовых изделий имеет смысл для этого создавать слегка изменённый фотошаблон. Причём, совсем не обязательно там будет физически отсутствовать неиспользуемая память, её, опять же, можно просто отключить, удалив перемычки в шаблоне.


Так из одного стандартного дизайна чипа формируется целая серия микросхем.
Периферия простейшего ARM микроконтроллера за пол бакса

Процессорное ядро — это мозг, но, чтобы он не был подобен “сферическому коню в вакууме”, требуются аналоги органов чувств и конечностей.

В микроконтроллере их роль играют выводы на корпусе, к которым внутри корпуса могут подключаются порты(контактные площадки) чипа. В свою очередь, через внутренние коммутаторы, к одному и тому же порту могут подключаться различные периферийные модули.
Для начала рассмотрим периферию одной из простейших серий от ST на основе ядра Cortex-M0 — stm32F03.

Для этой серии имеем следующий набор базовых функций:
Часы реального времени (Real Time Clock или RTC), которые могут запитываться с помощью отдельного вывода и работают от отдельного низкочастотного резонатора. Этот модуль потребляет крайне мало энергии, в случае пропадания основного питания он может часами работать от заряженного конденсатора, или годами от маленькой встроенной в прибор батарейки. Кроме этого, он может служить в качестве будильника, выводя микроконтроллер из состояния даже самого глубокого сна в заранее заданное время.

WatchDog — сторожевая собака мешающая микроконтроллеру заснуть навсегда, например, свалившись в бесконечный цикл или перейдя по несуществующему адресу. Его принцип работы прост. Программист настраивает таймер защиты от “зависания” на определённый период времени, допустим на секунду, и запускает его. Затем он расставляет, в выбранных им местах программы, короткие участки кода, которые перезапускают таймер с нулевого значения. Если за секунду не произошло ни одного сброса таймера, WatchDog считает, что с программой что-то не так и устраивает микроконтроллеру перезапуск. Программа начинает работать с начала, причём существует возможность определить являлся ли инициатором ресета WatchDog и учесть этот факт при запуске.

Универсальные цифровые входы-выходы (General Purpose Input-Output GPIO) — это самая распространённая функция, которую поддерживают большинство выводов микроконтроллера. Они могут конфигурироваться либо как входы, либо как выходы.

Рассмотрим работу в качестве входа. Если напряжение на входе микроконтроллера меньше некоего порога (как правило близкого к половине питания), то оно воспринимается как логический ноль, в противном случае как 1. Цифровые входы обычно имеют очень высокое входное сопротивление, поэтому, если их оставить не подключенными, их состояние может скакать из нуля в единицу и обратно, под действием наводок электромагнитных полей. Для того, чтобы этого не происходило, существуют специальные режимы, когда внутри чипа вход соединяется через сопротивление 20 — 50 КОм с плюсом питания микроконтроллера (pull-up) или с минусом (pull-down).

Если выводы сконфигурированы цифровыми выходами, то их программно можно перевести в высокий уровень равный напряжению питания микроконтроллера, либо низкий. Существуют и более хитрые режимы, но не будем вдаваться в чрезмерные подробности.

Советы начинающим разработчикам Выводы микроконтроллера — мастера на все руки, но следует соблюдать простые правила, чтобы не вывести их из строя. Несмотря на все предосторожности, предпринимаемые производителями чипов, они боятся статики и перенапряжений, поэтому не стоит подсоединять их напрямую к разъёмам, выходящим за пределы платы. Необходимо, в этом случае, предпринять меры — либо воспользоваться специальными интегральными компонентами защиты, либо предусмотреть в схеме супрессор, стабилитрон или защитные диоды, плюс установить в разрыв между выводом разъёма и портом токоограничивающее сопротивление.

На рисунке выше изображён участок схемы, спроектированного мной устройства (спутникового модема), с элементами простейшей защиты портов микроконтроллера. X4 — разъём для внешних коммуникаций. Нас интересуют контакты 5-7, к которым присоединяются тревожные кнопки. Сигналом тревоги служит замыкание на землю, поэтому, в нормальном состоянии, на портах должно присутствовать напряжение питания микроконтроллера, что и обеспечивают резисторы R24-R26, номиналом 1 КОм. Супрессоры VD4-VD6 ограничивают напряжение на уровне 5 вольт, это допустимо потому, что применяемый мной микроконтроллер, хотя и питается напряжением 3,3 вольта, но имеет порты толерантные к напряжению 5 вольт. Резисторы R29-R31 на 100 Ом.
Подобная защита спасёт порты вашего микроконтроллера от внешних перенапряжений. У некоторых микроконтроллеров отдельные порты не боятся напряжений, превышающих их напряжение питания. Так у многих микроконтроллеров STM32Fxx почти все порты будучи сконфигурированными как цифровые могут работать с 5 вольтовыми цепями, но если они работают в аналоговом режиме, например в качестве входа АЦП, теряют эту способность и это необходимо учитывать при разработке схемы.

Пожалуйста, соблюдайте технику безопасности. Не оставляйте, свободные, висящие в воздухе порты микроконтроллера сконфигурированными в виде входов, особенно в устройствах временами уходящих в глубокий сон — это как минимум может значительно усложнить процесс прохождение вашего устройства теста на ЭМС (электро-магнитную совместимость). Если оставляете их входами, лучше замкнуть их на землю или питание. Либо программно сконфигурировать выходами.

Существует ещё один лайфхак. Иногда их можно оставить входом и замкнуть на другую цепь. Это помогает в случае очень плотной трассировки провести проводник «сквозь» микроконтроллер, что особо актуально для двухслойных плат.

Используя порты микроконтроллеров в качестве выходов, также стоит свериться с даташитом. Отдельные порты могут иметь разное ограничение по максимальному току, который от них можно получить не опасаясь выхода их строя — нагрузочную способность. Кроме этого, сам чип имеет максимальную нагрузочную способность всех выходов в сумме, которую не следует превышать.
Последнее, о чём хочется упомянуть, выходные порты ARM микроконтроллеров не реагируют на программные инструкции мгновенно, как у 8-битных микроконтроллеров. Они управляются через шину, и их быстродействие зависит от частоты тактирования соответствующего узла, которую можно менять программно. Если вы хотите быстрой реакции, позаботьтесь об увеличении этой частоты, если важнее уменьшить энергопотребление, наоборот выберите менее скоростной режим.


Температурный сенсор Микроконтроллер имеет свой собственный температурный сенсор, правда не слишком точный, тем не менее его можно, с определёнными допущениями, использовать для измерения температуры внутри корпуса прибора.

Уникальный серийный номер Каждый микроконтроллер имеет свой уникальный серийный номер, присвоенный ему на производстве. Очень удобная особенность, которую можно использовать при организации серийного производства ваших изделий.

