Дроссель в цепи переменного тока: Электрический дроссель: принцип действия, назначение, применение

Содержание

Дроссель переменного тока и его расчёт

Всем доброго времени суток! В прошлой статье я рассказал о дросселях сглаживающих фильтров и изложил принцип их расчёта. Однако такие типы дросселей в бытовой технике применяются не очень часто, так как в маломощных устройствах зачастую эффективнее использовать ёмкостные фильтры. Наиболее часто в электронных устройствах применяют другой вид дросселей – дроссели переменного тока. Об их особенностях, принципах работы и расчёте параметров таких дросселей пойдёт речь в этой статье.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Особенности работы дросселя переменного тока

Дроссель переменного тока, так же как и любой другой дроссель представляет собой катушку индуктивности с ферромагнитным сердечником. Данный тип дросселя включается последовательно с нагрузкой, аналогично сглаживающему дросселю, но в отличие от него, протекающий ток через дроссель переменного тока не имеет постоянного тока подмагничивания. В связи с этим дроссель переменного тока широко применяется в балластных и токоограничительных цепях, мощных антенных и фильтрующих устройствах, а так же в различных импульсных преобразователях напряжения.

В независимости от применения дросселя в схеме его работа основана на зависимости его реактивного сопротивления XL от частоты f протекающего через него тока IH и падении напряжения на дросселе UL


Дроссель переменного тока.

Таким образом, величина напряжения на дросселе UL определяется индуктивностью дросселя L и параметрами тока, протекающего через дроссель: частота тока f и значение тока в цепи IH.

Влияние немагнитного зазора на дроссель

В предыдущих статьях я рассказывал о негативном влиянии насыщения сердечника на снижение магнитной проницаемости μe и индуктивности дросселя L, которые приводят к искажению формы тока протекающего через дроссель.


Форма тока, протекающего через дроссель: для ненасыщенного сердечника (1) и для насыщенного сердечника (2).

На данном рисунке изображено искажение формы тока синусоидального напряжения при работе дросселя на насыщенном и ненасыщенном участке кривой намагничивания. Степень искажения формы напряжения зависит также от отношения реактивного сопротивления дросселя к активному сопротивлению нагрузки X

L/RH. То есть при насыщении сердечника, чем меньше данное соотношение, тем меньше степень искажения формы напряжения. Таким образом, введение немагнитного зазора кроме стабилизации величины индуктивности, в широких пределах изменения тока, позволяет пропустить через дроссель переменный ток без значительных изменений.

Кроме вышеописанных факторов, введение немагнитного зазора приводит к некоторым особенностям, которые необходимо учитывать при разработке и изготовлении дросселей с зазором. Основной особенностью является уширение магнитного потока в зазоре.


Уширение магнитного потока в немагнитном зазоре дросселя: стержень дросселя (слева) и его поперечное сечение (справа). Пунктиром обозначены размеры увеличенного сечения вследствие выпучивания магнитного потока.

Данное явление связанно с тем, что в дросселе с зазором магнитный поток выходит за пределы пространства, находящегося между двух концов разрезанного сердечника, поэтому площадь поперечного сечения в немагнитном зазоре как бы увеличивается.

Размеры уширения сечения зависит от длины обмотки дросселя lоб, площади сечения сердечника Se и длины немагнитного зазора lз. Уширение магнитного потока уменьшает магнитное сопротивление цепи и, следовательно, увеличивает индуктивность дросселя. Для учёта уширения магнитного потока и увеличения индуктивности вводится коэффициент выпучивания F, учитывающий уширение магнитного потока в немагнитном зазоре. Поэтому значение индуктивности дросселя будет определятся следующим выражением

где ω – количество витков провода в обмотке,

μ0 – магнитная постоянная, μ0 = 4π*10-7 Гн/м,

μе – эквивалентная (относительная) магнитная проницаемость сердечника,

Sе – эквивалентная площадь поперечного сечения сердечника,

lе – эквивалентная длина магнитной линии сердечника.

lM – длина магнитной линии в сердечнике.

F – коэффициент, учитывающий уширение магнитного потока в зазоре.

Принципы расчёта дросселей переменного тока

Расчёт дросселя переменного тока ведётся аналогично расчёту сглаживающего дросселя, но с учётом начальных условий. Так для дросселя переменного тока определяющими параметрами являются: требуемая индуктивность L, приложенное напряжение UL, частота переменного тока f, перегрев дросселя. Кроме этого необходимо определиться с материалом сердечника дросселя, который определят индукцию насыщения BS и максимальную индукцию в сердечнике Bm, которая для предотвращения насыщения сердечника выбирается из условия

В основе расчётов дросселя переменного тока лежит выражения для определения величина действующего напряжения падающего на дросселе UL

где f – частота переменного тока,

L – индуктивность дросселя,

I – действующее значение тока дросселя.

Тогда с учетом выражения для индуктивности дросселя с замкнутым сердечником и выражения для максимальной индукции в сердечнике напряжение на дросселе будет зависеть от следующих параметров

где μе – эквивалентная магнитная проницаемость сердечника,

μ0 – магнитная постоянная, μ0 = 4π•10-7 Гн/м,

ω – количество витков обмотки дросселя,

Se – эквивалентное сечение сердечника дросселя,

le – эквивалентная длина магнитного пути сердечника дросселя,

Bm – максимальное значение магнитной индукции сердечника,

ka – коэффициент амплитуды тока (напряжения) дросселя.

Получившееся выражение довольно часто можно встретить под названием основной формулы трансформаторной ЭДС, так как оно устанавливает однозначное соотношение, между ЭДС на зажимах обмотки и числом витков обмотки, при заданной величине магнитной индукции в сердечнике. Тогда при синусоидальном напряжении (коэффициент амплитуды ka ≈ 1,414) выражение принимает следующий вид

Вернёмся к исходному выражению для напряжения на дросселе UL, в котором неоднозначным является параметр – количество витков.

Данный параметр кроме всего прочего (величины индуктивности L и магнитной проницаемости μе сердечника) зависит от размеров магнитопровода, а конкретнее от площади окна SO, которое можно вычислить по следующему выражению

где I – действующее значение тока дросселя,

ω – количество витков обмотки дросселя,

kИ – коэффициент использования окна сердечника,

j – плотность тока в проводе обмотки.

Параметры kИ и j выбирают аналогично, как и для дросселя сглаживающего фильтра, то есть коэффициент использования окна сердечника kИ ≈ 0,3, а плотность тока j = 5 А/мм2.

Тогда выражая из данного выражения количество витков провода ω, получим

Получившееся выражение определяет основное расчётное выражение для определения типоразмера сердечника – произведение площадей сердечника SeSO. После преобразования выражения для действующего напряжения на дросселе UL определяем количество витков обмотки ω и величину немагнитного зазора δ

где μе – эквивалентная магнитная проницаемость сердечника,

μ0 – магнитная постоянная, μ0 = 4π•10-7 Гн/м,

Se – эквивалентное сечение сердечника дросселя,

le – эквивалентная длина магнитного пути сердечника дросселя,

Bm – максимальное значение магнитной индукции сердечника,

ka – коэффициент амплитуды тока (напряжения) дросселя.

Вычисленное количество витков является ориентировочным, так как из-за уширения магнитного потока значение индуктивности оказывается несколько больше при данном количестве витков, что в некоторых случаях является нежелательным. Поэтому необходимо пересчитать витки с учётом коэффициента уширения магнитного потока F

Осталось выбрать сечение обмоточного провода SП

где SO – площадь окна используемого сердечника,

kИ – коэффициент использования окна сердечника,

ω – количество витков обмотки дросселя.

Выбор сечения провода необходимо производить, округлив полученное значение до ближайшего номинала, при этом необходимо учитывать, что на высоких частотах возрастают потери мощности в проводе. Поэтому при достаточно высокой частоте необходимо использовать обмоточный провод, состоящий из нескольких жил, при этом диаметр жилы выбирают исходя из глубины скин-слоя δ

где f – частота переменного тока, протекающего через дроссель,

δ – толщина скин-слоя,

dп – диаметр жилы в обмоточном проводе.

После конструктивного расчёта сердечника и обмотки необходимо проверить тепловой режим работы дросселя – нагрев и перегрев дросселя.

Расчёт дросселя переменного тока

В качестве примера рассчитаем дроссель переменного тока со следующими исходными данными: индуктивность дросселя L = 20 мкГн, частота переменного тока f = 50 кГц, действующее значение тока дросселя Iд = 5 А, температура перегрева ∆Т = 50 °C. Ток, протекающий через дроссель, имеет форму прямоугольных импульсов с коэффициентом заполнения D = 0,5.

В общем случае расчёт сводится к выбору параметров магнитопровода и обмотки, при этом режим работы дросселя должен отвечать заданным условиям, в данном случае, температуре перегрева ∆Т.

1.Выберем типоразмер сердечника соответствующего произведению площадей SeSO. Для этого необходимо дополнительно определить действующее напряжение на дросселе UL, коэффициент амплитуды тока дросселя ka, коэффициент использования окна сердечника kИ, значение максимальной индукции тока дросселя Bm и плотность тока j.

Так как частота тока достаточно высокая, то в качестве материала магнитопровода выберем феррит марки N87, следовательно, Bm = 0,3. Коэффициент использования окна сердечника и плотность тока выберем соответственно kИ = 0,3 и j = 5 А/мм2.

Таким образом, выберем магнитопровод, состоящий из двух половинок типа E 20/10/6 со следующими параметрами: le = 93мм, Se = 32 мм2, SO = 57 мм2, Ve = 2980 мм3, SeSO = 1824 мм4.


Сердечник, состоящий из двух половинок Е 20/10/6, имеет следующие размеры:

L = 20,4 мм, H = 20,2 мм, B = 5,9 мм, h = 14 мм, l0 = 5,9 мм, l1 = 4,1 мм.

2.Определим предварительное число витков обмотки дросселя без учёта эффекта уширения магнитного потока

Полученный результат округлим до ближайшего целого, таким образом, количество витков примем ω = 15. С учетом этого определим величину немагнитного зазора сердечника δ

В связи с тем, что прокладка для создания немагнитного зазора прокладывается как между центральными кернами, так и между боковыми, то соответственно толщина прокладки необходимо уменьшить вдвое по сравнению с рассчитанным значением. То есть толщина прокладки должна составлять 0,1…0,12 мм.

В связи с наличием немагнитного зазора происходит уширение магнитного потока и как следствие увеличение индуктивности. Для того чтобы индуктивность дросселя L соответствовала заданной, необходимо пересчитать число витков обмотки ω с учётом коэффициента уширения F

Таким образом, количество витков примем равным ω = 14. Для окончательного расчёта параметров дросселя определим сечение провода с учётом плотности тока j = 5 А/мм

2.

Как видно сечение провода составляет SП = 1 мм2, данному сечению соответствует провод диаметром dП = 1,12 мм. Так как частота переменного тока дросселя достаточно высокая, то для снижения потерь мощности вследствие скин-эффекта необходимо использовать литцендрат – провод состоящий из нескольких жил. Диаметр жилы dЖ не должен превышать удвоенной толщины скин-слоя ∆

В связи с этим для обмотки можно использовать провод, скрученный из 9 жил диаметром 0,38 мм, имеющего суммарное сечение SП = 1,02 мм2.

4.Для завершения расчётов необходимо рассчитать температуру перегрева дросселя ∆Т. Для этого необходимо определить потери мощности в обмотке ∆Р1 и в сердечнике ∆Р2, также суммарную площадь охлаждения дросселя.

Мощность потерь в обмотке ∆P1, зависит от удельного сопротивления проводника (qCu = 0,0171 (Ом•мм2)/м), длины обмоточного провода lпр.об и температурного коэффициента сопротивления меди αCu = 0,0038 °C-1.

где lв.ср. – средняя длина витка обмотки дросселя,

RT – сопротивление провода при температуре перегрева.

Для определения потерь мощности в сердечнике ∆P2 необходимо определить удельные объёмные потери PV при заданной частоте f, рабочей температуре T и максимальной индукции, создаваемой переменным током в дросселе Bm.

