схема подключения, принцип работы, замена,
Дроссель (балласт) является обязательным атрибутом практически любого люминесцентного светильника. В этой статье мы рассмотрим, что это за прибор, как он работает и для чего вообще нужен дроссель в люминесцентных лампах.
Для чего нужна пускорегулирующая аппаратура
Прежде чем мы начнем разговор о дросселе, разберемся, что такое пускорегулирующая аппаратура и для чего она нужна. Для того чтобы ответить на эти вопросы, необходимо понять, как работает люминесцентная лампа (ЛДС). Взглянем на ее схематическое изображение.
Схема, поясняющая устройство ЛДСПеред нами стеклянная колба в виде трубки, в концы которой впаяны две спирали из вольфрама – анод и катод. Сама трубка заполнена инертным газом с небольшим добавлением ртути. Если на анод и катод подать рабочее напряжение, то лампа не засветится – слишком велико сопротивление инертного газа, и тока между электродами не будет.
Для того чтобы прибор запустить, необходимо разогреть спирали. Как только они разогреются, начнется термоэлектронная эмиссия, такая же, как в обычной электронной вакуумной лампе для радиоприемников. Между электродами начнет течь ток, а пары ртути станут излучать ультрафиолет. Попадая на люминофор, ультрафиолет заставляет его ярко светиться. Само же УФ излучение практически полностью поглощается стеклом и люминофором.
Пуск ДЛС обеспечивает специальный прибор – стартер, который кратковременно подает на спирали напряжение (о схеме его включения поговорим позже). Он является пусковой частью пускорегулирующей аппаратуры.
Стартеры для запуска ДЛС
Заставить лампу работать (как говорят, «запустить») можно и другим способом, кратковременно подав на электроды повышенное напряжение. Именно так и работают электронные пускорегулирующие аппараты, о которых поговорим позже.
Но после пуска ЛДС начинаются новые проблемы: тлеющий разряд в колбе переходит в дуговой и мгновенно приводит к короткому замыканию. Чтобы этого не произошло, ток через лампу во время ее работы необходимо ограничивать. Эту роль исполняет еще один прибор – электромагнитный балласт. Он является регулирующей частью пускорегулирующей аппаратуры.
ЭмПРА для ЛДС мощностью 36 Вт
Таким образом, без стартера лампа не запустится, без балласта – сгорит. Комплекс этих двух устройств и называют пускорегулирующим. Теперь, я думаю, тебе понятно, для чего пускорегулирующая аппаратура нужна, и что без нее никак не обойтись.
к содержанию ↑Важно! Мощность дросселя должна соответствовать мощности лампы. В противном случае лампа либо тут же погаснет, либо не запустится вовсе, либо сгорит.
Схема подключения люминесцентной лампы
Теперь пора узнать, как подключить ЛДС к дросселю и стартеру.
Схема подключения одной люминесцентной лампыКак это работает? При подаче на светильник напряжения практически все оно, протекая через дроссель, прикладывается к стартеру, поскольку тока через саму лампу нет. За счет тлеющего разряда биметаллическая пластина в стартере разогревается и замыкает цепь, подавая на спирали полное напряжение сети. Тлеющий разряд в стартере гаснет, биметаллическая пластина остывает и размыкает цепь, но к этому времени спирали лампы уже разогреты. За счет обратной самоиндукции дроссель формирует короткий высоковольтный (около 1 кВ) разряд и зажигает лампу.
Важно! Если старта не произошло, то процесс пуска повторяется. Ты наверняка видел старые ЛДС, которые часами «моргают», не могут зажечься.
Теперь напряжение на стартере недостаточно для начала в нем тлеющего разряда, и в дальнейшей работе светильника он не участвует. В работу включается балласт, который ограничивает ток через газоразрядный прибор на заданном уровне. Величина его зависит от мощности дросселя. Именно поэтому я упоминал выше, что мощность дросселя должна соответствовать мощности ЛДС. В противном случае ток будет слишком мал или слишком велик.
Наглядная иллюстрация работы люминесцентного светильника со стартером и электромагнитным дросселемПару слов по поводу конденсатора, стоящего на входе схемы. Имея большую индуктивность, балласт потребляет не только активную, но и реактивную энергию, причем последняя расходуется впустую – на нагрев самого дросселя. Конденсатор, который называют компенсирующим, уменьшает расход реактивной энергии, увеличивая КПД конструкции и облегчая режим работы самого дросселя.
Можно ли подключить к одному дросселю две ЛДС? Тут все будет зависеть от рабочего напряжения самих ламп. Если они рассчитаны на напряжение 220 В, то придется собрать схему с двумя дросселями, точнее, собрать две схемы, которые я привел выше. Но если лампы рассчитаны на напряжение 110 В, то такое вполне возможно.
Схема подключения двух люминесцентных ламп к одному дросселю
Принцип работы этой схемы такой же, как и предыдущей, только каждый стартер отвечает за пуск своей ЛДС.
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопрос экспертуСобирая такую схему, нужно взять стартеры на 110 В и выбрать дроссель, мощность которого равна суммарной мощности ламп. Кроме того, мощность используемых ламп должна быть одинаковой. Именно такая схема используется в растровых светильниках, которые применяются в офисах. В них установлено 4 лампы по 18 Ватт. Лампы запитаны попарно, установлено 2 дросселя.
Нередко на дросселе отечественного производства можно увидеть аббревиатуру ЭмПРА. Именно так правильно называется электромагнитный дроссель – Электромагнитный Пускорегулирующий Аппарат.
к содержанию ↑Зачем нужен дроссель в схеме
В принципе, зачем нужен дроссель для ламп, мы выяснили: чтобы ограничить через них ток на рабочем уровне. Как он включается, мы тоже знаем. Осталось узнать, как и за счет чего он ограничивает ток, поэтому пора поговорить об устройстве дросселя и принципе его работы.
Дросселем в радиотехнике называют обмотку, навитую на сердечник того или иного типа. Но такой дроссель при частоте 50 Гц имеет относительно низкую индуктивность. Чтобы повысить индуктивность дросселя для люминесцентных ламп без увеличения его габаритов, применяют разомкнутый магнитопровод, оставляя между секциями пластин небольшие зазоры.
Дроссель для ЛДС – та же катушка индуктивности, но с незамкнутым магнитопроводомПочему дроссель оказывает сопротивление току? Проходя через катушку дросселя, переменный ток намагничивает сердечник, запасая в нем магнитную энергию. Причем при одной полуволне она запасается с одним знаком, при другой – с другим. Но чтобы запасти энергию с другим знаком, нужно сначала «уничтожить» предыдущий: перемагнитить сердечник, который, конечно, “сопротивляется” и не дает это сделать быстро. Именно за счет такого постоянного перемагничивания ток ограничивается.
Вполне очевидно, что дроссель будет выполнять свои функции только в цепи переменного тока.
к содержанию ↑Преимущества и недостатки электромагнитного дросселя
Теперь поговорим о преимуществах и недостатках. К преимуществам электромагнитного дросселя можно отнести:
- Относительно невысокую стоимость.
- Простоту конструкции.
- Долговечность.
Недостатков у этого прибора, увы, немного больше. Это:
- Большие массогабаритные показатели.
- Мерцание лампы с удвоенной частотой питающей сети.
- Гудение.
- Низкий КПД из-за большого индуктивного сопротивления.
- При отрицательных напряжениях может не запустить лампу.
- Долгий запуск (от 1 до 3 сек.).
- При тяжелом пуске лампа может долго «моргать», из-за чего у нее перегорают спирали.
Можно ли обойтись без него
Выше я писал, что дроссель – неотъемлемая часть пускорегулирующей аппаратуры, а значит, обойтись без него нельзя. Но дроссель дросселю рознь. Существуют приборы, которые ограничивают ток другим, электронным методом. Их называют ЭПРА – Электронный Пускорегулирующий Аппарат.
ЭПРА для люминесцентных ламп
Как видно из схемы, нанесенной на корпус прибора, этот может обслуживать сразу 4 ЛДС, причем для их пуска стартеры не потребуются. Оправдана ли замена ЭмПРА на ЭПРА? Безусловно, поскольку ЭПРА:
- Имеет небольшие массогабариты.
- Не гудит.
- Не вызывает мерцания лампы с частотой сети.
- Имеет высокий КПД (на 30-50% выше, чем у ЭмПРА).
- Запускает ЛДС практически мгновенно.
к содержанию ↑Электронный дроссель сложнее и дороже электромагнитного, но цена вполне компенсируется достоинствами.
Типовые неисправности — замыкание, перегрев, обрыв
А теперь рассмотрим возможные неисправности электромагнитных дросселей и научимся их (дроссели) проверять. Самые распространенные неисправности ЭмПРА:
- Перегрев. Обычно вызывается неправильной эксплуатацией (светильник не имеет вентиляции или стоит в жарком помещении), напряжением сети выше нормального и производственным браком (межвитковое замыкание).
- Обрыв обмотки. Может быть вызван перегревом, механическим повреждением или просто производственным браком.
- Замыкание. Может быть как межвитковое, так и полное. Причины те же: брак, перегрев, механическое повреждение.
Как проверить электромагнитный дроссель
Сделать это несложно, причем никаких измерительных приборов не потребуется. Достаточно собрать простую схему прямо на коленках, подключив лампу накаливания параллельно стартеру и через дроссель запитанную от розетки:
Схема проверки дросселяВажно! Мощность лампы для проверки должна примерно равняться мощности проверяемого дросселя (балласта).
Итак, собираем схему, включаем. В результате видим:
- Лампа не горит. В балласте обрыв.
- Горит на полную яркость. Замыкание.
- Моргает или горит вполнакала. Балласт, возможно, исправен.
Пусть теперь схема поработает хотя бы с полчаса. Если балласт нагрелся выше 70 градусов Цельсия, то, скорее всего, он имеет межвитковое замыкание. Такой прибор просто не запустит ЛДС, а если и запустит, то из него в скором времени пойдет дым.
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопрос экспертуВозможен еще один тип неисправности – пробой на корпус. Тут уже понадобится мультиметр, который поставлен в режим измерения максимально больших сопротивлений. Измеряем сопротивление между клеммами и корпусом дросселя, мультиметр должен показывать «бесконечность».
Вот и подошла к концу беседа об электромагнитных дросселях. Теперь ты знаешь, для чего они нужны, как устроены и даже сможешь самостоятельно проверить этот простой, но такой необходимый прибор.
ПредыдущаяЛюминесцентныеОсобенности энергосберегающих люминесцентных ламп
СледующаяЛюминесцентныеСхема подключения и характеристики люминесцентных ламп на 18 Вт
Чтение схем: дроссель, катушка, конденсатор
Дроссель, катушка индуктивности это спиралевидная, винтовидная либо винтоспиралевидная катушка, сконструированная из свёрнутого, хорошо заизолированного проводника. Данный провод обладает значительными показателями индуктивности при достаточно малой ёмкости и сопротивлении.
И отсюда следует, что при протекании по катушке переменного электрического тока, наблюдается значительная инерционность.
Дроссели в основном применяются: для подавления незначительных помех, для сглаживания относительно небольших пульсаций, а также для ограничения электрического тока и накопления энергии. На схемах катушка индуктивности без магнитопровода обозначена под номером 1. Под номером 2 изображена также катушка, но уже с отводами.
№ 3 – Дроссель со скользящими контактами;
№ 4 – Дроссель с ферромагнитным магнитопроводом;
№ 5 – Реактор.
Обычно обозначение №5 применяется в схемах электроснабжения. Реакторы обычно применяются для сглаживания пульсаций выпрямленного тока в цепях тяговых двигателей.