Интерфейсы обмена данными Различные микроконтроллеры данной серии могут иметь по нескольку наиболее распространённых интерфейсов, сильно облегчающих общение с другими чипами и внешним миром:

  • USART — асинхронный последовательный порт, часто использующийся для связи с компьютером там он называется COM или RS232, модемами и другими устройствами
  • SPI — высокоскоростной интерфейс, который имеют очень многие чипы, например внешняя память
  • I2C — двухпроводной интерфейс, разработанный для общения с датчиками и другой периферией на небольшом расстоянии и небольших скоростях обмена. Большой его плюс заключается в том, что одновременно к одной шине можно подключить десятки различных устройств

Все эти интерфейсы несложно реализовать программно с помощью обычных GPIO, но они будут работать гораздо медленнее и отнимать много ресурсов вычислительного ядра.

Аналого-цифровой преобразователь АЦП или ADС на котором придётся остановиться подробнее.

Чрезвычайно полезный модуль, который способен измерять напряжение аналоговых сигналов. Оценивает он их в долях от величины опорного источника сигнала, в нашем случае это напряжения питания аналогового модуля микроконтроллера, которое может быть равным или немного ниже основного напряжения питания чипа. Теоретическая точность работы АЦП зависит от его разрядности. В современных микроконтроллерах чаще всего применяется 12 разрядный АЦП последовательного приближения, реже 10 и как экзотика встречается 16.

При питании 3 вольта 12 разрядный АЦП микроконтроллера будет иметь разрешающую способность 3/4096=0.00073 Вольта — лучше одного милливольта.

Но на практике достичь этого идеала бывает не просто.

Подробности для начинающих разработчиковНа практике всё бывает далеко не так красиво и точность измерений может снижаться по многим причинам. Ниже перечисляю основные, хорошо известные любому опытному электронщику, а также простые но эффективные способы сведения их пагубного влияния до минимума
нестабильность напряжения источника питания АЦП
  • применять для питания MCU линейные стабилизаторы с хорошими параметрами
  • применять для питания аналоговой части MCU высокостабильные источники опорного напряжения

импульсные помехи по питанию АЦП
  • подключать аналоговое питание к цифровому через простейшие фильтры низкой частоты — подавать питание на аналоговую часть MCU через индуктивность и в непосредственной близости от входа микроконтроллера устанавливать керамический конденсатор с диэлектриком XR7 ёмкостью 100 нанофарад, а ещё лучше, параллельно ему включить танталовый конденсатор с ёмкостью в одну — две микрофарады.

импульсные помехи на входе АЦП
  • пропускать входной сигнал хотя бы через простейший ФНЧ, состоящий из резистора и конденсатора. Для борьбы с помехами от передающих радиотрактов и короткими импульсными помехами иногда достаточно одиночного конденсатора с диэлектриком NP0 ёмкостью в несколько десятков пикофарад, установленного между входом и землёй, в непосредственной близости от входа АЦП
  • не экономить на блокировочных конденсаторах, по крайней мере самого микроконтроллера, устанавливать их в непосредственной близости от каждого вывода питания и в других местах, рекомендованных производителем, рекомендованного им номинала
  • тщательно выбирать месторасположение компонентов и соблюдать правила трассировки цепей питания и особенно “земли”, в идеале аналоговая и цифровая земли должны соединяться в одной точке — рядом с выводом аналоговой земли микроконтроллера

высокое выходное сопротивление источника сигнала, опасно тем, что в момент старта измерения АЦП последовательного приближения, которое чаще всего используется в микроконтроллерах, его вход потребляет некоторый отличный от нуля ток и это может привести к уменьшению истинного значения напряжения, так как сигнал фактически подаётся через делитель напряжения.
  • правильно выбирать параметры настройки АЦП, например во многих микроконтроллерах можно увеличить время зарядки входной цепи, правда тут приходится идти на компромисс, снижая быстродействие
  • устанавливать на входе АЦП буферные усилители на основе ОУ (операционный усилитель), или повторители напряжения. Выбирать их по принципу самых дешёвых не стоит, можно не улучшить, а ухудшить ситуацию, причём значительно. Если не хватает собственного опыта, лучше поискать специально рекомендованные производителями для подобных приложений

Выше изображён участок реальной схемы для подачи питания на аналоговую часть микроконтроллера в устройстве с батарейным питанием. В данном случая я использовал АЦП для оцифровки сигнала с аналогового MEMS микрофона и поэтому имело смысл выделить в отдельную цепь не только аналоговое питание, но и аналоговую землю. В большинстве случаев это избыточно, для того чтобы от неё действительно был толк, нужна ещё и правильная трассировка.

От цепи VBUT питается вся цифровая часть микроконтроллера. На всякий случай привожу номиналы элементов: R5-10 Ом, С10 0.1 мкФ, без индуктивностей L1 и L2 BLM18PG471SN1D в большинстве случаев можно обойтись.

Ещё один любопытный пример из моей практики. В плате, на которой размещалось большое количество высокопотребляющих чипов ASIC, необходимо было измерять их температуру. Самый простой и дешёвый способ — использование высокоомных термисторов. В качестве фильтров я применил конденсаторы достаточно большой ёмкости, воспользовавшись тем фактом, что температура меняется сравнительно медленно. Для оцифровки звука такой фокус однозначно бы «не прокатил».

Осталось упомянуть ещё одну важную особенность АЦП, характерную для микроконтроллеров. Собственно, модулей АЦП в нём, как правило, один или два, а вот входов может быть много. В описываемой серии модуль 1, а входов может быть до 16. Как же так? Очень просто, входы подсоединены к нему через коммутатор. Если вы собираетесь измерять напряжение с 10 входов, то должны организовать цикл — последовательно переключить коммутатор к каждому из 10 входов и сделать измерение. Это необходимо учитывать, рассчитывая времена измерения. В данной серии АЦП, теоретически, способно сделать измерение за 1 микросекунду. Получается, что полный цикл 10 измерений у вас займёт точно больше 10 микросекунд!


Система прямого доступа в память ПДП или DMA — ещё одна архиважная вещь. Этот модуль позволяет пересылать данные от периферии в память или наоборот.

Например, с его помощью вы можете выделить участок памяти для хранения данных, приходящих из АЦП и сделать из него кольцевой буфер. Далее запускается АЦП в режиме считывания данных через равные промежутки времени. Используя механизмы DMA, считанные данные будут, без участия ядра, самостоятельно, байт за байтом, помещаться в выделенный буфер. Когда буфер будет полностью заполнен, ядро получит сигнал и приступит к их программной обработке, а система DMA начнёт процесс загрузки сначала. Поскольку DMA имеет несколько каналов, то никто не мешает реализовать для нашего случая автоматический вывод на USART данных из буфера. В результате мы получим, работающий без использования ядра процесс передачи считанных с АЦП в USART, и не простая работа программиста по конфигурации DMA окупится сторицей.

Модуль широтно-импульсной модуляции ШИМ или PWM, в силу ограниченности статьи не будем останавливаться на нём подробно, отмечу только, что это крайне полезная и широко используемая функция, с помощью которой возможно управлять яркостью светодиодов, скоростью вращения двигателей, рулевыми машинками, конструировать интеллектуальные DC-DC преобразователи и даже звук синтезировать.