По справочным данным для феррита марки N87, при Bm = 300 мТл, f = 50 кГц и T = 70 °C, объемные потери составляют PV ≈ 250 кВт/м3 = 0,25•10-3 Вт/мм3, тогда потери мощности в сердечнике объемом Ve = 2980 мм3 составят

Рассчитаем площади охлаждения сердечника SС и площадь охлаждения обмотки SO.

Таким образом, перегрев составляет ∆Т = 48 °С соответствует требуемым условиям, но находится на пределе, поэтому можно порекомендовать снизить максимальное значение индукции Bm путём увеличения количества витков обмотки, или использовать сердечник большего размера.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Дроссель – как работает и для чего нужен | Лампа Эксперт

Дроссель – достаточно уникальный электрический прибор, обладающий специфическими свойствами. Именно благодаря этим свойствам дроссели очень широко используются в электрике и электронике? Чем же так уникален электрический дроссель и где конкретно используется? Ответы на эти вопросы в этой статье.

Конструкция и принцип работы

Конструктивно дроссель представляет катушку, выполненную обычно медным проводом. Катушка в зависимости от назначения прибора может иметь то или иное количество витков и иметь сердечник (каркас, магнитопровод), изготовленный из магнитного материала.

Бескаркасный дроссель (слева вверху) и дроссели с сердечниками

Бескаркасный дроссель (слева вверху) и дроссели с сердечниками

Основной характеристикой дросселя, как и любой другой катушки индуктивности, является индуктивность, измеряемая в Генри (Гн). Чем она выше, тем больше энергии может запасти прибор. Индуктивность в свою очередь зависит от количества витков в катушке и материала магнитопровода (если он есть).

Постоянный ток

А теперь посмотрим, чем так интересен дроссель. Подадим на него постоянное напряжение. Вокруг катушки тотчас начинает формироваться  магнитное поле. В это время ток через дроссель практически не течет – вся энергия расходуется на создание этого самого поля.

 

Формирование магнитного поля вокруг катушки дросселя

Формирование магнитного поля вокруг катушки дросселя

Как только магнитное поле будет полностью сформировано – его величина и время создания зависит от индуктивности катушки и значения приложенного напряжения, - через дроссель начнет течь ток как через обычный проводник. Величина же тока будет зависеть от активного сопротивления катушки и напряжения на ней. Ток можно рассчитать по закону Ома для участка цепи  - I = U/R.

Переменный ток

С постоянным током вроде все просто. Подадим теперь на катушку переменный ток.

 

Дроссель в цепи переменного тока

Дроссель в цепи переменного тока

В начале первого полупериода в дросселе будут проходить те же процессы, что и в случае с постоянным напряжением. Вокруг катушки начнет формироваться магнитное поле, тока через дроссель нет. Как только поле будет сформировано, через устройство потечет ток. Течь он будет до тех пор, пока не закончится полупериод.

В начале второго полупериода, который будет приложен с противоположным знаком, снова начнется формирование магнитного поля, но уже с противоположным знаком (полюсом). Но Прежде, чем сформировать такое поле, необходимо избавиться от предыдущего! Поэтому во время второго полупериода сначала «убивается» предыдущее поле, а потом формируется новое, с другим знаком. Этот процесс называется перемагничиванием.

Таким образом, для создания магнитного поля  при переменном токе требует больше времени и больше энергии – ведь на перемагничивание ее нужно немало. Но перемагничивание окончено, поле сформировано и через дроссель начинает течь ток. При следующем полупериоде процесс повторится – снова перемагничивание с отсутствием тока и последующее возобновление его. Величина тока, в отличие от постоянного напряжения в этом случае будет зависеть от индуктивности и частоты. Чем выше частота, и больше индуктивность, тем меньше ток.

Важно! Рассчитать такой ток по закону Ома уже не удастся, поскольку сопротивление дросселя переменному току является реактивным, которое, как было сказано выше, зависит от индуктивности дросселя и частоты приложенного напряжения.

Самоиндукция

Кроме того, что дроссель обладает реактивным сопротивлением переменному току, он имеет еще одно очень интересное свойство. Взглянем на схему ниже.

Схема для опыта с самоиндукцией

Схема для опыта с самоиндукцией

Лампа и дроссель, соединены параллельно и подключены к источнику постоянного тока.   При замыкании ключа через дроссель и лампу течет постоянный ток. Лампа светится, вокруг катушки дросселя сформировано магнитное поле. Теперь мы размыкаем ключ и смотрим, что происходит.

От лампы и дросселя отключается напряжение, но вокруг катушки последнего сформировано магнитное поле. После снятия напряжения это поле начинает преобразовываться в электрическую энергию и ток через лампу продолжает течь! Течет он, правда, в другом направлении. Чем больше индуктивность и, соответственно, поле, тем дольше дроссель сможет питать лампу. Такое обратное преобразование энергии называется индукцией.

 

Теперь лампа питается напряжением самоиндукции дросселя

Теперь лампа питается напряжением самоиндукции дросселя

Важно! Напряжение самоиндукции может в разы превышать напряжение, которым дроссель питался. При достаточно большой индуктивности напряжение, созданное самоиндукцией, может даже сжечь лампу!

Подведем итоги

Итак, мы выяснили, что постоянный ток дроссель пропускает почти без потерь, поскольку, как правило, активное сопротивление обмотки мало. Для переменного тока дроссель является весьма ощутимым сопротивлением, которое зависит от индуктивности прибора и частоты напряжения. Здесь стоит заметить, что реактивное сопротивление приборов этого типа на порядки выше, чем активное.

Ну и при резком размыкании на выводах обмотки дросселя за счет рассеивания магнитного поля создается напряжение. Причем величина этого напряжения может в разы превышать напряжение, которым ранее питался дроссель.

Практическое применение

А теперь самое интересное. Где можно использовать все эти интересные и уникальные свойства дросселя? Вы будете удивлены, но сфера применения этих свойств очень широка. Рассмотрим основные из них.

Фильтр помех и сглаживающий фильтр

Если сделать индуктивность дросселя достаточно небольшой, то реактивное сопротивление на частоте 50 Гц (частота сети) будет невелико, а значит, сетевое напряжение такой прибор будет пропускать практически без потерь. Включим его последовательно с нагрузкой, и она (нагрузка) получит полноценное питание. Но если в сети появится импульсная помеха, то она будет практически вся израсходована на формирование магнитного поля и дальше не прорвется.

Таким образом, дроссель может быть использован (и широко используется) для подавления импульсных помех по питанию 220 В 50 Гц. Подобные фильтры встраиваются как в аппаратуру, так и устройства, подающие на них питание.

Сетевой фильтр персонального компьютера помечен стрелкой

Сетевой фильтр персонального компьютера помечен стрелкой

Важно! Дроссель может использоваться и для уменьшения импульсной составляющей выпрямленного напряжения в импульсных блоках питания. Принцип сглаживания импульсов – тот же.
Сглаживающий фильтр в цепях выходного напряжения блока питания компьютера

Сглаживающий фильтр в цепях выходного напряжения блока питания компьютера

Фильтр НЧ

Практически каждый из нас видел акустические системы (колонки), состоящие из нескольких громкоговорителей. В такой системе каждый динамик отвечает за свой частотный диапазон. Если это головка низкой частоты (НЧ), то на нее нужно подавать только низкочастотную составляющую звука. В противном случае возникнут искажения – частотные, фазовые, нелинейные и т.д.

Дроссель – идеальный фильтр НЧ. Если правильно подобрать его индуктивность, то он пропустит нужные нам низкие звуковые частоты и задержит верхние – ведь при увеличении частоты реактивное сопротивление его увеличивается. Взглянем на схему трехполосной акустической системы.

Электрическая схема трехполосной акустической системы

Электрическая схема трехполосной акустической системы

Громкоговоритель VA2, отвечающий за низкие частоты, включен через дроссель L1. Дроссель отсекает высокие частоты и пропускает на громкоговоритель только тот сигнал, для воспроизведения которого он предназначен. В качестве примера на фото ниже показан фильтр низкочастотной  АС.

Низкочастотный фильтр сабвуфера

Низкочастотный фильтр сабвуфера

Балласт

Знакомые всем трубчатые люминесцентные лампы тоже не обходятся без дросселя. Если их напрямую включить в сеть, то они мгновенно сгорят. Чтобы этого не произошло, необходимо ограничивать ток через колбу. Можно, конечно для этого использовать обычный резистор, который ограничит ток своим активным сопротивлением. Но, во-первых, мощность, а значит, и габариты такого резистора будут весьма внушительными.

Во-вторых, на резисторе будет рассеиваться очень большая мощность, примерно равная мощности самой лампы, а это неоправданный расход энергии и вся экономия от использования люминесцентной лампы исчезает. Ну и, в-третьих, вся расходуемая энергия превращается в тепло и светильник перестает быть пожаробезопасным.

И тут на выручку приходит дроссель. Подбирая индуктивность катушки, можно добиться нужного реактивного сопротивления в зависимости от запросов лампы.

В качестве ограничителя тока в люминесцентном светильнике используется дроссель

В качестве ограничителя тока в люминесцентном светильнике используется дроссель

А энергия в катушке, как мы выяснили, расходуется на создание магнитного поля. Для этого не требуется много энергии. В результате дроссель потребляет совсем немного и практически не нагревается. В результате восстанавливается пожаробезопасность и увеличивается КПД светильника.

Важно! В настоящее время вместо электромагнитных пускорегулирующих устройств – дросселей – используются их электронные аналоги – Электронные пускорегулирующие устройства. Они более сложны в схемотехнике, дороже своих электромагнитных собратьев, но имеют более высокий КПД и существенно уменьшают пульсации светового потока.
В этой компактной люминесцентной лампе (КЛЛ) используется электронный дроссель

В этой компактной люминесцентной лампе (КЛЛ) используется электронный дроссель

Преобразователи напряжения

Нередко возникает необходимость преобразовать постоянное напряжение одной величины в напряжение другой. Трансформаторы, естественно, для этих целей не подойдут – они работают только с переменным напряжением. Но, оказывается, для этих целей можно использовать дроссели. Точнее, одно из их свойств – самоиндукцию. Преобразователи бывают понижающие и повышающие. Рассмотрим работу каждого из них.

Взглянем на структурную упрощенную схему, изображенную на рисунке ниже.

Структурная схема понижающего преобразователя

Структурная схема понижающего преобразователя

При замыкании ключа S1 начинается создание магнитного поля вокруг катушки дросселя L1. Диод VD1 при этом заперт. Размыкаем ключ – магнитная энергия, запасенная в дросселе, путем самоиндукции преобразуется обратно в электрическую и через открывшийся диод поступает в нагрузку, попутно проходя через сглаживающий фильтр, собранный на конденсаторе С1.

Регулируя время открытия ключа, можно контролировать степень намагничивания дросселя. Чем короче импульс, тем меньше энергии он запасет, а значит, и отдаст в нагрузку. Таким образом, даже при высоком входном напряжении можно получить выходное практически любой величины.

При помощи дросселя можно не только понижать, но и повышать напряжение. Как мы заметили выше, напряжение самоиндукции в момент размыкания ключа может превышать величину напряжения, поданного на катушку.

Структурная схема повышающего преобразователя

Структурная схема повышающего преобразователя

Здесь дроссель включен последовательно с источником питания. При замыкании ключа S1 начинается «зарядка» катушки. В это время диод VD1 заперт и не дает разрядиться накопительному конденсатору С1. Как только мы разомкнем ключ, магнитное поле начнет превращаться в электрический ток. При этом напряжение самоиндукции сложится с питающим и на накопительном конденсаторе появится напряжение, превышающее входное (диод при этом откроется).

Как мы отмечали раньше, напряжение самоиндукции может превышать питающее, поэтому на выходе преобразователя мы можем получить напряжение, величина которого многократно, а не вдвое превышает входное. Это наглядно иллюстрирует схема, приведенная ниже.

Принципиальная схема повышающего преобразователя с 1.2 В до 80 В

Принципиальная схема повышающего преобразователя с 1. 2 В до 80 В

Важно! Конечно, за такое удовольствие придется платить – ток потребления от первичного источника будет выше выходного ровно во столько раз, во сколько напряжение выходного выше входного.