Катушки индуктивности могут иметь не только ферромагнитные магнитопроводы, как у дросселей, но и магнитопроводы со специальными свойствами. Они рассмотрены в статье обозначений трансформаторов и автотрансформаторов.
О видах и характеристиках трансформаторов, можете почитать тут.
Конденсатор в переводе с латинского языка «condensare» — означает «уплотнять», «сгущать». Данный элемент представляет собой — специфический двухполюсник, обладающий как определёнными, так и переменными значениями показателя емкости и относительно малым показателем проводимости. Конденсатор, первым делом, предназначен для накопления электрической энергии и заряда электрического поля.
Конденсатор – пассивный электронный компонент. Самый простой конденсатор – это конструкция, состоящая из двух электродов в виде пластин, которые называются обкладками, разделённых слоем диэлектрика (все вещества, которые не пропускают электрический ток, называются диэлектриками). Толщина этого вещества с размерами самих обкладок довольно мала. Конденсаторы, по своим свойствам, подразделяются на конденсаторы переменной и постоянной ёмкости. Как следует из названий, емкость переменных конденсаторов можно изменять вручную, а у постоянных конденсаторов емкость – неизменна.
Постоянный и переменный конденсаторы
На электрических схемах постоянные конденсаторы обозначаются как на картинках № 6. Далее на картинках № 7 / 8/ 9 /10 представлены поляризованный, и электролитический поляризованный и неполяризованный конденсаторы соответственно. Обозначение № 9 – уже устарело, и его можно встретить только на старых советских схемах.
Конденсаторы переменной емкости на электротехнических схемах обозначены рисунками вида: рис. № 11, № 12– подстроечный. На рис № 13 проиллюстрирован – конденсатор – с нелинейной зависимостью емкости от напряжения.
Вариконд – конденсатор с нелинейной зависимостью ёмкости от напряжения
Если нужно показать подвижную обкладку конденсатора, то есть его ротор, то ее изображают в виде дуги № 14. На рис. № 15 приведено старое обозначение, здесь вместо дуги ставили точку.
Что такое дроссель в электрике: устройство, назначение, проверка
Чтобы понять, как работает схема, необходимо знать не только состав элементов, но и точно представлять, что делает конкретный элемент или их группа. В этой статье будем разбираться с тем, что такое дроссель, как он устроен и работает в различных устройствах и схемах.
Содержание статьи
Что такое дроссель, внешний вид и устройство
Дроссель — это один из видов катушки индуктивности, представляет собой специальную медную проволоку, намотанную на сердечник. Но не всё так просто, бывают они и без сердечника, называются бескаркасные или воздушные. Внешне некоторые похожи на трансформатор. Отличие в том, что дроссель имеет только одну обмотку, а у трансформатора их две или больше. Если вывода только два, то перед вами точно не трансформатор.
Дроссели без сердечника представляют собой намотанную спиралью проволоку. Как выглядит дроссель в электротехнике разобрались, теперь поговорим о его конструкции.
Что такое дроссель: это намотанная в виде спирали медная проводка с сердечником или без
Как уже говорили, сердечник у дросселя может быть, а может и не быть. Сердечник может быть из токопроводящего материала — металла, а может из магнитного. Наличие или отсутствие сердечника, а также его тип (не только материал, но и форма) влияют на параметры катушки индуктивности.
Элементы без сердечников применяются для отсечения высоких частот, с сердечником чаще применяют для накопления энергии. Есть и ещё один момент: если сравнить дроссели с одинаковыми параметрами с сердечником и без, то те которые его имеют, размером намного меньше. Чем лучше проводимость сердечника, тем меньше идёт проволоки и меньшие размеры имеет элемент.
Схематическое изображение дросселя с магнитным сердечником и без
Несколько слов о проволоке, которую используют для намотки дросселя. Это специальный изолированный провод. Изоляция — тонкий слой диэлектрического лака, он незаметен, но изолирует хорошо.
Так что, при самостоятельной намотке катушки, не используйте обычную проволоку, только специальную, покрытую изоляцией.Дроссель на схеме обозначается графическим изображением полуволны. Если он с магнитным сердечником, добавляется черта. Если требуется какой-то специальный металл это также указывается рядом со схематическим изображением. Также может быть указан диаметр провода (L1).
Свойства, назначение и функции
Теперь разберём, что такое дроссель с точки зрения электрики. Если говорить коротко — это элемент, который сглаживает ток в цепи, что отлично видно на графике. Если подать на него переменный ток, увидим, что напряжение на катушке возрастает постепенно, с некоторой задержкой. После того, как напряжение убрали, в цепи еще какое-то время протекает ток. Это происходит так как поле катушки продолжает «толкать» электроны благодаря запасённой энергии. То есть, на дросселе ток не может появляться и исчезать мгновенно.
Ток на дросселе возрастает плавно и так же плавно снижается. Глядя на эти графики становится понятно, что дроссель — это элемент, сглаживающий ток
Это свойство и используют, когда надо ограничить ток, но есть ограничения по нагреву (желательно его избежать). То есть дроссель используют как индуктивное сопротивление, задерживающее или сглаживающее скачки тока. Как и резистор, катушка индуктивности имеет определённое сопротивление, что вызывает падение напряжение и ограничивает ток. Вот только греется намного меньше. Потому его часто используют как индуктивную нагрузку.
У дросселя есть два свойства, которые тоже используют в схемах.
- так как это подвид катушки индуктивности, то он может запасать заряд;
- отсекает ток определённой частоты (задерживаемая частота зависит от параметров катушки).
В некоторых устройствах (в люминесцентных лампах) дроссель ставят именно для накопления заряда. Во всякого рода фильтрах его используют для подавления нежелательных частот.
youtube.com/embed/RMUzZ_FVGs0?ecver=1″ frameborder=»0″ allowfullscreen=»allowfullscreen»/>
Виды и примеры использования
Чтобы более точно усвоить, что такое дроссель, поговорим о конкретном применении этого элемента в схемах. Его можно увидеть практически в любой схеме. Их ставят, если надо развязать (сделать независимыми друг от друга) участки, работающие на разной частоте. Они сглаживают резкие скачки тока (увеличение и падение), используются для подавления шумов. В некоторых схемах работают как стартовые, способствуя увеличению напряжения в момент старта. В зависимости от назначения, делятся на следующие виды:
- Сглаживающие. В силу индуктивности, препятствуют резкому повышению или понижению тока.
- Фильтрующие. Специально подобранные параметры отсекают (подавляют) выбросы на определённых частотах (или в целом диапазоне). Ставят их и на входе статических конденсаторов.
- Сетевые. Ставят в приборах, питающихся от однофазной сети. Служат для предохранения аппаратуры от перенапряжения.
- Моторные. Ставят на входе электроприводов, чтобы сгладить пусковые токи.
Практически в любой схеме есть этот элемент
Как видите, дроссели в электрике имеют широкое применение. Есть они в любой бытовой аппаратуре, даже в лампах. Не тех, которые работают с лампами накаливания, а тех, которые называют лампами дневного света, а так же в экономках и в светодиодных. Просто там они очень небольшого размера. Если разобрать плеер, проигрыватель, блок питания, — везде можно найти катушку индуктивности.
Дроссель в лампах дневного света
Для работы лампы дневного света необходим пуско-регулирующий аппарат. В более «старом» варианте он состоит из дросселя и стартера. Зачем дроссель в люминесцентной лампе? Он выполняет сразу две задачи:
- При пуске накапливает заряд, необходимый для розжига лампы (пусковой).
- Во время работы сглаживает возможные перепады тока, обеспечивая стабильное свечение лампы.
Как подключается дроссель в светильнике дневного света
В схеме люминесцентной лампы с электромагнитным ПРА, дроссель включается последовательно с лампой, стартер — параллельно. При неисправности одного из элементов или сгорании лампы, она просто не зажигается. Принцип работы этого узла такой. При включении напряжения в 220 В недостаточно для старта лампы. Пока она холодная, имеет очень большое сопротивление и ток течёт через постепенно разогревающиеся катоды лампы, затем через стартер.
В стартере есть биметаллический контакт, который при прохождении тока нагревается, начинает изгибаться. В какой-то момент он касается второго неподвижного контакта, замыкая цепь. Тут в работу вступает дроссель, пока грелся контакт стартера, он накапливал энергию. В момент когда происходит разряд стартера, он выдаёт накопленную энергию, увеличивая напряжение. В момент старта оно может достигать 1000 В. Этот разряд провоцирует разгон электродов, вырывая их из катодов лампы. Высвобождённые электроды начинают движение, ударяются о люминесцентное покрытие лампы, она начинает светиться. Дальше ток протекает не через стартер, а через лампу, так как её сопротивление стало ниже. В этом режиме дроссель работает на сглаживание скачков тока.
Зачем нужен дроссель в блоке питания
Как уже говорили, дроссель сглаживает пульсации тока. Если он при этом обладает значительным сопротивлением, параметры можно подобрать так, чтобы подавить определённые частоты.
Дроссель для сглаживания пульсаций
Второе назначение дросселя в блоке питания — сглаживание тока. Для этого используют низкочастотные дросселя с сердечниками из магнитной стали. Пластины друг от друга изолированы слоем диэлектрика (могут быть залиты лаком). Это необходимо чтобы избавится от самоиндукции и токов Фуко. Катушки такого типа имеют индуктивность порядка 1 Гн, так что сглаживают любые колебания тока, гасят его выбросы.
Как проверить дроссель мультиметром
Что такое дроссель и для чего его применяют разобрались, теперь ещё стоит научиться определять его работоспособность. Если мультиметр может измерять индуктивность, всё несложно. Просто проводим измерение. Если параметры дросселя нам неизвестны, выставляем самый большой предел измерений. Обычно это несколько сотен Генри. На шакале обозначаются русскими Гн или латинской буквой H.
Установив переключатель мультиметра в нужное положение, щупами касаемся выводов катушки. На экране высвечивается какое-то число. Если цифры малы, переводим переключатель в одно из следующих положений, ориентируясь по предыдущим показателям.
Функция измерения индуктивности есть далеко не во всех мультиметрах
Например, если высветилось 10 мГн, выставляем предел измерения ближайший больший. После этого повторно проводим измерения. В этом случае на экране высветится индуктивность измеряемого дросселя. Имея паспортные данные, можно сравнить реальные показатели с заявленными. Они не должны сильно отличаться. Если разница велика, надо дроссель менять.
Если мультиметр простой, функции измерения индуктивности в нём нет, но есть режим измерения сопротивлений, также можно проверить его работоспособность.
Но в данном случае мы будем измерять не индуктивность, а сопротивление. Измерив сопротивление обмотки мы просто сможем понять, работает дроссель или он в обрыве.Так можно проверить исправность дросселя для ламп дневного света
Для прозвонки дросселя тестером переводим переключатель мультиметра в положение измерения сопротивлений. Выставляем предел измерений, лучше выставить нижний,чтобы видеть сопротивление обмотки. Далее щупами прикасаемся к концам обмотки. Должно высветиться какое-то сопротивление. Оно не должно быть бесконечно большим (обрыв) и не должно быть нулевым (короткое). В обоих случаях дроссель нерабочий, все остальные значения — признак работоспособности.
Чтобы убедиться в отсутствии короткого замыкания на витках дросселя, можно перевести мультиметр в режим прозвонки и прикоснуться щупами к выводам. Если звенит — короткое есть, где-то есть пробой, а это значит, что нужен другой дроссель.