Что можно получить, добавив 30 центов?

Переход на Cortex-M0+. Самый дешёвый способ получить дополнительные функции

А какие дополнительные плюшки предлагает микроконтроллер новейшей серии с ядром чуть посовременнее Cortex-M0+, при стоимости на 20-50 центов дороже аналогов в рассмотренной выше серии по корпусу и количеству выводов?

Таблица отличий между сериями

  • в два раза увеличилась максимальная тактовая частота
  • с 2 до 1.7 вольт понизилось минимальное напряжение питания
  • АЦП способно работать в два с половиной раза быстрее
  • появились два канала 12 битного цифро-аналогового преобразователя. Это крайне полезная функция, с помощью которой возможно формировать на выводах сигнал заданного напряжения с точностью лучшей чем 1 мВ, например сигналы произвольной формы в звуковом диапазоне частот
  • появились компараторы — устройства для сравнения величин двух аналоговых сигналов, это бывает полезным скажем для определения момента возникновения перегрузки по току
  • добавлен USB интерфейс, посредством которого можно подключать устройства к компьютеру. Особый интерес вызывает наличие поддержки опций управления питанием для реализации USB type3-C совместимого интерфейса. О нём я рассказывал в одной из своих статей на Хабре
  • появился ускоритель AES для процедур 256 битного шифрования/дешифрации
  • UART получил возможность работы в режимах сна и аппаратную поддержку протоколов LIN (простая сеть, широко используется в автопроме), IRDA (протокол передачи данных посредством инфракрасных светодиодов, вспомните телевизионные пульты), SIMcard…
  • расширены возможности таймеров и модуля PWM
  • верхняя граница температурного диапазона работы поднялась до 125 градусов
  • увеличена надёжность работы за счёт расширения режимов перезапуска при возникновении проблем с питанием
  • добавлен “честный” аппаратный генератор случайных значений — полезная функция в криптографии

Ну что же, для многих применений незначительная добавка в цене себя вполне окупает, поскольку можно отказаться от перехода на более дорогостоящие микроконтроллеры старших модельных рядов.
А что добавит переход на Cortex-M4, кроме возросшей в пару раз цены?

  • Максимальная тактовая частота вырастает уже до 80 МГц
  • Появился блок для ускорения вычислений с плавающей точкой
  • Ясное дело, максимальная встроенная память увеличилась
  • Модели с количеством ног 100 и более поддерживают работу с внешней статической памятью
  • USB научился работать в режиме HOST
  • Появился контроллер CAN интерфейса. Это очень перспективный интерфейс разработанный для высоконадёжных приложений. Своё победное шествие он начал с автомобильной промышленности и уже почти 20 лет ведёт затяжную войну с давно устаревшим RS-485 в крайне консервативной отрасли промышленной автоматизации.
  • Появился интерфейс для подключения SDcard. Очень полезная функция — добавляете в своё устройство держатель за 50 центов и получаете съёмный носитель размером в десятки Гигабайт! С большинством карт удаётся работать и по обычному SPI, но намного медленнее
  • Добавили встроенный Операционный Усилитель с большим разнообразием режимов работы. Именно благодаря этой и предыдущей функциям, для своего последнего проекта беспроводного стетоскопа, пришлось остановить выбор на M4 вместо M0+. В результате появилась возможность управлять усилением сигнала с MEMS микрофона и сохранять десятки часов аудиозаписей работы сердца на SD карте
  • Криптомодуль научился аппаратно считать HASH функции.
  • Контроллер сенсорных приложений усовершенствован и теперь поддерживает уже не только кнопки, но и элементы прокрутки

Cortex-M7 — когда хочется большего...

В подавляющем количестве проектов возможностей предоставляемых вышеописанными ядрами достаточно, но случаются и исключения. Лично со мной такое случалось всего пару раз, причём лишь один раз по действительно уважительной причине — требовалась высокая производительность для подготовки данных для ASIC, контроллер Ethernet и шина CAN-FD c повышенной скоростью обмена.

Если на уровне универсальных микроконтроллеров с ядрами Cortex 4 и ниже, на мой субъективный взгляд, по параметру цена/функциональность сейчас лидирует фирма ST, то в области более высокопроизводительных чипов она уступает лидерство ATMEL, вернее, теперь уже недавно поглотившему его MICROCHIP. Поэтому я остановил свой выбор на серии ATSAMV71, стоимостью от 6 долларов.

Помимо вышеописанного (контроллер Ethernet и шина CAN-FD), по большому счёту, мы получаем, существенно увеличивающее производительность ядро с ускорителем операций, работающее на тактовой частоте до 300 МГц, интерфейсы для подключения видеоматрицы и поддержку динамической памяти.

В заключении попрошу имеющих опыт общения с микроконтроллерами попрошу выбрать подходящий ответ на вопрос.

habr.com

Что такое микроконтроллер? - РадиоСхема

Микроконтроллеры являются неотъемлемой частью встроенных систем. Микроконтроллер — это дешевый и маленький компьютер на одной микросхеме, который содержит процессор, небольшой объем оперативной памяти и программируемого ввода-вывода периферийных устройств. Они предназначены для использования в автоматически контролируемой продукции и устройств для выполнения предварительно определенных и запрограммированных задач. Чтобы получить лучшее представление о том, что на самом деле представляет микроконтроллер, давайте посмотрим пример продукта, где используется микроконтроллер. Цифровой термометр, который отображает температуру окружающей среды использует микроконтроллер к которому подключены датчик температуры и блок индикации (как LCD). Микроконтроллер здесь получает входные данные от датчика температуры в сыром виде, обрабатывает их и отображает на небольшой ЖК-дисплей в понятном человеку виде. Аналогичным образом один или несколько микроконтроллеров используются во многих электронных устройствах согласно требованию и сложности приложений.

Где используются микроконтроллеры?

Микроконтроллеры используются во встраиваемых системах, в основном различные продукты и устройства, которые представляют собой сочетание аппаратных средств и программного обеспечения, и разработаны для выполнения конкретных функций. Несколько примеров внедренных систем, в которых используются микроконтроллеры, может быть – стиральные машины, торговые автоматы, микроволновые печи, цифровые фотоаппараты, автомобили, медицинское оборудование, смартфоны, умные часы, роботов и различных бытовых приборов.

PIC18F8720 Microcontroller

Почему мы используем микроконтроллеры?

Микроконтроллеры используются для автоматизации во встраиваемых приложениях. Основная причина огромной популярности микроконтроллеров является их способность уменьшить размер и стоимость изделия или конструкции, по сравнению с дизайном, который есть строить с помощью отдельного микропроцессора, памяти и устройств ввода/вывода.

Также микроконтроллеры имеют такие функции, как встроенный микропроцессор, ОЗУ, ПЗУ, последовательные интерфейсы, параллельные интерфейсы, аналого-цифровой преобразователь (АЦП), цифро-аналоговый преобразователь (ЦАП) и др. это позволяет легко строить приложения вокруг него. Кроме того, среда программирования микроконтроллеров предоставляет широкие возможности для контроля различных типов приложений по их требованию.

Различные типы микроконтроллеров.

Существует широкий спектр микроконтроллеров, доступных на рынке. Различные компании, как Atmel, ARM, Microchip, Texas Instruments, Renesas, Freescale, NXP Semiconductors, etc. и др. налажено производство различных видов микроконтроллеров с различными видами функций. Глядя на различные параметры, такие как программируемая память, объем флэш-памяти, напряжение питания, ввода/вывода, скорость, и т. д., можно правильно выбрать микроконтроллер для их применения.

Давайте посмотрим на эти параметры и различные типы микроконтроллеров по этим параметрам.

Шина данных (Разрядность):

Если классифицировать по бит-Размер, большинство микроконтроллеров от 8-бит до 32 бит (более высокие разрядные микроконтроллеров также доступны). В 8-разрядного микроконтроллера своя шина данных состоит из 8 линий данных, а в 16-разрядный микроконтроллер его шина данных состоит из 16 линий данных и так далее для 32 бит и выше микроконтроллеров.

 Память:

Микроконтроллерам нужна память (ОЗУ, ПЗУ, ППЗУ, ЭСППЗУ, флэш-память и т. д.) для хранения программ и данных. Хотя некоторые микроконтроллеры имеют встроенные чипы памяти, а другие требуют внешней памяти в связке. Они называются встроенной памяти микроконтроллеров и внешней памяти микроконтроллеров соответственно. Встроенный объем памяти также варьируется в различных типах микроконтроллеров и вообще вам бы найти микроконтроллеры с памятью 4Б до 4Мб.

 Количество входных/выходных контактов:

Микроконтроллеры различаются по количеству ввода-вывода размеров. Можно выбрать конкретный микроконтроллер в соответствии с требованием приложения.

 Набор Команд:

Есть два вида наборов инструкций — на RISC и cisc. Микроконтроллер может использовать процессор RISC (сокращенный набор инструкций компьютера) или с CISC (комплекс команд ЭВМ). Как подсказывает название, RISC сокращает время операции, определяющие такт инструкции; а CISC позволяет прикладывать одну инструкцию в качестве альтернативы многие инструкции.

 Архитектура Памяти:

Существует два типа микроконтроллеров – Гарвардская архитектура памяти микроконтроллеров и Принстон архитектура памяти микроконтроллеров.

 Вот несколько популярных микроконтроллеров среди студентов и любителей.

Серии 8051 микроконтроллеров (8-бит)

Микроконтроллеры AVR от компании Atmel (ATtiny, серии atmega)

Микрочип-это серия pic микроконтроллеров

Тексас инструментс», микроконтроллеры msp430 фирмы

ARM-Микроконтроллеры

 Особенности микроконтроллеров

Микроконтроллеры используются во встраиваемых системах на их различные характеристики. Как показано в приведенной ниже блок-схема микроконтроллера, он состоит из процессора, ввода/вывода, последовательные порты, таймеры, АЦП, ЦАП и прерыватель контроля.

архитектуры 8051 микроконтроллера

Процессор или центральный процессор

Процессор-это мозг микроконтроллера. При условии входного сигнала через входные контакты и инструкции через программы, обрабатывать данные и предоставлять соответственно на выходных выводах.

 Памяти

Чипы памяти интегрированы в микроконтроллер для хранения всех программ и данных. Там могут быть разные типы памяти, интегрированный в микроконтроллеры как ОЗУ, ПЗУ, ППЗУ, ЭСППЗУ, флэш-память и др.

 Порты Ввода-Вывода

Каждый микроконтроллер имеет входные выходные порты. В зависимости от типов микроконтроллеров, число входных вывода могут различаться. Они используются для подключения внешних входных и выходных устройств, таких как датчики, блоки индикации и др.

 Последовательные Порты

Они облегчают связь микроконтроллеру по последовательному интерфейсу с периферийными устройствами. Последовательный порт-это последовательный интерфейс связи, через который информация передается ввода или вывода один на один бит за один раз.

 АЦП и ЦАП

Иногда встраиваемых систем примеяют преобразования данных из цифрового в аналоговый и наоборот. Поэтому большинство микроконтроллеров объединены с встроенным АЦП (аналого цифровой преобразователь) и ЦАП (цифро-аналоговые преобразователи) для выполнения требуемого преобразования.

 Таймеры

Таймеры и счетчики являются важными компонентами встраиваемых систем. Они необходимы для различных операций, таких как формирование импульса, подсчет внешних импульсов, модуляции, колебания и др.

 Прерывание Контроля

Прерывание контроля является одним из мощных возможностей микроконтроллеров. Это своего рода уведомление, которое прерывает текущий процесс и дает указание выполнить задачи, определенные прерывания контроля.

Чтобы суммировать все это, микроконтроллеры являются своего рода компактные мини-компьютеры, которые предназначены для выполнения конкретных задач в области встраиваемых систем. С широким спектром функций, их значение и польза огромны и они могут быть найдены в продуктах, и приборы для всех отраслей промышленности.

[Читайте также: разница между микропроцессором и микроконтроллером]

<<< Техническая информация

radioschema.ru

Применение микроконтроллеров. Управление разными устройствами.

Здравствуйте, уважаемые читатели и гости сайта Power Coup Electric. В сегодняшней статье мы поговорим про применение микроконтроллеров.

Что такое микроконтроллер

Микроконтроллер — это специальная микросхема, предназначенная для управления различными электронными устройствами. Микроконтроллеры впервые появились в том же году, что и микропроцессоры общего назначения (1971). Разработчики микроконтроллеров придумали – объединить процессор, память, ПЗУ и периферию внутри одного корпуса, внешне похожего на обычную микросхему. С тех пор производство микроконтроллеров ежегодно во много раз превышает производство процессоров, а потребность в них не снижается.

Микроконтроллеры выпускают десятки компаний, причем производятся не только современные 32-битные микроконтроллеры, но и 16, и даже 8-битные. Внутри каждого семейства часто можно встретить почти одинаковые модели, различающиеся скоростью работы ЦПУ и объемом памяти.

Применение микроконтроллеров

В силу того, что нынешние микроконтроллеры обладают достаточно высокими вычислительными мощностями, позволяющими лишь на одной маленькой микросхеме реализовать полнофункциональное устройство небольшого размера, притом с низким энергопотреблением, стоимость непосредственно готовых устройств становится все ниже.

По этой причине микроконтроллеры можно встретить всюду в электронных блоках совершенно разных устройств: на материнских платах компьютеров, в контроллерах DVD-приводов, жестких и твердотельных накопителей, в калькуляторах, на платах управления стиральных машин, микроволновок, телефонов, пылесосов, посудомоечных машин, внутри домашних роботов, программируемых реле, в модулях управления станками и т.д.

   Применение микроконтроллеров в программируемых реле

Так или иначе, практически ни одно современное электронное устройство не может обойтись сегодня без хотя бы одного микроконтроллера внутри себя.

Несмотря на то, что 8-разрядные микропроцессоры давно ушли в прошлое, 8-разрядные микроконтроллеры до сих пор весьма широко применяются. Есть множество применений, где высокая производительность вовсе не нужна, однако критическим фактором выступает низкая стоимость конечного продукта. Существуют, разумеется, и более мощные микроконтроллеры, способные обрабатывать в реальном времени большие потоки данных (видео и аудио, например).

Вот краткий список периферии микроконтроллеров, из которого вы можете сделать выводы о возможных сферах и доступных областях применимости этих крохотных микросхем:

  • универсальные цифровые порты, настраиваемые либо на ввод, либо на вывод
  • разнообразные интерфейсы ввода-вывода: UART, SPI, I²C, CAN, IEEE 1394, USB, Ethernet
  • цифро-аналоговые и аналого-цифровые преобразователи
  • компараторы
  • широтно-импульсные модуляторы (ШИМ-контроллер)
  • таймеры
  • контроллеры бесколлекторных (и шаговых) двигателей
  • контроллеры клавиатур и дисплеев
  • радиочастотные передатчики и приемники
  • массивы интегрированной флеш-памяти
  • встроенные сторожевой таймер и тактовый генератор

Как вы уже поняли, микроконтроллером называется небольшого размера микросхема, на кристалле которой смонтирован крохотный компьютер. Это значит, что внутри небольшого чипа есть и процессор, и ПЗУ, и ОЗУ, и периферийные устройства, которые способны взаимодействовать как между собой, так и со внешними компонентами, достаточно лишь загрузить в микросхему программу.

   Применение микроконтроллеров

Программа обеспечит работу микроконтроллера по назначению — он сможет по правильному алгоритму управлять окружающей его электроникой (в частности: бытовой техникой, автомобилем, ядерной электростанцией, роботом, солнечным трекером и т. д.).

Тактовая частота микроконтроллера (или скорость шины) отражает то, сколько вычислений сможет выполнить микроконтроллер за единицу времени. Так, производительность микроконтроллера и потребляемая им мощность с повышением скорости шины увеличиваются.

Измеряется производительность микроконтроллера в миллионах инструкций в секунду — MIPS (Million Instruсtions per Second). Так, популярный контроллер Atmega8, выполняя одну полноценную инструкцию за один такт, достигает производительности 1 MIPS на МГц.

   Микроконтроллер Atmega8

При этом современные микроконтроллеры разных семейств настолько универсальны, что один и тот же контроллер способен, будучи перепрограммирован, управлять совершенно разнородными устройствами. Невозможно ограничиться одной областью.

Пример такого универсального контроллера — тот же Atmega8, на котором собирают: таймеры, часы, мультиметры, индикаторы домашней автоматики, драйверы шагового двигателя и т.д.

Среди популярных производителей микроконтроллеров отметим: Atmel, Hitachi, Intel, Infineon Technologies, Microchip, Motorola, Philips, Texas Instruments.

Классифицируются микроконтроллеры в основном по разрядности данных, которые обрабатывает арифметико-логическое устройство контроллера: 4, 8, 16, 32, 64 — разрядные. И 8-разрядные, как отмечалось выше, занимают существенную долю рынка. Следом идут 16-разрядные микроконтроллеры, затем DSP-контроллеры, применяемые для обработки сигналов.

Советы по выбору микроконтроллеров

При разработке цифровой системы требуется сделать правильную модель микроконтроллера. Главной целью является подбор недорого контроллера для уменьшения общей стоимости всей системы. Однако, необходимо, чтобы он соответствовал специфике системы, требованиям надежности, производительности и условиям использования.

Основными факторами подбора микроконтроллера являются:
  1. Способность работы с прикладной системой. Возможность реализации этой системы на однокристальном микроконтроллере, или на специализированной микросхеме.
  2. Наличие в микроконтроллере необходимого количества портов, контактов, так как при их нехватке он не будет способен выполнить задачу, а если будут лишние порты, то стоимость будет завышена.
  3. Наличие необходимых устройств периферии: различных преобразователей, интерфейсов связи.
  4. Наличие других вспомогательных устройств, ненужных для работы, из-за которых повышается стоимость.
  5. Обеспечение требуемой производительности: мощность вычислений, дающую возможность обработки запросов системы на определенном прикладном языке программирования.
  6. Имеется ли в проекте бюджета достаточно финансов, чтобы применять дорогостоящий микроконтроллер. Если он не подходит по цене, то остальные вопросы не имеют смысла, и разработчик должен искать другой микроконтроллер.
  7. Надежность завода изготовителя.
  8. Информационная поддержка.
  9. Доступность. В этот фактор входят следующие пункты:
  • Выпускается ли в настоящее время.
  • Наличие поддержки разработчика.
  • Наличие языков программирования, внутрисхемных эмуляторов, средств отладки и компиляторов.

Микроконтроллеры, введение

Смотрите также по этой теме:

   Dc Dc преобразователь. Устройство и принцип работы основных схем.

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

powercoup.by

Советы начинающим программистам микроконтроллеров / Habr

Очень давно хотелось поделиться своим опытом, с начинающими радиолюбителями, потому что об этом пишут очень мало и разрозненно. Мой опыт не хороший, не плохой, он такой какой есть. С некоторыми утверждениями вы в праве не согласиться и это нормально, ведь у каждого свое видение ситуации. Цель данного материала, обратить внимание читателя на некоторые вещи, что то взять на заметку и сформировать собственное мнение и видение ситуации, ни в коем случае нельзя воспринимать это как истину.

1. Многие начинающие электронщики не знают с чего начать, поэтому спрашивают совета. Большинство бывалых радиолюбителей ответят, что начни собирать какую нибудь схему. Естественно в голове любого начинающего сразу мелькает LCD дисплей с jpeg картинками, какой нибудь mp3 плеер или часы, без малейшей мысли о том, что не имея базовых знаний это неподъемная задача.

Я категорически против такого подхода. Обычно это все заканчивается — либо ничем, либо забитые форумы с мольбами помочь. Даже если кому то помогают, то в 90% он больше никогда не всплывет на сайтах по электронике. В остальных 10% он так и продолжает заливать форумы мольбами, его будут сначала пинать, затем поливать грязью. Из этих 10% отсеивается еще 9%. Далее два варианта: либо таки до глупой головы доходит и все же происходит goto к началу, либо в особо запущенных вариантах, его удел копировать чужие конструкции, без единой мысли о том как это работает. Из последних зачастую рождаются ардуинщики.

Путь с нуля на мой взгляд заключается в изучении периферии и особенностей, если это микроконтроллер. Правильнее сначала разобраться с тем как дрыгать ножками, потом с таймерами, затем интерфейсами. И только тогда пытаться поднимать свой FAT. Да это не быстро, да это потребует времени и усилий, но практика показывает, как бы вы не пытались сократить этот путь, все равно всплывут проблемы, которые придется решать и время вы потратите куда больше, не имея этой базы.

Только не нужно путать теплое и мягкое. Первое — из всех правил есть исключения, лично видел людей, которые в руках раньше не держали микроконтроллеров, но за крайне короткий срок смогли обскакать бывалых опытных радиолюбителей, их в расчет не берем. Второе — мне попадались личности, которые начинали с копирования схем и сходу разбирались, но скорее это тоже исключение из правил. Третье — и среди ардуинщиков попадаются опытные программисты, это ведь всего навсего платформа, но и это скорее исключение.

Если говорить об общей массе, то дела обстоят именно так как я описал вначале: нежелание разбираться с основами, в лучшем случае оттягивает момент того, когда придется вернуться к этим вопросам. В худшем случае, вы быстро упретесь в потолок своих знаний и все время винить в своих проблемах кого то другого.

2. Перед решением задачи, дробите ее до абсурда вплоть до «припаять резистор», это помогает, проверено. Мелкие задачи решать куда проще. Когда большая задача разбита на кучу мелких действий, то все что остается — это выполнить их. Могу привести еще один годный совет, хоть он вам и покажется бредовым — заведите блокнотик и пишите в него все что собираетесь сделать. Вы думаете, итак запомню, но нет. Допустим сегодня у меня хорошее настроение и думаю о том, как собрать плату. Запиши план действий: сходить купить резистор, подготовить провода, сделать крепление дисплея. Потом все забудешь, откроешь блокнотик и смотришь — ага сегодня настроение попилить и построгать, сделаю крепление. Или собираешь ты плату и уже осталось допаять последний компонент, но не тут то было резисторы кончились, вот записал бы перед тем как паять, то вспомнил.

3. Не пользуйтесь кодогенераторами, нестандартными фичами и прочими упрощалками, хотя бы на первых этапах. Могу привести свой личный пример. Во времена активного использования AVR я пользовался кодогеном CAVR. Меня он полностью устраивал, хотя все говорили, что он кака. Звоночки звенели постоянно, были проблемы с библиотеками, с синтаксисом, с портированием, но было тяжело от этого отказаться. Я не разбирался как это работает, просто знал где и как поставить галочки.

Кол в мой гроб был вбит с появлением STM32, нужно было обязательно переползать на них, вот тогда то и появились проблемы. Проблемы мягко сказано, фактически мне пришлось осваивать микроконтроллеры и язык Си с нуля. Больше я не повторял прошлых ошибок. Надо сказать это уже пригодилось и не один раз. С тех пор мне довелось поработать с другими платформами и никаких затруднений не испытываю, подход оправдывает себя.

По поводу всех улучшалок и упрощалок, было одно очень хорошее сравнение, что они подобны инвалидным коляскам, которые едут по рельсам, можно ехать и наслаждаться, но вставать нельзя, куда везут — туда и приедешь.

4. Изучайте язык Си. Эх, как же часто я слышу, как начинающие радиолюбители хвалятся, что хорошо знают сишку. Для меня это стало кормом, всегда люблю проконсультироваться у таких собеседников. Обычно сразу выясняется, что язык они совершенно не знают. Могу сказать, что не смотря на кажущуюся простоту, людей которые действительно хорошо бы его знали, встречал не так много. В основном все его знают на столько, на сколько требуется для решения задач.

Однако, проблема на мой взгляд заключается в том, что не зная возможностей, вы сильно ограничиваете себя. С одной стороны не оптимальные решения, которые потребуют более мощного железа, с другой стороны не читаемый код, который сложно поддерживать. На мой взгляд, читаемость и поддерживаемость кода занимает одно из важнейших мест и мне сложно представить, как можно этого добиться не используя все возможности языка Си.

Очень многие начинающие брезгуют изучением языка, поэтому если вы не будете как все, то сразу станете на две ступени выше остальных новичков. Так же не никакой разницы, где изучать язык. На мой взгляд, микроконтроллер для этого не очень подходит. Гораздо проще поставить какую нибудь Visual studio или Qt Creator и порешать задачки в командной строке.

Хорошим подспорьем будет также изучение всяких тестов по языку, которые дают при собеседованиях. Если порыться то можно много нового узнать.

5. Изучение ассемблера? Бояться его не нужно, равно как и боготворить. Не нужно думать, что умея написать программу на ассемблере, вы сразу станете гуру микроконтроллеров, почему то это частое заблуждение. В первую очередь это инструмент. Даже если вы не планируете использовать его, то все равно я бы настоятельно рекомендовал написать хотя бы пару программ. Это сильно упростит понимание работы микроконтроллера и внутреннего устройства программ.

6. Читайте даташит. Многие разработчики, пренебрегают этим. Изучая даташит вы будете на две ступени выше тех разработчиков. Делать это крайне полезно, во первых это первоисточник, какие бы сайты вы не читали, в большинстве случаев они повторяют информацию из даташита, зачастую с ошибками и недосказанностями. Кроме того, там может находиться информация, о которой вы не задумываетесь сейчас, но которая может пригодиться в будущем. Может статься так, что вылезет какая то ошибка и вы вспомните что да, в даташите об этом было сказано. Если ваша цель стать хорошим разработчиком, то этого этапа не избежать, читать даташиты придется, чем раньше вы начнете это делать, тем быстрее пойдет рост.

7. Часто народ просит прислать даташит на русском. Даташит — это то, что должно восприниматься как истина, самая верная информация. Даже там не исключены ошибки. Если к этому добавятся ошибки переводчика, он ведь тоже человек, может даже не нарочно, просто опечататься. Либо у него свое видение, может что-то упустить, на его взгляд не важное, но возможно крайне важное для вас. Особенно смешной становится ситуация, когда нужно найти документацию на не сильно популярные компоненты.

На мой взгляд, намного проще исключить заранее весь слой этих проблем, чем вылавливать их потом. Поэтому я категорически против переводов, единственный верный совет — изучайте английский язык, чтобы читать даташиты и мануалы в оригинале. Понять смысл фразы с помощью программ переводчиков можно, даже если уровень вашего языка полный ноль.

Мною был проведен эксперимент: в наличии был студент, даташит и гугл переводчик. Эксперимент №1: студенту вручен даташит и дано задание самостоятельно найти нужные значения, результат — «да как я смогу», «да я не знаю английский», «я ничего не нашел/я не понял» типичные фразы, говорящие о том, что он даже не пытался. Эксперимент №2: тому же студенту, вручен все тот же даташит и тоже задание, с той разницей, что я сел рядом. Результат — через 5 минут он сам нашел все нужные значения, абсолютно без моего участия, без знания английского.

8. Изобретайте велосипед. Например, изучаете какую то новую штуку, допустим транзистор, дядька Хоровиц со страниц своей книги авторитетно заявляет, что транзистор усиливает, всегда говорите — НЕ ВЕРЮ. Берем в руки транзистор включаем его в схему и убеждаемся что это действительно так. Есть целый пласт проблем и тонкостей, которые не описываются в книгах. Прочувствовать их можно только, когда возьмешь в руки и попробуешь собрать. При этом получаем кучу попутных знаний, узнаем тонкости. Кроме того, любая теория без практики забудется намного быстрее.

На первоначальном этапе, мне очень сильно помог один метод — сначала собираешь схему и смотришь как она работает, а затем пытаешься найти обоснование в книге. То же самое и с программной частью, когда есть готовая программа, то проще разобраться в ней и соотнести куски кода, какой за что отвечает.

Также важно выходить за рамки дозволенного, подать побольше/поменьше напряжение, делать больше/меньше резисторы и следить за изменениями в работе схемы. В мозгу все это остается и оно пригодится в будущем. Да это чревато расходом компонентов, но я считаю это неизбежным. Первое время я сидел и палил все подряд, но теперь перед тем как поставить тот или иной номинал, всегда вспоминаю те веселые времена и последствия того, если поставить неверный номинал.

9. А как бы я сделал это, если бы находился на месте разработчиков? Могу ли я сделать лучше? Каждый раз задавайте себе эти вопросы, это очень хорошо помогает продвигаться в обучении. Например, изучите интерфейсы 1wire, i2c, spi, uart, а потом подумайте чем они отличаются, можно ли было сделать лучше, это поможет осознать почему все именно так, а не иначе. Так же вы будете осознавать, когда и какой лучше применить.

10. Не ограничивайтесь в технологиях. Важно что этот совет имеет очень тонкую грань. Был этап в жизни, когда из каждой подворотни доносилось «надо бы знать ПЛИС», «а вот на ПЛИС то можно сделать». Формально у меня не было целей изучать ПЛИСины, но и пройти мимо было никак нельзя. Этому вопросу было выделено немного времени на ознакомление. Время не прошло зря, у меня был целый ряд вопросов, касаемых внутреннего устройства микроконтроллеров, именно после общения с плисинами я получил ответы на них. Подобных примеров много, все знания, которые я приобретал в том или ином виде, рано или поздно пригодились. У меня нет ни единого бесполезного примера.

Но как было сказано, вопрос технологий имеет тонкую грань. Не нужно хвататься за все подряд. В электронике много направлений. Может вам нравится аналог, может цифра, может вы специалист по источникам питания. Если не понятно, то попробуйте себя везде, но практика показывает, что вначале лучше сконцентрироваться на чем то конкретном. Даже если нужно жать в нескольких направлениях, то лучше делать это ступеньками, сначала продавить что то одно.

11. Если спросить начинающего радиолюбителя, что ему больше нравится программирование или схемотехника, то с вероятностью 99% ответ будет программирование. При этом большую часть времени эти программисты тратят на изготовление плат ЛУТом/фоторезистом. Причины в общем то понятны, но довольно часто это переходит в некий маразм, который состоит в изготовлении плат ради изготовления плат.

В интернетах практически единственный трушный путь к программированию это стать джедаем изготовления печатных плат. Я тоже прошел через этот путь, но каждый раз задаю себе вопрос зачем? С тех пор, как я приобрел себе пару плат, на все случаи жизни, каждый раз думаю о том, что мог бы спокойно прожить все это время без самодельных плат. Мой совет, если есть хоть капля сомнений, то лучше не заморачиваться и взять готовую отладочную плату, а время и средства лучше бы потратить на программирование.

12. Следующий совет, особенно болезненный, мне очень не хочется его обсуждать, но надо. Часто мне пишут, мол ххх руб за ууу дорого, где бы подешевле достать. Вроде бы обычный вопрос, но обычно я сразу напрягаюсь от него, так как зачастую он переходит в бесконечные жалобы на отсутствие денег. У меня всегда возникает вопрос: почему бы не оторвать пятую точку и не пойти работать? Хоть в тот же макдак, хоть на стройку, потерпеть месяц, зато потом можно приобрести парочку плат, которых хватит на ближайший год. Да я знаю, что маленьких городах и селах сложно найти работу, переезжайте в большой город. Работайте на удаленке, в общем нужно крутиться. Просто жаловаться нет смысла, выход из ситуации есть, кто ищет его тот находит.

13. В ту же копилку внесу очень болезненный вопрос инструмента. Инструмент должен позволять вам максимально быстро разрабатывать устройства. Почему то очень многие разработчики не ценят свое время. Типичный пример, дешевая обжимка для клемм, на которой так любят экономить многие работодатели. Проблема в том, что она даже обжимает не правильно, из-за этого провода вываливаются. Приходится производить кучу дополнительных манипуляций, соответственно тратить время. Но как известно дурак платит трижды, поэтому низкая цена кримпера возрастет во много раз, за счет затрачиваемого времени и плохого качества обжима.

Не говорю что дешевое = плохое, нет — все зависит от ситуации. Вернусь к примеру кримпера, было время когда обжимал чем попало, поэтому часто возникали проблемы. Особенно неприятно, когда заводишь плату и она не работает, после долгих поисков ошибки понимаешь что из-за плохо обжатого проводочка, обидно. С тех пор как появилась нормальная обжимка этих проблем нет. Да внутренняя жаба и квакала, и душилась от ее стоимости, но ни разу не пожалел об этом решении. Все что я хочу сказать, что поработав с нормальным инструментом, совершенно не хочется возвращаться к плохому, даже не хочется обсуждать это. Как показывает практика, лучше не экономить на инструментах, если сомневаетесь — возьмите у кого нибудь потестить, почитайте отзывы, обзоры.

14. Заведите сайт, можно писать на нем, что угодно, просто как записки. Практика показывает, что работодатели все равно его не читают, но сам факт производит большой эффект.

15. Тонкий вопрос: профильное высшее образование, нужно ли оно? Мне известны не единичные случаи, когда люди работали абсолютно без образования и по опыту и знаниям они могли дать прикурить любому дипломированному специалисту. Собственно, у меня нет профильного образования, испытываю ли я от этого дискомфорт? В определенной степени да.

Еще в самом начале, когда микроконтроллеры были для меня хобби, я много помогал с курсовыми и дипломами разных вузов, просто чтобы оценить свой уровень. Могу сказать уверенно, что уровень в целом невысок вне зависимости от имени вуза. Учиться несколько лет, для того чтобы написать такой диплом, совершенно необязательно. Достигнуть этого можно самостоятельно за весьма короткий срок. И все же зачастую бывали моменты, когда студенты знали какой то предмет, который они проходили на 2-3 курсе, а я этого не знал. Хоть все эти знания и компенсировались самообразованием, но все же лучше было бы не тратить на это время.

Вуз ради бумажки. Могу сказать, что были и такие ситуации, когда предлагали работу, которая требовала обязательного наличия образования и было обидно, что именно в тот момент бумажки не было. Но в целом, история показывает, что большинству работодателей наплевать на вашу бумажку.