Ну вот, вроде, и все об этом интересном приборе. Теперь мы знаем, как работает дроссель и где его уникальные свойства можно применить.

Дроссель в цепи переменного тока

Катушку индуктивности, используемую для подавления помех, для сглаживания пульсаций тока, для накопления энергии в магнитном поле катушки или сердечника, для развязки частей схемы друг от друга по высокой частоте – называют дросселем или реактором (от нем. drosseln — ограничивать, глушить).

Таким образом, главное назначение дросселя в электрической схеме — задержать на себе ток определенного частотного диапазона или накапливать энергию за определенный период времени в магнитном поле.

Физически ток в катушке не может измениться мгновенно, на это требуется конечное время, – данное положение прямо следует из Правила Ленца. Если бы ток через катушку мог изменяться мгновенно, то на катушке при этом возникало бы бесконечное напряжение. Самоиндукция катушки при изменении тока сама формирует напряжение — ЭДС самоиндукции. Таким образом, дроссель задерживает ток.

Если необходимо подавить переменный компонент тока в цепи (а помехи или пульсации — это как раз пример переменной составляющей), то в такую цепь устанавливают дроссель — катушку индуктивности, обладающую для тока частоты помех значительным индуктивным сопротивлением. Пульсации в сети существенно снизятся, если на пути установлен дроссель. Таким же образом можно развязать или изолировать друг от друга сигналы различной частоты, действующие в цепи.

В радиотехнике, в электротехнике, в СВЧ-технике, – используются высокочастотные токи от единиц герц до гигагерц. Низкие частоты в пределах 20 кГц относятся к звуковым частотам, затем следует ультразвуковой диапазон – до 100 кГц, наконец диапазон ВЧ и СВЧ — выше 100 кГц, единицы, десятки и сотни МГц.

Низкочастотный дроссель похож с виду на железный трансформатор, с тем лишь отличием, что обмотка на нем всего одна. Катушка навита на сердечник из трансформаторной стали, пластины которого изолированы между собой дабы снизить вихревые токи. Такая катушка обладает высокой индуктивностью (более 1 Гн), она оказывает значительное противодействие любому изменению тока в электрической цепи, где она установлена: если ток резко стал убывать — катушка его поддерживает, если ток начал резко возрастать — катушка станет его ограничивать, не даст резко нарасти.

Одна из широчайших сфер применения дросселей — это высокочастотные схемы . Многослойные или однослойные катушки навиваются на ферритовые или стальные сердечники, либо используются совсем без ферромагнитных сердечников — просто пластмассовый каркас или только проволока. Если схема работает на волнах среднего и длинного диапазона, то возможно часто встретить секционную намотку.

Дроссель с ферромагнитным сердечником имеет меньшие габариты, чем дроссель без сердечника той же индуктивности. Для работы на высоких частотах используют сердечники ферритовые или из магнитодиэлектрических составов, отличающихся малой собственной емкостью. Такие дроссели способны работать в довольно широком диапазоне частот.

Как вы уже поняли, основной параметр дросселя — индуктивность, как и у любой катушки . Единица измерения данного параметра — генри, а обозначение – Гн. Следующий параметр — электрическое сопротивление (на постоянном токе), оно измеряется в омах (Ом).

Затем идут такие характеристики, как допустимое напряжение, номинальный подмагничивающий ток, и конечно добротность, – крайне важный параметр, особенно для колебательных контуров. Различные типы дросселей находят сегодня самое широкое применение для решения самых разнообразных инженерных задач.

Итак, по назначению электрические дроссели подразделяются на:

Дроссели переменного тока, работающие во вторичных импульсных источниках питания. Катушка накапливает энергию первичного источника питания в своем магнитном поле, затем отдает ее в нагрузку. Обратноходовые преобразователи, бустеры — в них используются дроссели, причем иногда с несколькими обмотками, как у трансформаторов. Аналогичным образом работает магнитный балласт люминесцентной лампы, служащий для ее розжига и поддержания номинального тока.

Дроссели для пуска двигателей – ограничители пусковых и тормозных токов. Это эффективнее, чем рассеивать мощность в форме тепла на резисторах. Для электроприводов мощностью до 30 кВт такой дроссель по внешнему виду напоминает трехфазный трансформатор (в трехфазных цепях используются трехфазные дроссели).

Дроссели насыщения, применяемые в стабилизаторах напряжения, и феррорезонансных преобразователях (трансформатор частично превращается в дроссель), а также в магнитных усилителях, где сердечник подмагничивается с целью изменения индуктивного сопротивления цепи.

Сглаживающие дроссели, применяемые в фильтрах для устранения пульсаций выпрямленного тока. Источники питания со сглаживающими дросселями были очень популярны в период расцвета ламповых усилителей из-за отсутствия конденсаторов с очень большой емкостью. Для сглаживания пульсаций после выпрямителя должны были использоваться именно дроссели.

Катушку индуктивности, используемую для подавления помех, для сглаживания пульсаций тока, для накопления энергии в магнитном поле катушки или сердечника, для развязки частей схемы друг от друга по высокой частоте – называют дросселем или реактором (от нем. drosseln — ограничивать, глушить).

Таким образом, главное назначение дросселя в электрической схеме — задержать на себе ток определенного частотного диапазона или накапливать энергию за определенный период времени в магнитном поле.

Физически ток в катушке не может измениться мгновенно, на это требуется конечное время, – данное положение прямо следует из Правила Ленца. Если бы ток через катушку мог изменяться мгновенно, то на катушке при этом возникало бы бесконечное напряжение. Самоиндукция катушки при изменении тока сама формирует напряжение — ЭДС самоиндукции. Таким образом, дроссель задерживает ток.

Если необходимо подавить переменный компонент тока в цепи (а помехи или пульсации — это как раз пример переменной составляющей), то в такую цепь устанавливают дроссель — катушку индуктивности, обладающую для тока частоты помех значительным индуктивным сопротивлением. Пульсации в сети существенно снизятся, если на пути установлен дроссель. Таким же образом можно развязать или изолировать друг от друга сигналы различной частоты, действующие в цепи.

В радиотехнике, в электротехнике, в СВЧ-технике, – используются высокочастотные токи от единиц герц до гигагерц. Низкие частоты в пределах 20 кГц относятся к звуковым частотам, затем следует ультразвуковой диапазон – до 100 кГц, наконец диапазон ВЧ и СВЧ — выше 100 кГц, единицы, десятки и сотни МГц.

Низкочастотный дроссель похож с виду на железный трансформатор, с тем лишь отличием, что обмотка на нем всего одна. Катушка навита на сердечник из трансформаторной стали, пластины которого изолированы между собой дабы снизить вихревые токи. Такая катушка обладает высокой индуктивностью (более 1 Гн), она оказывает значительное противодействие любому изменению тока в электрической цепи, где она установлена: если ток резко стал убывать — катушка его поддерживает, если ток начал резко возрастать — катушка станет его ограничивать, не даст резко нарасти.

Одна из широчайших сфер применения дросселей — это высокочастотные схемы . Многослойные или однослойные катушки навиваются на ферритовые или стальные сердечники, либо используются совсем без ферромагнитных сердечников — просто пластмассовый каркас или только проволока. Если схема работает на волнах среднего и длинного диапазона, то возможно часто встретить секционную намотку.

Дроссель с ферромагнитным сердечником имеет меньшие габариты, чем дроссель без сердечника той же индуктивности. Для работы на высоких частотах используют сердечники ферритовые или из магнитодиэлектрических составов, отличающихся малой собственной емкостью. Такие дроссели способны работать в довольно широком диапазоне частот.

Как вы уже поняли, основной параметр дросселя — индуктивность, как и у любой катушки . Единица измерения данного параметра — генри, а обозначение – Гн. Следующий параметр — электрическое сопротивление (на постоянном токе), оно измеряется в омах (Ом).

Затем идут такие характеристики, как допустимое напряжение, номинальный подмагничивающий ток, и конечно добротность, – крайне важный параметр, особенно для колебательных контуров. Различные типы дросселей находят сегодня самое широкое применение для решения самых разнообразных инженерных задач.

Итак, по назначению электрические дроссели подразделяются на:

Дроссели переменного тока, работающие во вторичных импульсных источниках питания. Катушка накапливает энергию первичного источника питания в своем магнитном поле, затем отдает ее в нагрузку. Обратноходовые преобразователи, бустеры — в них используются дроссели, причем иногда с несколькими обмотками, как у трансформаторов. Аналогичным образом работает магнитный балласт люминесцентной лампы, служащий для ее розжига и поддержания номинального тока.

Дроссели для пуска двигателей – ограничители пусковых и тормозных токов. Это эффективнее, чем рассеивать мощность в форме тепла на резисторах. Для электроприводов мощностью до 30 кВт такой дроссель по внешнему виду напоминает трехфазный трансформатор (в трехфазных цепях используются трехфазные дроссели).

Дроссели насыщения, применяемые в стабилизаторах напряжения, и феррорезонансных преобразователях (трансформатор частично превращается в дроссель), а также в магнитных усилителях, где сердечник подмагничивается с целью изменения индуктивного сопротивления цепи.

Сглаживающие дроссели, применяемые в фильтрах для устранения пульсаций выпрямленного тока. Источники питания со сглаживающими дросселями были очень популярны в период расцвета ламповых усилителей из-за отсутствия конденсаторов с очень большой емкостью. Для сглаживания пульсаций после выпрямителя должны были использоваться именно дроссели.

Катушка индуктивности (inductor. -eng)– устройство, основным компонентом которого является проводник скрученный в кольца или обвивающий сердечник. При прохождении тока, вокруг скрученного проводника (катушки), образуется магнитное поле (она может концентрировать переменное магнитное поле), что и используется в радио- и электро- технике.

К точной и компьютерной технике технике больше близок дроссель (Drossel, регулятор, ограничитель), так как он чаще всего применяется в цепях питания процессоров, видеокарт, материнских плат, блоков питания & etc. В последнее время, применяются индукторы закрытые в корпуса из металлического сплава для уменьшения наводок, излучения, шумов и высокочастотного свиста при работе катушки.

Дроссель служит для уменьшения пульсаций напряжения, сглаживания или фильтрации частотной составляющей тока и устранения переменной составляющей тока. Сопротивление дросселя увеличивается с увеличением частоты, а для постоянного тока сопротивление очень мало. Характеристики дросселя получаются от толщины проводника, количества витков, сопротивления проводника, наличия или отсутствия сердечника и материала, из которого сердечник сделан. Особенно эффективными считаются дроссели с ферритовыми сердечниками (а также из альсифера, карбонильного железа, магнетита) с большой магнитной проницаемостью.

Используется в выпрямителях, сетевых фильтрах, радиотехнике, питающих фазах высокоточной аппаратуры и другой технике требующей стабильного и «правильного» питания. Многослойная катушка может выступать и в качестве простейшего конденсатора, так как имеет собственную ёмкость. Правда, от данного эффекта пытаются больше избавиться, чем его усиливать и он считается паразитным.

Как работает дроссель.

В цепях переменного тока, для ограничения тока нагрузки, очень часто применяют дроссели – индуктивные сопротивления. Перед обычными резисторами здесь у дросселей имеется серьезные преимущества – значительная экономия электроэнергии и отсутствие сильного нагрева.

Каково устройство дросселя, на чем основан принцип его работы?

Устроен дроссель очень просто – это катушка из электрического провода, намотанная на сердечнике из ферромагнитного материала. Приставка ферро, говорит о присутствии железа в его составе (феррум – латинское название железа), в том или ином количестве.

Принцип работы дросселя основан на свойстве, присущем не только катушкам но и вообще, любым проводникам – индуктивности. Это явление легче всего понять, поставив несложный опыт.

Для этого требуется собрать простейшую электрическую цепь, состоящую из низковольтного источника постоянного тока (батарейки), маленькой лампочки накаливания, на соответствующее напряжение и достаточно мощного дросселя (можно взять дроссель от лампы ДРЛ-400 ватт).

Без дросселя, схема будет работать как обычно – цепь замыкается, лампа загорается. Но если добавить дроссель, подключив его последовательно нагрузке(лампочке), картина несколько изменится.