Принцип работы дросселя
Катушка индуктивности, дроссель — принцип работы
Катушка индуктивности – устройство, основным компонентом которого является проводник скрученный в кольца или обвивающий сердечник.
При прохождении тока, вокруг скрученного проводника (катушки), образуется магнитное поле (она может концентрировать переменное магнитное поле), что и используется в радио- и электротехнике.
К точной и компьютерной технике технике больше близок дроссель (Drossel, регулятор, ограничитель), так как он чаще всего применяется в цепях питания процессоров, видеокарт, материнских плат, блоков питания.
В последнее время применяются индукторы закрытые в корпуса из металлического сплава для уменьшения наводок, излучения, шумов и высокочастотного свиста при работе катушки.
Дроссель служит для уменьшения пульсаций напряжения, сглаживания или фильтрации частотной составляющей тока и устранения переменной составляющей тока. Сопротивление дросселя увеличивается с увеличением частоты, а для постоянного тока сопротивление очень мало. Характеристики дросселя получаются от толщины проводника, количества витков, сопротивления проводника, наличия или отсутствия сердечника и материала, из которого сердечник сделан. Особенно эффективными считаются дроссели с ферритовыми сердечниками (а также из альсифера, карбонильного железа, магнетита) с большой магнитной проницаемостью.
Используется в выпрямителях, сетевых фильтрах, радиотехнике, питающих фазах высокоточной аппаратуры и другой технике требующей стабильного и «правильного» питания. Многослойная катушка может выступать и в качестве простейшего конденсатора, так как имеет собственную ёмкость. Правда, от данного эффекта пытаются больше избавиться, чем его усиливать и он считается паразитным.
Как работает дроссель
В цепях переменного тока, для ограничения тока нагрузки, очень часто применяют дроссели — индуктивные сопротивления. Перед обычными резисторами здесь у дросселей имеется серьезные преимущества — значительная экономия электроэнергии и отсутствие сильного нагрева.
Устройство дросселя
Устроен дроссель очень просто — это катушка из электрического провода, намотанная на сердечнике из ферромагнитного материала. Приставка ферро, говорит о присутствии железа в его составе (феррум — латинское название железа), в том или ином количестве.
Принцип работы дросселя основан на свойстве, присущем не только катушкам но и вообще, любым проводникам — индуктивности.
Это явление легче всего понять, поставив несложный опыт.
Для этого требуется собрать простейшую электрическую цепь, состоящую из низковольтного источника постоянного тока (батарейки), маленькой лампочки накаливания, на соответствующее напряжение и достаточно мощного дросселя (можно взять дроссель от лампы ДРЛ-400 ватт).
Без дросселя схема будет работать как обычно — цепь замыкается, лампа загорается. Но если добавить дроссель, подключив его последовательно нагрузке(лампочке), картина несколько изменится.
Присмотревшись, можно заметить, что, во-первых, лампа загорается не сразу, а с некоторой задержкой, во-вторых — при размыкании цепи возникает хорошо заметная искра, прежде не наблюдавшаяся. Так происходит, потому что в момент включения ток в цепи возрастает не сразу — этому препятствует дроссель, некоторое время поглощая электроэнергию и запасая ее в виде электромагнитного поля. Эту способность и называют — индуктивностью.
Чем больше величина индуктивности, тем большее количество энергии может запасти дроссель. Еденица величины индуктивности — 1 Генри В момент разрыва цепи запасеная энергия освобождается, причем напряжение при этом может превысить Э.Д.С. используемого источника в десятки раз, а ток направлен в противоположную сторону. Отсюда заметное искрение в месте разрыва. Это явление называется — Э.Д.С. самоиндукции.
Если установить источник переменного тока вместо постоянного, использовав например, понижающий трансформатор, можно обнаружить что та же лампочка, подключенная через дроссель — не горит вовсе. Дроссель оказывает переменному току гораздо большое сопротивление, нежели постояному. Это происходит из за того, что ток в полупериоде, отстает от напряжения.
Получается, что действующее напряжение на нагрузке падает во много раз(и ток соответственно), но энергия при этом не теряется — возвращается за счет самоиндукции обратно в цепь. Сопротивление оказываемое индуктивностью переменному току называется — реактивным. Его значение зависит от величины индуктивности и частоты переменного тока. Величина индуктивности в свою очередь, находится в зависимости от количества витков катушки и свойства материала сердечника, называемого — магнитной проницаемостью, а так же его формы.
Магнитная проницаемость — число, показывающее во сколько раз индуктивность катушки больше с сердечником из данного материала, нежели без него(в идеале — в вакууме.)Т. е — магнитная проницаемость вакуума принята за еденицу.
В радиочастотных катушках малой индуктивности, для точной подстройки применяются сердечники стержеобразной формы. Материалами для них могут являться ферриты с относительно небольшой магнитной проницаемостью, иногда немагнитные материалы с проницаемостью меньше 1.В электромагнитах реле — сердечники подковоообразной и цилиндрической формы из специальных сталей.
Для намотки дросселей и трансформаторов используют замкнутые сердечники — магнитопроводы Ш — образной и тороидальной формы. Материалом на частотах до 1000 гц служит специальная сталь, выше 1000 гц — различные ферросплавы. Магнитопроводы набираются из отдельных пластин, покрытых лаком.
У катушки, намотанной на сердечник, кроме реактивного(Xl) имеется и активное сопротивление(R). Таким образом, полное сопротивление катушки индуктивности равно сумме активной и реактивной составляющих.
Как работает трансформатор
Рассмотрим работу дросселя, собранного на замкнутом магнитопроводе и подключенного в виде нагрузки, к источнику переменного тока. Число витков и магнитная проницаемость сердечника подобраны таким образом, что его реактивное сопротивление велико, ток протекающий в цепи соответственно — нет.
Ток, переодически изменяя свое направление, будет возбуждать в обмотке катушки (назовем ее катушка номер 1) электромагнитное поле, направление которого будет также переодически меняться — перемагничивая сердечник. Если на этот же сердечник поместить дополнительную катушку(назовем ее — номер 2), то под действием переменного электромагнитного поля сердечника, в ней возникнет наведенная переменная Э. Д.С.
Если количество витков обеих катушек совпадает, то значение наведенной Э.Д.С. очень близко к значению напряжения источника питания, поданного на катушку номер 1. Если уменьшить количество витков катушки номер 2 вдвое, то значение наведенной Э.Д.С. уменьшится вдвое, если количество витков наоборот, увеличить — наведенная Э.Д.С. также, возрастет. Получается, что на каждый виток, приходится какая-то определенная часть напряжения.
Обмотку катушки на которую подается напряжение питания (номер 1) называют первичной. а обмотка, с которой трансформированое напряжение снимается — вторичной .
Отношение числа витков вторичной(Np ) и первичной (Ns ) обмоток равно отношению соответствующих им напряжений — Up (напряжение первичной обмотки) и Us (напряжение вторичной обмотки).
Таким образом, устройство, состоящее из замкнутого магнитопровода и двух обмоток в цепи переменного тока, можно использовать для изменения питающего напряжения — трансформации. Соответственно, оно так и называется — трансформатор.
Для чего нужен дроссель
Виды дросселей
Дроссель используется вместо последовательного резистора, потому что обеспечивает лучшую фильтрацию (меньше остаточной пульсации переменного тока на источнике питания, что означает меньшее гудение на выходе усилителя) и меньшее падение напряжения. «Идеальный» индуктор будет иметь нулевое сопротивление постоянному току.
При использовании резистора большего размера, вы быстро достигаете точки, где падение напряжения возрастает до пиковых величин, и, кроме того, «провал» питания становится значительным, потому что разность токов между полной выходной мощностью и холостым ходом может быть немалой, особенно в усилителе класса AB.
Существует две распространенные конфигурации источника питания: конденсаторный вход и дроссельный вход.
Входной фильтр конденсатора не обязательно должен иметь дроссель, но для дополнительной фильтрации тот необходим. Источник питания дросселя по определению обязан оснащаться дросселем.
Источник питания с дросселем
На входе конденсатора будет конденсатор фильтра, следующий непосредственно за выпрямителем. Тогда он может иметь или не иметь второго фильтра, состоящего из последовательного резистора или дросселя, за которым следует другой конденсатор. Сеть «колпачок – индуктор – колпачок» обычно называется сетью «пи-фильтр». Преимущество входного фильтра конденсатора заключается в более высоком выходном напряжении, но он имеет более низкое регулирование напряжения, чем входной фильтр дросселя.
Источник питания дросселя будет иметь дроссель, следующий сразу за выпрямителем. Основное преимущество входного питания дросселя – лучшее регулирование напряжения, но за счет гораздо более низкого выходного напряжения. Входной фильтр дросселя должен иметь определенный минимальный ток, протекающий через него для поддержания регулирования.
Дроссель в собранном приборе
Пример:
Разница напряжений между двумя типами фильтров может быть довольно большой. Например, предположим, что у вас есть трансформатор 300-0-300 и двухполупериодный выпрямитель.
Если вы используете конденсаторный входной фильтр, вы получите максимальное напряжение постоянного тока без нагрузки в 424 вольт, которое снизится до напряжения, зависящего от тока нагрузки и сопротивления вторичных обмоток.
Если вы используете тот же трансформатор с входным фильтром дросселя, пиковое выходное напряжение постоянного тока будет составлять 270 В и будет гораздо более строго регулироваться, чем входной фильтр конденсатора (меньше перемен напряжения питания с изменениями тока нагрузки).
Как обозначается дроссель на схеме
Условные обозначения:
Условное графическое обозначение дросселей
Из чего состоит дроссель
Элементы:
- катушка;
- провод, намотанный на сердечник;
- магнитопровод.
Есть схожесть с трансформатором, но слой обмотки всего один. Такая конструкция помогает стабилизировать сеть, а также исключить шанс резкого скачка напряжения.
Как подключить дроссель
Схема подключения очень простая и представляет собой цепь последовательно соединённого дросселя и самого устройства ДРЛ 250. Подключение идёт через сеть 220 вольт и работает при обычной частоте. Поэтому их без труда можно поставить в домашнюю сеть. Дроссель работает как стабилизатор и корректировщик напряжения.
Схема подключения дросселя
Как отличить резистор от дросселя
По внешнему виду: от резисторов отличаются обычно толщиной (дроссели толще), от конденсаторов – неправильной формой «капельки».
Более точный способ – сопротивление. У дросселя оно почти нулевое.
Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:Проголосовавших: 3 чел.
Средний рейтинг: 5 из 5.
Дроссель для ДРЛ — устройство и подключение лампы
Потребность общества в осветительных устройствах большой мощности свечения и одновременно экономичных в потреблении электроэнергии, а также долговечных в эксплуатации удовлетворяют производители ламп ДРЛ и других газоразрядных ламп. Их применяют для освещения большой территории, объектов хранения материалов, зданий заводов. Лампа ДРЛ может иметь разброс мощности от 50 до 2 000 ватт, а подключается к однофазной электрической сети с напряжением 220 вольт и частотой 50 герц.
Для чего нужен дроссель?
Дроссель для ДРЛ-ламп применяется для пуска, на рынке есть разные виды осветительных устройств, в которых он используется:
- Лампы люминесцентные и ультрафиолетового освещения.
Ультрафиолетовая лампа
- Разного вида дуговые ртутные осветительные приборы: ДРТ, ДРЛ, ДРИЗ, ДРШ, ДРИ.
Дуговые ртутные лампы
- Дуговые натриевые лампы: ДНаМТ, ДНаС, ДНаТ.