Следующий момент довольно часто не учитывается, это окружение. Не забывайте, что люди, с которыми вы учитесь это ваше поколение, не исключено что вам с ними работать. Количество фирм работающих в одной отрасли сильно ограничено. Практика показывает, что даже в больших городах все и все друг о друге знают, вплоть до интимных подробностей.

Еще один момент это возможности. Зачастую у вузов есть свои возможности — оборудование, может какие то секции, может какие то программы работы за рубежом, этим нужно пользоваться, если есть хоть малейшая возможность. Если в вузе вы не видите перспективы, идите в другой, мир на каком то одном не заканчивается.

Если подытожить то совет таков: если есть хоть малейшая возможность — нужно идти учиться, обязательно по профилю, если есть хоть какие то шансы, то лезть везде, а не отсиживать штаны на задней парте. Заводить знакомства, параллельно дома самому практиковаться, развиваться.

16. Поздно ли начинать программировать в 20, 30, 40, 50 лет? Практика других людей показывает, что возраст вообще не помеха. Многие почему то не учитывают то, что есть целый пласт работы, которую молодые в силу своих амбиций не хотят делать. Поэтому работодатели предпочитают брать тех, кто будет ее тащить. Это ваш шанс зацепиться, а дальше все зависит только от вас.

И последний совет. Многие радиолюбители необщительные, сердитые и раздражительные — считайте это спецификой работы. Излучайте добро и позитив, будьте хорошим человеком.

habr.com

Выбираем микроконтроллер вместе / Habr

Прочитав эту статью я заметил большой интерес к выбору микроконтроллера у читателей и решил взглянуть на эту проблему с другой стороны.
Могу предположить, что всех интересует выбор их первого, либо первого 32-х битного МК.

Тем, кто знает, что на фотографии нет ни одного микроконтроллера — прошу в комментарии, дополнить мой рассказ и тем самым поделиться своим опытом с начинающими. Остальным, непременно под кат!

На мой взгляд чем проще будет каждый этап обучения — тем проще будет дойти до самостоятельного плаванья. Поэтому я считаю, что на начальном этапе следует брать все готовое. Ничего не придумывать самому. Представьте:
вы выбрали контроллер,
проглядели даташит,
развели под него плату,
или нашли ее на просторах интернета,
купили все компоненты(или аналоги если советуемых не было),
запаяли все,
написали первый «hello world»,
собрали программатор, прошили контроллер

И… и ничего не происходит! Что-то не работает, и вы не можете понять что: то ли в пайке ошибка, то ли что-то с программой, то ли в интернете кривая схема, то-ли проблемы с софтом.

Новичка такая ситуация ставит в тупик, знаю это по себе.
Чтобы такого не случилось проще всего сделать первые шаги под чьим-то руководством.

Преимущество простого старта отлично показывает платформа Arduino. Посудите сами: возможности контроллеров совсем не велики, цены на платы огромны, зато огромная поддержка сообщества и все уже готова, любые платы расширения, кучи примеров.
За счет этого и живет платформа!

Давайте посмотрим какой у нас вообще есть выбор! На рынке огромное количество производителей и архитектур. Но выбор на самом деле совсем не велик:
я бы сразу отсек все 8-ми и 16-ти битные архитектуры, кроме PIC и AVR, да иногда производители предлагают отладочные платы и контроллеры по очень заманчивой цене
но я не советую их брать потому, что это малораспространенные архитектуры и на них меньше примеров + пересаживаться на другие контроллеры будет сложнее.
По той же самой причине отсек все 32-х разрядные архитектуры кроме ARM + с ними еще начинаются проблемы с примерами, и они постепенно вымирают.

Арм микроконтроллеры делятся на ARM7, ARM9, Cortex M0, 3, 4.
Седьмые и девятые постепенно замещаюся кортексами и вскоре их тоже не будет.

Итого имеем:
AVR
PIC
ARM Cortex

Про пики сказать много не могу, но по-моему AVR их вытесняет из-за распространенности Arduino.
Но я все-же советовал Cortex, их возможности намного шире, к тому же есть выбор между производителями, а это на мой взгляд большой плюс. Да и существует масса упрощающих жизнь библиотек и даже генераторов кода, которые новичкам позволят не сильно вчитываясь в юзер мануал написать первую программу.

Итак, какие производители представлены у нас?
NXP, ST, Freescale, TI, Luminary Micro, Atmel и много других но поменьше распространенных.

Как выбрать из такого большого количества производителей?
надо выбирать не контроллер а отладочную плату, библиотеки, среду разработки и сообщество.

Сам щупал только NXP, ST и Freescale.

Первые 2 производителя наводнили Москву и другие города России дешевыми/бесплатными отладками — это очень хорошо в том смысле, что всегда есть у кого спросить, есть к кому обратиться.
Также не нужны никакие программаторы — все есть на борту!

Для NXP есть альтернатива от Olimex www.chipdip.ru/product/lpc-p1343.aspx
Есть и минусы: когда захочется расширить их возможности придется искать новую.

Больше всего мне понравилась отлатдка от Freescale, с которой столкнулся на работе.
На мой взгляд это лучший вариант для новичка, но у нее есть один огромный минус:
пока довольно сложно найти в продаже и регионам придется заказывать, но оно того стоит:
Первое и самое важно преимущество: стандартные платы расширения (сначала покупаете стандартный набор, потом докупаете вайфай, сенсоры и тп)

Еще большущий плюс это среда разработки: благодаря Processor Expert можно генерировать код, и море примеров с объяснениями.

Итак подведем итоги:

1 купить Arduino Uno c AVR за 1000р на плате практически ничего нет, зато в продаже множество плат расширения и огромное сообщество

2 купить STM32L-DISCOVERY c M3 за 16.22дол c сенсорными кнопками, USB и маленьким LСD-дисплеем и дебагером на борту

3 купить за 1000р LPCEXPRESSO c M3 с просто выведеными контактами и дебагером на борту

4 купить KWIKSTICK с M4 за 30дол+ доставку с большим сегментным LCD, USB, входом под наушники, динамиком, сенсорными кнопками, литиевой батарейкой, микрофоном, ИК портом, слотом под SD-карту + возможность расширения функционала без пайки и больших вложений. Большой набор библиотек, примеров и хорошая IDE.

В итоге я считаю, что надо покупать STM32L-DISCOVERY и начинать с нее,
либо если не лень заморочиться с заказом платы и чуть-чуть побольше заплатить брать KWIKSTICK — с ней старт будет полегче, да и хватит ее на дольше, но для общения с коллегами нужен английский.

Прошу всех, знакомых с МК написать свой выбор отладочных средств для новичка, я с удовольствием дополню статьюю

UPD: stm32l-discovery по таким ценам можно купить в Компэле
Kwikstick на сайте freescale

habr.com

Автор: admin

Отправить ответ

avatar
  Подписаться  
Уведомление о