Присмотревшись, можно заметить, что во первых, лампа загорается не сразу, а с некоторой задержкой, во вторых – при размыкании цепи возникает хорошо заметная искра, прежде не наблюдавшаяся. Так происходит потому что, в момент включения ток в цепи возрастает не сразу – этому препятствует дроссель, некоторое время поглощая электроэнергию и запасая ее в виде электромагнитного поля. Эту способность и называют – индуктивностью.

Чем больше величина индуктивности, тем большее количество энергии может запасти дроссель. Еденица величины индуктивности – 1 Генри В момент разрыва цепи запасеная энергия освобождается, причем напряжение при этом может превысить Э.Д.С. используемого источника в десятки раз, а ток направлен в противоположную сторону. Отсюда заметное искрение в месте разрыва. Это явление называется – Э.Д.С. самоиндукции.

Если установить источник переменного тока вместо постоянного, использовав например, понижающий трансформатор, можно обнаружить что та же лампочка, подключенная через дроссель – не горит вовсе. Дроссель оказывает переменному току гораздо большое сопротивление, нежели постояному. Это происходит из за того, что ток в полупериоде, отстает от напряжения.

Получается, что действующее напряжение на нагрузке падает во много раз(и ток соответственно), но энергия при этом не теряется – возвращается за счет самоиндукции обратно в цепь. Сопротивление оказываемое индуктивностью переменному току называется – реактивным. Его значение зависит от величины индуктивности и частоты переменного тока. Величина индуктивности в свою очередь, находится в зависимости от количества витков катушки и свойства материала сердечника, называемого – магнитной проницаемостью, а так же его формы.

Магнитная проницаемость – число, показывающее во сколько раз индуктивность катушки больше с сердечником из данного материала, нежели без него(в идеале – в вакууме.)

Т. е – магнитная проницаемость вакуума принята за еденицу.

В радиочастотных катушках малой индуктивности, для точной подстройки применяются сердечники стержеобразной формы. Материалами для них могут являться ферриты с относительно небольшой магнитной проницаемостью, иногда немагнитные материалы с проницаемостью меньше 1.

В электромагнитах реле – сердечники подковоообразной и цилиндрической формы из специальных сталей.

Для намотки дросселей и трансформаторов используют замкнутые сердечники – магнитопроводы Ш – образной и тороидальной формы. Материалом на частотах до 1000 гц служит специальная сталь, выше 1000 гц – различные ферросплавы. Магнитопроводы набираются из отдельных пластин, покрытых лаком.

У катушки, намотанной на сердечник, кроме реактивного(Xl) имеется и активное сопротивление(R). Таким образом, полное сопротивление катушки индуктивности равно сумме активной и реактивной составляющих.

Как работает трансформатор.

Рассмотрим работу дросселя собранного на замкнутом магнитопроводе и подключенного в виде нагрузки, к источнику переменного тока. Число витков и магнитная проницаемость сердечника подобраны таким образом, что его реактивное сопротивление велико, ток протекающий в цепи соответственно – нет.

Ток, переодически изменяя свое направление, будет возбуждать в обмотке катушки (назовем ее катушка номер 1) электромагнитное поле, направление которого будет также переодически меняться – перемагничивая сердечник. Если на этот же сердечник поместить дополнительную катушку(назовем ее – номер 2), то под действием переменного электромагнитного поля сердечника, в ней возникнет наведенная переменная Э.Д.С.

Если количество витков обеих катушек совпадает, то значение наведенной Э.Д.С. очень близко к значению напряжения источника питания, поданного на катушку номер 1. Если уменьшить количество витков катушки номер 2 вдвое, то значение наведенной Э.Д.С. уменьшится вдвое, если количество витков наоборот, увеличить – наведенная Э.Д.С. также, возрастет. Получается, что на каждый виток, приходится какая-то определенная часть напряжения.

Обмотку катушки на которую подается напряжение питания (номер 1) называют первичной. а обмотка, с которой трансформированое напряжение снимается – вторичной .

Отношение числа витков вторичной(Np ) и первичной (Ns ) обмоток равно отношению соответствующих им напряжений – Up (напряжение первичной обмотки) и Us (напряжение вторичной обмотки).

Таким образом, устройство состоящее из замкнутого магнитопровода и двух обмоток в цепи переменного тока можно использовать для изменения питающего напряжения – трансформации. Соответственно, оно так и называется – трансформатор .

Если подключить к вторичной обмотке какую-либо нагрузку, в ней возникнет ток(Is ). Это вызовет пропорциональное увеличение тока(Ip ) и в первичной обмотке. Будет верным соотношение:

Трансформаторы могут применяться как для преобразовния питающего напряжения, так и для развязки и согласования усилительных каскадов. При работе с трансформаторами необходимо обратить внимание на ряд важных параметров, таких как:

1. Допустимые токи и напряжения для первичной и вторичной обмоток.

2. Максимальную мощность трансформатора – мощность которая может длительное время передаваться через него, не вызывая перегрева обмоток.

3. Диапазон рабочих частот трансформатора.

Параллельный колебательный контур.

Если соединить катушку индуктивности и конденсатор – получится очень интересный элемент радиотехники – колебательный контур. Если зарядить конденсатор или навести в катушке Э.Д.С. используя электромагнитное поле – в контуре начнут происходить следующие процессы: Конденсатор разряжаясь, возбуждает электромагнитное поле в катушке индуктивности. Когда заряд истощается, катушка индуктивности возвращает запасенную энергию обратно в конденсатор, но уже с противоположным знаком, за счет Э.Д.С. самоиндукции. Это будет повторяться снова и снова – в контуре возникнут электромагнитные колебания синусоидальной формы. Частота этих колебаний называется резонансной частотой контура, и зависит от величин емкости конденсатора(С), и индуктивности катушки (L).

Параллельный колебательный контур обладает очень большим сопротивлением на своей резонансной частоте. Это позволяет использовать его для частотной селекции(выделения) в входных цепях радиоаппаратуры и усилителях промежуточной частоты, а так же – в различных схемах задающих генераторов.

Цветовая и кодовая маркировка индуктивностей.

Обычно для индуктивностей кодируется номинальное значение индуктивности и допуск, т.е. допускаемое отклонение от указанного номинала. Номинальное значение кодируется цифрами, а допуск — буквами. Применяется два вида кодирования.

Первые две цифры указывают значение в микрогенри (мкГн), последняя — количество нулей. Следующая за цифрами буква указывает на допуск. Например, код 101J обозначает 100 мкГн ±5%. Если последняя буква не указывается —допуск 20%. Исключения: для индуктивностей меньше 10 мкГн роль десятичной запятой выполняет буква R, а для индуктивностей меньше 1 мкГн — буква N.

D=±0,3 нГн; J=±5%; К=±10%; M=±20%

Индуктивности маркируются непосредственно в микрогенри (мкГн). В таких случаях маркировка 680К будет означать не 68 мкГн ±10%, как в случае А, а 680 мкГн ±10%.

Как измерить индуктивность катушки, дросселя.

ЗЫ: Взял где взял, обобщил и добавил немного.

Простите за качество некоторых картинок (чем богаты).

Берегите себя и своих близких!

Дубликаты не найдены

Как измерить индуктивность катушки мультиметром? Взять мультиметр с функцией измерения индуктивности. Лодку мне.

Трансформаторные дроссели переменного тока ТОРЭЛ

Дроссель переменного тока ТОРЭЛ для бытовых и промышленных приборов

Дроссель переменного тока ТОРЭЛ  является частью большинства радиоприборов и электротехнических устройств. Как известно, дросселем называется катушка индуктивности, которую включают в электрическую цепь последовательно с нагрузкой для подавления переменной составляющей тока в цепи. Дроссели обладают высоким сопротивлением переменному току и малым сопротивлением постоянному току. Дроссели могут быть выполнены на магнитопроводах различной конструкции. Лучшие показатели имеют дроссели тороидальной конструкции. Это связанно с тем, что дроссель выполнен на магнитопроводе тороидальной формы как и трансформатор, содержит обмотку подробную первичной обмотке трансформатора, имеет обычные источники тепловыделения, что и трансформатор магнитопровод и провод обмотки.

Условные обозначения дросселя:

  • Индуктивность;
  • Наибольшее действующее значения переменного тока;
  • Частота питающей сети;
  • Допустимая температура перегрева;
  • Допустимый диаметр технологического окна;
  • Число витков обмотки;
  • Диаметр провода обмотки;
  • Воздушный зазор;

Если требуется рассчитать дроссель на заданном магнитопроводе, то его размеры должны быть указаны в исходных данных. Кроме того, тороидальный дроссель имеет меньшие габариты и массу в сравнении дросселями иных конструкций, следовательно и меньшую стоимость, меньшие поля рассеяния. В нашей организации можете купить дроссель как за наличный расчет и также по безналичному расчет, можно сделать заказ на сайте и оплатить. На всю продукцию предоставляется гарантия 2 года со дня продажи.

Часто задаваемые вопросы по по выбору дроссель переменного тока

Как правильно подобрать дроссель переменного тока?
Для этих целей нужно отправить заявку нам в расчетный отдел.

Сколько по времени будет изготавливаться дроссель?
После 100% оплаты срок исполнения от 3-6 недель, большинство моделей есть в наличии.

Какая гарантия на дроссель переменного тока?
Гарантия на трансформатор разделительный 2 года.

Есть ли крепление в комплекте и технический паспорт?
Да есть крепление, паспорт на изделие имеется.

Работаете ли с регионами России?
Да, работаем отправка через транспортные компании.

Работаете с юридическими лицами и по безналичному расчету?
Да, работаем с организациями и по безналичному расчету с НДС.

Есть ли скидки для постоянных клиентов?
Для постоянных клиентов всегда выгодные условия работы с нашей организацией.

принцип работы устройства, характеристики, назначение и виды

Одним из наиболее распространённых элементов, использующихся в радиоэлектронной аппаратуре, является дроссель. Эта пассивная радиодеталь имеет большое значение в обеспечении стабильности работы электрических схем. Главной ее характеристикой считается индуктивность — очень важная физическая величина. Конструкция элемента проста, но при этом он может использоваться как в цепях переменного, так и постоянного тока.

Основные понятия в электронике

Родоначальником открытия электричества считается английский физик Уильям Гилберт. В 1600 году он ввёл понятие «янтарность», что в переводе обозначает электричество. Ученым было обнаружено на опытах с янтарем, что если его потереть о шёлк, он приобретает свойства притягивать к себе другие физические тела. Так было открыто статическое электричество. Первая электрическая машина была создана немецким инженером Отто фон Герике. Агрегат выглядел в виде металлического шеста с надетым на его верхушку серным шаром.

Последующие годы ряд физиков и инженеров из различных стран исследовали свойства электричества, открывая новые явления и изобретая приборы. Наиболее выдающимися учёными, которые внесли весомый вклад в науку, считаются Гальвани, Вольт, Эстред, Ом, Фарадей, Герц, Ампер. Признавая важность их открытий, фундаментальные величины, характеризующие различные электрические явления, назывались их именами.

Итогом их экспериментов и теоретических догадок стал труд Максвелла, создавшего теорию электромагнитных явлений в 1873 году. А через двадцать лет англичанин Томсон обнаружил частицу, участвующую в образовании электричества (электрон), положение которой в атомной структуре тела после указал Резерфорд.

Так было обнаружено, что электрический заряд — это способность физических тел создавать вокруг себя особое поле, оказывающее воздействие на другие вещества. Электричество связано с магнетизмом, который влияет на положение электронов, являющихся элементарными частицами тела. Каждая такая частица обладает определённой энергией (потенциалом) и может перемещаться по телу в хаотично.

Придание же электронам направленного движения приводит к возникновению тока. Работа, затраченная на перемещение элементарной частички, называется напряжением. Если ток течёт в замкнутой цепи, то он создаёт магнитное поле, то есть силу, действующую на электроны.

Все вещества разделяются на три типа:

  • проводники — это тела, свободно пропускающие через себя ток;
  • диэлектрики — в этих телах невозможно появление свободных электронов, а значит, ток через них протекать не может;
  • полупроводники — материалы, свойство которых пропускать ток зависит от внешних факторов, например, температуры.