Дуговая натриевая лампа
Все осветительные устройства имеют отличия в принципе получения светового потока, есть и другие различия:
- в их устройстве применяются разные материалы;
- отличаются наличием химических элементов;
- внутри колб давление по собственным параметрам каждого осветительного устройства;
- они различны по мощности и яркости светового потока.
Объединяет эти виды ламп непостоянная величина пускового тока и сопротивления в процессе пуска и дальнейшей работы.
Для того чтобы ограничить величину рабочего тока, в осветительных устройствах этого вида применяют разного вида балласт: ЭПРА, ПРА и ЭмПРА, которые представляют собой катушки индуктивности (дроссели). В момент пуска каждое устройство этого типа имеет высокое значение сопротивления; когда осветительный прибор разжигается, происходит процесс электропробоя в среде инертного газа, которым наполнена лампа (ртутный или натриевый пар), и возникает дуговой разряд.
Схема подключения:
Розжиг лампы:
В процессе, когда происходит зажигание лампы, ионизированный газ теряет сопротивление от дугового разряда в несколько десятков раз, и по этой причине возрастает ток, идет выделение тепла. Если не ограничивать величину тока, он мгновенно создаст перегретую газовую среду, что приведет к поломке осветительного устройства, его повреждению изнутри. Для предотвращения этого в цепь прибора освещения включают сопротивление (дроссель).
Физические параметры и схема подключения дросселя
Последовательно включенный дроссель ДРЛ имеет реактивное сопротивление, величина которого зависит от катушки индуктивности: один генри пропускает один ампер тока, когда напряжение – один вольт.
ДроссельК параметрам катушки индуктивности относятся:
- квадрат используемой медной проволоки;
- количество витков;
- какой сердечник и величина поперечного сечения магнитопровода;
- какое электромагнитное насыщение.
Катушка индуктивности имеет активное сопротивление, которое всегда учитывается, когда проводится расчет балласта для каждого типа прибора освещения этого вида с учетом его мощности, от этого зависят габаритные размеры дросселя.
Рассмотрим простую схему включения балласта, когда в конструкции лампы ДРЛ предусмотрены электроды (дополнительные) для процесса возникновения тлеющего разряда, переходящего в электродугу.
Схема подключения лампы ДРЛВ этом случае индуктивность ограничивает величину рабочего тока в осветительном устройстве.
Балласт для люминесцентных ламп
Конструктивно люминесцентный прибор освещения для пуска использует дроссель ПРА, в новых видах этого осветительного устройства применяется ЭПРА, это электронный вид пускорегулирующего аппарата. Задачей этого устройства является сдерживание возрастающего значения тока на одном уровне, который поддерживает необходимое напряжение на электродах внутри осветительного прибора.
Рассмотрим, как работает балласт для люминесцентных светильников. Когда его подключают, в цепи между параметрами напряжения и тока происходит сдвиг фаз, отставание характеризуется коэффициентом мощности, cos φ. Когда рассчитывается активная нагрузка, эту величину надо учитывать, так как при маленьком значении этого параметра нагрузка растет, по этой причине в схему пуска включается и конденсатор, который выполняет компенсационную функцию.
Схема включенияСпециалисты по параметрам потери мощности различают несколько исполнений этих осветительных устройств:
- обычный вид исполнения, с литерой D;
- пониженный вид исполнения, с литерой B;
- низкий вид исполнения, с литерой C.
Применение балласта имеет свои положительные моменты:
- осветительное устройство работает в безопасном режиме, необходимо использовать и стартер для пуска;
- появляется способность сдерживать значение тока на установленном уровне;
- световой поток становится намного стабильнее, хотя полностью мерцание убрать нет возможности;
- стоимость такого исполнения светильника доступна для широкого потребления.
Существует способ подключения люминесцентного прибора освещения без использования балласта, но для этого необходимо в два раза повысить сетевое напряжение с выпрямленным током, а вместо балласта использовать лампу с нитью накаливания. Схема такого включения:
Подключение люминесцентного прибора без использования балластаКак самостоятельно сделать дроссель?
Благодаря своим параметрам дуговые приборы освещения мощностью 250 или 125 ватт применяются обществом для освещения следующих помещений:
- гаражные кооперативы;
- дачные участки;
- загородный дом.
Купить устройство освещения этого вида можно в магазине или на рынке, часто возникает проблема, как найти дроссель для ламп ДРЛ, стоимость дросселя может быть выше самой лампы из-за конструктивных особенностей и наличия медной проволоки.
Решить этот вопрос помогут народные идеи изготовления балласта для лампы ДРЛ 250 из других материалов: три дросселя для лампы дневного света при мощности лампы 40 ватт или же два дросселя от лампы дневного света мощностью в 80 ватт. В нашем случае для того чтобы зажечь лампу ДРЛ, используя самодельный балласт, сделанный своими руками, рекомендуется применить два дросселя мощностью 80 ватт и один балласт мощностью 40 ватт, соединение показано на фото.
Подключение лампы ДРЛ с самодельным балластомИз схемы видно, что все балласты образуют один дроссель, собрать пусковой балласт можно в общий ящик. Важно! Особенное внимание нужно уделить контактам на дросселях, они должны быть надежными, чтобы не нагревались и не искрились.
Как можно запустить ДРЛ-лампу без дросселя?
Существует возможность пуска дугового устройства освещения 250 ватт без балласта, но для этого необходимо применить другую технологию включения прибора. Специалисты рекомендуют вариант покупки специальной лампы ДРЛ 250, у которой есть способность включения без балласта (дросселя), когда в конструкцию лампы добавляется спираль, в задачу которой входит разбавлять световой поток.
Еще народными умельцами применяется способ пуска ламп этого вида с использованием набора конденсаторов, но в этом случае надо точно знать величину получаемого тока. Также применяют пуск ламп ДРЛ с использованием простой лампы, но только при условии, что она имеет одинаковую мощность с ДРЛ-лампой.
Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключения
Согласитесь: лишние приборы, без которых вполне может работать система освещения, покупать и устанавливать ни к чему. К таким устройствам, вызывающим сомнение, относится дроссель для люминесцентных ламп. Вы не знаете, нужен ли он в схеме подключения или без него можно обойтись?
Мы поможем вам разобраться с возникшим вопросом. В статье подробно рассмотрены особенности, назначение дросселя и выполняемые им функции. Приведены фото и схема подключения, которая поможет самостоятельно собрать люминесцентный светильник и выполнить его запуск, правильно подключив все компоненты в электроцепь.
В помощь домашнему мастеру мы подобрали ряд видеороликов, содержащих рекомендации по подключению люминесцентных лампочек, а также по выбору нужного дросселя в зависимости от типа лампы.
Содержание статьи:
Назначение и устройство дросселя
Разрядные лампы, представителем которых является люминесцентная разновидность, нельзя зажечь как обычные, обеспечив электроснабжение. Они попросту не будут работать. Чтобы получить свечение такого типа источника, потребуется дополнительно использовать пуско-регулирующий аппарат.
Назначение балласта в схеме включения
Выходит, что для функционирования люминесцентной лампочки необходимо не только обеспечить протекание тока, но и приложить к ней напряжение.
Поэтому в схеме включения задействуют балласт – сопротивление. Оно включается последовательно с лампой и предназначено для ограничения тока, протекающего через ее электроды.
Его роль могут выполнять различные электротехнические компоненты:
- в случае постоянного тока – это резисторы;
- при переменном – дроссель, конденсатор и резистор.
Среди этих приспособлений наиболее удачным вариантом является дроссель. Он обладает реактивным сопротивлением без выделения излишнего тепла. Способен ограничить ток, предотвратив его лавинообразное нарастание при включении в электросеть.
Галерея изображений
Фото из
Дроссель в импульсных схемах питания
Ограничитель в высокочастотных электрических схемах
Сердечник в виде кольца
Секционная намотка провода
Дроссель не только является неотъемлемым элементом в стартерной схеме включения, он выполняет такие функции:
- способствует созданию безопасного и достаточного для конкретной лампочки тока, который обеспечивает оперативный разогрев ее электродов при разжигании;
- импульс повышенного напряжения, образующийся в обмотке, способствует возникновению разряда в колбе люминесцента;
- обеспечивает стабилизацию разряда при номинальном значении электротока;
- способствует беспроблемной работе лампочки вопреки отклонениям напряжения, периодически возникающим в сети.
Важное значение для функционирования имеет индуктивность дросселя. Поэтому при покупке этого электромеханического компонента следует обращать внимание на технические параметры, которые должны соответствовать характеристикам лампочки.
При выборе электромеханического ПРА, который еще называют дросселем или ограничителем тока, имеют значение не только техпараметры, но и репутация производителя – неизвестные китайские фирмы могут предложить ограничитель, реальные характеристики которого значительно ниже заявленных
Из чего состоит пускорегулятор?
Дроссель, используемый в схемах включения лампочек люминесцентного типа, – это не что иное, как намотка провода на сердечнике – катушка индуктивности. Именно ее промышленное исполнение и носит название дросселя в электротехнике, что дословно переводится как «ограничитель».
Различные типы обмоток с разнообразными сердечниками, отличающиеся размерами, формой и внешним видом. Индуктивность конкретного изделия напрямую зависит толщины провода, плотности расположения витков в намотке и их количества, формы сердечника и прочих параметров
Дроссель с нужными техническими характеристиками производят в промышленных условиях, поэтому у потребителя не возникнет проблем при подборе нужного варианта, соответствующего параметрам подключаемой лампочки.
Более того, имея навыки сбора различных электротехнических приспособлений, соответствующие комплектующие и электроинструменты, можно попытаться самостоятельно соорудить катушку с нужной индуктивностью.
На схемах изображение дросселя может отличаться. В цепях подключения люминесцентных лампочек чаще всего можно встретить вариант L6 – обмотка с магнитопроводом ферритовым сердечником
Дроссель состоит из следующих элементов:
- проволока в изоляционном материале;
- сердечник – чаще всего ферритового типа или из прочего материала;
- заливочная масса, компаунд – в ее состав входят вещества, устойчивые к горению, что обеспечивает дополнительную изоляцию витков обмоточного провода;
- корпус, в который помещена намотка – его производят из термоустойчивых полимеров.
Наличие последнего элемента зависит от особенностей и характеристик конкретной модели ограничителя тока.
Участвуя в схеме розжига разрядной лампочки вместе со стартером, индуктивное сопротивление в виде дросселя ограничивает силу тока в момент подачи напряжения на лампу, а генерация ЭДС самоиндукции в размере 1000 В обеспечивает ее зажигание и стабилизирует горение дуги
Стартерная схема несовершенна, хотя и показывает отличный результат. Но мерцание лампочки, шумность дросселя и его большие размеры, а также фальшьстарт из-за ненадежного привели к изобретению более совершенной версии пускорегулятора – электронной.
ЭПРА в процессе функционирования способствуют снижению мощности потерь до 50%, избавляют от миганий лампочки. Их использование позволило уменьшить массу дросселей, а также существенно повысить отдачу осветительного прибора.
Правда стоимость электронного балласта существенно выше ЭМПРА, да и приобретать нужно у производителей с отличной репутацией – таких как Philips, Osram, Tridonic, прочие.
Схема + самостоятельное подключение
Люминесцентную лампочку просто так не включишь – ей требуется зажигатель и ограничитель тока. В миниатюрных моделях производитель все эти элементы предусмотрительно встроил в корпус и потребителю остается лишь вкрутить изделие в подходящий патрон светильника/люстры и щелкнуть выключателем.
А для более габаритных изделий потребуется , которая бывает как электромеханического, так и электронного типа. Чтобы ее правильно подсоединить, обеспечив беспроблемную работу прибора, предстоит знать порядок подключения отдельных элементов в электроцепь.