Характеристикой, обозначающей способность тела проводить ток, называется проводимость, а величина обратная ей — сопротивлением.

Активное сопротивление

На прохождение электрического тока в итоге оказывают влияние три физические величины: сопротивление, индуктивность и ёмкость. Каждый радиоэлемент (не исключение и дроссель) обладает ими в какой-то мере.

Активное сопротивление представляет собой величину, препятствующую прохождению тока и равную отношению разности потенциалов к силе тока (закон Ома). Его сущность объясняется тем, что в кристаллической решётке различных физических тел содержится разное число свободных носителей зарядов. Кроме этого, сама структура может быть неоднородной, то есть содержать примеси или дефекты. Электроны, перемещаясь под действием поля, сталкиваются с ними и отдают часть своей энергии кристаллам тела.

В результате таких столкновений частички теряют импульс, а сила тока уменьшается. Рассеиваемая электрическая энергия превращается в тепло. Элементом, использующим естественные свойства физического тела, является резистор.

Что же касается дросселя, то его активное сопротивление считается паразитным, вызывающим нагревание и ухудшение параметров. Зависит оно от типа материала и его физических размеров.

Определяется по формуле R = p * L / S, Ом, где:

  • p — удельное сопротивление (справочная величина), Ом*см;
  • L — длина проводника, см;
  • S — площадь поперечного сечения, см2.

Ёмкостная составляющая

Любой проводник тока в разной мере имеет свойство накапливать электрический заряд. Эта способность называется ёмкостью элемента. Для одних радиодеталей она считается вредной составляющей (в частности, для дросселя), а для других — полезной (конденсатор). Относят это понятие к реактивному сопротивлению. Его величина зависит от вида подаваемого сигнала на элемент и ёмкости материала, из которой он сделан.

Математически реактивное сопротивление описывается выражением Xc = 1/w*C, где:

  • w — циклическая частота, скалярная угловая величина, определяющаяся числом колебаний сигнала за единицу времени (2*p*f), Гц;
  • C — ёмкость элемента, Ф.

Из формулы видно, что чем больше будет ёмкость и частота тока, тем выше сопротивление элемента, а значит, имеющий большое ёмкостное сопротивление дроссель будет нагреваться. Значение ёмкости в дросселе зависит от размеров проводника и способа его укладки. При спиралевидной намотке между рядом лежащими кольцами возникает ёмкость, также влияющая на протекающий ток.

Паразитная составляющая ёмкости проявляется и в образовании собственного резонанса изделия, так как дроссель на эквивалентной схеме можно представить в виде последовательной цепочки индуктивности и конденсатора. Такое включение создаёт колебательный контур, работающий на определённой частоте. Если частота сигнала будет ниже резонансного значения, то преобладать будет индуктивная составляющая, а если выше — ёмкостная.

Поэтому существенной задачей изготовления дросселя в электронике считается увеличение собственного резонанса конструкции.

Индуктивность и самоиндукция

Электрическое поле неразрывно связано с магнитным. Там, где существует одно, неизменно появляется и второе. Индуктивность — это физическая величина, характеризующаяся накоплением энергии, но в отличие от ёмкости эта энергия является магнитной. Её величина зависит от магнитного потока, образованного силой тока, протекающего через радиоэлемент. Чем больше ток, тем сильнее магнитный поток пронизывает изделие. Интенсивность накопления элементом энергии зависит от этого потока.

Математическая формула нахождения индуктивности — L = Ф/ I, где:

  • Ф — магнитный поток, Вб;
  • I — сила тока, текущая через элемент, А.

Индуктивность измеряется в генри (Гн). Таким образом, катушка индуктивности в момент протекания через неё тока создаёт магнитный поток равный одному веберу (Вб).

Сопротивление, оказываемое индуктивностью, во многом зависит от частоты приложенного сигнала. Для его расчёта используется выражение XL = w*L. То есть для постоянного тока она равна нулю, а для переменного — зависит от его частоты. Иными словами, для высокочастотного сигнала элемент будет обладать большим сопротивлением.

Физический процесс, наблюдаемый при прохождении переменного тока через индуктивность, можно описать следующим образом: в течение первой декады сигнала (ток возрастает) магнитное поле усиленно потребляет энергию из электрической цепи, а в последней декаде (ток убывает) отдаёт её обратно, поэтому за период прохождения тока мощность не потребляется.

Но эта модель подходит к идеальному элементу, на самом же деле некоторая часть энергии превращается в тепло. То есть происходят потери, характеризующиеся добротностью Q, определяемую отношением получаемой энергии к отдаваемой.

При изменении тока, текущего через проводник в контуре, возникает электродвижущая сила индукции (ЭДСИ) — самоиндукция. Другими словами, переменный ток изменяет величину магнитного потока, который приводит в итоге к появлению ЭДСИ. Проявляется этот эффект в замедлении процессов появления и спадания тока. Амплитуда самоиндукции пропорциональна величине тока, частоте сигнала и индуктивности. Её отставание по фазе от сигнала составляет 90 градусов.

Принцип работы

Термин «дроссель» происходит от немецкого слова drossel, что в переводе на русский язык означает «ограничитель». В электротехнике под ним понимается катушка индуктивности, обладающая большим сопротивлением току переменной частоты и практически не влияющая на постоянный ток.

По своей сути электрический дроссель — это индуктивность. Он способен накапливать энергию, получая её из магнитного поля. При воздействии на элемент напряжения в нём постепенно происходит увеличение тока, при этом если сменить полярность — ток начнёт убывать, т. е. резко изменить значение тока в дросселе невозможно.

Постепенное нарастание величины тока и его спад происходит из-за магнитного поля, которое не может мгновенно изменить своё направление. Другими словами, ток блока питания противодействует наведённому току в сердечнике изделия, поэтому в цепях с током переменой частоты он является своего рода ограничителем из-за индуктивного сопротивления.

По своей конструкции дроссель чем-то похож на трансформатор, но при этом чаще всего у него одна обмотка. А вот их принципы действия полностью отличаются. Если для трансформатора важно передавать всю энергию и гальванически развязывать цепь, то главной задачей стоящей перед дросселем является накапливание энергии в индуктивности. В то же время для трансформатора такое накопление считается паразитным процессом.

Устройство прибора

Выполняется этот элемент из проволочного вида проводника, наматываемого в виде спирали. Этот проводник может быть как многожильным, так и одножильным. Проволока может наматываться на диэлектрический каркас или использоваться без него. Если применяется основание, то оно может быть выполнено круглым, прямоугольным или квадратным сечением. Физически же дроссель состоит из одного или множества витков проводника.

При изготовлении дросселя используются следующие разновидности намотки:

  • прогрессивная — шаг витков плавно изменяется по всей длине конструкции;
  • универсальная — расстояние между витками одинаковое.

Первый тип используется при создании изделий, предназначенных для работы на высоких частотах, при этом уменьшается значение паразитной ёмкости. Такая намотка может быть однослойной или многослойной, причем даже разного диаметра. В качестве материала для изготовления проводника используется медь.

Увеличение индуктивности достигается путём добавления ферромагнитного сердечника. В зависимости от назначения устройства используют разные его виды, например, для подавления высокочастотных помех — феррит, флюкстрол или карбонил, для фильтрации звуковой частоты — пермаллой. В то же время для дросселя, работающего со сверхвысокими частотами, применяют латунь. Магнитопровод рассчитывается так, чтобы избежать режима насыщения (падения индуктивного сопротивления).

Чтобы избежать насыщения в дросселях, магнитопровод изготавливается с зазором. При изготовлении дросселя стараются обеспечить:

  • необходимую индуктивность;
  • величину магнитной индукции, исключающую насыщение;
  • способность выдерживать необходимый ток.

Для этого обычно сначала рассчитывается зазор и число витков исходя из силы тока и индуктивности, а после определяется максимально возможный диаметр проволоки. В цифровых малогабаритных устройствах дроссель изготавливается в плоском виде. Достигается это путём печатания проводниковой дорожки в виде круговой или зигзагообразной линии.

Виды и характеристики

Главной характеристикой дросселя, безусловно, является индуктивность. Но, кроме неё, существует ряд номинальных параметров, характеризующих элемент как изделие. Именно они определяют возможности использования устройства и его срок службы. Основными из них являются:

  1. Мощность — определяется типом сердечника и поперечным сечением провода. Обозначает величину сигнала, которую может выдержать дроссель. Единицей измерения служит ватт.
  2. Добротность и угол потерь — характеризуют качество устройства. Чем больше добротность и меньше угол, тем выше качество.
  3. Частота тока — f, Гц. В зависимости от неё дроссели разделяют на низкочастотные, имеющие границы колебаний 20−20 000 Гц, ультразвуковые — от 20 до 100 кГц и сверхвысокие — больше 100 кГц.
  4. Наибольшее допустимое значение тока — I, А.
  5. Сопротивление элемента в неподключенном состоянии — R, Ом.
  6. Потери в магнитопроводе — P, Вт.
  7. Вес — G, кг.

Современная промышленность изготавливает электромагнитные дроссели, отличающиеся не только по характеристикам, но и по видам. Они выпускаются цилиндрической, квадратной, прямоугольной и круглой формы. А также они различаются по типу цепи, для которой предназначены, и могут быть однофазными или трёхфазными.

Условно дроссели можно разделить на три типа:

  1. Сглаживающие. Используются для фильтрации переменной составляющей сигнала, уменьшая её значение. Такие элементы ставятся на входе или выходе выпрямительных или преобразующих части схем.
  2. Переменного тока. Ограничивают его величину при резком скачке.
  3. Насыщения. Управляют индуктивным сопротивлением за счёт периодического подмагничивания.

Маркировка и обозначения

В принципиальных схемах и технической документации дроссели обозначаются латинской буквой L, условное графическое обозначение — в виде полуокружностей. Их количество нигде не указывается, но обычно не превышает трёх штук. Жирная точка, ставящаяся в начале полуокружностей, обозначает начало витков. Если индуктивность выполняется на каркасе, сверку изображения чертится прямая линия. Для обозначения номиналов элемента используется код из букв и цифр или цветовая маркировка.

Цифры указывают на значение индуктивности, а буква — на допуск. Например, код 250 J обозначает индуктивность, равную 25 мкГн с погрешностью в пять процентов. Когда на маркировке стоит только число, то это значит, что допуск составляет 20%. Таким образом, первые две цифры обозначают числовое значение в микрогенри, а третья — множитель. Буква D ставится на высокоточных изделиях, их погрешность не превышает 0,3%.

Цветовая маркировка, в принципе, соответствует буквенно-цифровой, но только наносится в виде цветных полос. Первые две указывают на значения в микрогенри, третья — коэффициент для умножения, а четвёртая — допуск. Индуктивность дросселя, на котором изображены две оранжевые полосы, коричневая и белая, равна 33 мкГ с разрешённым отклонением в 10%.

Область применения

Отвечая на вопрос, зачем нужен дроссель, можно с уверенностью сказать, что основное его применение — это фильтры. Ни один качественный источник питания не обходится без этого простого элемента. Его применение позволяет избавиться от пульсаций напряжения, которые вызывают нестабильность в работе многих устройств — материнской платы, видео- и звуковых карт и т. п.

Сглаживание формы сигнала путём устранения его паразитной составляющей обеспечивает стабильную работу микропроцессорных блоков, особо зависящих от качества питающего их напряжения.

Кроме того, используя свойство элемента накапливать энергию, а потом её отдавать в цепь, дроссель нашёл своё применение в люминесцентных лампах. Такие осветители работают на принципе возникновения дугового разряда, поддерживающегося в парах инертного газа. Для того чтобы он возник, между электродами необходимо появление высокого пускового напряжения, способного пробить газовый диэлектрик. Благодаря дросселю такой разряд и создаётся.

Их также используют и в усовершенствованных осветительных приборах — индукционных лампах. Отличие таких светильников от люминесцентных заключается в отсутствии электродов, необходимых для зажигания. Для получения света используются три составляющие — электромагнитная индукция, разряд в газе, свечение люминофора.

Стоит отметить и ещё одно из применений дросселя — сварочный трансформатор. Здесь основное назначение радиоэлемента заключается в стабилизации тока. Сварочный дроссель, установленный в инверторе, смещает фазу между током и напряжением. Такое его использование упрощает розжиг электрода и поддерживает стабильное горение дуги.

Способность элемента создавать магнитное поле зачастую применяется в электромагнитах, отличающихся большой мощностью, а также в различных электромеханических реле, электродвигателях и даже генераторах.

Самостоятельное изготовление

Для самостоятельного изготовления дросселя необходимо правильно рассчитать его конструкцию. Для этого используется простая формула расчёта индуктивности: L=0,01*d*w 2 /(L/d+0,44), где d — диаметр основания (см), L — длина проволоки (см), w — количество витков. При этом если имеется мультиметр с возможностью изменения индуктивности, то точное количество витков можно подобрать, используя его.

Метод намотки при использовании этой формулы предполагает укладку виток к витку. Например, необходимо подобрать магнитопровод для дросселя с индуктивностью один мкГн, рассчитанный на ток I = 4A. Берется сердечник 2000 НМ типоразмера К 16 х 8 х 6. Согласно справочнику коэффициент начальной индуктивности — ALH = 1,36 мкГн, а длина магнитного пути — le= 34,84 мм. Соответственно, число витков будет N= (L/ALH)0,5= (1/1,36)0,5 = 0,86. Если принять N=1, то при заданном токе напряжённость магнитного поля в сердечнике будет равна Н= 4*1/(34,84*10−3)= 114 А/м.

Таким образом, дроссель представляет собой катушку, которая характеризуется индуктивностью. Благодаря своим свойствам он может накапливать магнитную мощность, после отдавая её в цепь в виде электрической энергии. При этом использование элемента позволяет также подавлять переменную составляющую тока в цепи.

Изготовление дросселя в Санкт-Петербурге

Трансформаторы и моточные изделия

Дроссель – элемент электрической цепи, который на сегодняшний момент используется практически в любой электрической схеме. Предназначен он для подавления переменной составляющей тока в цепи, регулирования силы тока и ограничения сигналов различной частоты. Простыми словами, это прибор, уменьшающий напряжение. В отличие от обычных резисторов это элемент имеет значительные преимущества, так как значительно экономит электроэнергию и сильно не нагревается.

Для постоянного тока дроссель не является ни регулирующим элементом, ни сопротивлением. В цепи переменного тока дроссель выступает ограничителем или индуктивным сопротивлением. В импульсных блоках питания этот элемент призван блокировать резкие всплески от трансформатора, пропуская сглаженное напряжение. Также этот элемент электрической схемы используют в электрических сетях, но в случае с последними, дроссели выполняют роль реакторов. Таким образом, по величине напряжения существует несколько видов дросселей:

  • низковольтные;
  • высоковольтные
  • токоограничивающие реакторы (приборы, которые ограничивают ток короткого замыкания).

Изготовление дросселя осуществляется строго по техническому заданию в соответствии с проектной документацией и ГОСТами. Визуально дроссель выглядит в виде обычной катушки из провода, намотанного на сердечник с магнитопроводом (или, в случае высоких частот – без корпуса) и работает по принципу электрического трансформатора. От трансформатора дроссель отличается количеством обмоток и наличием магнитного зазора.

Где применяется дроссель

Дроссели имеют широкое применение в самых различных устройствах и приборах. Как правило, дроссели используются в сглаживающих фильтрах и различных селективных цепях. Изготовление дросселя выполняется с учетом множества характеристик, например, требуемого значения индуктивности, максимального тока катушки и т.д. Конструкция дросселя зависит от свойств материала магнитопровода, его конфигурации и числа витков катушки.

В качестве примера применения дросселя можно привести осветительные приборы. Без дросселя не будет работать ни один бытовой светильник, офисная лампа или уличный фонарь. Этот элемент отвечает за их включение и нормальную работу. В различных электрических приборах дроссель ограничивает напряжение, которое попадает в колбу газоразрядной лампы. Кроме того, дроссель создаёт пусковое напряжение, которое требуется для образования электрического разряда между электродами. По такой схеме зажигается люминесцентный источник света.

Изготовление дросселей на заказ

На нашем предприятии вы можете заказать разработку и производство дросселей различного предназначения с любыми характеристиками по техническому заданию заказчика.

В процессе изготовления дросселей осуществляется обязательная пропитка производимого оборудования современными полимерными компаундами.

Высокая квалификация специалистов и многолетний опыт работы предприятия позволяют выполнять заказы на изготовление дросселей различных конфигураций, как в штучных экземплярах, так и в рамках серийного производства.

Оснащению оборудования на предприятии уделяется повышенное внимание. Выпускаемая продукция ПАО «Прибой» является одной из самых надежных в России, также не уступает по качеству и безопасности иностранным аналогам.

Мы работаем только с лучшими материалами и проверенными поставщиками.

Преимущества изготовления дросселей на заказ на производственном предприятии «Прибой»:

  • гарантия качественного, долговечного и безопасного оборудования, которое будет использоваться многие годы;
  • в работе используем высокоточные станки с программным управлением;
  • полная безопасность производимого оборудования, соответствие ГОСТам;
  • производство оборудования, совместимого со всеми типами преобразователей частоты;
  • возможность производства нестандартных габаритов;
  • производство любого количества продукции – от индивидуальных заказов до серийных тиражей;
  • оптимальные цены, индивидуальный подход и оперативность при исполнении заказа.

Путевые дроссель-трансформаторы

Путевые дроссель-трансформаторы (ДТ) предназначены для рельсовых цепей переменного тока с кодовым питанием на электрифицированных участках дорог. Они обеспечивают пропуск обратного тягового тока в обход изолирующих стыков к тяговой подстанции. Одновременно они служат трансформаторами для подачи в рельсовую цепь переменного сигнального тока на ее питающем конце и приема тока с рельсов на релейном конце.

Дроссель-трансформатор (рис. 184) представляет собой реактивную катушку с сердечником, имеющую малое омическое и относительно большое индуктивное сопротивление. Он состоит из сердечника 5 и ярма 4, собранных из листовой трансформаторной стали; на сердечнике насажены основная 3 и дополнительная 6 обмотки. Дополнительная обмотка расположена сверху основной обмотки. Сердечник с обмотками заключен в металлический корпус 1 с крышкой 2. В корпус заливают трансформаторное масло до красной черты.

У дроссель-трансформаторов, устанавливаемых на участках с электротягой постоянного тока, между сердечником и ярмом в магнитной цепи имеется воздушный зазор шириной I-3 мм, который служит для стабилизации электрического сопротивления дросселя переменному току рельсовой цепи при подмагничивающем действии постоянного тягового тока. У дроссель-трансформаторов, применяемых на участках с электротягой переменного тока, магнитная цепь не имеет воздушного зазора и состоит из замкнутого сердечника.

Рис . 185. Схема включения дроссель-трансформатора в рельсовую цепь

Основная обмотка дроссель-трансформатора имеет три вывода: два крайних и один - от средней точки обмотки (рис. 185). Крайние выводы основной обмотки подсоединяют к рельсам, а средний - соединяют со средним выводом второго дроссель-трансформатора смежной рельсовой цепи перемычкой, по которой тяговый ток проходит из одного изолирующего участка в другой. Дополнительную обмотку выводят в кабельную муфту на корпусе дроссель-трансформатора и через кабель подключают к приборам рельсовой цепи.

Дроссель-трансформаторы типов ДТ-0,2 и ДТ-0,6 применяют для участков дорог, оборудованных автоблокировкой на переменном токе при электротяге на постоянном токе. Дроссель-трансформаторы типов ДТ-0,2-500 и ДТ-0,6-500 рассчитаны на пропуск номинального (длительного) тягового тока 500 А через каждую секцию основной обмотки. Средний вывод обмотки рассчитан на 1000 А.

Дроссель-трансформаторы типов ДТ-0,2-1000 и ДТ-0,6-1000 рассчитаны на номинальный (длительный) тяговый ток 1000 А через каждую секцию основной обмотки. Средний вывод обмотки рассчитан на 2000 А.

Дроссель-трансформатор типа ДТ-0,6 с коэффициентом трансформации п = 15 всегда устанавливают на питающем конце рельсовой цепи, у него дополнительная обмотка не секционирована и имеет два вывода (рис. 186, а).

Дроссель-трансформатор типа ДТ-0,2 имеет переменный коэффициент трансформации. Его применяют на релейном и питающем концах рельсовых цепей частотой 50 Гц и длиной до 1500 м с двухэлементными путевыми реле типа ДСШ и на релейном конце кодовых рельсовых цепей длиной до 2600 м. Дополнительная обмотка (рис. 186, б) секционирована и имеет пять выводов. Необходимый коэффициент трансформации подбирают включением соответствующих секций дополнительной обмотки. На выводах 1 и 2 п - 13, на выводах 2 и 4 - п - 17, на выводах 1 и 4 - п 30 и на выводах 0 и 4 - п = 40.

На участках с электротягой переменного тока частотой 50 Гц на питающем и релейном концах рельсовой цепи устанавливают дроссель-трансформаторы типов ДТ-1-150 или 2ДТ-1-150 (соответственно рис. 186, в и г). Крайние выводы основной обмотки дроссель-трансформатора типа ДТ-1-150 рассчитаны на ток 150 А, а средний - на 300 А. Дроссель-трансформаторы типа ДТ-1-150 выпускают для рельсовых цепей переменного тока частотой 25 Гц одиночной и сдвоенной установки, у дроссель-трансформатора ДТ-1-150 п = 3. Дроссель-трансформатор сдвоенной установки типа 2ДТ-1-150 совмещает в одном корпусе два дроссель-трансформатора и имеет те же элект-

Рис. 186. Схемы включения обмоток дроссель-трансформаторов различных типов

рические характеристики, что и дроссель-трансформатор типа ДТ-1-150.

На станциях стыкования рельсовые цепи работают в особых условиях, подвергаясь воздействию постоянного и переменного тяговых токов. На таких станциях устанавливают дроссель-трансформаторы типов ДТ-0,6-500С с коэффициентом трансформации п ~ 3.

Дроссель-трансформатор типа ДТМ-0,17-1000 (рис. 186, д) предназначен для линий метрополитена, оборудованных автоблокировкой на переменном токе и электротягой на постоянном токе. Дроссель-трансформатор рассчитан на пропуск номинального тягового тока 1000 А через каждую секцию основной обмотки, его коэффициент трансформации п -- 40.

Во время работы с путевыми дроссель-трансформаторами необходимо строго выполнять основные правила по технике безопасности. Необходимо, чтобы работающий был в диэлектрических перчатках или пользовался инструментом с изолирующими ручками. Перед сменой дроссельной перемычки следует установить временную перемычку из медного провода и плотно закрепить ее одним концом на подошве рельса струбциной, а другим концом - на выводе дроссель-трансформатора специальным зажимом.

Работать с путевым дроссель-трансформатором, к которому присоединен отсасывающий фидер электротяги, можно только в присутствии и под наблюдением работников участка электроснабжения. При выполнении работ запрещается разрывать цепь сетевой обмотки изолирующих трансформаторов рельсовых цепей без предваритель ного отключения или замыкания накоротко обмотки (специальной перемычкой под гайки), соединенной с дроссель-трансформатором-Не разрешается отключать от рельса хотя бы одну перемычку дроссель-трансформатора без предварительного соединения обоих рельсов со средней точкой дроссель-трансформатора соседней рельсовой цепи, а также отключать среднюю точку ДТ или нарушать иным способом цепь протекания по рельсам тягового тока.

⇐Трансформаторы железнодорожной автоматики и телемеханики | Электропитающие устройства и линейные сооружения автоматики, телемеханики и связи железнодорожного транспорта | Асинхронные электродвигатели⇒

Входные дроссели переменного тока и выходные дроссели переменного тока ◁ Sourcetronic

Похоже, в вашем браузере отключен JavaScript. Для наилучшего взаимодействия с нашим сайтом обязательно включите Javascript в своем браузере.