Схема подключения люминесцентной лампочки (EL) с использованием дросселирующего аппарата, где LL – это дроссель, SV – стартер, C1, C2 – конденсаторы
Правда имея схему, но не имея практического опыта по выполнению подобного рода работ, сложно будет справиться с задачей. Более того, если подключение требуется выполнить вне дома – в коридоре учебного учреждения или прочего общественного заведения – то самовольное вмешательство в работу электросети может обернуться проблемами.
Для этого в штате учреждений должен быть электрик, работающий на постоянной основе или же обслуживающий заведение по мере возникновения потребностей в его услугах.
На схеме реализовано подключение двух лампочек люминесцентного типа последовательно. Существенная проблема – если сломается/перегорит одна из них, то вторая тоже работать не будет
Рассмотрим пошаговое подключение двух трубчатых ЛЛ к электросети с использованием стартерной схемы. Для чего понадобится 2 стартера, дросселирующий компонент, тип которого должен обязательно соответствовать типу лампочек.
А также следует обратить внимание на суммарную мощность пускателей, которая не должна превышать этот параметр у дросселя.
Галерея изображений
Фото из
Установка держателей для лампочек
Установка ламп в держатели
Подсоединение короткого проводка к держателю стартера
Проверка работоспособности собранной схемы
Соединение длинным проводом держателя стартера с ЛЛ
Второй конец жилы от стартера крепят ко второму держателю лампы
Соединение первой лампы со второй в одну цепь
Подключение питающего кабеля
При подключении питающего кабеля к светильнику важно помнить, что за ограничение тока отвечает дроссель.
Значит, фазную жилу предстоит подсоединять через него, а на лампочку подключить нулевой провод.
Галерея изображений
Фото из
Вторую жилу от питающего кабеля следует вставить в разъем электромеханического ПРА, который еще называют дросселем. Правильное отверстие выбирают исходя из обозначений, нанесенных на его корпусе
Теперь предстоит заняться дальнейшим формированием цепи, соединив вторую ЛЛ со вторым стартером, а точнее, с его держателем. Для этого нужно взять еще одну короткую жилу и вставить один конец в разъем держателя лампочки, а второй – в отверстие крепления стартера
Аналогичную процедуру предстоит проделать с другой стороны трубчатого люминесцента, тоже используя короткий проводок. Особое внимание следует уделить надежности создаваемого контакта – чтобы ничего не болталось
Осталось завершить формирование цепи, используя еще одну длинную жилу, конец которой предстоит подключить в свободный разъем держателя второй лампочки, а второй – в отверстие дросселирующего компонента
Теперь нужно закрепить все элементы схемы, требуемые для работы собранной системы. Для этого нужно взять 2 стартера, приобретенные заранее. Важно чтобы их тип и мощность соответствовали параметрам ЛЛ
Каждый стартер, который еще называют пускатель, следует поставить в заранее подготовленные держатели, к которым уже успели подсоединить провода. Этот элемент представляет собой небольшую колбу с двумя электродами – жестким и гибким биметаллическим
Второй стартер аналогично крепится в полости держателя, расположенного с противоположной стороны рядом с дросселем. От одного балластного компонента на 36 Вт можно запитать 2 лампочки
Осталось самое интересное – проверить в действии собранную схему, включив питающий кабель в электрическую сеть. Если все выполнено правильно, то две ЛЛ запустятся и начнут светить. В противном случае они никак не отреагируют
Фазную жилу питающего кабеля подсоединяют в дроссель
Соединение второй лампы со вторым стартером
Подсоединение в цепь второй стороны лампы
Соединение второй лампы с дросселем
По одному стартеру для каждой лампочки
Установка пускателей в держатели
Дроссель один на две лампочки
Проверка работоспособности собранной схемы
Подобная схема подключения актуальна для больших осветительных приборов. Что же касается компактных моделей, то они оснащены встроенным механизмом запуска и регулировки – миниатюрным , вмонтированном внутри корпуса изделия.
В компактной люминесцентной лампочке между цоколем и трубками со смесью газов располагается пускорегулирующий аппарат маленьких размеров. Он отлично справляется с запуском прибора и по сроку службы может значительно выигрывать у других элементов ЛЛ
Перегрев дросселя и возможные последствия
Использование лампочек, у которых вышел срок службы и периодически возникают различные поломки, может обернуться пожаром. О том, как утилизировать отслужившие люминесцентные приборы, подробно .
Избежать возникновения пожароопасной ситуации поможет регулярное инспектирование состояния осветительных приборов – визуальный осмотр, проверка основных узлов.
К концу службы лампы можно заметить существенный перегрев ПРА – конечно, водой проверять температуру нельзя, для этого следует воспользоваться измерительными приборами. Нагрев способен достигать 135 градусов и выше, что чревато печальными последствиями
При неправильной эксплуатации может произойти взрыв колбы . Мельчайшие частицы в состоянии разлететься в радиусе трех метров. Причем они сохраняют свои зажигательные способности, даже упав с высоты потолка на пол.
Опасность представляет перегрев обмотки дросселя – аппарат состоит из различных типов материалов, каждый из которых имеет свои характеристики. Например, изоляционные прокладки производители пропитывают сложными составами, отдельные элементы которых имеют неодинаковую горючесть и способность к образованию дыма.
Даже семь витков дросселя, в которых случилось замыкание, способны стать пожароопасными. Хотя большую вероятность возгорания представляет замыкание не менее 78 витков – этот факт был установлен опытным путем
Помимо перегрева дросселирующего элемента, существуют и другие ситуации с люминесцентными светильниками, представляющие пожарную опасность.
Это могут быть:
- проблемы, обусловленные нарушением технологии изготовления ПРА, что повлияло на конечное качество аппарата;
- плохой материал рассеивателя осветительного прибора;
- схема зажигания – со стартером или без него пожарная опасность одинакова.
Следует помнить, что к проблемам может привести небрежность при выполнении подключения, плохое качество контактов или составляющих цепи, что чаще всего происходит при использовании совсем дешевых аппаратов, приобретенных у неизвестных производителей.
Добросовестные компании дают гарантию на свою продукцию, а технические параметры приборов, указанные на корпусе или упаковке, соответствуют действительности. Этот факт прямо влияет на срок службы как самого ПРА, так и , с особенностями устройства и работы которых ознакомит рекомендуемая нами статья.
Выводы и полезное видео по теме
Тонкости сборки схемы из двух ЛЛ с последовательным включением:
Видеоролик о том, что такое дроссель и зачем он нужен:
Видеоролик о том, что такое дроссель и зачем он нужен:
Проверка дросселя на предмет поломки:
О правилах выбора дросселя в зависимости от типа разрядной лампы:
Ознакомившись с назначением и устройством дросселей, используемых для запуска люминесцентных лампочек, можно вооружиться схемой подключения и попытаться реализовать ее самостоятельно. Правда, это актуально для дома.
В общественных учреждениях решение подобных вопросов следует доверить электрикам, имеющим спецдопуск к электромонтажным работам.
Пишите, пожалуйста, комментарии в находящемся ниже блоке, размещайте фото по теме статьи, задавайте вопросы. Расскажите о том, как подбирали и подключали дроссель. Делитесь полезной информацией по аспектам выбора и технологии установки устройства.
сферы применения, устройство и электронные аналоги
На чтение 5 мин Просмотров 177 Опубликовано Обновлено
Дросселем называется катушка индуктивности определенной конструкции и номинала, предназначенная для установки в электротехнических и электронных схемах. Дроссель электрический требуется отличать от аналога, используемого в электронных устройствах с учетом их конструктивных особенностей. Для понимания, в чем состоят различия этих двух изделий, придется ознакомиться с принципом работы и существующими разновидностями.
Принцип работы
Дроссель электрическийПринцип работы дросселей в электрической схеме можно объяснить так:
- при протекании переменного тока через индуктивный элемент скорость его нарастания замедляется, что приводит к аккумулированию энергии в магнитном поле катушки;
- объясняется это действием закона Ленца, согласно которому ток в индуктивности не может изменяться мгновенно;
- нарушение этого правила привело бы к недопустимому нарастанию напряжения, что физически невозможно.
Другой отличительной особенностью, поясняющей принцип работы индуктивности, является эффект самоиндукции, теоретически обоснованный Фарадеем. На практике он проявляется как наведение в катушке собственной ЭДС, имеющей противоположную полярность. За счет этого эффекта через индуктивность начинает течь ток, препятствующий нарастанию вызвавшего его полевого образования.
Указанное свойство позволяет применять индуктивные элементы в электротехнике для сглаживания низкочастотных пульсаций. Для них индуктивность представляется большим сопротивлением.
Использование в других технических областях (в высокочастотных устройствах, например) дроссель обеспечивает развязку основной электронной схемы от вспомогательных (низкочастотных) цепей.
Технические характеристики
Технические характеристики компенсационных дросселейОсновным техническим параметром дросселя в электротехнике и электронике, полностью характеризующим его функциональность, является величина индуктивности. Этим он напоминает обычную катушку, применяемую в различных электрических схемах. И в том и другом случае за единицу измерения принимается Генри, обозначаемый как Гн.
Еще один параметр, описывающий поведение дросселя в различных цепях – его электрическое сопротивление, измеряемое в Омах. При желании его всегда удается проверить посредством обычного тестера (мультиметра). Для полноты описания работы этого элемента потребуется добавить такие показатели:
- допустимое (предельное) напряжение;
- номинальный ток подмагничивания;
- добротность образуемого катушкой контура.
Указанные характеристики дросселей позволяют разнообразить их ассортимент и использовать для решения самых различных инженерных задач.
Разновидности дросселей
По виду электрических цепей, в которых устанавливаются дроссельные элементы, классификация следующая:
- низкочастотные индуктивности;
- высокочастотные катушки;
- дроссели в цепях постоянного тока.
Низкочастотные элементы внешне напоминают обычный трансформатор, у которого имеется всего лишь одна обмотка. Их катушка навита на пластиковом каркасе с размещенным внутри сердечником, изготовленным из трансформаторной стали.
Катушка индуктивности для НЧ динамика, сабвуфера, низких частот, провод ПЭТВ 1,25ммСтальные пластины надежно изолированы одна от другой, что позволяет снизить уровень вихревых токов.
Дроссельные НЧ катушки обычно имеют большую индуктивность (более 1 Гн) и препятствуют прохождению токов сетевых частот 50-60 Герц через участки цепей, где они установлены.
Еще одна разновидность индуктивных изделий – высокочастотные дроссели, витки которых навиваются на ферритовом или стальном сердечнике. Существуют разновидности ВЧ изделий, которые работают без ферромагнитных оснований, а провода в них наматываются просто на пластмассовый каркас. При секционной намотке, применяемой в схемах среднечастотного диапазона, витки провода распределяются по отдельным секциям катушки.
Электротехнические изделия с ферромагнитным сердечником имеют меньшие габариты, чем простые дроссели той же индуктивности. Для работы на высоких частотах применяются сердечники ферритовые или из диэлектрических составов, отличающихся малой собственной емкостью. Такие дроссели используются в довольно широком диапазоне частот.
Некоторые из них изготавливаются в виде толстой витой проволоки, совсем не имеющей каркаса.
Дроссель постоянного тока в основном применяется для сглаживания пульсаций, появляющихся после его выпрямления в специальных схемах.
Применение индуктивных элементов и их графическое обозначение
Назначение дросселя в импульсных схемах питания — блокировать резкие всплески от трансформатораЭлектрические дроссели, работающие в цепях переменного тока, традиционно применяются в следующих случаях:
- для развязки вторичных цепей импульсных источников питания;
- в обратноходовых преобразователях или бустерах;
- в балластных схемах люминесцентных ламп, обеспечивающих быстрый запуск;
- для запуска электрических двигателей.
В последнем случае они используются в качестве ограничителей пусковых и тормозных токов.
Электротехнические изделия, устанавливаемые в электрических приводах мощностью до 30 кВт, по своему виду напоминают классический трехфазный трансформатор.
Так называемые дроссели насыщения используются в типовых обратноходовых стабилизаторах напряжения, а также в феррорезонансных преобразователях и магнитных усилителях. В последнем случае возможность намагничивания сердечника позволяет изменять индуктивное сопротивление действующих цепей в широких пределах. Сглаживающие дроссели применяются для снижения уровня пульсаций в выпрямительных цепях.
Источники питания с такими элементами до сих пор встречаются в электротехнической практике. Для запуска люминесцентных ламп все чаще используется «электронный» балласт, постепенно вытесняющий намоточные изделия. Его применение объясняется следующими преимуществами:
- низкий вес;
- эксплуатационная надежность;
- отсутствие характерного для обычных дросселей гудения.
ВЧ дроссельДля обозначения дросселя на электротехнических и электронных схемах используются значки, представляющие собой отрезок витого проводника. Для катушек с сердечником внутри намотки дополнительно ставится черточка, а в бескаркасном варианте исполнения она отсутствует.
против индуктора — Блог о пассивных компонентах
Дроссели и ВЧ дроссели в основном представляют собой электрические компоненты одного и того же типа. Разница в конструкции связана с функцией, которую устройство будет выполнять в цепи. Большинство инженеров больше знакомы с индукторами — некоторые думают, что оба устройства могут использоваться взаимозаменяемо — которые распространены в частотно-избирательных системах, таких как тюнер для радиоприемников или фильтров.
Катушки индуктивности
Стандартный индуктор создается путем плотной обмотки проводов (катушек) вокруг твердого стержня или цилиндрического кольца, называемого сердечником индуктора.Когда ток циркулирует по проводам, создается магнитный поток, который противоположен изменению тока (сопротивляется любому изменению электрического тока), но пропорционален значению тока. Кроме того, в катушке индуцируется напряжение из-за движения магнитного потока. Сила магнитного потока зависит от типа сердечника.
Катушки индуктивности классифицируются в зависимости от типа сердечника, на который намотана катушка. На рисунке 1 показаны символы, используемые для различения некоторых типов.
Рисунок 1: Символы индуктивности. Источник: www.electronics-tutorials.ws
Единицы
Как мы видели, катушки индуктивности сопротивляются изменению тока (переменного тока), но легко пропускают постоянный ток. Эта способность противодействовать изменениям тока и взаимосвязи между потоком тока и магнитным потоком в катушке индуктивности измеряется показателем качества, называемым индуктивностью, с символом L и единицами измерения Генри (H), в честь американского ученого и первого секретаря Смитсоновского института. , Джозеф Генри.
RF Дроссели
Мы можем думать о ВЧ дросселях как о применении индукторов. Они спроектированы как фиксированные индукторы с целью перекрытия или подавления высокочастотных сигналов переменного тока (AC), включая сигналы от радиочастотных (RF) устройств, и обеспечения прохождения низкочастотных сигналов и сигналов постоянного тока. Строго говоря, в идеале ВЧ дроссель — это индуктор, который отклоняет все частоты и пропускает только постоянный ток. Для этого дроссель (или катушка индуктивности) должен иметь высокий импеданс в диапазоне частот, который он предназначен для подавления, как мы можем видеть, проверив формулу для значения импеданса, X L :
X L = 6.283 * f * L
Где f — частота сигнала, а L — индуктивность. Мы видим, что чем выше частота, тем выше импеданс, поэтому сигнал с высокой частотой встретит эквивалентное сопротивление (импеданс), которое заблокирует его прохождение через дроссель. Низкочастотные сигналы и сигналы постоянного тока будут проходить с небольшими потерями мощности.
Дроссели обычно состоят из катушки из изолированных проводов, намотанных на магнитный сердечник, или круглой «бусинки» из ферритового материала, нанизанной на провод.Их часто наматывают сложными узорами, чтобы уменьшить их внутреннюю емкость.
Обычно ВЧ дроссели можно увидеть на компьютерных кабелях. Они известны как ферритовые шарики и используются для устранения цифрового радиочастотного шума. Как показано на Рисунке 2, ферритовые бусины имеют цилиндрическую или торообразную форму и обычно надеваются на проволоку.
Рис. 2. Ферритовый шарик. Источник: Wuerth Elektronik
Саморезонанс
Реальные катушки индуктивности и дроссели не являются 100-процентными индуктивными.При подаче питания появляются паразитные элементы, которые изменяют поведение устройства и изменяют полное сопротивление. Провода катушки, используемой для изготовления индуктора, всегда создают последовательное сопротивление, а расстояние между витками катушки (обычно разделенных изоляцией) создает паразитную емкость. Этот элемент является параллельным компонентом последовательной комбинации паразитного резистора и идеальной катушки индуктивности. Типичная эквивалентная схема катушки индуктивности показана на рисунке 3.
Рисунок 3: Эквивалентная схема индуктора
Реактивное сопротивление идеальной катушки индуктивности и паразитного конденсатора определяется по известным формулам:
X L = wL = 6.283 * ширина * длина (1)
X С = 1 / (wC) = 1 / (6,283 * f * C) (2)
Из-за наличия реактивных сопротивлений значение полного импеданса цепи изменяется с частотой. С увеличением частоты реактивное сопротивление конденсатора падает, а емкость катушки индуктивности увеличивается. Существует частота, при которой реактивное сопротивление идеальной катушки индуктивности и паразитного конденсатора равны. Это называется собственной резонансной частотой параллельной резонансной системы. В параллельном резонансном контуре полное сопротивление на резонансной частоте является максимальным и чисто резистивным.На рисунке 4 показаны графики зависимости импеданса от частоты в соответствии с уравнениями 1 (красным) и 2 (синим). Общий импеданс (черный) показывает резонансную частоту в точке, где оба импеданса равны. Импеданс в этой точке является чисто резистивным и имеет максимальное значение.
Рисунок 4. Импеданс в зависимости от частоты. Источник: Texas Instruments
.Как я могу смоделировать этот синфазный дроссель в цепи в LTspice?
Как я могу смоделировать этот синфазный дроссель в цепи в LTspice? — Обмен электротехнического стекаСеть обмена стеками
Сеть Stack Exchange состоит из 176 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.
Посетить Stack Exchange- 0
- +0
- Авторизоваться Зарегистрироваться
Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.
Зарегистрируйтесь, чтобы присоединиться к этому сообществуКто угодно может задать вопрос
Кто угодно может ответить
Лучшие ответы голосуются и поднимаются наверх
Спросил
Просмотрено 11к раз
\ $ \ begingroup \ $Как можно использовать дроссель синфазного сигнала на схеме ниже в LTspice? Индуктором или трансформатором? Как должна быть нарисована схема в LTspice?
Я хочу использовать это, чтобы отфильтровать шумы CM для несимметричного коаксиального кабеля.
Создан 21 сен.
floppy380floppy3801,41255 золотых знаков2323 серебряных знака5353 бронзовых знака
\ $ \ endgroup \ $ 4 \ $ \ begingroup \ $При достаточно малых токах синфазный дроссель выглядит как трансформатор 1: 1 с сопротивлением, включенным параллельно каждому из его индукторов.Вы можете очень близко подойти к правильному результату, посмотрев на график зависимости импеданса от частоты. На низких частотах сопротивление увеличивается, как у катушки индуктивности. Используйте это, чтобы получить значение индуктивности. На некоторой высокой частоте индуктивность достигает максимума. Предположите свою индуктивность и вычислите сопротивление. Этого будет достаточно для большинства моделей.
ответ дан 23 апр в 20:07
\ $ \ endgroup \ $ \ $ \ begingroup \ $Я бы смоделировал его с двумя связанными индукторами.Вот фото.
Не забудьте поставить директиву по специям для подключения индукторов
Создан 21 сен.
\ $ \ endgroup \ $ 6 \ $ \ begingroup \ $Синфазные дроссели — это ужасно нелинейные компоненты (импеданс зависит от частоты, а не индуктивности), удачи в моделировании их линейными компонентами в специи.
Ваша схема кажется целым модулем входного фильтра, так что это еще сложнее. По моему опыту с этими вещами, вы обычно выбираете диаграмму производителя и извлекаете ответ для работы в пространстве S-параметров. А затем вы строите прототип, и ничего не работает должным образом, поскольку ваше шасси может иметь изгиб, который резонирует с ужасной частотой.
Некоторые производители предоставляют вам модули специй для некоторых фильтров. На ум приходит Шуртер и Вюрт, посмотрите в них, нет ли чего-то похожего на вашу роль.
ответ дан 2 фев в 20:46
\ $ \ endgroup \ $ Электротехнический стек Exchange лучше всего работает с включенным JavaScriptВаша конфиденциальность
Нажимая «Принять все файлы cookie», вы соглашаетесь с тем, что Stack Exchange может хранить файлы cookie на вашем устройстве и раскрывать информацию в соответствии с нашей Политикой в отношении файлов cookie.
Принимать все файлы cookie Настроить параметры
Руководство по пониманию синфазных дросселей
Что такое синфазный дроссель?
Синфазный дроссель — это электрический фильтр, который блокирует высокочастотный шум, общий для двух или более линий данных или линий электропередач, позволяя при этом проходить желаемому постоянному или низкочастотному сигналу.Синфазный шумовой ток (CM) обычно исходит от таких источников, как нежелательные радиосигналы, неэкранированная электроника, инверторы и двигатели. Если не фильтровать этот шум, он создает проблемы с помехами в электронике и электрических цепях.
Как работают синфазные дроссели?
В нормальном или дифференциальном режиме (одиночный дроссель) ток проходит по одной линии в одном направлении от источника к нагрузке и в противоположном направлении по обратной линии, замыкающей цепь.В синфазном режиме шумовой ток проходит по обеим линиям в одном направлении
В обычном режиме ток в группе линий движется в одном направлении, поэтому объединенный магнитный поток складывается для создания противоположного поля, блокирующего шум, как показано красными и зелеными стрелками в сердечнике тороида, показанном на рисунке . . В дифференциальном режиме ток движется в противоположных направлениях, а поток вычитается или нейтрализуется, так что поле не противоречит сигналу нормального режима.
Как выбрать синфазный дроссель?
Основными критериями выбора синфазного дросселя являются:
- Требуемый импеданс: какое ослабление шума необходимо?
- Требуемый частотный диапазон: В какой полосе частот находится шум?
- Требуемый ток: какой ток в дифференциальном режиме он должен выдерживать?
Какие типы синфазных дросселей производит компания Coilcraft?
Coilcraft разрабатывает и производит множество синфазных дросселей для многих приложений.Выберите категорию ниже или воспользуйтесь одним из наших инструментов, чтобы найти правильный дроссель общего режима для вашего приложения.
Дроссели EMI для высокоскоростной и сверхскоростной линии передачи данных
Coilcraft USB, RA6870 и CM1394 высокоскоростные и сверхскоростные синфазные дроссели линии передачи данных эффективно снижают синфазный шум в высокоскоростных интерфейсах, таких как USB 2.0, USB 3.1 Gen 1, HDMI, IEEE 1394, LVDS, HDBaseTTM, MOST® шина и т. д. Они поддерживают отличную целостность сигнала для высокоскоростной связи с частотой среза дифференциального режима -3 дБ до 6.5 ГГц. Большинство из них обеспечивают ослабление синфазного сигнала более 30 дБ на частоте 500 МГц и 25 дБ в диапазоне ГГц.
Синфазные дроссели электромагнитных помех линии передачи данных
Синфазные дроссели линий передачи данныхCoilcraft CJ5100, CQ7584 и CR7856 предназначены для ослабления синфазных помех на частотах до 100 МГц. Серия PDLF может снизить шум в 32 раза от 15 МГц до 300 МГц и доступна в версиях с 2, 3 и 4 линиями. Серия PTRF оптимизирована для требований FCC и ITU-T (ранее CCITT).Эти детали обеспечивают ослабление от 15 до 25 дБ, импеданс более 1000 Ом и изоляцию 1500 В между обмотками. M2022 может подавлять синфазный шум до 500 МГц в компактном корпусе 1812.
Синфазные дроссели электромагнитных помех линии передачи данных / питания
СемействаCoilcraft LPD, MSD и PFD — это низкопрофильные, миниатюрные дроссели синфазного сигнала, занимающие мало места, которые можно использовать для ослабления синфазного шума или дифференциального шума в приложениях как для передачи данных, так и для линий электропередач.
Дроссели ЭМП синфазных помех для поверхностного монтажа
Недорогие высокопроизводительные дроссели синфазного тока для поверхностного монтажаCoilcraft выпускаются в различных размерах и корпусах.Они предназначены для устранения синфазного шума, проводимого в линии переменного тока, в широком диапазоне частот с изоляцией до 1500 В среднеквадратического значения. Эти синфазные дроссели могут работать в широком диапазоне токов от 0,06 до 15 ампер, обеспечивая ослабление там, где требуется фильтрация линии, например, в импульсных источниках питания.
Дроссели ЭМП синфазного тока через отверстие в линии электропередачи
Недорогие высокоэффективные дроссельные катушки серии BU со сквозным отверстиемCoilcraft предназначены для устранения синфазных помех, проводимых в линии, в широком диапазоне частот.BU9S и BU9HS идеально подходят для сигнальных линий; остальные БУ могут использоваться в импульсных источниках питания и цепях питания. Для низкопрофильных применений фильтры BU9 и BU9S доступны в горизонтальной конфигурации, что снижает их высоту до менее чем полдюйма (12,5 мм).
CMT Синфазные дроссели EMI
Синфазные дроссели тороидального типаCoilcraft CMT предназначены для обеспечения наивысшего сопротивления синфазного сигнала в самом широком диапазоне частот. Эти детали идеально подходят для любых приложений, требующих высокого напряжения смещения постоянного тока, и хорошо подходят для использования в импульсных источниках питания.Эти синфазные дроссели наиболее эффективны при фильтрации питающих и обратных проводов синфазными сигналами одинаковой амплитуды. Дроссели дифференциального режима доступны для фильтрации сигналов не в фазе или с неравномерной амплитудой.
Примечания к приложению
Инструменты
Искатель синфазного дросселя
Что дальше?
Подробнее: Начало работы Серия
штуцеров
НОВИНКА! ‣ — Пакеты электронных компонентов Amazon. Посетите страницу Amazon Electronic Component Packs.
Что такое дроссели?
Дроссели — это фиксированные катушки индуктивности, в первую очередь предназначенные для «дросселирования» переменного тока, в том числе высокочастотного, от линий питания постоянного тока. «ВЧ дроссель» спроектирован так, чтобы иметь высокий импеданс в большом диапазоне частот.
Это сильно отличается от фиксированных катушек индуктивности, которые предназначены для использования в настраиваемых схемах. В некоторых очень случайных приложениях вы можете заменить дроссели на фиксированные катушки индуктивности, но, как правило, и, конечно, есть исключения из этого правила, я бы не стал.
Единственным исключением могут быть приложения, в которых используются некритические фильтры верхних частот или фильтры нижних частот.
С другой стороны, я, конечно, не стал бы рассматривать использование дросселя в приложении с фиксированной катушкой индуктивности, таком как качественный узкополосный фильтр или в каскадах определения частоты LC-генератора.
Мое главное возражение касается «Q» штуцера. Вторичные возражения касаются термической устойчивости штуцера. Типичные формованные дроссели, которые можно купить довольно дешево, не предназначены для того, чтобы служить памятником высокому «добротности», термостойкости или жестким допускам.
Другие возражения относятся к собственной резонансной частоте (SRF). Дроссель, как и любой индуктор, также демонстрирует некоторую степень собственной емкости или «распределенной емкости». Эта емкость в сочетании с расчетной индуктивностью являются резонансными на определенной частоте.
Резонансные частоты дросселя
На низких частотах эта емкость практически не влияет, и дроссель может быть изображен как «A» ниже на рисунке 1. Сопротивление — это внутреннее сопротивление дросселя как при переменном, так и постоянном токе.Когда рабочая частота повышается, «распределенная емкость» начинает становиться значительной в точке, где L и C образуют параллельный резонансный контур, как в «B».
Рисунок 1. — Резонансные частоты дросселя
Еще раз увеличивая рабочую частоту, мы обнаруживаем, что реактивное сопротивление дросселя определяется емкостью до такой степени, что теперь он представляет собой последовательный резонансный контур «C». В этот момент производительность дросселей серьезно ухудшается.
Дроссели литые
Типичный экономичный дроссель, который имеет тенденцию выглядеть как резистор и имеет цветовую кодировку, аналогичную следующей на рисунке 2, который представляет собой таблицу цветовых кодов дросселей.
Таблица цветовых кодов дросселей
Рисунок 2. — Таблица цветовых кодов штуцера
Вообще говоря, эти дроссели предназначены для миниатюризации, и какой бы тип дросселя вы ни собирались использовать, всегда дважды проверяйте его, чтобы убедиться, что он может выдерживать ожидаемый ток. Самое главное !, вы не хотите, чтобы он функционировал как «вспышка», каламбур.
Простые маломощные дроссели часто можно дешево изготовить, намотав витки провода, способного пропускать достаточный ток, на корпусный резистор подходящего размера.Формирователь пластикового типа также может быть использован при использовании отрезка, например, спицы. На более высоких частотах рассмотрите небольшой дроссель с воздушной обмоткой. Дроссели тоже дешевые.
Самодельные дроссели часто легко наматываются на ферритовые тороиды с высокой проницаемостью, ферритовые бусины или даже сердечники бинокулярного типа, используемые для балунов. Просто не забудьте использовать калибр, который будет комфортно выдерживать ожидаемый ток через ваши дроссели. Также помните, что чем выше проницаемость сердечника, тем меньше требуется витков и тем меньше «распределенной емкости» возникает в ваших дросселях.
Если позволяет ваш бюджет, подумайте о создании комплекта LC-метра, чтобы иметь возможность измерять индуктивность ваших дросселей, катушек индуктивности или даже проверять емкость конденсаторов.
КНИГА — Справочник по индуктору Клетуса Дж. Кайзера
Ссылка на эту страницу
НОВИНКА! — Как перейти по прямой ссылке на эту страницу
Хотите создать ссылку на мою страницу со своего сайта? Нет ничего проще. Знания HTML не требуются; даже технофобы могут это сделать.Все, что вам нужно сделать, это скопировать и вставить следующий код. Все ссылки приветствуются; Искренне благодарю вас за вашу поддержку.
Скопируйте и вставьте следующий код для текстовой ссылки :
<а
href = "https://www.electronics-tutorials.com/basics/chokes.htm" target = "_ top"> посетите страницу Ian Purdie VK2TIP "Chokes"
, и он должен выглядеть так:
посетите Ian Purdie VK2TIP «Chokes» Страница
ВЫ ЗДЕСЬ: ГЛАВНАЯ> ОСНОВНЫЕ НАПРАВЛЕНИЯ> CHOKES
автор Ян К.Purdie, VK2TIP сайта www.electronics-tutorials.com заявляет о моральном праве на
быть идентифицированным как автор этого веб-сайта и всего его содержания. Copyright © 2000, все права защищены. См. Копирование и ссылки.
Эти электронные учебные пособия предназначены для индивидуального частного использования, и автор не несет никакой ответственности за применение, использование, неправильное использование любого из этих проектов или учебных пособий по электронике, которое может привести к прямому или косвенному ущербу или убыткам, связанным с этими проектами или учебными пособиями. .Все материалы предоставляются для бесплатного частного и общественного использования.
Коммерческое использование запрещено без предварительного письменного разрешения www.electronics-tutorials.com.
Авторские права © 2000, все права защищены. URL — https://www.electronics-tutorials.com/basics/chokes.htm
Обновлено 15 мая 2000 г.
Связаться с ВК2ТИП
Что такое моторный дроссель и для чего он используется?
Дроссель — это пассивное устройство, которое увеличивает индуктивность цепи.
Изображение предоставлено: KEB America
Индуктивность — это свойство катушки с проводом, которая сопротивляется любому изменению тока, протекающего через нее.(Прямые провода также обладают небольшой индуктивностью.) Другими словами, если ток через катушку увеличивается, магнитное поле катушки создает напряжение (ЭДС), которое препятствует изменению. Индуктивность устройства определяет количество ЭДС, генерируемой при заданном изменении тока:
Где:
ЭДС = индуцированное напряжение (В)
L = индуктивность (В * с / А = Генри, Гн)
dI / dt = время нарастания тока (А / с)
Дроссель двигателя — это общее название индуктивного устройства, установленного между выходом сервопривода или частотно-регулируемого привода (VFD) и выводами серводвигателя или асинхронного двигателя переменного тока.Его цель — уменьшить пики тока, возникающие на выходе привода из-за широтно-импульсной модуляции (ШИМ) напряжения.
Дроссель двигателя — это индуктивное устройство, устанавливаемое между приводом и двигателем, и его часто рекомендуется использовать, когда длина кабеля двигателя превышает 25 метров.Изображение предоставлено: Force Control Industries
Широтно-импульсная модуляция — ключевой принцип работы большинства частотно-регулируемых приводов и сервоприводов. Он работает путем включения и выключения напряжения на управляющих транзисторах с очень высокой частотой — обычно в диапазоне 20 кГц — создавая импульсы напряжения.Частота переключения определяет ширину импульсов, а отношение времени включения к времени выключения определяет среднее напряжение, подаваемое на двигатель.
Без моторного дросселя длинные кабели могут привести к отраженным волнам, которые вызовут скачки напряжения на двигателе.Изображение предоставлено: KEB America
Однако ШИМ-управление вызывает резкие изменения сигналов привода, а также шум из-за высокочастотного переключения — проблемы, которые усугубляются при использовании длинных кабелей между приводом и двигателем.Как и катушки двигателя, кабели также обладают импедансом, и если импеданс кабеля сильно отличается от импеданса двигателя, может возникнуть отраженная волна, посылая напряжение обратно через кабель от клемм двигателя к приводу. Это напряжение может, в худшем случае, добавить к напряжению, подаваемому приводом, и привести к очень высокому напряжению на двигателе, что приведет к значительному нагреву двигателя и повреждению изоляции двигателя и подшипников.
Дроссель двигателя помогает решить эти проблемы, увеличивая время нарастания (dV / dt) сигналов привода.Это уменьшает острые углы или пики формы волны напряжения до закругленных краев, защищая двигатель от скачков напряжения и связанного с ними нагрева. Дроссель, расположенный между приводом и двигателем, также помогает уменьшить электромагнитные помехи от кабелей и возможность отраженных волн.
Без дросселя двигателя производители приводов обычно рекомендуют максимальную длину кабеля двигателя около 25 метров (рекомендации различаются в зависимости от двигателя, привода и области применения).С моторным дросселем максимальная длина кабеля может быть значительно увеличена, часто до 50 или 100 метров.
Дроссели и реакторы являются индуктивными устройствами, и термины «дроссель», «реактор» и «индуктор» часто используются как синонимы.
При обсуждении систем моторного привода термин «реактор» чаще всего используется для обозначения индуктивного устройства, расположенного между основным источником питания и приводом. Термин «дроссель» чаще всего используется для обозначения индуктивного устройства, расположенного между приводом и двигателем.И «дроссель», и «реактор» — это обычно используемые термины для индуктивного устройства, размещенного после входных диодов (между входным выпрямителем и звеном шины постоянного тока) в частотно-регулируемом приводе.
Дроссели объяснены
Описание дросселейОбщий
«Дроссель» — это общее название катушки индуктивности, которая используется в качестве фильтрующего элемента источника питания. Обычно они представляют собой блоки со стальным сердечником с зазором, похожие по внешнему виду на небольшой трансформатор, но только с двумя выводами, выходящими из корпуса.Ток в катушке индуктивности не может измениться мгновенно; то есть катушки индуктивности имеют тенденцию сопротивляться любому изменению тока. Это свойство делает их удобными для использования в качестве фильтрующих элементов, поскольку они имеют тенденцию «сглаживать» пульсации в форме волны выпрямленного напряжения.
Зачем нужен дроссель? Почему не просто резистор большой серии?
Дроссель используется вместо последовательного резистора, потому что он обеспечивает лучшую фильтрацию (меньше остаточных пульсаций переменного тока на питании, что означает меньше шума на выходе усилителя) и меньшее падение напряжения.«Идеальный» индуктор должен иметь нулевое сопротивление постоянному току. Если бы вы просто использовали резистор большего размера, вы бы быстро достигли точки, в которой падение напряжения было бы слишком большим, и, кроме того, «проседание» питания было бы слишком большим, потому что разница в токе между полной выходной мощностью и холостым ходом может быть большим, особенно в усилителе класса АВ.
Вход конденсатора или входной фильтр дросселя?
Существует две распространенных конфигурации источника питания: вход конденсатора и вход дросселя.Входной конденсаторный фильтр не обязательно должен иметь дроссель, но он может иметь дроссель для дополнительной фильтрации. Входное питание дросселя по определению должно иметь дроссель. Конденсаторные входные фильтры на сегодняшний день являются наиболее часто используемой конфигурацией в гитарных усилителях (фактически, я не могу вспомнить производственный гитарный усилитель, в котором использовался бы входной фильтр дросселя).Входной конденсаторный источник питания будет иметь фильтрующий конденсатор сразу после выпрямителя. Тогда он может иметь или не иметь второй фильтр, состоящий из последовательного резистора или дросселя, за которым следует другой конденсатор.Сеть «колпачок, индуктор, колпачок» обычно называют сетью «фильтр Пи». Преимуществом конденсаторного входного фильтра является более высокое выходное напряжение, но он имеет худшее регулирование напряжения, чем входной фильтр дросселя. Выходное напряжение приближается к sqrt (2) * Vrms переменного напряжения.
На входе питания дросселя будет дроссель, следующий сразу за выпрямителем. Основное преимущество источника питания с дросселем — лучшее регулирование напряжения, но за счет гораздо более низкого выходного напряжения. Выходное напряжение приближается к (2 * sqrt (2) / Pi) * Vrms переменного напряжения.Входной фильтр дросселя должен иметь определенный минимальный ток, протекающий через него, чтобы поддерживать регулирование.
Разница напряжений между двумя типами фильтров может быть довольно большой. Например, предположим, что у вас есть транзистор 300-0-300 и двухполупериодный выпрямитель. Если вы используете конденсаторный входной фильтр, вы получите максимальное постоянное напряжение без нагрузки 424 вольт, которое будет падать до напряжения, зависящего от тока нагрузки и сопротивления вторичных обмоток. Если вы используете тот же трансформатор с входным фильтром дросселя, пиковое выходное напряжение постоянного тока будет 270 В и будет намного более жестко регулируемым, чем входной фильтр конденсатора (меньше изменений напряжения питания с изменениями тока нагрузки).
Как выбрать дроссель:
обычно рассчитаны на максимальный постоянный ток, сопротивление постоянному току, индуктивность и номинальное напряжение, которое представляет собой максимальное безопасное напряжение, которое может быть приложено между катушкой и корпусом (который обычно заземлен).
Если вы используете дроссельный входной фильтр (маловероятно, если вы не пытаетесь преобразовать усилитель класса AB в настоящий класс A и нуждаетесь в более низком напряжении, или если вы проектируете усилитель с нуля и хотите улучшить регулировку питания), дроссель должен быть способен обрабатывать весь ток выходных ламп, а также секции предусилителя.Обратите внимание, что это означает не только ток смещения выходных ламп, но и пиковый ток на полном выходе. Обычно для этого требуется дроссель размером со стандартный выходной трансформатор мощностью 30-50 Вт, поскольку дроссель должен иметь воздушный зазор (как и несимметричный ОТ), чтобы избежать насыщения сердечника из-за протекающего через него постоянного тока смещения, и дроссель также должен иметь низкое сопротивление постоянному току, чтобы избежать слишком большого падения напряжения на нем, что снизит выходное напряжение и ухудшит регулировку нагрузки. Эта комбинация низкого DCR, воздушного зазора и высокой индуктивности (подробнее об этом позже…) обычно приводит к образованию дроссельной заслонки значительного размера. Чтобы рассчитать требуемый номинальный ток, сложите токи пластины выходной лампы полной мощности, токи экрана и токи питания предусилителя и добавьте коэффициент запаса. Для усилителя мощностью 50 Вт это может быть 250 мА или около того.
Если, с другой стороны, вы выбираете дроссель для источника питания конденсатора (например, типичный дизайн Marshall или Fender), то требования несколько смягчаются. Назначение дросселя в источниках питания такого типа — не фильтрация и регулирование напряжения, а просто фильтрация постоянного тока, подаваемого на сетку экрана выходных ламп и секции предусилителя.Экраны обычно потребляют около 5-10 мА каждый, а лампы предусилителя потребляют около 1-2 мА (для типичного 12AX7; 12AT7 обычно смещены примерно в десять раз больше). Это означает, что вы можете обойтись дросселем гораздо меньшего размера, и, кроме того, ток питания предусилителя не сильно меняется, поэтому вы можете обойтись более высоким сопротивлением постоянному току, что означает, что для намотки кабеля можно использовать провод меньшего размера. дроссель, что означает более высокую индуктивность для сердечника данного размера. Просто сложите текущие требования к экранам и лампам предусилителя и добавьте немного больше для запаса.Для усилителя мощностью 50 Вт типичное значение может составлять 50-60 мА.
Для типичного источника питания дросселя вам понадобится дроссель с сопротивлением не более 100-200 Ом или около того. В качестве источника питания конденсатора обычно может использоваться дроссель с постоянным током 250 Ом — 1 кОм. Чем выше сопротивление, тем больше падение напряжения и хуже регулирование, но и стоимость будет ниже.
Что касается значения индуктивности, это зависит от того, какую фильтрацию вы хотите.Индуктивность в сочетании с емкостью фильтра образует фильтр нижних частот. Чем больше индуктивность, тем ниже частота среза фильтра и тем лучше подавление 120 Гц (если двухполупериодное выпрямление) или 60 Гц (если полуволновое выпрямление) составляющей переменного тока выпрямленного постоянного тока. В общем, чем больше, тем лучше в разумных пределах (большие индуктивности при низком сопротивлении постоянному току означают большие дроссели, которые стоят больше денег). Как правило, 5-20 Henries — хороший выбор со стандартными электролитическими конденсаторами 32-50 мкФ.Значения индуктивности и емкости также определяют переходную характеристику источника питания, что означает тенденцию к выбросу питания или «звонку» с затухающими колебаниями всякий раз, когда применяется переходный процесс тока (например, при запуске или при сильном скачке тока, например жесткий аккорд «ми» на полную мощность!).
Номинальное напряжение должно быть выше, чем напряжение питания, в противном случае изоляция на проводе может выйти из строя, что приведет к замыканию питания на корпус.
Я настоятельно рекомендую зайти на сайт Дункана Манро (http://www.duncanamps.com/), чтобы загрузить его программу-калькулятор источника питания. Это позволит вам поэкспериментировать с различными значениями индуктивности и емкости и увидеть результирующие остаточные пульсации переменного тока и переходную характеристику фильтра питания. Можно моделировать входные фильтры конденсаторов и катушек индуктивности. Это отличный обучающий инструмент.
Авторские права © 1999-2007, Рэндалл Эйкен. Воспроизведение в любой форме без письменного разрешения Aiken Amplification запрещено.
Пересмотрено 18.02.14
Синфазный дроссельи его применение: введение
Когда в электронной схеме обнаруживается нежелательный шум, его можно остановить с помощью дросселя. Дроссель действует как индуктор, позволяя ему повышать сопротивление для сопротивления определенным частотам. Синфазные дроссели, электронные компоненты и схемы охватывают взаимосвязь между током и сопротивлением как основную динамику.Вот некоторые свойства, определяющие дроссель синфазного режима.
Использование синфазных дросселей
- Общие для различных отраслей (промышленность, электроника, телекоммуникации).
- Встречается в ЖК-панелях, компьютерах и мониторах.
- Находится в моторной части, обеспечивающей связь между микроконтроллерами и другими устройствами.
- Находится на USB-кабелях возле контактов разъема для фильтрации высокочастотных шумов в цепи (также известный как ферритовый дроссель или ферритовый шарик).
- Находится в функциях управления автоматизированными системами.
Режимы общего дросселя можно дополнительно использовать для поиска и устранения радиопомех или проблем с полосой пропускания. С помощью этого типа фильтрации можно решить множество различных технических проблем.
Внутри дросселя
Два разных типа дросселей называются «дроссели звуковой частоты (AFC)» и дроссели радиочастот (RFC). AFC предназначен для фильтрации звука, в то время как RFC фильтрует радиочастоты и пропускает постоянный ток. предназначен для блокировки электромагнитных помех (EMI) и радиочастотных помех (RFI).
Синфазный дроссель помогает предотвратить отказ оборудования. Он также может обеспечить защиту между компонентами. В основе дросселя лежит магнитный металл с намотанным на него изолированным проводом.
Разница между индуктором и дросселем
В качестве индуктора дроссель может фильтровать высокие частоты в токе, позволяя более низким частотам проходить через цепь. Термин «дроссель» относится к устройству только тогда, когда оно используется для блокировки частот, иначе этот компонент называется индуктором.Дроссели могут использоваться для блокировки переменного или постоянного тока.
Заключение
Дросселирование — это процесс блокировки определенных частот, позволяя другим проходить через цепь. Дроссели могут использоваться для блокировки или пропуска тока, а также определенных частот. Изучение синфазных дросселей, электронных компонентов и того, как сопротивление играет важную роль в управлении током, помогает лучше понять, как работают схемы.
Также читайте: Синфазные дроссели: как найти правильный
Международный союз компонентов
Allied Components International специализируется на разработке и производстве широкого спектра стандартных магнитных компонентов и модулей, таких как индукторы для микросхем, магнитные индукторы на заказ и трансформаторы на заказ.