Что касается приводной техники, в нашем магазине имеется множество различных дросселей. И линейные дроссели переменного тока, и выходные дроссели переменного тока, и дроссели промежуточного контура доступны для подключения к трехфазному источнику питания на 400 В.Производительность продукции варьируется от дросселей для малых нагрузок до 1,5 киловатт до чрезвычайно мощных дросселей для профессиональной приводной техники до 630 киловатт. Сетевые дроссели переменного тока отличаются высокой линейностью и обеспечивают значительное снижение гармоник. Это позволяет, например, снизить влияние инверторов на питающую сеть. Выходные реакторы переменного тока из нашего магазина обеспечивают увеличенный срок службы электродвигателей. Таким образом, можно увеличить длину кабеля двигателя и повысить надежность всей системы.Это обеспечивает надежную работу двигателей и снижает риск простоя производства. Подключение трех фаз осуществляется с помощью высококачественных и очень безопасных при контакте клемм. Они обеспечивают постоянный контакт с дроссельной заслонкой благодаря резьбовым соединениям. Наши дроссели промежуточного звена постоянного тока также используются для уменьшения вибрации верхних стрел и уменьшения разгрузки инженерных сетей. Такой дроссель подключается между входным выпрямителем и конденсатором промежуточной цепи и снижает его пиковый ток. Это предотвращает повреждение выпрямителя колебаниями тока.

  1. Сетевой реактор ЛР3 40-4 / 180

    € 539,90

    • Номинальное напряжение: 3x 400 В перем. Тока
    • Номинальное напряжение (IEC): 3x 690 В перем. Тока
    • Номинальное напряжение (UL): 3x 600 В перем. Тока
    • Напряжение короткого замыкания uK: 4% при 400 В перем. Тока
    • Падение напряжения: 9.2 В переменного тока при 400 В переменного тока
    • Номинальный ток: 3x 180 A
    • Номинальная частота: 50-60 Гц
    • Индуктивность: 0,170 мГн
    • Отклонение индуктивности: ± 10%
    Учить больше
  2. Сетевой реактор ЛР3 40-4 / 160

    € 529.90

    • Номинальное напряжение: 3x 400 В перем. Тока
    • Номинальное напряжение (IEC): 3x 690 В перем. Тока
    • Номинальное напряжение (UL): 3x 600 В перем. Тока
    • Напряжение короткого замыкания uK: 4% при 400 В перем. Тока
    • Падение напряжения: 9,2 В переменного тока при 400 В переменного тока
    • Номинальный ток: 3x 160 A
    • Номинальная частота: 50-60 Гц
    • Индуктивность: 0,190 мГн
    • Отклонение индуктивности: ± 10%
    Учить больше
  3. Сетевой реактор ЛР3 40-4 / 115

    € 459.90

    • Номинальное напряжение: 3x 400 В перем. Тока
    • Номинальное напряжение (IEC): 3x 690 В перем. Тока
    • Номинальное напряжение (UL): 3x 600 В перем. Тока
    • Напряжение короткого замыкания uK: 4% при 400 В перем. Тока
    • Падение напряжения: 9,2 В переменного тока при 400 В переменного тока
    • Номинальный ток: 3x 115 A
    • Номинальная частота: 50-60 Гц
    • Индуктивность: 0,260 мГн
    • Отклонение индуктивности: ± 10%
    Учить больше
  4. Сетевой реактор ЛР3 40-4 / 100

    399 евро.90

    • Номинальное напряжение: 3x 400 В перем. Тока
    • Номинальное напряжение (IEC): 3x 690 В перем. Тока
    • Номинальное напряжение (UL): 3x 600 В перем. Тока
    • Напряжение короткого замыкания uK: 4% при 400 В перем. Тока
    • Падение напряжения: 9,2 В переменного тока при 400 В переменного тока
    • Номинальный ток: 3x 100 A
    • Номинальная частота: 50-60 Гц
    • Индуктивность: 0,300 мГн
    • Отклонение индуктивности: ± 10%
    Учить больше
  5. Сетевой реактор ЛР3 40-4 / 80

    € 239.90

    • Номинальное напряжение: 3x 400 В перем. Тока
    • Номинальное напряжение (IEC): 3x 690 В перем. Тока
    • Номинальное напряжение (UL): 3x 600 В перем. Тока
    • Напряжение короткого замыкания uK: 4% при 400 В перем. Тока
    • Падение напряжения: 9,2 В переменного тока при 400 В переменного тока
    • Номинальный ток: 3x 80 A
    • Номинальная частота: 50-60 Гц
    • Индуктивность: 0,370 мГн
    • Отклонение индуктивности: ± 10%
    Учить больше
  6. Моторный реактор МДБ 400/176

    629 евро.90

    • Номинальное напряжение: 3x 400 В перем. Тока
    • Диапазон напряжения: 3 x 0 - 500 В перем. Тока
    • Номинальный ток: 176 А
    • для номинальной мощности двигателя прибл. 90,00 кВт
    • Индуктивность: 0,050 мГн
    • Номинальная частота: 0 - 120 Гц
    • Частота переключения: 2-6 кГц
    Учить больше
  7. Моторный реактор МДБ 400/150

    € 489.90

    • Номинальное напряжение: 3x 400 В перем. Тока
    • Диапазон напряжения: 3 x 0 - 500 В перем. Тока
    • Номинальный ток: 150 А
    • для номинальной мощности двигателя прибл. 75,00 кВт
    • Индуктивность: 0,050 мГн
    • Номинальная частота: 0 - 120 Гц
    • Частота переключения: 2-6 кГц
    Учить больше
  8. Моторный реактор МДБ 400/110

    419 евро.90

    • Номинальное напряжение: 3x 400 В перем. Тока
    • Диапазон напряжения: 3 x 0 - 500 В перем. Тока
    • Номинальный ток: 110 А
    • для номинальной мощности двигателя прибл. 55,00 кВт
    • Индуктивность: 0,050 мГн
    • Номинальная частота: 0 - 120 Гц
    • Частота переключения: 2-6 кГц
    Учить больше
  9. Моторный реактор МДБ 400/91

    259 евро.90

    • Номинальное напряжение: 3x 400 В перем. Тока
    • Диапазон напряжения: 3 x 0 - 500 В перем. Тока
    • Номинальный ток: 91 А
    • для номинальной мощности двигателя прибл. 45,00 кВт
    • Индуктивность: 0,050 мГн
    • Номинальная частота: 0 - 120 Гц
    • Частота переключения: 2-6 кГц
    Учить больше
  10. Моторный реактор МДБ 400/72

    249 евро.90

    • Номинальное напряжение: 3x 400 В перем. Тока
    • Диапазон напряжения: 3 x 0 - 500 В перем. Тока
    • Номинальный ток: 72 А
    • для номинальной мощности двигателя прибл. 37,00 кВт
    • Индуктивность: 0,050 мГн
    • Номинальная частота: 0 - 120 Гц
    • Частота переключения: 2-6 кГц
    Учить больше
  11. Сетевой реактор ЛР3 40-4 / 63

    185 евро.90

    • Номинальное напряжение: 3x 400 В перем. Тока
    • Номинальное напряжение (IEC): 3x 690 В перем. Тока
    • Номинальное напряжение (UL): 3x 600 В перем. Тока
    • Напряжение короткого замыкания uK: 4% при 400 В перем. Тока
    • Падение напряжения: 9,2 В переменного тока при 400 В переменного тока
    • Номинальный ток: 3x 63 A
    • Номинальная частота: 50-60 Гц
    • Индуктивность: 0,470 мГн
    • Отклонение индуктивности: ± 10%
    Учить больше
  12. Сетевой реактор ЛР3 40-4 / 50

    185 евро.90

    • Номинальное напряжение: 3x 400 В перем. Тока
    • Номинальное напряжение (IEC): 3x 690 В перем. Тока
    • Номинальное напряжение (UL): 3x 600 В перем. Тока
    • Напряжение короткого замыкания uK: 4% при 400 В перем. Тока
    • Падение напряжения: 9,2 В переменного тока при 400 В переменного тока
    • Номинальный ток: 3x 50 A
    • Номинальная частота: 50-60 Гц
    • Индуктивность: 0,590 мГн
    • Отклонение индуктивности: ± 10%
    Учить больше
  13. Сетевой реактор ЛР3 40-4 / 45

    € 183.90

    • Номинальное напряжение: 3x 400 В перем. Тока
    • Номинальное напряжение (IEC): 3x 690 В перем. Тока
    • Номинальное напряжение (UL): 3x 600 В перем. Тока
    • Напряжение короткого замыкания uK: 4% при 400 В перем. Тока
    • Падение напряжения: 9,2 В переменного тока при 400 В переменного тока
    • Номинальный ток: 3x 45 A
    • Номинальная частота: 50-60 Гц
    • Индуктивность: 0,650 мГн
    • Отклонение индуктивности: ± 10%
    Учить больше
© 2021 Sourcetronic GmbH.Все права защищены.

Сравнение реактора переменного тока и дросселя звена постоянного тока

Типичный линейный ток ЧРП: без реактора

Реактор, разработанный для частотно-регулируемых приводов (ЧРП), обычно представляет собой не что иное, как катушку проволоки, намотанную вокруг многослойного стального сердечника. Желаемая характеристика реактора - это индуктивность, «сопротивление быстрому изменению тока». ЧРП потребляет ток из линии питания резкими импульсами, вызывая протекание гармонического тока.Ток подается резкими импульсами, потому что входные диоды проводят ток только на пике формы волны напряжения, чтобы поддерживать конденсаторы полностью заряженными.

Именно эта функция позволяет реакторам сглаживать ток, протекающий к частотно-регулируемым приводам, и уменьшать гармоники.

Кроме того, сглаживание протекания тока ограничивает высокие пиковые импульсы тока от неправильного использования конденсаторной батареи внутри частотно-регулируемого привода. Таким образом продлевается срок службы привода и улучшается его истинный коэффициент мощности.

Реакторы для частотно-регулируемых приводов продаются либо как реакторы переменного тока, либо как реакторы постоянного тока (также называемые дросселями звена).Оба типа реакторов служат одной и той же основной цели - сглаживанию тока, протекающего к частотно-регулируемому преобразователю, и уменьшению вредных гармоник, возникающих в линии питания. Однако у реакторов переменного и постоянного тока есть свои преимущества и недостатки. Реакторы переменного тока размещаются последовательно с входящей линией питания переменного тока. Преимущество, которое они обеспечивают, заключается в некоторой защите от скачков напряжения, создаваемых переключением конденсаторов коэффициента мощности и грозовых скачков, поскольку они устанавливаются перед частотно-регулируемым приводом. Недостатком, который они вызывают, является падение напряжения на частотно-регулируемом приводе из-за состояния, называемого Перекрытие проводимости диодов. Это может быть проблемой, если частотно-регулируемый привод установлен на линии электропередачи, в которой падает напряжение. Если напряжение падает и на реакторе переменного тока падает какое-то напряжение, привод может ошибочно отключиться при отключении из-за пониженного напряжения или потери мощности. Например, реактор переменного тока с номинальным импедансом 5% может понижать напряжение линии 460 В переменного тока до 437 В переменного тока на частотно-регулируемый привод. Это может потенциально вызвать неприятное отключение частотно-регулируемого привода. Наконец, реакторы переменного тока обычно в 1,5 раза дороже, чем реакторы постоянного тока при том же импедансе.

Реакторы постоянного тока (перемычки) подключаются после входных диодов в силовой цепи.Недостатком реакторов постоянного тока является то, что они расположены после входных диодов и не защищают диоды от возможных переходных процессов напряжения. Поскольку в цепи постоянного тока требуется только одна катушка по сравнению с 3 катушками в цепи переменного тока, реакторы постоянного тока менее дороги. Размещая реактор в звене постоянного тока, мы не имеем перекрытия диодной проводимости. Следовательно, эти реакторы не сбрасывают напряжение на привод, что позволяет избежать нежелательных неисправностей.

ЧТО СЛЕДУЕТ КУПИТЬ?

При покупке реактора мы обычно смотрим, насколько реактор снизит вредные гармоники.ЧРП без реактора может создавать 60-130% гармонических искажений тока в линии электропередачи. *

Реакторы обычно продаются с импедансом в процентах, при этом стандартные значения составляют 1,5%, 3% и 5%. В идеале полное сопротивление 5% -6% даст наилучшее соотношение цены и эффекта. Установка импеданса более 6-7% оказывает незначительное положительное влияние на снижение гармоник, а основным недостатком являются чрезмерные потери.

Остается вопрос, покупать ли реакторы постоянного или переменного тока?

КУПИТЬ ОБЕИХ!

Лучшее решение сбалансировать преимущества и недостатки реакторов переменного и постоянного тока - это купить ОБЕИХ! Реактор 3% постоянного и 3% переменного тока решает все проблемы и имеет очень мало недостатков.Дроссель 3% переменного тока защитит диоды от скачков напряжения, но не снизит чрезмерное входное напряжение, которое может вызвать ложные срабатывания при отказе. Реактор постоянного тока обеспечивает идеальное сопротивление 3% без потерь напряжения из-за перекрывающейся проводимости диодов при более низкой стоимости.

За счет включения реакторов переменного и постоянного тока в ваше приложение с частотно-регулируемым приводом достигается 6% импеданс, достигается наилучшее соотношение цены и эффекта, значительно снижаются гармоники **, и все преимущества реактора достигаются с небольшим недостатком.

* Величина гармонических искажений тока зависит как от типа и размера источника питания, так и от размера нагрузки, генерирующей гармоники, в зависимости отобщая нагрузка. Цифры, используемые в этой статье, являются общими практическими правилами. Пожалуйста, обратитесь к IEEE 519-1992.

** 6% импеданс обычно снижает гармонические искажения тока до менее половины гармонических искажений без реактора. За более чем 20-летний опыт работы у меня не было клиента, который применял бы 5-6% импеданса ко всем своим нагрузкам, генерирующим гармоники, которые продолжали бы испытывать проблемы с качеством электроэнергии. Кроме того, их приводы длились дольше, чем у клиентов без реакторов на их частотно-регулируемых приводах

. Реакторы - дешевая страховка!

Хотите получать уведомления о появлении новых блогов? Кликните сюда.

Hybrid Мощный дроссель постоянного тока для разнообразного использования

Получите доступ к множеству разновидностей мощных, надежных и эффективных дросселей постоянного тока на сайте Alibaba.com для всех типов жилых и коммерческих помещений. Эти дроссели dc ac оснащены новейшими технологиями и обладают разной мощностью, чтобы с легкостью служить вашим целям. Вы можете выбрать одну из существующих моделей dc ac choke на сайте или перейти на полностью адаптированные версии этих продуктов.Они долговечны и устойчивы, чтобы постоянно предлагать стабильное обслуживание без каких-либо поломок.

Коллекции dc ac choke , представленные на сайте, оснащены всеми интересными функциями, такими как интеллектуальная технология охлаждения для более быстрого и интеллектуального охлаждения, защита от короткого замыкания, интеллектуальная сигнализация для обнаружения и дисплеи для отображения любых ошибок защита по напряжению и так далее. Эти дроссели постоянного тока доступны с различными значениями напряжения, такими как 230 В переменного тока, 220 В / 230 В / 240 В для преобразователей и 100 В / 110 В / 120 В / 220 В / 230 В / 240 В для линейки инверторов.Эти дроссели постоянного тока также оснащены защитой от обратной полярности на входе.

Alibaba.com может помочь вам выбрать из различных дросселей постоянного тока различных моделей, размеров, мощности, энергопотребления и многого другого. Эти smart dc ac choke эффективны для экономии счетов за электроэнергию даже в самых суровых климатических условиях. У них также есть возможность быстрой зарядки. Вы можете использовать эти дроссели постоянного тока в своих домах, гостиницах, офисах или в любой другой коммерческой недвижимости, где энергопотребление является дорогостоящим и важным.

Просмотрите разнообразные диапазоны дросселей постоянного тока на Alibaba.com и купите лучшее из этих продуктов. Все эти продукты имеют сертификаты CE, ISO, RoHS и имеют гарантийный срок. OEM-заказы доступны для оптовых закупок с индивидуальными вариантами упаковки.

DX-LN3-016 269503 EATON ELECTRIC Главный дроссель, переменный ток, 3 полюса, 16 А, ..

Технические данные для проверки конструкции

Расчетный рабочий ток для указанного тепловыделения [I n ]

16 A

Тепло тепловыделение на полюс, зависит от тока [P vid ]

0 Вт

Отвод тепла от оборудования, зависит от тока [P vid ]

44 Вт

Статическое рассеивание тепла, не зависит от тока [P vs ]

0 Вт

Теплоотдача [P dis ]

0 Вт

Рабочая температура окружающей среды мин.

-25 ° C

Рабочая температура окружающей среды макс.

+40 ° C

Проверка конструкции IEC / EN 61439

10.2 Прочность материалов и деталей 10.2.2 Коррозионная стойкость

Отвечает требованиям стандарта на продукцию.

10.2 Прочность материалов и деталей 10.2.3.1 Проверка термостойкости корпусов

Отвечает требованиям стандарта на продукцию.

10.2 Прочность материалов и деталей 10.2.3.2 Проверка устойчивости изоляционных материалов к нормальному нагреву

Отвечает требованиям стандарта на продукцию.

10.2 Прочность материалов и деталей 10.2.3.3 Проверка устойчивости изоляционных материалов к аномальному нагреву и огню из-за внутренних электрических воздействий

Отвечает требованиям стандарта на продукцию.

10.2 Прочность материалов и деталей 10.2.4 Стойкость к ультрафиолетовому (УФ) излучению

Отвечает требованиям стандарта на продукцию.

10.2 Прочность материалов и деталей 10.2.5 Подъем

Не применяется, поскольку необходимо оценить все распределительное устройство.

10.2 Прочность материалов и деталей 10.2.6 Механическое воздействие

Не применяется, поскольку необходимо оценить все распределительное устройство.

10.2 Прочность материалов и деталей 10.2.7 Надписи

Отвечает требованиям стандарта на продукцию.

10.3 Степень защиты НКУ

Не применяется, так как необходимо оценить все распределительное устройство.

10.4 Воздушные зазоры и пути утечки

Отвечает требованиям стандарта на продукцию.

10.5 Защита от поражения электрическим током

Не применяется, так как необходимо оценить все распределительное устройство.

10.6 Включение коммутационных устройств и компонентов

Не применяется, поскольку необходимо оценить все распределительное устройство.

10.7 Внутренние электрические цепи и соединения

Ответственность за это несет производитель панели.

10.8 Подключение внешних проводов

Ответственность за это несет производитель панели.

10.9 Свойства изоляции 10.9.2 Электрическая прочность промышленной частоты

Ответственность за это несет производитель щита.

10.9 Свойства изоляции 10.9.3 Выдерживаемое импульсное напряжение

Ответственность за это несет производитель панели.

10.9 Свойства изоляции 10.9.4 Испытания корпусов из изоляционного материала

Ответственность за это несет производитель панелей.

10.10 Повышение температуры

Производитель панели отвечает за расчет повышения температуры.Eaton предоставит данные о тепловыделении устройств.

10.11 Рейтинг короткого замыкания

Ответственность за это несет производитель панели. Необходимо соблюдать спецификации распределительного устройства.

10.12 Электромагнитная совместимость

Ответственность за это несет производитель панели. Необходимо соблюдать спецификации распределительного устройства.

10.13 Механическая функция

Устройство соответствует требованиям при соблюдении информации, содержащейся в инструкции (IL).

Сетевой дроссель переменного тока, дроссель переменного тока, входной дроссель

Показать: 10255075100

Сортировать по: DefaultName (A - Z) Имя (Z - A) Цена (Низкая> Высокая) Цена (Высокая> Низкая) Рейтинг (Наивысший) Рейтинг (Наименьший) Модель (A - Z) Модель (Z - A)

Новый
Сетевой дроссель переменного тока, 3 фазы, 400 В, номинальный ток 45 А

Описание линейного реактора: Линейный реактор серии SKS-ACL размещается последовательно с электрическим оборудованием для введения определенного контролируемого импеданса в цепь переменного тока.Эта серия применяется на входе привода переменного тока для подавления броска напряжения, снижения броска тока и пикового тока, повышения реальной мощности.

Сетевой дроссель переменного тока, 3 фазы, 400 В, номинальный ток 15 А, 5,5 кВт

Описание линейного реактора: Линейный реактор серии SKS-ACL размещается последовательно с электрическим оборудованием для введения определенного контролируемого импеданса в цепь переменного тока.Эта серия применяется на входе привода переменного тока для подавления броска напряжения, снижения броска тока и пикового тока, повышения реальной мощности.

Сетевой дроссель переменного тока, 3 фазы, 400 В, 2% (Великобритания), номинальный ток 120 А, 45 кВт

Описание линейного реактора: Линейный реактор серии SKS-ACL размещается последовательно с электрическим оборудованием для введения определенного контролируемого импеданса в цепь переменного тока.Эта серия применяется на входе привода переменного тока для подавления броска напряжения, снижения броска тока и пикового тока, повышения реальной мощности.

Сетевой дроссель переменного тока, 3 фазы, 400 В, 2% (Великобритания), номинальный ток 1250 А, 550 кВт

Описание линейного реактора: Линейный реактор серии SKS-ACL размещается последовательно с электрическим оборудованием для введения определенного контролируемого импеданса в цепь переменного тока.Эта серия применяется на входе привода переменного тока для подавления броска напряжения, снижения броска тока и пикового тока, повышения реальной мощности.

Сетевой дроссель переменного тока, 3 фазы, 400 В, 2% (uK), номинальный ток 1500 А

Описание линейного реактора: Линейный реактор серии SKS-ACL размещается последовательно с электрическим оборудованием для введения определенного контролируемого импеданса в цепь переменного тока.Эта серия применяется на входе привода переменного тока для подавления броска напряжения, снижения броска тока и пикового тока, повышения реальной мощности.

Сетевой дроссель переменного тока, 3 фазы, 400 В, 2% (Великобритания), номинальный ток 15 А, 5,5 кВт

Описание линейного реактора: Линейный реактор серии SKS-ACL размещается последовательно с электрическим оборудованием для введения определенного контролируемого импеданса в цепь переменного тока.Эта серия применяется на входе привода переменного тока для подавления броска напряжения, снижения броска тока и пикового тока, повышения реальной мощности.

Сетевой дроссель переменного тока, 3 фазы, 400 В, 2% (Великобритания), номинальный ток 1600 А, 1400 кВт

Описание линейного реактора: Линейный реактор серии SKS-ACL размещается последовательно с электрическим оборудованием для введения определенного контролируемого импеданса в цепь переменного тока.Эта серия применяется на входе привода переменного тока для подавления броска напряжения, снижения броска тока и пикового тока, повышения реальной мощности.

Сетевой дроссель переменного тока, 3 фазы, 400 В, 2% (uK), номинальный ток 1600 А, 630 кВт

Описание линейного реактора: Линейный реактор серии SKS-ACL размещается последовательно с электрическим оборудованием для введения определенного контролируемого импеданса в цепь переменного тока.Эта серия применяется на входе привода переменного тока для подавления броска напряжения, снижения броска тока и пикового тока, повышения реальной мощности.

Сетевой дроссель переменного тока, 3 фазы, 400 В, 2% (uK), номинальный ток 2000 А

Описание линейного реактора: Линейный реактор серии SKS-ACL размещается последовательно с электрическим оборудованием для введения определенного контролируемого импеданса в цепь переменного тока.Эта серия применяется на входе привода переменного тока для подавления броска напряжения, снижения броска тока и пикового тока, повышения реальной мощности.

Сетевой дроссель переменного тока, 3 фазы, 400 В, 2% (uK), номинальный ток 200 А, 75 кВт

Описание линейного реактора: Линейный реактор серии SKS-ACL размещается последовательно с электрическим оборудованием для введения определенного контролируемого импеданса в цепь переменного тока.Эта серия применяется на входе привода переменного тока для подавления броска напряжения, снижения броска тока и пикового тока, повышения реальной мощности.

.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *