Карбюратор из чего состоит: Устройство современных карбюраторов и карбюраторов-смесителей

Содержание

Устройство современных карбюраторов и карбюраторов-смесителей

Категория:

   Карбюратор автомобиля

Публикация:

   Устройство современных карбюраторов и карбюраторов-смесителей

Читать далее:



Устройство современных карбюраторов и карбюраторов-смесителей

Карбюраторы ВАЗ-2105 и ВАЗ-2107. Карбюраторы двухкамерные, двухдиффузорные с падающим потоком горючей смеси, сбалансированной поплавковой камерой, последовательным открытием дроссельных заслонок, пневмоприводом дроссельной заслонки вторичной камеры, закрытой регулируемой системой вентиляции картера, диафрагменным ускорительным насосом, эконостатом, полуавтоматическим пусковым устройством с пневмокорректором, патрубком отбора разрежения для вакуум-корректора прерывателя-распределителя, латунным поплавком и поплавковым механизмом с верхним подводом топлива. Карбюратор состоит из крышки, корпуса дроссельных заслонок и корпуса поплавковой камеры, автоматического пускового устройства и пневмопривода дроссельной заслонки вторичной камеры.

В корпусе поплавковой камеры размещен главный топливный жиклер первичной камеры, сообщенный с распылителем малого диффузора через эмульсионную трубку с главным воздушным жиклером первичной камеры.

В главном воздушном канале первичной камеры размещена воздушная заслонка, кинематически связанная с пусковым устройством, сообщенным через канал с жиклером с задроссельным пространством, дроссельная заслонка, малый диффузор с нагнетательным клапаном и распылителем ускорительного насоса, а также топливный жиклер главной дозирующей системы вторичной камеры.

Рекламные предложения на основе ваших интересов:

Ускорительный насос содержит рычаг привода с вращающимся роликом, впускной и перепускной клапаны соответственно и винт регулировки хода впускного клапана ускорительного насоса.

В главном воздушном канале вторичной камеры размещен малый диффузор с эмульсионным жиклером эконостата, главным воздушным жиклером, топливный жиклер эконостата, воздушный жиклер эконостата, топливный и воздушный жиклер соответственно переходной системы первичной камеры.

К корпусу на кронштейнах двумя винтами крепится мембранный блок пневмопривода дроссельной заслонки вторичной камеры. Наддиафрагменная полость через жиклеры сообщена с главными воздушными каналами первичной и вторичной камер.

Рис. 1. Карбюратор ВАЗ-2108

В первичной камере размещена дроссельная заслонка с винтом регулировки количества горючей смеси, малый диффузор с распылителем главной дозирующей системы, воздушный жиклер главной дозирующей системы, воздушный жиклер системы холостого хода, винт качества горючей смеси, трубка отвода вакуума к вакуум-корректору распределителя зажигания и трубка отбора управляющего вакуума к антитоксичным устройствам.

Пусковое устройство снабжено мембранным механизмом, кинематически связанным с воздушной заслонкой, размещенной в первичной камере.

Поплавковая камера снабжена поплавком и сообщена через каналы с ускорительным насосом и клапаном разбалансировки, сообщенным с электромагнитным клапаном системы холостого хода. Поплавковая камера содержит штуцер подачи и перепуска топлива и клапан подачи топлива.

Пневмоэкономайзер мощностных режимов выполнен в виде пневмоклапана, связанного с задроссельным пространством и с трубкой антитоксичного устройства через жиклер.

В главном воздушном канале вторичной камеры размещен главный топливный жиклер, трубка эконостата, воздушный и топливный жиклеры соответственно системы холостого хода, нагнетательный клапан 9 с распылителем ускорительного насоса, а также штуцер отвода картерных газов. Электромагнитный клапан с топливным жиклером электрически связан с электронным блоком управления.

В нижней части корпуса карбюратора размещен сдвоенный штуцер с каналами для подвода и отвода жидкости из системы охлаждения двигателя для обогрева каналов холостого хода. Открывание дроссельной заслонки вторичной камеры начинается при открывании заслонки первичной камеры на 57°.

Карбюратор К-126Н. Карбюратор – двухкамерный, двух-диффузорный, с падающим потоком, сбалансированной поплавковой камерой, последовательным включением камер, механическим приводом вторичной камеры, системой холостого хода в первичной камере и переходной во вторичной, ускорительным насосом поршневого типа, поплавковым механизмом с верхним подводом топлива, пусковым устройством в виде воздушной заслонки с полуавтоматичерким приводом, латунным паяным поплавком.

Карбюраторы устанавливались на автомобилях „Москвич” до 1985 г. и находятся в эксплуатации в большей своей части до настоящего времени.

Карбюратор имеет две смесительные камеры с последовательным открыванием дроссельных заслонок. Такая конструкция обеспечивает лучшие показатели. При этом первичная камера работает на частичных нагрузках (характерных для реальных условий эксплуатации), а вторичная – при полной нагрузке (при разгоне, преодолении подъема, езле с максимальной скоростью).

Корпус состоит из трех частей: крышки, поплавковой камеры и смесительной камеры.

В крышке размещена воздушная заслонка, снабженная телескопическим механизмом, обеспечивающим эффективный пуск и прогрев двигателя, топливный штуцер с фильтром, распылитель эконостата и распылитель экономайзера и ускорительного насоса.

Поддержание постоянного уровня топлива в поплавковой камере обеспечивается с помощью поплавка, топливного клапана с иглой. Смотровое окно позволяет контролировать уровень топлива в поплавковой камере без разборки карбюратора.

Приготовление горючей смеси на различных режимах обеспечивается главной дозирующей системой, системой холостого хода, переходной системой, эконостатом, экономайзером и ускорительным насосом.

Главная дозирующая система выполнена в каждой камере карбюратора. Она включает главный топливный жиклер, эмульсионную трубку с отверстиями, главный воздушный жиклер, малый и большой диффузоры, размещенные в главном воздушном канале, и дроссельную заслонку.

Рис. 2. Карбюратор К-126Н

Экономайзер предназначен для обеспечения состава горючей смеси при большом открывании дроссельных заслонок и размещен в первичной камере. Он содержит клапан, канал подачи топлива и распылитель, выходящий в главный воздушный канал первичной камеры.

Привод экономайзера конструктивно объединен с ускорительным насосом, обеспечивающим приемистость двигателя в момент резкого открытия дросселя. Ускорительный насос снабжен поршнем с манжетой, обратным клапаном, нагнетательным клапаном, топливоподающим винтом и распылителем.

Эконостат предназначен для дополнительного обогащения горючей смеси при работе двигателя на режимах полной нагрузки и высокой частоте вращения коленчатого вала. Он расположен во вторичной камере. Эконостат содержит топливный канал, сообщенный с поплавковой камерой, и распылитель, выходящий в наддиффузорную полость малого диффузора вторичной камеры.

Система холостого хода содержит топливный, воздушный жиклер, эмульсионный канал и винты качества и токсичности смеси соответственно, расположенные в корпусе смесительной камеры. Система подключена к главной дозирующей системе после топливного жиклера.

Переходная система первичной и вторичной камер имеет выходное отверстие. В первичной камере система совмещена с системой холостого хода.

Пуск осуществляется с помощью воздушной заслонки. При закрытой воздушной заслонке дроссельная заслонка первичной камеры приоткрывается на угол 8-10°.

Начало самостоятельной работы сопровождается резким увеличением частоты вращения и разрежения в главном воздушном канале, вследствие чего заслонка приоткрывается.

При работе на холостом ходу планка привода экономайзера и ускорительного насоса находится в крайнем верхнем положении и разбалансировочный канал, выполненный внутри штока, сообщает поплавковую камеру с атмосферой, что позволяет отводить пары из камеры. Насыщение парами бензина внутреннего объема воздухоочистителя, смесительных камер и впускного трубопровода затруднило бы последующий пуск двигателя. Переход на режим частичной нагрузки осуществляется открыванием дроссельной заслонки первичной камеры. Этим увеличивается расход воздуха через воздушный канал камеры, что сопровождается снижением разрежения в зоне отверстий и увеличения разрежения в диффузоре. При этом вступает в работу главная дозирующая система первичной камеры и продолжает, но с меньшей эффективностью, работать система холостого хода, обеспечивая необходимый состав горючей смеси. Совместная работа указанных систем продолжается до поворота дроссельной заслонки первичной камеры на угол до 40°. Для повышения мощности двигателя при открытии дросселя первичной камеры до угла 33…38” в действие вступает экономайзер мощностных режимов.

Карбюратор ДААЗ-2140 (рис. 3). Карбюратор разработан на базе модели ВАЗ-2105. Внешне он отличается только смесительной камерой, приводом дроссельных заслонок и размещением микропереключателя. Карбюратор – двухкамерный, двухдиффузорный, с падающим потоком горючей смеси, сбалансированной поплавковой камерой, последовательным открытием дроссельных заслонок, mieBMonpHBOj дом дроссельной заслонки вторичной камеры, закрытой регулируемой

Рис. 3. Карбюратор ДААЗ-2140

системой вентиляции картера, диафрагменным ускорительным насо-сом, эконостатом, полуавтоматическим пусковым устройством, патрубком отбора разрежения для вакуум-корректора прерывателя-паспределителя, латунным поплавком и поплавковым механизмом с верхним подводом топлива, а также экономайзером принудительного холостого хода.

Карбюратор имеет входной штуцер с фильтром, два раздельных главных воздушных канала, прокладку и общую поплавковую камеру. Топливный запорный клапан размещен в крышке поплавковой камеры и кинематически связан с язычком поплавка. Поплавок выполнен в виде цилиндра со сферическими донышками и расположен в поплавковой камере горизонтально.

Малые диффузоры соответственно вторичной и первичной камер съемные и смонтированы в вертикальных пазах корпуса поплавковой камеры.

Ускорительный насос – мембранного типа, смонтирован сбоку поплавковой камеры на вертикальном фланце. Привод насоса осуществляется от рычага дроссельной заслонки через профильный кулачок, рычаг и толкатель. Мембрана насоса со стороны толкателя нагружена демпфирующей пружиной, а со стороны корпуса поплавковой камеры – возвратной пружиной. В насосе имеется впускной канал с жиклером и обратным клапаном и винт регулировки перепускного клапана. Распылитель снабжен калиброванным жиклером и нагнетательным клапаном. Распылитель обеспечивает затяжной направленный впрыск топлива в первичную камеру между стенкой поплавковой камеры и малым диффузором.

Пусковое устройство содержит воздушную заслонку, размещенную в главном воздушном канале первичной камеры, систему тяг, канал и мембранный механизм привода. На корпусе смонтирован кронштейн для крепления оболочки троса привода воздушной заслонки.

Эконостат имеет топливный, воздушный и эмульсионный жиклеры и эмульсионный канал. Он имеет независимое питание из поплавковой камеры карбюратора. Выход эмульсии из системы эконостата осуществляется в узкую часть малого диффузора через отдельный канал, что позволяет подавать горючую смесь в соответствии с режимом работы двигателя.

Главная топливная система содержит топливный жиклер соответственно в первичной и вторичной камерах, эмульсионную трубку с главным воздушным жиклером соответственно в первичной и вторичной камерах.

Пневмопривод вторичной камеры снабжен мембранным механизмом, жиклерами и каналом, сообщающим наддиафрагменную полость с главным воздушным каналом первичной камеры.

Система холостого хода содержит воздушный жиклер, канал, топливный жиклер, эмульсионный канал с жиклером, расположенным над дроссельной заслонкой, винт заводской подстройки карбюратора и регулировочный эмульсионный винт.

ЭПХХ снабжен запорным элементом, жестко связанным через шток с мембраной. Пневмоклапан сообщен при помощи патрубка с электромагнитным клапаном, снабженным патрубками.

Электронный блок снабжен четырьмя выводами. Первый связан электрической цепью с электромагнитным клапаном, второй – через микропереключатель также с электромагнитным клапаном, третии – с массой автомобиля, а четвертый – с катушкой зажигания.

Переходная система содержит воздушный и топливный жиклеры, выходные отверстия, размещенные в корпусе смесительной камеры над кромкой дроссельной заслонки.

Карбюратор ДААЗ-2141. Легковые автомобили АЗЛК типа „Люкс” оснащаются карбюраторами ДААЗ-2141, разработанными на базе модели 2105. Их отличие от мод. 2140 связано с изменением некоторых регулировочных параметров, а также наличием системы подогрева смесительной камеры и сдвоенной поплавковой камерой со сдвоенным поплавком. Датчик положения дроссельной заслонки выполнен в виде упорного винта-контакта.

Карбюратор К-133М. Карбюратор разработан АО „Пекар” для двигателя МеМЗ-245 автомобиля „Таврия” ЗАЗ-1102. Карбюратор – однокамерный, двухдиффузорный, с падающим потоком горючей смеси и сбалансированной поплавковой камерой, экономайзером принудительного холостого хода, полуавтоматическим пусковым устройством, поплавком латунным, паяным и поплавковым механизмом с верхним подводом топлива и автономной системой холостого хода.

Пусковое устройство содержит пневмокорректор и систему тяг, образующих полуавтоматическую систему привода воздушной заслонки.

В крышке карбюратора размещены клапан (трубка) разбалансировки поплавковой камеры, топливный клапан, связанный с поплавком, штуцера подвода и перепуска топлива соответственно и топливный фильтр.

В корпусе поплавковой камеры размещены главный воздушный канал с малым диффузором, с прокладкой, защелкой-фиксатором и большим диффузором. В перемычке малого диффузора выполнены каналы, играющие роль распылителей главной дозирующей системы и экономайзера.

Главная дозирующая система состоит из топливного и воздушного жиклеров и эмульсионной трубки.

Система холостого хода содержит топливный и воздушный жиклеры, а также винт токсичности отработавших газов.

Ускорительный насос и экономайзер объединены общим приводом, кинематически связанным с приводом дроссельной заслонки, вращающейся на оси. Ускорительный насос содержит обратный клапан, распылитель с нагнетательным клапаном. Карбюратор оснащен ЭПХХ с клапаном и винтом количества горючей смеси, электронным пневмоклапаном, микропереключателем и электронным датчиком холостого хода.

В корпусе поплавковой камеры размещен клапан экономайзера, связанный через канал с распылителем, и поплавок, кинематически связанный с топливным клапаном.

В корпусе смесительной камеры размещены дроссельная заслонка и штуцер 30 подвода картерных газов.

Рис. 4. Карбратор ЗАЗ-1102

Карбюратор К-126ГМ. Карбюратор предназначен для автомобилей „Волга” ГАЗ-24-01. Карбюратор – двухкамерный, двух-диффузорный, с последовательным открыванием камер, с падающим потоком горючей смеси. Карбюратор имеет общую поплавковую камеру, экономайзер с механическим приводом, ускорительный насос поршневого типа, винт токсичности и поплавковый механизм с верхним подводом топлива, поплавок латунный, паяный.

Система пуска холодного двигателя содержит воздушную заслонку 8 и систему рычагов, образующих полуавтоматическое пусковое Устройство.

Система холостого хода размещения – только в первичной камере. Она состоит из топливного, воздушного 9 жиклеров и трех отверстий в смесительной камере. В нижнем отверстии находится регулировочный винт для регулирования состава горючей смеси при работе двигателя на холостом ходу. В канале системы холостого хода имеется винт для регулировки двигателя на содержание окиси углерода в отработавших газах.

Рис. 5. Карбюратор К-126ГМ

Главная дозирующая система, имеющаяся в каждой камере карбюратора, состоит из большого и малого диффузоров и двух главных жиклеров: топливных и воздушных. Через главные воздушные жиклеры воздух поступает в эмульсионные трубки, в которых имеется ряд отверстий.

Переходная система включает в себя топливный, воздушный жиклеры и отверстие в смесительной камере.

При открытии дроссельных заслонок, близкому к полному, под действием разрежения дополнительное количество топлива через жиклер эконостата и его распылитель поступает во вторичную камеру, обогащая горючую смесь.

Ускорительный насос включает в себя обратный шариковый клапан и нагнетательный клапан. Топливо из ускорительного насоса поступает в первичную камеру через распылитель.

Положение поршня ускорительного насоса регулируется изменением зазора между регулировочной гайкой поршня и планкой привода. Тяга привода снабжена балансировочным каналом. В корпусе поплавковой камеры находится топливный клапан с иглой поплавок и смотровое окно. Во входном штуцере расположен топливный фильтр. Между смесительной камерой и корпусом поплавковой камеры размещена прокладка.

Карбюратор К-151. Предназначен для двигателей ЗМЗ-402.10, -4021 автомобилей „Волга” ГАЗ-24-10.

Карбюратор – двухкамерный, двухдиффузорный, с падающим потоком и последовательным механическим открыванием дроссельных заслонок вторичной камеры, сбалансированной поплавковой камерой, поплавковым механизмом с нижним подводом топлива, автономной системой холостого хода, экономайзером принудительного холостого хода, закрытой регулируемой системой вентиляции картера, системой рециркуляции отработавших газов, полуавтоматическим пусковым устройством, переходной системой, ускорительным насосом диафрагменного типа, эконостатом и латунным паяным поплавком.

В первичной камере размещены: воздушная заслонка с полуавтоматическим диафрагменным приводом и ручным управлением; главный топливный жиклер, сообщенный с эмульсионной трубкой, в которую через главный воздушный жиклер поступает воздух; воздушные жиклеры и системы холостого хода; жиклер эмульсионный системы холостого хода; нагнетательный клапан с распылителем ускорительного насоса, а также винт качества горючей смеси.

Ускорительный насос содержит рычаг привода, кинематически связанный с мембраной, обратный клапан с ограничителем и перепускной жиклер с ограничителем (винтом регулировки).

Экономайзер принудительного холостого хода снабжен винтом качества и винтом количества горючей смеси.

Во вторичной камере размещены воздушный и топливный жиклеры и соответственно переходной системы, эмульсионная трубка с главным воздушным жиклером, связанная с главным топливным жиклером вторичной камеры, распылитель и малый диффузор.

Поплавковый механизм выполнен с нижним подводом топлива и снабжен штуцером подвода топлива, клапаном подачи топлива с эластичным запирающим элементом, топливным фильтром и поплавком.

Система холостого хода выполнена автономной, с двойным эмульсированием топлива в канал карбюратора.

В корпусе смесительной камеры карбюратора размещены трубка подвода разрежения к пневматическому электроклапану, трубка отбора вакуума к вакуум-корректору распределителя зажигания, а также трубка отбора вакуума к клапану рециркуляции отработавших газов. Корпус смесительной и поплавковой камеры разделен с помощью теплоизоляционной прокладки.

Рис. 6. Карбюратор К-151

Рис. 7. Карбюратор К-156

Карбюратор К-156 (рис. 7). Предназначен для форкамерного двигателя ЗМЗ-4022.10 автомобиля „Волга” ГАЗ-ЗЮ2.

Карбюратор – трехкамерный, с двумя основными первичной и вторичной и одной вспомогательной форкамерной секциями, с падающим потоком горючей смеси, сбалансированной поплавковой камерой. Поплавковый механизм выполнен с нижним подводом топлива, системой холостого хода в первичной и форкамерной секциях, системой пуска и прогрева полуавтоматического типа.

Система пуска холодного двигателя состоит из пневмопривода, системы рычагов, образующих полуавтоматическое пусковое устройство, и воздушной заслонки, закрытие которой перед пуском холодного двигателя проводится водителем при помощи ручного привода.

Поплавковый механизм снабжен штуцером подачи и отвода топлива в бензиновый бак, топливный клапан с фильтром и поплавок.

Каждая секция имеет собственную главную дозирующую систему, содержащую эмульсионную трубку с воздушным жиклером, главный топливный жиклер, распылитель, выполненный в малом диффузоре, и дроссельную заслонку с рычагом привода.

Главная дозирующая система вторичнои камеры содержит эмульсионную трубку с воздушным жиклером, главный топливный жиклер, распылитель, выполненный в малом диффузоре с фиксатором, к дроссельная заслонка с рычагом привода.

Главная дозирующая система форкамерной секции содержит эмульсионную трубку с воздушным жиклером, главный топливный жиклер, размещенный в поплавковой камере форкамерной секции, распылитель, выполненный в малом диффузоре, и дроссельную заслонку с рычагом.

Система холостого хода предусмотрена в первичной и форкамерной секциях. В первичной камере она содержит блок жиклеров, воздушный жиклер, эмульсионный жиклер, каналы эмульсионные, выходное отверстие и регулировочный винт качества с колпачком. Система холостого хода форкамерной секции содержит блок 18 жиклеров, воздушный жиклер 20 и эмульсионный жиклер, а также винт качества форкамерной секции.

Ускорительный насос первичной камеры диафрагменного типа содержит подпружиненную мембрану, обратный клапан, перепускной жиклер с регулировочным винтом, каналы и распылитель, выходящий в главный воздушный канал первичной камеры.

Для обогащения горючей смеси при полной нагрузке и на разгонных режимах в первичной и вторичной секциях карбюратора предусмотрены специальные устройства – эконостат и пневмоэкономайзер.

Эконостат содержит распылитель, выходящий в главный воздушный канал первичной камеры.

Переходная система содержит топливный жиклер, воздушные жиклеры и эмульсионную трубку-распылитель.

В крышке карбюратора выполнен разбалансировочный клапан, предназначенный для обеспечения надежного пуска горячего двигателя после кратковременной его остановки. Клапан приводится в действие электромагнитом, подключенным к выключателю зажигания.

Карбюратор-смеситель К-126С (рис. 8). Предназначен для двигателей ЗМЗ-4027.10 автомобиля „Волга” ГАЗ-24-17, работающего на сжиженном нефтяном газе (СНГ) и бензине (рис. 8). Карбюратор-смеситель, кроме штатных бензиновых дозирующих систем карбюратора К-126Г, содержит дополнительно три газовых дозирующих системы: холостого хода, главную и эконостатную. Газовая система холостого хода сообщена с задроссельным пространством. Выходные отверстия главной дозирующей системы расположены в больших диффузорах по окружности. Газовая эконостатная система расположена в корпусе карбюратора смесителя.

Карбюратор-смеситель содержит первичную и вторичную камеру с главными воздушными каналами, в которых размещены малые и большие съемные диффузоры и дроссельные заслонки . Он содержит две системы топливоподачи – бензиновую и газовую, обеспечивающие равноценную работу на бензине или газе.

Газовая система питания содержит газоподводящий патрубок, в котором размещены топливный жиклер эконостата, топливные жиклеры главной дозирующей системы первичной и вторичной камер соответственно и регулировочный винт системы холостого хода. Съемный большой диффузор 19 размещен в главном воздушном канале с образованием полости эконостата и полости главной дозирующей системы.

Диффузоры содержат по 12 радиальных выходных отверстий диаметром 2,8 мм. Эконостат содержит горизонтальный канал, сообщенный с полостью, вертикальный канал и распылитель газа, выходящий в главный воздушный канал вторичной камеры.

Бензиновая система питания содержит входной штуцер с фильтром, поплавок, подвешенный на оси и взаимодействующий с топливной иглой клапана, смотровое окно. В крышке поплавковой камеры размещены воздушная заслонка и балансировочное отверстие.

В корпусе 35 размещен ускорительный насос, снабженный штоком с разбалансировочным каналом, поршень с манжетой, обратный клапан, нагнетательный клапан, распылитель ускорительного насоса и распылитель эконостата.

Главная дозирующая система содержит главный «топливный жиклер, эмульсионную трубку с отверстиями и главным воздушным жиклером.

Переходная система снабжена топливным жиклером, каналами, воздушным жиклером и выходным отверстием, расположенным над верхней кромкой дроссельной заслонки.

Система холостого хода имеет топливный жиклер, воздушный жиклер, соединительные каналы, подстроечный винт и винт качества горючей смеси, размещенный в корпусе.

Одновременная работа карбюратора-смесителя на двух видах топлива недопустима.

Г азосмесительные проставки. Практически все модели легковых автомобилей имеют i азобаллонные модификации. В качестве карбюратора-смесителя применяется штатный карбюратор бензиновой системы питания, на котором устанавливают дополнительные элементы в виде проставки.

Проставки размещают перед карбюратором на входе в главный воздушный канал или в разъем между поплавковой камерой и корпусом смесительных камер. Конструктивно проставка может быть выполнена в виде диффузоров (по числу камер) или тангенциальных каналов с периферийным подводом газа через штуцер.

Для карбюраторов, у которых отсутствует разъем между поплавковой камерой и корпусом смесительных камер или по конструктивным соображениям, подвод газа осуществляется через форсунки размещенные в зоне максимального разрежения.

Рис. 9. Газосмесительная проставив для автомобилей „Волга” ГАЗ-24-17 (конструк. ция РЗАА)

Газовая аппаратура легковых автомобилей „Волга” ГАЗ-24-17 выпускаемая Рязанским заводом автомобильной аппаратуры по лицензии итальянской фирмы „Полиавто”, оснащена газосмесительной проставкой (рис. 9), размещенной перед карбюратором-смесителем К-145. Она содержит корпус с фланцем, закрепленным на крышке поплавковой камеры, диффузор с кольцевой полостью, сообщенной через сегментный кольцевой канал с главным воздушным каналом и через штуцер с газовым редуктором. Крышка жестко закреплена на диффузоре тремя штифтами с образованием кольцевого канала для прохода воздуха.

Аналогичная газовая проставка выпускается акционерным обществом „Компрессор” (Санкт-Петербург) для всех модификаций карбюраторов семейства ДААЗ.

Московский машиностроительный завод, выпускающий газовую аппаратуру для автомобилей ГАЗ-24-17, для карбюраторов К-126ГМ и К-151 разработал два вида газосмесительных проставок, устанавливаемых перед карбюратором и между поплавковой и смесительной камерами.

Проставка содержит корпус, закрепленный на горловине карбюратора с помощью трех винтов, съемный диффузор, размещенный в корпусе с образованием полости, сообщенной через сегментные дозирующие каналы с главным воздушным каналом и через соединительный канал 8, газоподводящий патрубок с газовым редуктором. Крышка снабжена отверстием, обеспечивающим проход (поступление) воздуха к эконостату, и закреплена на смесителе жестко тремя штифтами.

Газосмесительная проставка, показанная на рис. 11, содержит верхнюю и нижнюю части корпуса, образующие между собой газопод-водящие полости, газоподводящий патрубок и стяжные винты.

Сибирский автомобильно-дорожный институт (Омск) разработал и серийно выпускает газосмесительную проставку для двигателей автомобилей семейства ВАЗ и газосмесительную проставку для автомобилей „Волга” ГАЗ-24-10 и „Москвич-412”.

Газосмесительная проставка содержит верхнюю и нижнюю части соответственно, скрепленные между собой при помощи стяжной пластины и винтами. С целью удобства монтажа газопровода низкого давления подводящий патрубок размещен параллельно оси диффузоров. Проставка снабжена регулировочными винтами, размещенными в первичной и вторичной камерах.

Рис. 10. Газосмесительная проставка для автомобилей ГАЗ-24-17

Рис. 11. Газосмесительная проставка для автомобилей ГАЗ-24-10 и „Москвич-412”

Рис. 12. Газошеоиельная проставив автомобилей самсймва ВАЗ

Газосмесительная проставка содержит верхнюю и нижнюю части корпуса, газоподводящий патрубок, вертикальный канал, проходное сечение которого регулируют с помощью винта с пружиной, диффузоры, верхнюю и нижнюю прокладки.

Газосмесительная проставка, предназначенная для автомобилей „Волга” ГАЗ-24-17 на сжатом природном газе, содержит патрубок, диффузоры с тангенциальными кянялями.

Рис. 13. Гаэосмесительная проставка автомобилей „Москвич-412” 78

Рис. 14. Газосмесительная проставка автомобиля ГАЗ-24-17 для работы на сжатом природном газе (конструкция АО „Компрессор”)

Рекламные предложения:


Читать далее: Периодичность и виды технического обслуживания карбюратора

Категория: — Карбюратор автомобиля

Главная → Справочник → Статьи → Форум


Общее устройство карбюратора . Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей

Карбюратор предназначен для приготовления горючей смеси, разной по качеству (соотношению бензина и воздуха) и количеству в зависимости от режимов работы двигателя, и ее подачи в цилиндры двигателя.

Элементарный карбюратор состоит из следующих основных элементов (рис. 2.15):

? поплавковой камеры;

? поплавка с игольчатым запорным клапаном;

? распылителя;

? смесительной камеры;

? диффузора;

? воздушной и дроссельной заслонок;

? топливных и воздушных каналов с жиклерами.

Рис. 2.15. Схема карбюратора:

1 — рычаг ускорительного насоса; 2 — винт регулировки подачи топлива ускорительным насосом; 3 — топливный жиклер переходной системы второй камеры; 4 — воздушный жиклер эконостата; 5 — воздушный жиклер переходной системы; 6 — топливный жиклер эконостата; 7 — воздушный жиклер главной дозирующей системы второй камеры; 8 — эмульсионный жиклер эконостата; 9 — распылитель эконостата; 10 — распылитель главной дозирующей системы второй камеры; 11 — клапан распылителя ускорительного насоса; 12 — распылитель ускорительного насоса; 13 — воздушная заслонка; 14 — малый диффузор первой камеры; 15 — воздушный жиклер главной дозирующей системы первой камеры; 16 — воздушный жиклер пускового устройства; 17 — тяга; 18 — воздушный жиклер системы холостого хода; 19 — игольчатый клапан; 20 — топливный фильтр; 21 — электромагнитный клапан; 22 — топливный жиклер системы холостого хода; 23 — главный топливный жиклер первой камеры; 24 — корпус экономайзера; 25 — эмульсионный жиклер системы холостого хода; 26 — дроссельная заслонка первой камеры; 27 — распылитель главной дозирующей системы первой камеры; 28 — дроссельная заслонка второй камеры; 29 — главный топливный жиклер второй камеры

В поплавковой камере постоянный уровень топлива поддерживается поплавком, соединенным с игольчатым клапаном. По мере расходования топлива поплавок опускается, открывается игольчатый клапан и новая порция бензина вливается в топливную камеру. При достижении нормального уровня в поплавковой камере поплавок, всплывая, закрывает иглой входное отверстие и прекращает доступ бензина. По трубке распылителя бензин из поплавковой камеры попадает в смесительную камеру, где смешивается с поступающим из входного патрубка воздухом. Уровень топлива в поплавковой камере несколько ниже кромки выходного отверстия распылителя, поэтому при неработающем двигателе топливо из поплавковой камеры не вытекает даже при наклонном положении машины.

Для дозирования бензина в нижнюю часть трубки распылителя ввернут жиклер, представляющий собой пробку с калиброванным отверстием. Диффузор (суженный внутри короткий патрубок) служит для увеличения скорости воздушного потока в центре смесительной камеры и создания разрежения около конца распылителя (при работающем двигателе), что необходимо для высасывания топлива из топливной камеры и лучшего его распыления. Количество горючей смеси, подаваемой в цилиндры двигателя, регулируется дроссельной заслонкой, связанной с педалью газа. Эта заслонка изменяет площадь проходного сечения за смесительной камерой. Водитель управляет заслонкой с помощью педали газа, расположенной под его правой ногой.

Простейший карбюратор не способен приготовить оптимальную по составу горючую смесь во всех режимах работы двигателя.

При увеличении степени открытия дроссельной заслонки смесь будет обогащаться.

Оптимальное же изменение состава смеси должно быть другим.

Современные карбюраторы бензиновых двигателей значительно отличаются от элементарного карбюратора главным образом за счет наличия дополнительных вспомогательных устройств, позволяющих в тех или иных режимах работы двигателя в определенной степени обеднять или обогащать смесь. Различают карбюраторы с восходящим, горизонтальным и падающим потоком. Наиболее часто используют карбюраторы с падающим потоком, в которых смесь в смесительной камере движется сверху вниз. Карбюратор может иметь одну или две камеры. В последнем случае они могут устанавливаться последовательно или параллельно. Чаще всего используются двухкамерные карбюраторы с параллельным расположением камер.

В общем случае современный карбюратор состоит из следующих основных устройств: главного дозирующего устройства, пускового устройства, системы холостого хода, экономайзера, ускорительного насоса, балансировочного устройства и ограничителя частоты вращения коленчатого вала. Иногда в состав карбюратора входят также эконостат и система принудительного холостого хода.

Кроме того, обычно под панелью приборов или прямо на ней есть специальная рукоятка, которая управляет воздушной заслонкой карбюратора. В народе — попросту «подсос». Вытягивая ее, водитель прикрывает воздушную заслонку, ограничивая доступ воздуха и увеличивая разрежение в смесительной камере карбюратора. В результате бензин из поплавковой камеры высасывается более интенсивно и при недостатке воздуха готовит для мотора обогащенную горючую смесь, которая и необходима для пуска холодного двигателя.

Наиболее экономично карбюратор работает при средних нагрузках. Движение рывками (резкий разгон — торможение) увеличивает расход топлива, так как при резком нажатии на педаль газа двигателю для быстрого набора оборотов и исключения провалов в работе требуется обогащенная смесь.

Итак, подведем промежуточный итог: карбюратор — это сложное механическое устройство, смешивающее бензин с воздухом в определенных пропорциях и осуществляющее доставку подготовленной смеси к цилиндрам двигателя.

Простейший карбюратор доставляет топливо пропорционально количеству воздуха, проходящего через него.

Карбюратор простейший — Энциклопедия по машиностроению XXL

К две с внешним смесеобразованием относятся карбюраторные и некоторые газовые двигатели. В двигателях, работающих на бензине, смесь готовится в карбюраторе. Простейший карбюратор, принципиальная схема которого показана на рис. 22.3, состоит из поплавковой и смесительной камер. В поплавковой камере помещается латунный поплавок 1, укрепленный шарнирно на оси 3, и игольчатый клапан 2, которыми поддерживается постоянный уровень бензина. В смесительной камере расположен диффузор 6, жиклер 4 с распылителем 5 и дроссельная заслонка 7. Жиклер представляет собой пробку с калиброванным отверстием, рассчитанным на протекание определенного количества топлива.  [c.204]
На рис. 34 графически показаны необходимые изменен состава смеси для экономичной работы двигателя и получения максимальной мощности в зависимости от нагрузки, т. е. степени открытия дросселя при средних постоянных оборотах (1300—1500) там же показаны характеристики карбюраторов — простейшего (элементарного) и желательного.  [c.61]

Процесс превращения жидкого топлива в пары и смешивания с воздухом называется карбюрацией, а прибор, в котором совершается этот процесс,— карбюратором. Простейший карбюратор (рис. 32) состоит из поплавковой и смесительной 8 камер. В по-  [c.48]

Смешение топлива и воздуха, т. е. приготовление горючей смеси, осуществляется в карбюраторе. Простейший карбюратор состоит из следующих основных частей поплавковой камеры 8 с поплавком 7 и игольчатым клапаном 6 дозирующего устройства, состоящего из жиклера 5 и распылителя 13 смесительной камеры, включающей диффузор 12, дроссель 14 и воздушную заслонку 11.  [c.132]

Процесс превращения жидкого топлива в пар и смешивания его с воздухом называется карбюрацией, а прибор, в котором совершается этот процесс,— карбюратором. Простейший карбюратор состоит из поплавковой (рис. 14) и смесительной камер. В поплавковой камере помещаются поплавок, укрепленный шарнирно на оси, и игольчатый клапан. В смесительной камере располо-  [c.27]

Процесс превращения жидкого топлива в пар и смешивания его с воздухом называется карбюрацией, а прибор, в котором совершается этот процесс, — карбюратором. Простейший карбюратор (рис. 1.14) состоит из поплавковой и смесительной камер. В поплавковой камере помещаются поплавок, укрепленный шарнирно на оси, и игольчатый клапан, в смесительной — диффузор, жиклер с распылителем и дроссельная заслонка. Жиклер представляет собой резьбовую пробку с калиброванным отверстием, рассчитанным на протекание определенного количества топлива в единицу времени.  [c.28]

Калильное число 205 Камеры поплавковые 63 Карбюратор простейший 56 Катки опорные 335 Катушка зажигания 206, 213 Кинематика поворота 339 Клапаны 43  [c.434]

Прибор, в котором воздух смешивается с топливом, называется карбюратором. Простейший карбюратор (см. рис. 153) состоит из вертикального корпуса, в котором расположены диффузор  [c.223]

Простейшей термодинамической системой является рабочее тело, осуществляющее взаимное превращение теплоты и работы. В двигателе внутреннего сгорания, например, рабочим телом является приготовленная в карбюраторе горючая смесь, состоящая из воздуха и паров бензина.  [c.7]


Простейший карбюратор может приготовлять смесь необходимого состава только для одного скоростного или нагрузочного режима работы двигателя. Карбюраторный двигатель, особенно транспортный, работает на самых различных скоростных и нагрузочных режимах при частой их смене. Чтобы карбюратор мог надежно устанавливать требуемое соотношение между топливом и воздухом в горючей смеси при работе на любом режиме двигателя, он снабжается рядом систем и устройств главной дозирующей системой с корректированием подачи топлива с целью обеспечения необходимого состава смеси при работе двигателя на всех основных эксплуатационных режимах системой холостого хода для обеспечения устойчивой работы двигателя при малой нагрузке и на режиме холостого хода системой для обогащения смеси при работе двигателя на режиме максимальной мощности и близких к нему режимах (для этой цели в карбюраторе устанавливается экономайзер) устройством для обеспечения хорошей приемистости двигателя (ускорительный насос для подачи дополнительного количества топлива с целью обогащения  [c.227]

С хема простейшего карбюратора  [c.227]

Для изменения количества горючей смеси, поступающей в двигатель, служит дроссельная заслонка 12. Воздушной заслонкой / пользуются для обогащения смеси при пуске двигателя. Приведенная схема простейшего карбюратора применима только для карбюраторных двигателей, работающих при постоянном режиме (неизменном числе оборотов и величине нагрузки).  [c.417]

Специальные испытания в зависимости ет задания могут быть и очень простыми (например, проводимые с целью подбора регулировки карбюратора) и довольно сложными, чисто научно-исследовательского характера, требующими применения специальной измерительной аппаратуры, как стробоскопов, без-инерционных индикаторов, детонометра, спектроскопа и т. п. Такие испытания чаще всего проводят для изучения влияния на работу двигателя различных конструктивных и эксплоатационных факторов, для подтверждения экспериментом отдельных теоретических положений и для накопления опытного материала, на базе которого может производиться дальнейшее совершенствование двигателя.  [c.367]

Рис. 14. Схема простейшего карбюратора
Давление воздуха в поплавковой камере и в диффузоре различно, в результате из распылителя вытекает топливо, которое подхватывается потоком воздуха и распыливается. В смесительной камере значительная часть топлива испаряется, образуя горючую смесь. По мере открытия дроссельной заслонки увеличивается количество воздуха, проходящего через карбюратор, возрастают его скорость, а следовательно, и разрежение в диффузоре, что увеличивает расход топлива. При работе двигателя на различных режимах простейший карбюратор, являющийся основой всех современных карбюраторов, приготовляет смесь, состав которой не вполне соответствует требуемому. Для исправления недостатков простейшего карбюратора его дополняют рядом устройств, обеспечивающих приготовление на различных режимах горючей смеси, близкой по составу к требуемой.  [c.51]
Рис. 23. Схема устройства и работы простейшего карбюратора

Принцип работы простейшего карбюратора  [c.81]

В простейшем карбюраторе (рис. 48) различают две основные части поплавковую и смесительную камеры.  [c.81]

Простейший карбюратор может обеспечить приготовление с.меси необходимого состава только при одном определенном установившемся режиме, т. е. при постоянном числе оборотов коленчатого вала двигателя и постоянном открытом дросселе. Практически работа двигателя все время про-  [c.82]

При пуске холодного двигателя, когда условия смесеобразования вследствие малых оборотов плохие, простейший карбюратор не сможет приготовить смесь богатого состава. При малых оборотах холостого хода, когда дроссель прикрыт, разрежение в диффузоре будет недостаточным и не сможет вызвать истечения топлива из распылителя. Поэтому простейший карбюратор также не может обеспечить работу двигателя на малых оборотах холостого хода. На средних нагрузках, по мере открытия дросселя, горючая смесь будет обогащаться в то время, когда для экономичной работы необходима смесь обедненного состава. При полных нагрузках и резком изменении нагрузки или числа оборотов простейший карбюратор не дает необходимого обогащения смеси.  [c.83]

Наиболее простую схему впрыскивающего карбюратора дает рис. 42.  [c.202]

Тогда а будет постоянным по времени, но как только изменится число оборотов двигателя или положение дроссельной заслонки К, вообще, как только изменится величина Аро, так сейчас же изменится а и летчик должен регулировать кран Е. Простая но конструкции схема (рис. 49) оказывается непригодной на разных режимах. Чтобы избавиться от влияния количества топлива, находящегося в баке, большинство карбюраторов снабжается камерой постоянного уровня. При этом получается схема, как на рис. 50.  [c.210]

Для уяснения процесса смесеобразования в карбюраторных двигателях рассмотрим работу простейшего карбюратора (фиг. 128).  [c.293]

Рассмотренный карбюратор является простейшим и в таком виде не может обслуживать двигатель с переменным числом оборотов. Если простейший карбюратор отрегулировать на требуемый состав смеси при некотором положении дроссельной заслонки, то при большом открытии ее увеличивается количество топлива в смеси, т. е. смесь становится более богатой топливом. При работе же карбюраторного двигателя на разных режимах требуется горючая смесь неодинакового состава для холостого хода и больших нагрузок (мощностей) необходима богатая смесь (а1).  [c.294]

Для получения необходимого состава смеси простейший карбюратор дополняется рядом специальных приспособлений.  [c.295]

На примере одного из карбюраторов рассмотрим работу этих приспособлений. На фиг. 129 представлена принципиальная схема карбюратора МКЗ-6. Топливо, подаваемое диафрагменным насосом через сетчатый фильтр и игольчатый клапан, заполняет поплавковую камеру. Главная дозирующая система карбюратора аналогична системе простейшего карбюратора.  [c.295]

Схема простейшего (элементарного) карбюратора с наиболее распространенным направлением движения воздуха сверху вниз (падающим потоком) показана на рис. 42. Карбюратор состоит из [c.64]

Для исправления характеристики простейшего карбюратора, служащего основой современных карбюраторов, его дополняют рядом устройств, обеспечивающих приготовление горючей смеси на различных режимах, близкой по составу к требуемой.  [c.66]

Главное дозирующее устройство обеспечивает приготовление горючей смеси, близкой по составу к экономичной во всем диапазоне частичных нагрузок. Оно состоит из простейшего карбюратора и компенсирующего устройства, назначением которого является обеднение смеси в необходимых пределах по мере роста расхода воздуха.  [c.66]

Схема главного дозирующего устройства с понижением разрежения у топливного жиклера показана на рис. 43. От простейшего карбюратора рассматриваемая система отличается наличием колодца 5 и воздушного жиклера 6, который сообщает колодец с атмосферой.  [c.66]

Наиболее важной частью системы питания карбюраторного двигателя является смесеобразующее устройство, которое служит для приготовления горючей смеси из паров бензина и воздуха в определенной пропорции. Смесеобразующее устройство, объединенное с поплавковой камерой, представляет собой карбюратор простейшего типа (рис. 17).  [c.48]

Смешение топлива и воздуха, т. е. приготовление горючей смеси, ссуществляется в карбюраторе. Простейший карбюратор состоит из  [c.137]

На двигателях внутреннего сгорания устанавливают карбюраторы пульверизациониого типа (рис. 34-10). В пульверизациониом карбюраторе простейшей конструкции топливо из бака через отверстие 8, которое запирает игольчатый клапан 7, поступает в поплавковую камеру 9 по мере ее заполнения поплавок 5 всплывает и, поднимая клапан 7, прекращает доступ топлива. Поплавок и игольчатый клапан поддерживают постоянный уровень топлива в поплавковой камере. Поплавковая  [c.539]

Простейший карбюратор (рис. 5.7) работает следующим образом. Засасываемый воздух, минуя воздушную заслонку 2, проходит через диффузор 1, в горловине которого возникает разрежение. Под действием этого разрежения топливо из поплавковой камеры 3 через жиклер 5 попадает в горловину диффузора 1, при истечении распыливается воздушным потоком и частично испаря-ряется. Образующаяся смесь, минуя дроссельную заслонку 6, попадает во впускной трубопровод и далее в цилиндры двигателя. По пути топливо дополнительно испаряется и перемешивается с воздухом.  [c.227]

Схема главного дозирующего устройства с понижением разрежения у топливного жиклера показана на рис. 16. Такие устройства используются на Многих карбюраторах современных автомобильных двигателей. От простейшего карбюратора рассматриваемая система отличается наличием колодца 7 и воздушного жиклера 4. При работе двигателя поступающие в колодец топливо через жиклер 6 и воздух через жиклер 4 смешиваются, образуя эмульсию, которая подается распылителем 3 в диффузор 2. Чтобы лучше эмульсировалось  [c.53]


Простейший карбюратор (рис. 23) состоит из двух основных элементов поплавковой и смесительной камер. В поплавковой камере, как это явствует из самого названия, находится легкий пустотелый поплавок. Он может перемещаться вертикально вместе с иглой, на которой закреплен. Конусное острие иглы является клапаном, плотно притертым по седлу. Когда бензин заполняет поплавковую камеру до определенного уровня, поплавок подвсплывает и конусной иглой-клапаном перекрывает отверстие, через которое подается бензин. Падает уровень бензина в камере — поплавок опускается, клапан пропускает порцию бензина, но поплавок снова поднимается и клапан садится в седло.  [c.29]

Вследствие перечисленных недостатков простейший карбюратор необходимо дополнить рядом устройств и приспособлений, обеспечивающих приготовление горючей смеси необходимого состава на разных режимах работы двигателя. Чтобы получить необходимый состав горючей смеси в диапазоне от малых до больших нагрузок, в карбюратор введена главная дозируюш ая система.  [c.84]

Для получения смеси почти постоянного состава простейший карбюратор дополнен компенсационной системой, состоящей из компенсационногв колодца 9, соединенного в верхней части с воздушной полостью карбюратора, и из каналов, связывающих колодец с поплавковой камерой и форсункой 10. При малых открытиях дроссельной заслонки 1 топливо поступает в диффузор через главный жиклер И, главную форсунку 12 и компенсационную форсунку 10. При дальнейшем открытии заслонки компенсационный колодец опоражнивается, и через форсунку 10 в диффузор поступает воздух, подсасываемый через колодец из воздушной полости, и то количество топлива, которое может пропустить жиклер. В итоге состав смеси поддерживается почти постоянным. При работе на малых нагрузках (холостой ход), когда дроссельная заслонка почти полностью закрыта, разрежение в диффузоре очень мало и топливо через форсунки 10 и 12 поступать почти не будет. Поэтому карбюратор дополняется системой холостого хода.  [c.295]

Однако требуемого соответствия между повышением расходов воздуха и топлива не происходит, вследствие чего горючая смесь, приготовляемая простейшим карбюратором, при увеличении открытия дроссельной заслонки обогащ,ается (см. рис. 41). Сопоставление характера изменения составов смеси простейшего (кривая 2) и идеального (кривая 1) карбюраторов позволяет сделать заключение о том, что при-работе двигателя на различных режимах простейший карбюратор приготовляет смесь, состав которой не соответствует требуемому. Кроме того, при небольших нагрузках в диффузоре простейшего карбюратора разрежение настолько мало, что приготовление горючей смеси становится невозможным.  [c.66]


Устройство карбюратора (часть2) — Обслуживание и ремонт

Данная часть включает в себя описание систем карбюраторов со скользящим дросселем, которые чаще всего встречаются на наших мотиках. Искренне надеюсь, что статья принесет пользу нашему небольшому сообществу.
Книга также содержит материал посвященный карбюраторам с постоянным разряжением. Данный тип карбов не ставиться на питбайки, однако преобладает на дорожных мотоциклах. Так же есть материал, посвященный основным понятиям топливных систем, теории горения, рекомендациям по смесеобразованию. Если что-либо из данной информации будет полезно сообществу любителей питбайков — прошу высказаться в каментах.

Частичные нагрузки
Следующий этап конструирования карбюратора состоит в установке воздушной заслонки, управляемой водителем. Эта заслонка называется дросселем или дроссельной заслонкой, поскольку она регулирует подачу воздуха в двигатель («полный газ» означает полностью открытая заслонка). Наиболее очевидным (и простым) решением является установка поворотной заслонки, которая может разворачиваться, открывая или закрывая диффузор. Расположенная позади распылителей топлива, эта заслонка управляет подачей воздуха, однако, не управляет подачей топлива, поэтому при такой конструкции нам потребуется несколько распылителей, которые будут постепенно открываться при развороте дросселя. Таким образом, нам потребуется блок жиклеров, множество сверлений и трубок. Карбюраторы этого типа часто устанавливаются на автомобилях, однако, они имеют существенные отличия, особенно, по сравнению с мотоциклами, изготовленными 50 или 60 лет назад. В автомобилях один карбюратор обеспечивает смесью четыре или более цилиндров через большой впускной коллектор. Пульсации давления от отдельных цилиндров сглаживаются в коллекторе и в меньшей степени передаются обратно, к карбюратору. Двигатель и карбюратор имеют относительно большие размеры, поскольку под капотом автомобиля достаточно много места (в то же время в каждый момент только в одном из цилиндров наступает такт впуска, то есть диаметр диффузора должен быть таким, чтобы обеспечивать подачу воздуха только в один цилиндр (рис. 9).


Рис. 9. Одноцилиндровый двигатель создает большие пульсации давления через каждые два оборота коленчатого вала. Четырехцилиндровый двигатель создает меньшие пульсации давления каждые пол-оборота коленчатого вала.

Такие карбюраторы имеют множество усовершенствований, таких как внутренние диффузоры, позволяющие управлять расходом топлива через каждый жиклер и обеспечивающие требуемую производительность. Эти дополнении препятствуют потоку воздуха, поэтому для обеспечения требуемой мощности двигателя, размеры таких карбюраторов существенно больше, чем размер простого нерегулируемого диффузора. Двигатели мотоциклов часто состоят из одного цилиндра, а карбюратор устанавливается прямо на двигатель из-за недостатка места (вообще двигатели и карбюраторы мотоциклов стараются сделать как можно меньшего размера).
При уменьшении корпуса карбюратора возникает множество технических проблем. Минимальная толщина пластины дроссельной заслонки определяется необходимой прочностью, а также возможностью крепления пластины к оси. В карбюраторах, имеющих большой диаметр диффузора, влияние кромки дроссельной заслонки незначительно, однако, в карбюраторах мотоциклов, у которых диаметр диффузора меньше 25 мм, такая заслонка становится не эффективной. Изготовители двигателей мотоциклов чаще всего устанавливают скользящие дроссельные заслонки. Эти заслонки имеют цилиндрическую форму, а их диаметр равен диаметру диффузора. Управление заслонкой производится при помощи троса и возвратной пружины (рис. 10).


Рис. 10. Для управления потоком воздуха в диффузоре установлен скользящий дроссель. В ранних моделях карбюраторов этот дроссель имел цилиндрическую форму, которая позже трансформировалась в форму плоской заслонки, показанной на рисунке. Коническая игла закреплена на дросселе и может входить в отверстие топливного жиклера, регулируя подачу топлива. Скошенная кромка дросселя имеет вырез, который обеспечивает подачу воздуха на холостых оборотах и до 1/8 хода дросселя

Такая заслонка устанавливается непосредственно над топливным жиклером. Управление расходом воздуха осуществляется перемещением заслонки, т.е. изменением поперечного сечения диффузора. Одновременно с изменением сечения меняется скорость воздуха и разрежение над жиклером. Это не совсем то, что хотелось бы получить, поскольку в случае уменьшения расхода воздуха и сохранения подачи топлива происходит обогащение рабочей смеси. Однако это позволяет сохранить работоспособность карбюратора при снижении расхода воздуха до самых малых значений. Так как заслонка расположена над топливным жиклером и совершает прямолинейное движение, мы можем легко регулировать расход топлива введением в топливный жиклер конической иглы, закрепленной на дросселе. Топливный жиклер при этом начинает решать еще несколько задач и получает четыре или пять дополнительных регулировок.
В трубке подачи топлива установлен главный жиклер и эмульсионная трубка, в которой воздух смешивается с топливом, а также формируется струя топлива, которое впрыскивается в диффузор. Кроме того, теперь в этой трубке появляется еще и коническая игла (очень часто эту конструкцию называют игольчатым жиклером, поэтому и мы будем придерживаться этого названия).
В дополнение ко всем предыдущим настройкам, мы получаем возможность изменять диаметр игольчатого жиклера относительно наиболее толстой части иглы, можем менять длину и угол конической части самой иглы (можем сделать иглу, имеющую несколько конусов, имеющих различные углы (рис. 11), можем менять высоту погружения иглы в жиклер, а также можем менять угол скоса нижней кромки воздушной заслонки.


Рис. 11. Коническая игла может иметь различную форму. Размеры, которые влияют на расход топлива: (1) полная длина, (2) диаметр цилиндрической части, (3) длина цилиндрической части, (4) начальный диаметр и угол конуса, (5) начальный диаметр и угол наклона дополнительных конусов и (5) канавки, в которые вставляются крепления иглы.

При полностью открытом дросселе потоку воздуха препятствует только узкая игла (в некоторых карбюраторах фирмы Amal эта игла убирается в стенку диффузора для того, чтобы не препятствовать потоку воздуха). Такая форма дросселя делает конструкцию карбюратора очень эффективной, что обусловило ее широкое применение на мотоциклах с 20-х по 60-е годы.
Игла также дает дополнительный эффект, поскольку она управляет подачей топлива. Кроме того, поднимаясь по поверхности иглы, частицы топлива дополнительно измельчаются перед попаданием в воздушный поток. Возможности регулировки состава смеси на частичных нагрузках становятся поистине беспредельными. Число комбинаций и сочетаний диаметра жиклера, размеров дросселя, длины иглы и углов конуса иглы столь велико, что эту задачу нельзя решить теоретически, а лишь путем подбора различных вариантов, оптимизирующих работу двигателя.
К счастью, конструкторы карбюраторов всегда начинают работу с простых моделей (наподобие нашего примитивного карбюратора), поэтому они всегда имеют рабочую версию карбюратора, которую начинают усовершенствовать. И все же, упоминание о конических иглах чаще всего вызывает лишь ироническую улыбку даже у опытных конструкторов карбюраторов. Даже при полном открытии дросселя игла должна входить в отверстие жиклера, поскольку в противном случае она может упереться в жиклер и препятствовать закрытию дросселя. На практике, из этого вытекают два важных параметра карбюратора:
  • Площадь зазора между иглой в самой тонкой части и жиклером должна быть больше, чем площадь главного жиклера, однако, не настолько больше, чтобы главный жиклер влиял на подачу топливе при закрытом дросселе.
  • Длина иглы и глубина ее погружения в жиклер определяются диаметром диффузора. Некоторые конструкторы пошли по пути увеличения колодца главного жиклера с тем, чтобы увеличить длину иглы, однако исследования показали, что увеличение длины иглы не приводит к повышению мощности двигателя. С другой стороны, если зазор между иглой и жиклером меньше, чем диаметр главного жиклера, то при максимальных нагрузках главный жиклер уже не определяет подачу топлива.
В этом случае решение проблемы заключается в установке иглы большего диаметра, однако, поскольку это повлияет на состав рабочей смеси при частичной загрузке двигателя, потребуется увеличение диаметра жиклера, которое повлечет за собой увеличение диаметра иглы… однако все это невозможно до тех пор, пока размеры главного жиклера не определены. Как результат, либо карбюратор имеет характеристики, которые хуже, чем его теоретические возможности, либо он совершенствуется снова и снова до тех пор, пока не будут достигнуты оптимальные результаты.
Области управления

Для упрощения понимания пpoцecca разобьем задачи, решаемые каждым компонентом, на области и рассмотрим их в логической последовательности. Так, например, мы считаем, что главный жиклер управляет составом рабочей смеси во всем диапазоне частот вращения двигателя. Однако этот жиклер управляет составом рабочей смеси только при полном открытии дросселя (см.примечание 2), а также играет решающую роль при открытии дросселя на 3/4 высоты (или даже меньше). Таким образом, если Вы хотите отрегулировать состав рабочей смеси при 3/4 высоты открытии дросселя (или свыше 1/2 высоты открытия дросселя в проектируемом карбюраторе), Вы будете изменять характеристики главного жиклера и главного воздушно го жиклера. Размеры жиклеров должны обеспечивать наибольшую мощность во всем диапазоне частот вращении двигателя при полном открытии дросселя.
В диапазоне от 1/4 до 1/3 хода дросселя решающую роль в формировании рабочей смеси играет игольчатый жиклер. Начальные параметры этой пары выбираются таким образом, чтобы при полном открытии дросселя игла не выходила из жиклера. На следующем этапе подбирается угол конуса иглы так, чтобы оптимизировать работу двигателя в указанной области. Нижняя (более тонкая) часть иглы принимает участие в работе при открытии дросселя от 5/8 до 3/4 своей высоты, а верхняя часть иглы работает при малых нагрузках. При частичной загрузке двигателя игла находится внутри жиклера и управляет расходом топлива.
В зависимости от комбинации нагрузки и скорости, оптимальные установки должны обеспечивать максимальную топливную экономичность при небольших нагрузках и низкой скорости и обеспечивать максимальную мощность при больших нагрузках и скоростях. При открытии дросселя менее, чем на 1/4. игла продолжает контролировать подачу топлива, хотя дроссель практически перекрыл подачу воздуха. В это время подача воздуха регулируется вырезом в нижней кромке дросселя, а форма этого выреза определяет состав рабочей смеси.
Это управление является слишком грубым для обеспечения работы двигателя на низких оборотах, поэтому в большинстве карбюраторов имеется полностью автономная система холостого хода. Топливный жиклер (жиклер холостого хода) подает топливо из поплавковой камеры в диффузор через отверстие, выходящее в воздушный поток через вырез дросселя (рис. 12). При полностью закрытом дросселе двигатель создает во впускном коллекторе разрежение, которого достаточно для того, чтобы топливо подавалось через систему холостого хода.


Рис. 12. Система холостого хода. Отдельный жиклер, который подает топливо из поплавковой камеры в диффузор. Воздух проходит через воздушный жиклер и смешивается с топливом. В системе холостого хода имеется конический регулировочный винт, который управляет подачей топлива или воздуха или рабочей смеси (как показано на рисунке). Система холостого хода имеет один или несколько шунтируюших каналов, выходящих в диффузор в районе дросселя, чтобы обеспечить отсутствие провалов при выходе из режима холостого хода.

Для облегчения перемешивания топлива с воздухом в системе холостого хода имеется воздушный жиклер, через который проходит воздух и смешивается с топливом. Регулировочный винт конической формы предназначен для регулировки подачи смеси топлива и воздуха. При вворачивании винта поток уменьшается. В зависимости от конструкции системы этот винт может обогащать рабочую смесь, уменьшая расход воздуха, или наоборот, обеднять ее, ограничивая подачу топлива. В некоторых системах состав рабочей смеси определяется воздушным и топливным жиклерами, а регулировочный винт ограничивает подачу рабочей смеси. Настройка системы холостого хода определяется концентрацией СО в выхлопных газах, либо по частоте вращения коленчатого вала двигателя. В последнем случае винтом ограничения хода дросселя следует установить минимальную частоту вращения двигателя. Затем, вращая винт регулировки состава рабочей смеси, установите максимальную частоту вращения двигателя (или минимальную концентрацию СО в выхлопных газах). После этого винтом ограничителя дросселя снова установите минимальную частоту вращения двигателя и повторите процедуру. Регулировку можно прекратить после того, как будут получены оптимальные результаты.
Эту процедуру необходимо выполнить до того, как Вы начнете разработку формы иглы при низкой загрузке двигателя, а также форму выреза дроссели, поскольку система холостого хода продолжает снабжать топливом двигатель во всем диапазоне частот вращения. И хотя при полностью открытой дроссельной заслонке этот эффект будет практически незаметным, при небольшом открытии дросселя система холостого хода будет оказывать значительное влияние на состав рабочей смеси. Различие между холостым ходом и низкой загрузкой двигателя очень велико, поэтому переход от подачи топлива через жиклер холостого хода к подаче топлива через главный жиклер не проходит плавно вызывая провалы и рывки двигателя при открытии дросселя. Для повышения плавности перехода обычно в системе холостого хода делается шунтирующий канал (или несколько каналов), соединяющий канал подачи топлива с диффузором. Обычно канал выходит в диффузор под дросселем или немного перед ним. Даже при небольшом открытии дросселя скорость потока воздуха возрастает и топливо начинает поступать в диффузор через дополнительное отверстие и обеспечивает переход от работы системы холостого хода к работе главной дозирующей системы.
Переходные режимы

Здесь мы столкнемся с новыми явлениями. До сих пор мы рассматривали работу двигателя при постоянной скорости и нагрузке. Теперь попытаемся обеспечить плавный переход работы двигатели из одного режима в другой при любой скорости перемещения дросселя. Такие режимы работы получили название переходных. Эти режимы оказывают огромное влияние на комфортабельность езды на мотоцикле. В большинстве случаев при ускорении требуется обогащение рабочей смеси для компенсации возросшего расхода воздуха. Дело в том, что легкий воздух ускоряется значительно быстрее, чем тяжелые частицы топлива. Поэтому, для того, чтобы обеспечить двигатель корректной рабочей смесью, в карбюраторе временно должна быть создана обогащенная смесь.
Емкость, окружающая эмульсионную трубку, очень помогает этому процессу, поэтому во многих карбюраторах переходный режим обеспечивается только за счет этой емкости. Короткий, прямой впускной коллектор также способствует повышению плавности переходного режима, поскольку в таком коллекторе частицы топлива нигде не застревают, и попадают в цилиндр двигателя. В том случае, когда топлива недостаточно для обогащения смеси, приходится устанавливать ускорительный насос. Этот насос может быть различной конструкции, однако, чаше всего применяется насос в виде цилиндра, в котором находится плунжер с пружиной, соединенный кулачком с тягой привода дросселя. Соединение кулачка с тягой может осуществляться как снаружи, так и внутри карбюратора. Цилиндр насоса наполняется топливом из поплавковой камеры. При открытии дросселя кулачок перемещает плунжер, и топливо из насоса впрыскивается в диффузор. Это усовершенствование является одним из многих дополнений карбюратора, обеспечивающих работу двигателя при переходных режимах.
Устройство обогащения смеси при полной нагрузке (эконостат)

Жиклер устройства установлен в поплавковой камере, а его распылитель выходит в диффузор на определенной высоте, обычно не менее 1/2 хода дросселя (рис. 13).


Рис. 13. Устройство обогащения смеси при полной нагрузке. Устройство снабжается топливом из поплавковой камеры через топливный жиклер (иногда имеется еше и воздушный жиклер). Распылитель устройства выведен в диффузор на определенную высоту. Высота сопла распылителя определяет высоту открытия дросселя, при которой начинает работать устройство. Начиная с этого момента через распылитель устройства в смесительную камеру подается дополнительное топливо

Часто распылитель делается регулируемым по высоте. До тех пор, пока дроссель не поднимется выше сопла распылителя, в канапе устройства не создается никакого разрежения и оно не работает. После того, как дроссель поднимется выше среза сопла, над ним возникает поток воздуха и в смесительную камеру начинается поступление дополнительного топлива. Это устройство обеспечивает поступление дополнительного топлива при определенной высоте поднятия дросселя, т.е. когда загрузка двигателя близка к полной. В некоторых карбюраторах фирмы GP установлено два или более устройств обогащения.
Форма сопла жиклера

До сих пор мы рассматривали сопло жиклера в виде гладкого отрезка трубы. Если вокруг сопла установить небольшой экран, угол охвата которого равен 180°, это вызовет большее разрежение и, соответственно, увеличение подачи топлива. Изменение формы и размера экрана, а также регулировка подачи воздуха в эмульсионную трубку обеспечивают еще один способ регулировки расхода топлива и его распыление (рис. 14).


Рис. 14. Альтернативное решение карбюратора, так называемый карбюратор с первичной заслонкой, в котором имеется экран, установленный перед соплом распылителя и увеличивающий подачу топлива. По сравнению с карбюратором аналогичных размеров, в этом карбюраторе достигается больший расход топлива. Такие карбюраторы устанавливаются на двухтактных двигателях, где скорость воздуха сильно колеблется. Размер и форма экрана используются для регулировки расхода топлива.

Это дополнение, иногда называемое первичной заслонкой, в основном устанавливается в карбюраторах двухтактных двигателей, причем воздух подается в топливо через жиклер, а не через отверстия эмульсионной трубки. Обычно этот экран устанавливается паред соплом жиклера, однако, в карбюраторах Mikuni TDMR, в качестве дополнения, позади сопла жиклера устанавливается экран с отверстием, через которое подается топливо.
Вторичный воздушный жиклер

Этот жиклер аналогичен главному воздушному жиклеру, но он перекрывается либо дросселем, либо при помощи электромагнитного клапана, управляемого компьютером. Эта конструкция позволяет иметь два градиента расхода, причем второй градиент может включаться с достаточной точностью при определенном открытии дросселя или при определенной частоте вращения двигателя (рис. 15).


Рис. 15. Электромагнитный клапан открывается при определенной частоте вращения двигателя, или при определенной высоте открытия дросселя. Этот клапан открывает канал подачи воздуха через дополнительный воздушный жиклер, либо переключает питание главного воздушного жиклера на питание из разных частей воздушной камеры (с разным давлением). Этот клапан может устанавливаться на основном или вторичном воздушном жиклере, а также на воздушном жиклере системы холостого хода (для уменьшения концентрации вредных веществ в выхлопных газах). К главному воздушному жиклеру, вторичному воздушному жиклеру или к воздушному жиклеру системы холостого хода

Соединение с воздушной камерой

Воздух, поступающий к воздушным жиклерам, должен быть отфильтрован, и иметь то же давление, что и воздух, поступающий в двигатель. Поэтому к жиклерам подается «неподвижный» воздух из воздухоочистителя. Если давление в воздушной камере возрастает с увеличением скорости движения, то поппавковая камера также должна находиться под этим давлением.
Вакуумные соединения

Давление в диффузоре меньше атмосферного, а его значение зависит от частоты вращения двигателя и высоты открытия дросселя. Разрежением в диффузоре удобно пользоваться для измерения малых углов открытия дросселя, например, при оптимизации состава рабочей смеси и опережения при малых нагрузках на тормозном стенде при установившейся скорости. Измерением разрежения удобно также пользоваться при синхронизации карбюраторов [если на двигатель установлен блок из нескольких карбюраторов) с тем, чтобы все они открывались и закрывались одновременно. Разрежение также часто используется для управления краном подачи топлива (под действием разрежения диафрагма перемещается и открывает кран подачи топлива, в после остановки двигателя пружина закрывает кран и подаче топлива прекращается). Кроме того, разрежение используется для снижения давления в поплавковой камере при низких нагрузках, что приводит к обеднению рабочей смеси и позволяет использовать иной градиент расхода топлива. В некоторых карбюраторах устанавливаются небольшие диафрагмы, на которые воздействует разрежение впускного коллектора (это разрежение особенно велико при резком закрытии дросселя). Такие диафрагмы предназначены для отсечки подачи топлива или воздуха в системе холостого хода при высокой частоте вращения двигателя (для уменьшения концентрации вредных веществ в выхлопных газах). В автомобилях разрежение давно используется для регулировки угла опережения зажигания в распределителе, для привода вакуумного усилителя тормозов, и даже для привода стеклоочистителей и омывателей.
Дополнительные главные жиклеры

В конце 70-х годов на некоторых моделях Honda были установлены карбюраторы с первичным и вторичным главными жиклерами. Первичные жиклеры имели ту же конструкцию, что и описанные выше. Вторичные жиклеры также были сконструированы аналогичным образом, со своими воздушными жиклерами, но без иглы, а их распылители были выведены за кромку дроссельной заслонки и выполняли, по существу, роль шунтирующих каналов системы холостого хода. Таким образом они дали возможность в более широких пределах менять наклон кривой расхода топлива.
Форма дросселя

Вырез передней кромки дросселя влияет на расход воздуха при малой высоте открытия дросселя (когда дроссель представляет собой преграду для потока воздуха). Даже при полном открытии дросселя, когда дроссель выходит из диффузора и не препятствует воздушному потоку, его направляющие на стенках диффузора приводят к возникновению завихрений воздуха. Кроме общего уменьшения расхода воздуха, эти завихрения препятствуют созданию условий дпя возникновения резонанса во впускном тракте. Фирма Amal испытала большие трудности при проектировании карбюраторов ТТ, GP и более поздних моделей с «гладким» впускным трактом. Эти мероприятия повлекли за собой большие трудности при обработке цилиндрических дросселей, однако, позволили создать высокоэффективные карбюраторы. По сравнению с карбюраторами аналогичных размеров, эти карбюраторы показали хорошие результаты. Фирма Mikuni выпустила серию «гладких» карбюраторов VM до того, как начала эксперименты с плоскими дросселями в карбюраторах серий TM и VM. Плоские дроссели впервые появились в карбюраторах фирмы Gardner в 1970 году, а чуть позже — в карбюраторах фирм American Lektron и El, Эти дроссели позволили сделать карбюраторы более компактными. Так, замеры расхода воздуха показали, что в карбюраторах EI диаметром 34 мм расход воздуха равен расходу воздуха в карбюраторах с диаметром 36 мм фирм Amal и Dell’Orto. К дополнительным преимуществам этих дросселей относится лучшее управление потоком воздуха, что приводит к оптимизации давления над соплом топливного распылителя.
Устройства пуска холодного двигателя

Первоначально обогащение рабочей смеси при пуске холодного двигателя достигалось при помощи дросселя, который перекрывал вход в карбюратор. Иногда этот дроссель устанавливался внутри скользящего дросселя и имел тросовый привод. Позже стали устанавливать клапан между диффузором и воздушной камерой (этот клапан называется воздушной заслонкой). Эти заслонки часто ломались и были вскоре заменены жиклером холодного пуска. В этой системе топливный жиклер установлен под дросселем, аналогично жиклеру системы холостого хода. Этот жиклер также снабжен воздушным жиклером. Устройство пуска холодного двигателя (также называемое воздушной заслонкой) управляет плунжером, который открывает или закрывает поток воздуха к жиклеру. Система управления пуском холодного двигателя также управляет небольшим кулачком, который приподнимает дроссель, повышая обороты холостого хода. Частично это связано с тем, что работу холодного двигателя легче поддерживать при частоте вращения коленчатого вала 2000…3000 об/мин, чем при частоте оборотов холостого хода (около 1200 об/мин). Частично это связано с тем, что кулачки распределительного вала находятся дальше всего от масляного насоса, а масла в холодном двигателе густое. Поэтому повышенная частота вращения двигателя способствует ускорению подачи масла к кулачкам.
Недостатки

Рассмотренные нами карбюраторы использовались на мотоциклах, выпушенных между 1950 и началом 1970-х годов. Хотя и выпускались отдельные модели с фиксированными жиклерами (например, Harley-Davidson), преобладали все же карбюраторы со скользящим дросселем. Однако эти карбюраторы обладали целым рядом недостатков, особенно при увеличении диаметра диффузора, связанного с повышением мощности двигателя:
  • Несмотря на все дополнения и усовершенствования, рассмотренные выше, при резком открытии дросселя и малых оборотах двигателя карбюратор не мог обеспечить двигатель рабочей смесью. В работе двигателя наблюдались провалы, перебои зажигания, а иногда двигатель останавливался.
  • Если дроссель резко открывался при средней частоте вращения двигателя, двигатель не реагировал на это. Вместо ускорения снижалась мощность и частота вращения двигателя. Карбюратор не справлялся с крутыми переходными процессами. Водитель должен был следить за реакцией двигателя и открывать дроссель так, чтобы карбюратор оставался работоспособным. Со стороны водителя это требовало внимания и наличия определенных навыков вождения мотоцикла.
  • Карбюраторы имели большую высоту. Дроссель должен был подниматься на высоту, равную диаметру диффузора, длина иглы также должна быть больше диаметра диффузора, поэтому при диаметре диффузора, равном 38 мм, высота карбюратора достигала 114 мм, не считая тяг наверху и поплавковой камеры снизу.
  • Эффект разрежения приводил к повышенному износу направляющих дросселя и к его заклиниванию. Для предотвращения заклинивания на дроссели приходилось устанавливать мощные возвратные пружины. Некоторую конкуренцию составляли карбюраторы с плоскими дросселями, установленными на роликовых подшипниках. Ирония заключается в том, что такие конструкции получались очень сложными, хотя плоские дроссели должны были ее упростить.
  • Очень сложно было изготовить тягу, которая поднимала бы дроссель на 38 мм при повороте ручки управления на четверть оборота (наиболее эргономичный угол поворота), особенно при установке мощной возвратной пружины. В результате либо ручка управления вращалась с большим трудом, либо имела очень большой угол поворота.
  • Поскольку двигатели становятся более компактными, а впускной воздушный тракт становится короче и спрямляется, высокие карбюраторы начинают упираться в крышку механизма газораспределения.

Система питания карбюратора



Система питания карбюратора

3. Принцип работы карбюратора, режимы работы двигателя, характеристики   простейшего и идеального карбюратора

 

Процесс приготовления горючей смеси определенного состава из мелко распыленного топлива и воздуха вне цилиндров двигателя называют карбюрацией, а прибор, в котором этот процесс происходит карбюратором. Простейший карбюратор, рис 2, состоит из поплавковой камеры 1 с поплавком 2 и запорным клапаном 7, распылителя 4 с жиклером 3, смесительной камеры с диффузором 5 и дроссельной заслонкой 6. Поплавковая камера через «балансировочное» отверстие сообщается с атмосферой. Распылитель (выходной конец) устанавливают в самом узком месте диффузора  — горловине.  При  наполнении   топливом поплавковой камеры поплавок  2  всплывает и  игольчатый клапан 7 перекрывает подающий  трубопровод.  Поступление топлива в поплавковую камеру прекращается.

Рис.2

Разряжение, создаваемое в цилиндре, передается в смесительную камеру карбюратора. Разряжение зависит от положения дроссельной заслонки карбюратора и скорости воздушного потока (частоты вращения коленчатого вала двигателя). Наибольшее разряжение в смесительной камере создается при открытой дроссельной заслонке. Пока двигатель не работает, в поплавковой камере и распылителе топливо находится на одном уровне, ниже уровня конца распылителя на величину Δh. Во время работы воздух проходит через диффузор, скорость воздуха максимальна в горловине диффузора, там и создается наибольшее разряжение. Вследствие перепада давлений воздуха в поплавковой камере и горловине диффузора топливо начинает фонтанировать из распылителя, перемешивается с воздухом, частично испаряется и в виде горючей смеси поступает через впускной трубопровод (коллектор) в цилиндры двигателя. Топливо продолжает  испаряться и перемешиваться во впускном коллекторе и  щелевом зазоре впускного клапана. Заканчивается процесс смесеобразования  в цилиндре в конце такта сжатия.

Изменение положения дроссельной заслонки простейшего карбюратора значительно изменяет состав горючей смеси, рис. 3, кривая 1. По мере открытия дроссельной заслонки, определяемой площадью проходного сечения, выраженной  в процентах  от максимального значения площади проходного сечения, горючая смесь обогащается все в большей степени. Это не соответствует  теоретическим представлениям о необходимом составе горючей смеси при различных режимах работы двигателя.  Основные режимы работы  двигателя: запуск «холодного» двигателя; холостой ход и малые нагрузки; средние нагрузки; полная нагрузка; резкие переходы с малой нагрузки на большую.

Рис. 3

Во время пуска  холодного двигателя необходима очень богатая смесь с коэффициентом избытка воздуха α = 0,2…0,6, позволяющая компенсировать плохие условия смесеобразования в этом режиме. Частота вращения коленчатого вала во время пуска и скорость воздушного потока в диффузоре карбюратора имеют небольшие значения, топливо плохо перемешивается с воздухом и плохо испаряется. При этом значительная часть топлива конденсируется во  впускном  трубопроводе и на стенках цилиндра.

При  работе двигателя в режиме холостого хода и  малых нагрузок горючая смесь загрязняется остаточными газами, поэтому обогащение смеси до значения коэффициента избытка воздуха α = 0,7…0,8 улучшает воспламеняемость, способствует устойчивой работе двигателя.

В режиме средних нагрузок двигатель автомобиля работает большую часть времени, поэтому для этого режима целесообразно использование обедненной смеси с коэффициентом избытка воздуха α = 1,05…1,15 (экономичная смесь), обеспечивающей устойчивое воспламенение и экономичность.

В режиме полной нагрузки двигатель работает при разгоне, преодолении крутых и тяжелых участков дороги. В этом случае, для получения максимальной мощности необходима обогащенная смесь, α = 0,85…0,95.

Переходный режим наступает при резком (быстром) открытие дроссельной заслонки и характеризуется обеднением горючей смеси из-за более быстрого, по сравнению с топливом, увеличения количества поступающего воздуха. Карбюратор должен иметь устройство, предотвращающее обеднение смеси в этом случае.

Характеристика карбюратора наилучшим способом отвечающая возможным условиям работы двигателя («идеального» карбюратора) показана на рис. 3, кривая 2. Только для двух положений дроссельной заслонки, т.т. «в» и «б» кривая изменения состава горючей смеси простейшего карбюратора совпадает с кривой изменения состава горючей смеси «идеального» карбюратора. Таким образом,  простейший карбюратор не может приготовить горючую смесь нужного состава для всех режимов работы двигателя.

Современные карбюраторы обеспечивают изменение состава горючей смеси по закону близкому к кривой 2 за счет использования дополнительных дозирующих устройств и систем. Эти же системы и устройства обеспечивают минимальную токсичность отработавших газов.  

     

Работа карбюратора ДВС и его устройство

Карбюраторный двигатель — один из типов двигателя внутреннего сгорания с внешним смесеобразованием.

В карбюраторном двигателе топливно-воздушная смесь, поступающая по выпускному коллектору в цилиндры двигателя, приготавливается в специальном приборе — карбюраторе. Также карбюраторные двигатели разделяются на двигатели без наддува или атмосферные, у которых впуск воздуха или горючей смеси осуществляется за счет разряжения в цилиндре при всасывающем ходе поршня; двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым турбокомпрессором, с целью увеличения заряда воздуха и получения повышенной мощности и КПД двигателя;

В качестве топлива для карбюраторного двигателя в разное время применялись спирт, керосин, лигроин, бензин. Наибольшее распространение получили бензиновые карбюраторные двигатели.

Карбюратор— устройство в системе питания карбюраторных двигателей внутреннего сгорания, предназначенное для смешивания бензина и воздуха, создания горючей смеси и регулирования её расхода. В настоящее время карбюраторные системы подачи топлива вытесняются инжекторными.

Простейший карбюратор состоит из четырёх основных элементов: поплавковой камеры (10) с поплавком (3), жиклёра (9) с распылителем (7), диффузора (6) и дроссельной заслонки (5).

Топливо по трубке (1) поступает из бака в поплавковую камеру (10). В поплавковой камере плавает пустотелый, обычно латунный поплавок (3), на который опирается запорная игла (2). Когда уровень топлива в поплавковой камере достигнет необходимой высоты, поплавок всплывёт настолько, что заставит запорную иглу перекрыть трубку (1), прекращая подачу топлива в поплавковую камеру. По мере расходования топлива его уровень в поплавковой камере понижается, поплавок опускается, и запорная игла снова открывает подачу топлива, таким образом в поплавковой камере поддерживается постоянный уровень топлива, что очень важно для правильной дозировки подачи топлива.

Из поплавковой камеры топливо поступает через жиклёр (9) в распылитель (7). Количество топлива, вытекающего из распылителя (7), зависит при прочих равных условиях от размеров и формы жиклёра.

При движении поршня в такте впуска давление в цилиндре снижается. При этом наружный воздух засасывается в цилиндр через карбюратор и впускной трубопровод, проходя через воздушную трубу (8) карбюратора, в которой находится диффузор (6). В самой узкой части диффузора помещается конец распылителя. В сужающейся части диффузора скорость потока воздуха увеличивается, а давление воздуха уменьшается.

Благодаря отверстию (4) в поплавковой камере поддерживается атмосферное давление, в результате под влиянием разности давлений происходит истечение топлива из распылителя. Топливо, вытекающее из распылителя, раздробляется струями воздуха, распыляется, частично испаряется и, перемешиваясь с воздухом, образует горючую смесь. Как правило, вместо одного диффузора используется двойной или даже тройной диффузор. Дополнительные диффузоры расположены концентрически в главном диффузоре и имеют небольшие размеры. Через них проходит только часть общего потока воздуха. Вследствие высокой скорости в центральной части при небольшом сопротивлении основному потоку воздуха достигается более качественное приготовление горючей смеси.

Количество горючей смеси, поступающей в цилиндры двигателя, а следовательно, и мощность двигателя регулируется дроссельной заслонкой (5), которая обычно приводится в движение педалью акселератора (или ручным приводом у мотоциклов и некоторых автомобилей).

Управление карбюратором

Обычно работой карбюратора управляет водитель автомобиля. На некоторых моделях карбюраторов использовались дополнительные системы, частично автоматизировавшие управление им.

Для управления дроссельной заслонкой на автомобилях обычно используется педаль газа. Она может приводить её в движение при помощи системы тяг или тросового привода. Тяги в целом надёжнее, но конструкция привода получается сложнее и ограничивает возможности конструктора по компоновке подкапотного пространства. Привод тягами широко использовался в прежние годы, но начиная с 1970-х годов получила распространение система с металлическим тросиком. Системы с пневмо- или электромеханическим приводом распространения на карбюраторных двигателях не получили.

На старых автомобилях часто предусматривалась двойная система привода дроссельной заслонки карбюратора: от руки, рычажком или вытяжной рукояткой («постоянный газ»), и от ноги— педалью. Ручное и ножное управления связывалось между собой так, что при нажатии на педаль рукоятка ручного управления остаётся неподвижной, а при её вытягивании педаль опускается. Дальнейшее открытие дросселя можно было производить педалью. При отпускании педали дроссель остаётся в положении, установленном ручным управлением. Например, на «Волге» ГАЗ-21 на панели приборов справа от радиоприёмника была расположена рукоятка ручного управления дроссельной заслонкой, дублирующая педаль газа. Вытянув её, можно было добиться устойчивой работы холодного двигателя без использования воздушной заслонки, или использовать для установления «постоянного газа». На грузовых автомобилях режим «постоянного газа» служил в частности для упрощения движения задним ходом.

На мотоциклах и некотором числе автомобилей применяется ручное управление дросселем, осуществляемое специальной рукояткой на руле через тросик.

Воздушная заслонка может иметь механический или автоматический привод. В первом случае её закрывает водитель при помощи рукоятки, размещённой обычно на панели приборов. Автоматический привод широко применялся за границей, а в практике отечественного автопрома распространения практически не получил ввиду низкой надёжности, недолговечности и ненадёжной работы при характерных для климата большей части территории СССР/России больших перепадах температур. В этом случае воздушную заслонку закрывал биметаллический или церезиновый термоэлемент, обогреваемый жидкостью из системы охлаждения. По мере прогрева двигателя, термоэлемент нагревался, расширялся и открывал воздушную заслонку. В иных системах использовался электромеханический привод с датчиком температуры. Из отечественных автомобилей, такое пусковое устройство имели только карбюраторы отдельных моделей ВАЗ.

Очень широко распространён полуавтоматический привод воздушной заслонки. В этом случае она закрывается водителем вручную, а после пуска двигателя автоматически приоткрывается диафрагмой, работающей от возникающего во впускном коллекторе двигателя разрежения. Это предотвращало возможную остановку двигателя из-за переобогащения рабочей смеси и несколько снижало расход топлива на прогрев. Пусковую диафрагму имели практически все отечественные карбюраторы, разработанные после начала 1960-х годов. До этого некоторые модели использовали менее совершенный кулачковый механизм, немного приоткрывающий дроссельную заслонку при закрывании воздушной.

Регулировки карбюратора

Карбюратор— устройство, имеющее минимум регулировок, но требующее исправной работы узлов и механизмов. Работоспособность карбюратора и его техническое состояние существенно влияют на работу двигателя. Нарушение регулировки карбюратора приводит к ухудшению экономичности, приёмистости двигателя, а также к увеличению токсичности отработавших газов.

Доступные регулировки самого карбюратора:

  1. «Винт количества»— обороты в режиме холостого хода
  2. «Винт качества» — обогащённость топливо воздушной смеси (и, как следствие, содержание токсичного угарного газа в выхлопных газах) в режиме холостого хода.

В процессе эксплуатации необходимо проверять и восстанавливать работоспособность следующих узлов:

  1. работа клапана (герметичность) экономайзера и системы холостого хода
  2. работа ускорительного насоса (задержка срабатывания, количество и время впрыска топлива, направленность топливного распылителя)
  3. плавность работы, свободный ход, возвращение пружиной и необходимый уровень приоткрытия закрытой ДЗ
  4. работу системы холодного запуска (закрытие воздушной, и приоткрытие дроссельной и воздушной заслонок)
  5. работу устройства открытия второй ДЗ (если имеется)
  6. работу поплавкового механизма (уровень топлива в поплавковой камере, герметичность запорного клапана, отсутствие дефектов поплавка, и т.д.)
  7. работу эмульсионных колодцев и распылителей, пропускная способность жиклёров
  8. отсутствие неучтённых подсосов воздуха

Так же на работу карбюратора оказывают своё влияние:

  1. механизмы управления карбюратором
  2. устройство подачи воздуха (воздушный фильтр, система подогрева воздуха в холодное время года)
  3. система подачи топлива (бензонасос, бензофильтры, заборник, топливные магистрали, вентиляция бака)
  4. система вентиляции картера двигателя
  5. сливная трубка избытка топлива, впускного коллектора
  6. герметичность впускного тракта после карбюратора
  7. негерметичность/неисправность клапанного механизма
  8. качество и состав топлива

Карбюратор — Узлы и агрегаты (Карбюратор)

Карбюратор — устройство в системе питания карбюраторных двигателей внутреннего сгорания, предназначенное для смешивания (карбюрации, фр. carburation) бензина и воздуха, создания горючей смеси и регулирования её расхода.

Основы устройства

Принцип работы


Схема простейшего карбюратора Простейший карбюратор состоит из четырёх основных элементов: поплавковой камеры (10) с поплавком (3), жиклёра (9) с распылителем (7), диффузора (6) и дроссельной заслонки (5).

Топливо по трубке (1) поступает из бака в поплавковую камеру (10). В поплавковой камере плавает пустотелый, обычно латунный поплавок (3), на который опирается запорная игла (2). Когда уровень топлива в поплавковой камере достигнет необходимой высоты, поплавок всплывёт настолько, что заставляет запорную иглу перекрыть трубку (1), прекращая подачу топлива в поплавковую камеру.

По мере расходования топлива его уровень в поплавковой камере понижается, поплавок опускается и запорная игла снова открывает подачу топлива, таким образом в поплавковой камере поддерживается постоянный уровень топлива, что очень важно для правильной дозировки подачи топлива.

Из поплавковой камеры топливо поступает через жиклёр (9) в распылитель (7). Количество топлива, вытекающего из распылителя (7) зависит при прочих равных условиях от размеров и формы жиклёра.

При движении поршня в такте впуска давление в цилиндре снижается. При этом наружный воздух засасывается в цилиндр через карбюратор и впускной трубопровод, проходя через воздушную трубу (8) карбюратора, в которой находится диффузор (6). В самой узкой части диффузора помещается конец распылителя. В сужающейся части диффузора скорость потока воздуха увеличивается, а давление воздуха уменьшается.

Благодаря отверстию (4) в поплавковой камере поддерживается атмосферное давление, в результате под влиянием разности давлений происходит истечение топлива из распылителя. Топливо, вытекающее из распылителя, раздрабливается струями воздуха, распыляется, частично испаряется и перемешиваясь с воздухом образует горючую смесь. Как правило, вместо одного диффузора используется двойной или даже тройной диффузоры.

Дополнительные диффузоры расположены концентрически в главном диффузоре и имеют небольшие размеры. Через них проходит только часть общего потока воздуха. Вследствие высокой скорости в центральной части при небольшом сопротивлении основному потоку воздуха достигается более качественное приготовление горючей смеси.

Количество горючей смеси, поступающей в цилиндры двигателя, а следовательно, и мощность двигателя регулируется дроссельной заслонкой (5), которая обычно приводится в движение педалью акселератора (или ручным приводом на мотоциклах и некоторых автомобилях).

Вспомогательные системы

Автомобильный двигатель в процессе эксплуатации работает в разных режимах, таких как:
  • Пуск двигателя, при котором требуется богатая смесь.
  • Холостой ход и малые нагрузки,
  • Средние нагрузки, при которых двигатель работает на смеси, близкой по составу к экономичной.
  • Большие нагрузки, при которых карбюратор должен давать смесь близкую к мощностной.
  • Резкое открытие дросселя, которое не должно сопровождаться ощутимым обеднением смеси.
Для удовлетворения указанных требований карбюратор должен иметь, соответственно, следующие дозирующие устройства:
  • Пусковое устройство.
  • Система холостого хода.
  • Главное дозирующее устройство.
  • Экономайзер.
  • Насос-ускоритель.
  • Переходная система.
Эти дозирующие устройства вступают или выключаются из работы в разное время или работают одновременно, обеспечивая наивыгоднейшее (в отношении получения наибольшей мощности или экономичности) протекание рабочего процесса на всех режимах двигателя.

Механизмы управления

Обычно работой карбюратора управляет водитель автомобиля.

Для управления дроссельной заслонкой на автомобилях обычно используется педаль газа. Она может приводить её в движение при помощи системы тяг или тросового привода. Тяги в целом надёжнее, но конструкция привода получается сложнее и ограничивает возможности конструктора по компоновке подкапотного пространства. Привод тягами использовался преимущественно на классических автомобилях, а начиная с 1970-х годов получила распространение система с металлическим тросиком. Системы с пневмо- или электромеханическим приводом распространения на карбюраторных двигателях не получили.

На мотоциклах и некотором числе автомобилей применяется ручное управление дросселем, осуществляемое специальной рукояткой на руле через тросик.

На классических автомобилях часто предусматривалась двойная система привода: от руки рычажком или кнопкой и от ноги — педалью. Ручное и ножное управления часто связывалось между собой так, что при нажатии на педаль кнопка ручного управления остаётся неподвижной, а при вытягивании кнопки педаль опускается. Дальнейшее открытие дросселя можно было производить педалью. При отпускании педали дроссель остаётся в положении, установленном ручным управлением. Например, на «Волге» ГАЗ-21 на панели приборов справа от радиоприёмника была расположена рукоятка ручного управления дроссельной заслонкой, дублирующая педаль газа. Вытянув её, можно было добиться устойчивой работы холодного двигателя или использовать для установления «постоянного газа».

На грузовых автомобилях режим «постоянного газа» служил для упрощения движения задним ходом.

Воздушная заслонка может иметь механический или автоматический привод. В первому случае её закрывает водитель при помощи рукоятки, размещённой обычно на панели приборов. Автоматический привод широко применялся за границей, а в практике отечественного автопрома распространения практически не получил ввиду низкой надёжности, долговечности и ненадёжной работы при характерных для климата большей части территории СССР/России высоких перепадах температур.

В этом случае воздушную заслонку закрывал биметаллический или церезиновый термоэлемент, обогреваемый жидкостью из системы охлаждения. По мере прогрева двигателя, термоэлемент нагревался, расширялся и открывал воздушную заслонку. В иных системах использовался электромеханический привод с датчиком температуры. Из отечественных автомобилей, такое пусковое устройство имели только карбюраторы отдельных моделей ВАЗ.

Очень широко распространён полуавтоматический привод воздушной заслонки. В этом случае она закрывается водителем вручную, а после пуска двигателя автоматически приоткрывается диафрагмой, работающей от возникающего во впускном коллекторе двигателя разрежения. Это предотвращало возможную остановку двигателя из-за переобогащения рабочей смеси и несколько снижало расход топлива на прогрев. Пусковую диафрагму имели практически все отечественне карбюраторы, разработанные после начала 1960-х годов. До этого некоторые модели использовали менее совершенный кулачковый механизм, немного приоткрывавший дроссельную заслонку при закрывании воздушной.

Регулировки

Карбюратор — устройство, имеющее минимум регулировок, но требующее исправной работы узлов и механизмов. Работоспособность карбюратора и его техническое состояние существенно влияют на работу двигателя. Нарушение регулировки карбюратора приводит к ухудшению экономичности, приёмистости двигателя, а также к увеличению токсичности отработавших газов.

Как правило, доступные регулировки самого карбюратора:

  • «Винт количества» — обороты в режиме холостого хода
  • «Винт качества» забогащённость топливо воздушной смеси ( и как следствие содержание токсичного угарного газа в выхлопных газах) в режиме холостого хода.
В процессе эксплуатации необходимо проверять и восстанавливать работоспособность следующих узлов:
  • работа клапана (герметичность) экономайзера и системы хх
  • работа ускорительного насоса (задержка срабатывания, количество и время впрыска топлива, направленность топливного распылителя)
  • плавность работы, свободный ход, возвращение пружиной и необходимый уровень приоткрытия закрытой ДЗ
  • работу системы холодного запуска (закрытие воздушной, и приоткрытие дросельной и воздушной заслонок)
  • работу устройства открытия второй ДЗ (если есть)
  • работу поплавкового механизма (уровень топлива в поплавковой камере, герметичность запорного клапана, отсутствие дефектов поплавка, etc)
  • работу эмульсионных колодцев и распылителей, пропускная способность жиклёров
  • отсутствие неучтённых подсосов воздуха
Так же на работу карбюратора оказывают своё влияние:
  • механизмы управления карбюратором
  • устройство подачи воздуха (воздушный фильтр, система подогрева воздуха в холодное время года)
  • система подачи топлива (бензонасос, бензофильтры, заборник, топливные магистрали, вентиляция бака)
  • герметичность впускного тракта после самого карбюратора
  • качество и состав самого топлива

Классификация

По направлению потока рабочей смеси

  • Карбюратор, в котором поток смеси движется снизу вверх, называется карбюратором с восходящим потоком, сверху вниз — с нисходящим, или падающим потоком, а если горизонтально — с горизонтальным потоком.
  • Наибольшее распространение в исторической перспективе получили карбюраторы с нисходящим потоком. Их основные преимущества состоят в улучшении наполнения цилиндров горючей смесью (соответственно, в некотором повышении мощности по сравнению с карбюратором с восходящим потоком), а также доступности и удобстве обслуживания, так как расположен такой карбюратор сверху. Минус — возможность «заливания» двигателя бензином.

По количеству камер

В реальных карбюраторах может иметься более одной воздушной трубы (камеры).
Различают:
  • Четырёхкамерный карбюратор фирмы «Holley» (США)
  • Три двухкамерных карбюратора на восьмицилиндровом двигателе производства копрорации Chrysler (США, 1960-е годы)
  • Однокамерные карбюраторы — устанавливались на классических автомобилях, например, «Победе» ГАЗ-М-20 и «Волге» ГАЗ-21;
  • Двухкамерные карбюраторы — с 1960-х годов были наиболее широко распространены;
  • Четырёхкамерные карбюраторы — имели широкое хождение в США 1950-х — 1970-х годов, использовались на спортивных автомобилях и отечественных автомобилях высшего класса — «Чайка», «ЗиЛ».
Также, существовали трёхкамерные карбюраторы, например, типа К-156 на «Волге» ГАЗ-3102 раннего выпуска с форкамерно-факельным двигателем ЗМЗ-4022.10. Третья камера служила для приготовления обогащённой рабочей смеси, подающейся в форкамеру и формирующей факел горячих газов, поджигающий основной заряд обеднённой рабочей смеси в цилиндре, за счет чего несколько улучшались динамические и экологические параметры автомобиля.

На одном двигателе может устанавливаться более одного карбюратора. В США в 1960-е годы, а так же на спортивных автомобилях, часто серийно устанавливались два или даже три карбюратора, они были синхронизированы по пропускной способности и имели синхронный привод.

По типу привода дроссельных заслонок

Различают карбюраторы с параллельным и последовательным открытием дроссельных заслонок.
При последовательном открытии дроссельных заслонок, в обычном режиме работы карбюратор работает на первичной камере (первичных камерах), а при увеличении нагрузки открывается вторая дроссельная заслонка (имеющая механический или пневмопривод). Для более плавного включения вторичной камеры задействуется переходная система карбюратора. Это наиболее распространённая конструкция.
При параллельном открытии заслонок, заслонки всех камер открываются одновременно.

Распространение

В настоящее время инжекторные системы подачи топлива в большинстве случаев заменили карбюраторы. Это связано с тем, что только инжектор может без обслуживания и регулировок длительное время (сотни тысяч километров пробега) сохранять выхлоп автомобиля в рамках современных экологических требований и обеспечивать более качественное, по сравнению с карбюратором, приготовление требуемой горючей смеси на всех режимах двигателя.

Преимущества

Главные достоинства карбюратора: простота конструкции, цена карбюратора, стоимость ремонта и обслуживания, возможность диагностики и ремонта без привлечения дорогостоящего оборудования и специалистов.

Работа простого карбюратора, схема и ограничения

Простая конструкция карбюратора, работа, схема, имитации | получить ppt и pdf

Мы уже обсуждали концепцию карбюратора, использование карбюратора и различные типы карбюраторов в наших предыдущих статьях. В этом посте мы собираемся объяснить, что такое простой карбюратор? в котором мы узнаем об определении простого карбюратора, работе простого карбюратора, его ограничениях и недостатках.

Мы собираемся изучить следующие темы из этой статьи о простом карбюраторе —

Содержание

ст. №

Тема

1

Определение простого карбюратора

2

Работа простого карбюратора

3

Что такое кромка сопла?

4

Ограничения простого карбюратора

5

Применение простого карбюратора

6

Наши загрузки

Что такое простой карбюратор?

Простой карбюратор состоит из различных частей, таких как поплавковая камера, главный топливный жиклер, трубка Вентури, жиклер и дроссельная заслонка.Где есть поплавок в поплавковой камере. С помощью топливного насоса топливо подается в поплавковую камеру из топливного бака через сетчатый фильтр. Эту полную сборку можно назвать простым карбюратором.

Схема простого карбюратора [нажмите для увеличения]


Работа простого карбюратора:

Мы будем изучать работу этого карбюратора поэтапно —

  1. Как мы знаем, в простом карбюраторе есть поплавковая камера, открытая для атмосферы.Он поддерживает атмосферное давление в поплавковой камере.
  2. Топливо из внешнего топливного бака подается в поплавковую камеру с помощью топливного насоса. Это топливо из топливного бака фильтруется с помощью сетчатого фильтра, удаляющего из топлива любые твердые частицы.
  3. Теперь топливо из поплавковой камеры подается к основному соплу, которое является частью жиклера. Этот поток топлива из поплавковой камеры в главное сопло осуществляется основным топливным жиклером.
  4. Двигатель всасывает воздух из атмосферы через воздушную заслонку.Этот воздух проходит через трубку Вентури, что вызывает уменьшение площади поперечного сечения в горловине трубки Вентури.
  5. Вследствие этого давление в главном сопле уменьшается, а скорость воздуха увеличивается.
  6. Эта разница в давлении, создаваемая в поплавковой камере и главном сопле, вызывает смешение топлива и поступающего атмосферного воздуха.
  7. Повышенная скорость воздуха после того, как трубка Вентури частично испаряет моторное топливо, которое затем полностью испаряется за счет тепла во впускных коллекторах камеры сгорания и стенках цилиндра.
  8. Карбюраторы устанавливаются только в бензиновый двигатель, поскольку количество бензиновых двигателей регулируется.
  9. Когда мы открываем дроссельную заслонку, находящуюся в нижней части жиклерной трубки, это позволяет большему количеству воздуха проходить через трубку Вентури, и большее количество воздушно-топливной смеси подается в двигатель, что приводит к тому, что двигатель развивает большую мощность.
  10. Когда мы закрываем дроссельную заслонку, происходит обратное действие и мощность двигателя снижается.

Что такое кромка сопла в простом карбюраторе?

Во избежание перелива топлива из сопла конец основного сопла немного держится выше уровня топлива в поплавковой камере.Эта разница между уровнем наконечника основного сопла и уровнем топлива в поплавковой камере называется кромкой сопла. Вы можете увидеть уровень кромки сопла на диаграмме выше.

Ограничения простого карбюратора:

  • В этом карбюраторе воздушно-топливная смесь полностью зависит от положения дроссельной заслонки.
  • Кроме того, соотношение воздух-топливо уменьшается при увеличении скорости двигателя.
  • Основное ограничение или недостаток простого карбюратора заключается в том, что при слишком низкой скорости мы получаем сильную смесь, которая вызывает проблемы с воспламенением смеси.

Конструкция, принцип работы и принцип действия

Если вы когда-либо сталкивались с увеличивающимся числом оборотов автомобиля (в основном мотоциклов), то это рычание связано с главным компонентом двигателя, известным как карбюратор. Теперь, когда большинство современных автомобилей работают с системой впрыска топлива, карбюратор был первым достижением, которое произвело революцию в том, как автомобильный двигатель потребляет топливо. Прежде чем мы рассмотрим принцип и работу карбюратора, давайте посмотрим на то, как двигатель сжигает топливо.

Как двигатель сжигает топливо?

Двигатели зависят от механических и химических принципов. Основная задача двигателя — преобразовать тепловую энергию в механическую. Процесс сгорания в двигателе состоит из смешивания топлива с воздухом, а затем его сжигания, чтобы запустить процесс сгорания. Когда топливо воспламеняется смесью воздуха, оно выделяет тепловую энергию, углекислый газ и воду (образуются и другие вещества, но мы рассмотрим их основные).Чтобы добиться максимальной эффективности при сжигании любого топлива, нам нужно добавить много воздуха.

Стехиометрическая смесь

Кислород является основным ингредиентом, который помогает топливу сгорать более эффективно. Идеальная ситуация — когда атомов кислорода достаточно, чтобы сжечь все атомы топлива. Эта смесь известна как стехиометрическая смесь . Если воздуха слишком много, говорят, что двигатель работает на «обедненной» смеси, а если топлива слишком много, говорят, что двигатель работает на «богатой» смеси.Если в двигателе больше воздуха, он создает более экономичный двигатель. Если двигатель сжигает больше топлива, он обеспечивает лучшую производительность.

Принцип

(Фото предоставлено Wikimedia Commons)

Карбюратор работает по одному принципу, известному как теорема Бернулли. Теорема Бернулли была открыта швейцарским математиком и физиком Даниэлем Бернулли. Теорема Бернулли обозначает давление, действующее на точку жидкости, и скорость частиц. Теорема Бернулли утверждает, что « полная энергия небольшого количества несжимаемой жидкости, текущей из одной точки в другую, остается постоянной на протяжении всего смещения .”

(Фото предоставлено Wikimedia Commons)

Используя вышеуказанный принцип, основная задача карбюратора состоит в том, чтобы заставить воздух двигаться быстрее, чтобы создать как низкое статическое давление, так и высокое динамическое давление. Ускоритель (или дроссель) в любом автомобиле делает именно это с карбюратором. Он не контролирует напрямую количество используемого топлива. Однако он управляет карбюраторным механизмом, который контролирует количество воздуха, поступающего в двигатель. Скорость этого воздушного потока изменяет статическое давление, которое, в свою очередь, втягивает определенное количество топлива, которое поднимается и используется.

Работа карбюратора

Карбюраторы бывают разной степени сложности и конструкции. Самая простая модель карбюратора представляет собой единую вертикальную воздушную сосну, расположенную над цилиндрами двигателя, и присоединенную к ней горизонтальную топливную трубу. Воздух проходит по вертикальной трубе и служит воротами в узкую среднюю часть (изогнутую часть). Изогнутая центральная часть называется Вентури , и она значительно ускоряет воздушный поток. Это увеличение скорости воздуха вызывает падение давления, что создает эффект всасывания и втягивает воздух из топливопровода, прикрепленного сбоку.

(Фото: K. Aainsqatsi / Wikimedia Commons)

Всасываемый воздух также увлекает за собой топливо. Следующий логичный вопрос — как регулируется топливовоздушная смесь? Карбюратор содержит поворотные буксирные клапаны в трубке Вентури. Вверху клапан называется дроссельной заслонкой . Дроссельная заслонка контролирует количество поступающего воздуха. Если заслонка находится в закрытом положении, только небольшое количество воздуха может попасть в трубку Вентури, в то время как всасывается большее количество топлива.Это заставляет двигатель состоять из более богатой топливом смеси. Преимущество возникает, когда нужно запустить двигатель или когда двигатель холодный. В нижней части клапана находится вторичный клапан, известный как дроссель . Чем больше открыта дроссельная заслонка, тем больше воздуха поступает в карбюратор. Чем больше воздуха поступает в карбюратор, тем больше топлива он втягивает из прикрепленного к нему горизонтального топливопровода. Это заставляет двигатель вырабатывать больше энергии и мощность, что ускоряет движение автомобиля.Итак, когда вы нажимаете на педаль акселератора, вы даете двигателю сжигать больше кислорода и топлива.

Топливопровод, прикрепленный к карбюратору, состоит из миниатюрного топливного бака, который называется камерой подачи топлива. Это небольшая емкость с поплавком и клапаном внутри. Когда топливопровод продолжает подавать топливо в карбюратор, поплавковый клапан внутри него опускается. Когда это происходит, он всасывает больше топлива в топливную камеру прямо из бензобака. Когда топливная камера заполнена, она поднимается, закрывая тем самым путь от бензобака к топливной камере.

Итак, в следующий раз, когда вы выйдете на прогулку и нажмете ногу на педаль, вы поймете, почему ваша машина разгоняется!

9 различных типов карбюраторов с рабочими

В этом посте вы узнаете , что такое карбюратор и его принцип работы, Восемь различных типов карбюраторов с их функциями.

Карбюратор и типы карбюраторов:

Карбюратор представляет собой устройство для распыления и испарения топлива и смешивания его с воздухом в различных пропорциях, чтобы соответствовать изменяющимся условиям двигателей с искровым зажиганием.Топливно-воздушная смесь, полученная таким образом из карбюратора, известна как горючая смесь.

Карбюратор является наиболее важной частью топливной системы двигателей с искровым зажиганием. карбюратор крепится между топливным фильтром и впускным коллектором. If подает топливовоздушную смесь различных пропорций для соответствия условиям работы двигателя.

Жидкое топливо поступает в поплавковую камеру карбюратора. И воздух попадает в воздушный рог карбюратора. Смешивание топлива и воздуха происходит, когда оба проходят через трубку Вентури в смесительной камере карбюратора.Затем эта воздушно-топливная смесь попадает во впускной коллектор.

Типы карбюраторов

Ниже приведены различные типы карбюраторов:

  1. В зависимости от расположения поплавковой камеры:
    1. Эксцентрический
    2. Концентрический
  2. В соответствии с направлением потока воздуха
    1. Нисходящий поток.
    2. Боковая тяга.
    3. Тяга вверх.
    4. Тяга полу-вниз.
  3. По количеству единиц:
    1. Одиночный
    2. Двойной
    3. Четырехствольный.
  4. По типу системы дозирования:
    1. Воздуховыпускной жиклер.
    2. Штанговый дозатор.
  5. В зависимости от типа трубок Вентури:
    1. Обычная трубка Вентури.
    2. Двойная трубка Вентури
    3. Вентури с лопаткой
    4. Вентури с сопловой штангой
    5. Тройная трубка Вентури.
  6. По давлению над топливом в поплавковой камере:
    1. Несбалансированное.
    2. Сбалансированный.
  7. По типу системы питания:
    1. С ручным управлением
    2. Вакуумным управлением
  8. По методу изменения концентрации смеси:
    1. Карбюратор с постоянной воздушной заслонкой.
    2. Карбюратор постоянного вакуума.
  9. Типичные карбюраторы
    1. SU Карбюратор
    2. Солекс Карбюратор
    3. Зенит Карбюратор
    4. Картер Карбюратор

Карбюратор

Известный процесс смешивания топлива с газом топливная смесь как карбюратор.

Понятие терминов «Испарение» и «Распыление»

  1. Испарение- Это изменение состояния топлива с жидкого на парообразное.
  2. Распыление- Это механическое разрушение жидкого топлива на мелкие частицы, так что каждая частица топлива окружена воздухом.

Для быстрого испарения жидкого топлива оно распыляется в воздух, проходящий через карбюратор. Распыление жидкости превращает ее в множество мелких частиц, так что испарение происходит почти мгновенно.

Карбюратор подает воздушно-топливную смесь различных пропорций, чтобы соответствовать изменяющимся условиям двигателя. Смесь должна быть богатой (иметь более высокий процент топлива) для запуска, ускорения и работы на высоких скоростях.

Смеси должны быть рассчитаны (с меньшим процентным содержанием топлива) для работы на промежуточных оборотах с прогретым двигателем. Теоретически идеальная смесь воздуха и бензина содержит 15 частей воздуха и 1 часть бензина по весу. Идеальный карбюратор отводит смесь от полностью испаренного топлива и воздуха в надлежащей пропорции с впускным коллектором и цилиндром.

Но в современных карбюраторах полное испарение топлива не достигается из-за тяжелой природы топлива и других ограничений. Подогреваемый впускной коллектор и горячие точки в коллекторе испаряют распыленное топливо.

Даже до конца такта сжатия в цилиндре бензин не испаряется полностью. Хотя к нему прилагаются тепло и давление во время такта сжатия.

1.

Карбюратор в соответствии с расположением поплавковой камеры
  1. Эксцентрический
  2. Концентрический
  • В карбюраторах с эксцентриковой поплавковой камерой поплавковая камера расположена сбоку от трубки Вентури.
  • В карбюраторах с концентрическими поплавковыми камерами поплавковая камера расположена вокруг трубки Вентури.
  • Карбюратор с эксцентриковой поплавковой камерой не обеспечивает правильную топливовоздушную смесь при подъеме автомобиля на уклон.
  • Когда автомобиль движется по горизонтальной дороге, уровень бензина в поплавковой камере и нагнетательной форсунке нормальный, как в (A). Карбюратор подает топливно-воздушную смесь к двигателю.
  • Когда транспортное средство поднимается или спускается по склону , карбюратор наклоняется, и уровень бензина в выпускной жиклере изменяется, как показано на (b) и (c).Это приводит к тому, что форсунка подает слишком много или слишком мало бензина, давая неправильные смеси. Карбюраторы с концентрической поплавковой камерой не имеют этой проблемы.

Уровень бензина в нагнетательном жиклере остается примерно постоянным, что обеспечивает правильную топливовоздушную смесь в двигателе во всех положениях уровня.

2.

Карбюратор в соответствии с направлением воздушного потока:
  1. Нисходящий поток.
  2. Боковая тяга.
  3. Тяга вверх.
  4. Тяга полу-вниз.
  • В карбюраторах с нисходящим потоком воздух поступает в верхнюю часть втягивающего устройства карбюратора и выходит через нижнюю часть, как показано на рисунке.
  • Карбюраторные типы карбюраторов с боковой тягой, воздух входит в верхнюю часть карбюратора и выходит сбоку, как показано на (b).
  • В карбюраторах с восходящим потоком воздуха воздух входит в нижнюю или боковую часть карбюратора и выходит вверх, как показано на рисунке.
  • Карбюратор полуприводного типа, направление воздушного потока наклонено сверху вниз, как в (d).

В большинстве легковых автомобилей используется карбюратор с нисходящим потоком. Этот тип карбюратора, гравитация помогает потоку смеси. Таким образом, двигатель лучше всасывает его на более низких оборотах под нагрузкой. достигается более высокий объемный КПД двигателя. Расположение карбюратора над двигателем более доступно для осмотра, замены или ремонта.Воздух, поступающий в карбюратор, холоднее.

Читайте также: Типы систем охлаждения в автомобильных двигателях (двигатель I.C)

3.

Карбюратор по количеству агрегатов:
  1. Одинарный
  2. Двойной
  3. Четырехцилиндровый.
  • Одноствольный карбюратор имеет только один ствол.
  • Двухцилиндровый карбюратор имеет два ствола, каждый из которых содержит топливный жиклер, систему холостого хода трубки Вентури, воздушную заслонку и дроссельную заслонку.Он может иметь один воздухозаборник, штуцер и поплавковую камеру, хотя часто имеет два поплавка, по одному на каждую струю. В нем есть только ускорительный насос.

Обычно двигатели легковых автомобилей с восемью или более цилиндрами снабжены двойным карбюратором, имеющим двойной впускной коллектор. Каждый цилиндр двойного карбюратора питает одну ветвь впускного коллектора. Такое расположение обеспечивает равномерное распределение топливной смеси по цилиндрам.

  • Четырехствольный карбюратор состоит из двух сдвоенных карбюраторов в одном блоке.Первичная сторона полного двойного карбюратора, содержащего дроссельную заслонку, ускорительный насос, силовой клапан и полную главную систему дозирования и холостого хода. Вторичный блок имеет один поплавок и двойную систему дозирования карбюратора и систему холостого хода.

4.

Карбюратор в соответствии с типом системы дозирования:
  1. Жиклер для отвода воздуха.
  2. Штанговый дозатор.
  • В карбюраторах с воздушными жиклерами, топливо подается в главное выпускное сопло через главный дозирующий жиклер на низких скоростях.
Карбюратор для стравливания воздуха

Отводы воздуха соединены с вентиляционной трубкой, расположенной внутри главного выпускного сопла, так что воздух смешивается с топливом по мере его втягивания в трубку Вентури карбюратора.

По мере того, как всасывание из главного нагнетательного сопла увеличивается при более высоких скоростях, через главный воздухоотводчик проходит больше воздуха, и поддерживается правильная топливовоздушная смесь.

карбюратор дозирующего типа

В карбюраторах с дозирующими стержнями количество топлива регулируется стержнем, который проходит в жиклер.Дозирующая штанга имеет три ступени разного диаметра. Которая открывает пространство в жиклере, через которое проходит топливо.

Дозирующая штанга соединена с валом дроссельной заслонки с помощью подходящей тяги. так что он поднимается при открытии дроссельной заслонки и опускается при закрытии дроссельной заслонки.

Когда шток поднят вверх, он обеспечивает большее пространство между жиклером и штоком и пропускает больше топлива, чтобы соответствовать потоку воздуха на высоких скоростях.

Читайте также: 6 самых распространенных проблем системы охлаждения [Как их обнаружить]

5.

Карбюратор В соответствии с типом Вентури
  1. Обычная трубка Вентури.
  2. Двойная трубка Вентури
  3. Вентури с лопаткой
  4. Вентури с сопловой штангой
  5. Тройная трубка Вентури.
  • В конструкции карбюратора используются разные типы и количество вентилей, в соответствии с которыми карбюраторы классифицируются.
  • Карбюратор может иметь простой, двойной, лопастной, сопловой стержень и тройную трубку Вентури.
  • Вентури каждого типа спроектировано для обеспечения пониженного давления воздушного потока, так что он может всасывать топливо из выпускного жиклера.
  • Несколько вентиляционных отверстий помогают удерживать топливо подальше от стенок карбюратора, чтобы уменьшить конденсацию.

6.

Карбюраторы по давлению над топливом в поплавковой камере :
  1. Неуравновешенный.
  2. Сбалансированный.
  • Если давление над топливом в поплавковой камере равно атмосферному, карбюратор считается неуравновешенным.
  • Если давление над топливом в поплавковой камере равно воздухозаборнику в воздушном рупоре, карбюратор считается сбалансированным.

Уравновешенный карбюратор содержит уравновешивающую трубку и каналы, которые соединяют воздушный рупор с верхней частью поплавковой камеры, так что давление в воздушном рупоре и поплавковой камере остается неизменным.

В случае, если поступление воздуха ограничено засорением воздухоочистителя, соотношение смеси карбюратора не изменяется. Также он предотвращает слив топлива через нагнетательную струю насоса на высоких скоростях.

Читайте также: Что такое система воздушного охлаждения и как она работает в автомобиле

7.

Карбюратор в соответствии с типами энергосистемы:
  1. Ручное управление
  2. Вакуумное управление.

В зависимости от типа системы питания карбюратор может управляться вручную или под вакуумом.

  • В карбюраторе с ручным управлением. : форсунки для обогащения смеси приводятся в действие механической связью с валом дроссельной заслонки.
  • В карбюраторе с вакуумным управлением для обогащения смеси используется форсунка с вакуумным управлением (называемая повышающей системой).

Когда двигатель работает нормально на крейсерской скорости без нагрузки, в вакуумных каналах, соединенных с впускным коллектором, создается высокий вакуум. Он прижимает вакуумный поршень вниз к пружине, так что он удерживает ступеньку вверх по штоку в повышающей (силовой) струе, чтобы удерживать его закрытым.

Когда двигатель работает под нагрузкой, разрежение во впускном коллекторе падает, и пружина толкает поршень вверх, что поднимает ступеньку вверх по штоку из жиклера, позволяя дополнительному топливу течь из поплавковой камеры в выпускное сопло.Дополнительное топливо дополняет нормальную подачу основного дозирующего жиклера. Таким образом обогащается смесь.

8.

Карбюратор В соответствии с методом изменения прочности смеси:
  1. Карбюратор с постоянной воздушной заслонкой.
  2. Карбюратор постоянного вакуума.

В карбюраторе с постоянной воздушной заслонкой крепость смеси определяется изменяющимся разрежением неподвижной трубки или трубки Вентури.

  • Solex и карбюратор zenith относятся к этому типу.

В карбюраторе с постоянным вакуумом разрежение в воздушной заслонке достаточно постоянное. Размер жиклера варьируется, чтобы обеспечить правильную смесь для всех условий работы двигателя.

  • S.U. карбюратор является примером карбюратора с постоянным вакуумом.

Загрузите эту статью в формате PDF.


Спасибо, что прочитали. Если у вас есть какие-либо вопросы по карбюраторам и типам карбюраторов, оставьте комментарий.

Подробнее о машинах в этом блоге. У нас есть тонна полных руководств для формовочного станка, строгального станка, сверлильного станка и т. Д.

Карбюратор — обзор | ScienceDirect Topics

Для реалистичной оценки различных концепций смесеобразования в рабочем цилиндре двухтактного двигателя представлены две крайние модели.

12.3.2 Образование смеси после продувки

Преимущество образования смеси после продувки прямым впрыском топлива в рабочий цилиндр состоит в том, что топливо не включается в потери при продувке (при соответствующем угле впрыска).Однако, поскольку для образования смеси отводится очень короткое время, возникают газодинамические проблемы, вызывающие тенденцию к неполной смеси или недостаточному качеству смеси, что сказывается на сгорании и составе выхлопных газов.

Можно ясно видеть, почему методы прямого впрыска для двухтактных двигателей поляризованы вокруг двух концепций, а именно:

Формирование частичной смеси из рабочего цилиндра с желаемым количеством топлива, но со значительно уменьшенной долей воздуха и подачей смеси в цилиндр после продувки.В этом устройстве время, отведенное для образования смеси, увеличивается в дополнительном пространстве, где термодинамические условия позволяют получить хорошее перемешивание.

Образование смеси в рабочем цилиндре после продувки прямым впрыском топлива. Для этого метода требуются такие системы впрыска, которые могут обеспечить чрезвычайно короткое время впрыска во всех диапазонах скоростей и достаточное распыление топлива. Такие запросы практически достижимы, если закон впрыска не зависит от частоты вращения двигателя.

Способы расслоения заряда и впрыска жидкого топлива описаны ниже.

12.3.3 Формирование частичной смеси

В этом методе очень богатая смесь готовится из рабочего цилиндра, а процесс продувки осуществляется с использованием основной части свежего воздуха. Эта деталь сначала вводится в цилиндр. Этот метод обеспечивает хорошее распыление топлива в диапазоне от 4 до 12 мкм м SMD (средний диаметр по Заутеру). Предварительная смесь может быть перенесена в рабочий цилиндр после продувки через канал, время открытия которого можно регулировать механически или электронно.Такая концепция была успешно применена в пятидесятых годах компанией Puch / Германия. Простейшим конкретным решением является установка карбюратора для обогащенной смеси, при этом смесь формируется в небольшом дополнительном цилиндре и затем закачивается в рабочий цилиндр через канал с поршневым управлением, как показано на рисунке 12.4. Несмотря на свою простоту, этот метод приводит к интересным результатам, как показано на рисунке.

При таком расположении воздушно-топливное соотношение составляет от 0,48 до 1,18, а предварительная смесь, которая должна быть перенесена в рабочий цилиндр после продувки, имеет давление 0.3–0,6 МПа. Объемное соотношение обычно составляет 1: 3, а сокращение выбросов bsfc и углеводородов составляет около 30 процентов.

Несмотря на многообещающие результаты при высоких оборотах двигателя и крутящем моменте, Рисунок 12.5 показывает другую тенденцию в режиме низких оборотов и крутящего момента двигателя. Причина связана с тем, что два компонента предварительной смеси (жидкость и газ) имеют разное поведение текучести при поступлении в рабочий цилиндр.

Рис. 12.5. Двигатель MZ с впрыском премикса производства Цвиккауского университета.

12.3.4 Прямой впрыск жидкого топлива

Эта концепция может показаться более простой и многообещающей, чем образование предварительной смеси, обычно применяемой в дизельных двигателях. Проблема состоит в том, что обычные системы впрыска, подобные тем, что используются в дизельных двигателях, не могут быть применены в их нынешнем виде к системам впрыска топлива в двухтактных двигателях SI, имеющих широкий диапазон скоростей, из-за сильной зависимости закона впрыска от скорости двигателя. На Рисунке 12.6 показаны зависящие от времени и угловые скорости закачки.

Рис. 12.6. Зависящая от времени и угловая скорость впрыска механического впрыскивающего насоса с плунжером с кулачковым приводом.

В дизельных двигателях скорость впрыска в зависимости от угла является обычным способом определения поведения ТНВД. В такой интерпретации скорость впрыска уменьшается, а время впрыска увеличивается с частотой вращения двигателя, как показано на рисунке. Для высокоскоростных двухтактных двигателей временная диаграмма показывает, что скорость впрыска выше для высокой скорости, а это означает, что скорость топлива при низких оборотах двигателя очень мала.Следовательно, распыление топлива будет плохим только в том диапазоне скоростей, где также снижается энергия свежего воздуха. Кроме того, сильное изменение скорости распыления в зависимости от частоты вращения двигателя означает различную длину проникновения струи в камеру сгорания, что является проблемой для двигателей SI с их фиксированным положением свечи зажигания. Сильное изменение длины проникновения в зависимости от частоты вращения двигателя является причиной того, что насосы высокого давления, которые могут обеспечить хорошее распыление топлива на низких оборотах, также трудно адаптировать к двигателям SI.Недавние испытания с адаптированными плунжерными насосами для двухтактных двигателей SI показали значения bsfc от 400 до 500 г / кВтч и выбросы углеводородов от 68 до 135 г / кВтч в диапазоне скоростей 3000-7500 об / мин, которые все еще не удовлетворяют требованиям будущего. требования.

Вроде бы вполне логичное следствие, что для неизменной длины распыления и распыления топлива во всем диапазоне оборотов двигателя давление в системе впрыска должно быть постоянным на достаточно высоком уровне. Постоянное давление топлива в диапазоне от 6 до 7 МПа, в результате чего размер топливных капель составляет 5–25 мкм м SMD, может быть обеспечено с помощью различных общих методов.Запрошенная синхронизация форсунки, которая также не зависит от скорости двигателя, но с оптимизированным началом впрыска в каждой точке крутящего момента / скорости, возможна при использовании механических или магнитных устройств. Последний вариант более предпочтителен, поскольку позволяет осуществлять точное электронное управление.

Проблема таких систем, аналогичных современной системе Common Rail в дизельном двигателе, заключается в относительно высокой потребляемой мощности самой системы впрыска, гарантирующей, что уровень высокого давления также должен поддерживаться во время между впрысками.Это означает низкий энергетический КПД, что недопустимо для небольших двухтактных двигателей. Учитывая, например, скорость 3000 об / мин и обычную продолжительность впрыска 0,3 мс, постоянное давление от 6 до 7 МПа будет использоваться только в течение 1,5% времени цикла! Следовательно, для постоянного распыления и длины распыления во всем диапазоне оборотов двигателя максимальное давление топлива, независимо от оборотов двигателя, должно создаваться только в течение периода, охватывающего больше или меньше времени впрыска, чтобы поддерживать высокий энергетический КПД.Это означает модуляцию волны давления, которая может осуществляться, например, на основе эффекта гидравлического удара.

Такое решение могло показаться намного более сложным, чем простой и дешевый карбюратор. Двухтактный двигатель должен выжить в относительно простых машинах, таких как скутеры или лодки. Оправдано ли разрабатывать концепции, теории и, наконец, системы такой сложности в этой структуре? Почему бы нам не попытаться улучшить систему очистки? В таблице 12.3 представлены выбросы выхлопных газов и расход топлива двухтактных двигателей с улучшенной системой продувки и устройством для образования смеси после продувки.

Таблица 12.3. Выбросы загрязняющих веществ и bsfc двухтактных двигателей SI с улучшенной продувкой и прямым впрыском топливовоздушной смеси

HC [г / кВтч] NO x [г / кВтч] CO [г / кВтч] bsfc [г / кВтч]
5–20 8–17 10–20 260–300

При сравнении значений в таблицах 12.1 и 12.3 причина становится понятным текущие усилия относительно образования смеси.В этом контексте есть надежда на выживание двухтактного двигателя.

Карбюраторы поплавкового типа — система механизма с поплавковой камерой

Карбюратор поплавкового типа состоит в основном из шести подсистем, которые регулируют количество выгружаемого топлива в зависимости от потока воздуха, подаваемого в цилиндры двигателя. Эти системы работают вместе, чтобы обеспечить двигатель правильным потоком топлива во всех рабочих диапазонах двигателя.

Рисунок 2-10. Карбюратор поплавкового типа.

Основные подсистемы поплавкового карбюратора показаны на Рисунке 2-10.Это следующие системы:

1. Система механизма поплавковой камеры
2. Основная система дозирования
3. Система холостого хода
4. Система контроля смеси
5. Система ускорения
6. Система экономайзера

Система механизма поплавковой камеры

A Между подачей топлива и основной дозирующей системой карбюратора предусмотрена поплавковая камера. Поплавковая камера или чаша служит резервуаром для топлива в карбюраторе. [Рис. 2-11] Эта камера обеспечивает почти постоянный уровень топлива в основном выпускном сопле, который обычно находится примерно на 1⁄8 дюйма ниже отверстий в основном выпускном сопле.Уровень топлива должен поддерживаться немного ниже выходных отверстий выпускного сопла, чтобы обеспечить правильный поток топлива и предотвратить утечку топлива из сопла, когда двигатель не работает.

Рисунок 2-11. Поплавковая камера (чаша) со снятым поплавком.

Уровень топлива в поплавковой камере поддерживается почти постоянным с помощью поплавкового игольчатого клапана и седла. Седло иглы обычно изготавливается из бронзы. Игольчатый клапан изготовлен из закаленной стали или может иметь секцию из синтетического каучука, которая подходит к седлу.При отсутствии топлива в поплавковой камере поплавок опускается к дну камеры и позволяет игольчатому клапану широко открываться. Когда топливо поступает из линии подачи, поплавок поднимается (плавает в топливе) и закрывает игольчатый клапан, когда топливо достигает заданного уровня. Когда двигатель работает и топливо всасывается из поплавковой камеры, клапан принимает промежуточное положение, так что открытия клапана достаточно для подачи необходимого количества топлива и поддержания постоянного уровня.[Рис. 2-10]

Когда топливо находится на правильном уровне (поплавковая камера), скорость нагнетания точно контролируется скоростью воздуха через трубку Вентури карбюратора, где падение давления на выпускном сопле заставляет топливо течь во впускной воздушный поток. . Атмосферное давление над топливом в поплавковой камере вытесняет топливо из выпускного сопла. Вентиляционное или небольшое отверстие в верхней части поплавковой камеры позволяет воздуху входить или выходить из камеры при повышении или понижении уровня топлива.

Летный механик рекомендует

Карбюратор — Academic Kids

От академических детей

Карбюратор (американское написание, карбюратор или карбюратор в странах Содружества, сокращенно «карбюратор») представляет собой устройство, которое смешивает воздух и топливо для двигателя внутреннего сгорания. Карбюраторы по-прежнему используются в небольших двигателях, а также в старых или специализированных автомобилях, например, в автомобилях, предназначенных для гонок на серийных автомобилях.Однако в большинстве автомобилей, построенных с начала 1980-х годов, вместо карбюратора используется компьютеризированный электронный впрыск топлива.

Большинство двигателей с карбюратором (в отличие от двигателей с впрыском топлива) имеют один карбюратор, хотя некоторые, в основном с более чем 4 цилиндрами или двигателями с более высокими характеристиками, используют несколько карбюраторов. Большинство автомобильных карбюраторов имеют либо с нисходящим потоком, (поток воздуха направлен вниз), либо с боковым потоком (поток воздуха сбоку). В Соединенных Штатах карбюраторы с нисходящим потоком были почти повсеместными, отчасти потому, что устройство с нисходящим потоком идеально подходит для V-образных двигателей.В Европе боковая тяга заменила нисходящую тягу, поскольку пространство под капотом уменьшилось, а использование карбюратора типа SU увеличилось. У небольших плоских авиационных двигателей с воздушным винтом карбюратор находится под двигателем («восходящий поток»).

Эксплуатация

Карбюраторы бывают:

  • Фиксированный штуцер (Вентури) — изменяющееся разрежение в трубке Вентури изменяет смесь
  • Постоянное нажатие — форсунка меняется для изменения смеси.

Самым распространенным карбюратором с регулируемой заслонкой (постоянным разрежением) является карбюратор SU, который в принципе несложно регулировать и обслуживать.По этой причине компания заняла лидирующую позицию на автомобильном рынке Великобритании.

Карбюратор должен:

  • Обеспечивает правильное соотношение топлива и воздуха во всем рабочем диапазоне
  • Тщательно и равномерно перемешать

Основная функция карбюратора довольно проста, но реализация довольно сложна. Карбюратор должен обеспечивать правильную топливно-воздушную смесь в самых разных условиях и в диапазоне оборотов двигателя.

  • Холодный старт
  • Холостой ход или медленно
  • Разгон
  • Высокая скорость / высокая мощность при полностью открытой дроссельной заслонке
  • Крейсерская скорость при частичной дроссельной заслонке (небольшая нагрузка)

Большинство карбюраторов содержат оборудование для поддержки нескольких различных режимов работы, называемое схемами .

Карбюратор в основном состоит из открытой трубы, «горловины» или «бочки» карбюратора, через которую воздух проходит во впускной коллектор двигателя. Труба имеет форму трубки Вентури — сужается в сечении, а затем снова расширяется. Сразу после самого узкого места находится дроссельная заслонка или дроссель — вращающийся диск, который можно повернуть вплотную к воздушному потоку, чтобы почти не ограничивать поток, или можно повернуть так, чтобы он (почти) полностью блокировал поток воздуха.Этот клапан регулирует поток воздуха через горловину карбюратора и, таким образом, количество воздушно-топливной смеси, которую подает система. Это, в свою очередь, влияет на мощность и скорость двигателя. Дроссельная заслонка обычно соединяется тросом или механической связью стержней и шарниров или, реже, пневматической связью с педалью акселератора на автомобиле или аналогичным устройством управления на других транспортных средствах или оборудовании.

Топливо вводится в воздух через точно откалиброванные отверстия, называемые форсунками .

Цепь холостого хода

Когда дроссельная заслонка закрыта или почти закрыта, работает цепь холостого хода карбюратора . Закрытая дроссельная заслонка означает, что за закрытой дроссельной заслонкой возникает довольно значительный вакуум. Этого разрежения в коллекторе достаточно, чтобы втягивать топливо и воздух через небольшие отверстия, расположенные после дроссельной заслонки, а в карбюраторах SU — для подъема поршня и дозирующей штанги. Таким образом может пройти лишь довольно небольшое количество воздуха и топлива.

Контур холостого хода

Когда дроссельная заслонка немного приоткрывается из полностью закрытого положения, сторона вращающейся «пластины», которая движется вперед при открытии, открывает дополнительные отверстия, аналогичные отверстиям в цепи холостого хода. Они позволяют протекать большему количеству топлива, а также компенсируют пониженный вакуум при небольшом открытии дроссельной заслонки.

Главный контур открытого дросселя

По мере того, как дроссельная заслонка постепенно открывается, разрежение в коллекторе уменьшается, поскольку есть меньше ограничений для воздушного потока.Это уменьшение вакуума уменьшает поток через контуры холостого хода и холостого хода, поэтому необходим другой метод подачи топлива в воздушный поток.

Здесь играет роль форма Вентури горловины карбюратора. Эффект Бернулли показывает, что с увеличением скорости газа его давление падает. Трубка Вентури (иногда две трубки Вентури, вложенные в один цилиндр) заставляет воздух достигать более высокой скорости в середине, чем на концах, и эта высокая скорость и, следовательно, низкое давление в середине всасывают топливо в воздушный поток через сопло («жиклер» «), расположенный в центре горла.

Для работы главной цепи требуется разумная скорость воздуха через горловину карбюратора, и поэтому она перестает работать на холостом ходу, когда срабатывает цепь холостого хода.

Насос ускорительный

Если быстро открыть дроссельную заслонку, можно увидеть, что все вышеперечисленные схемы не будут работать. Цепь холостого хода не будет работать, так как дроссельная заслонка открыта и разрежение в коллекторе упало. Основная цепь также не будет работать, так как еще недостаточно воздушного потока.Таким образом, необходим дополнительный метод подачи топлива, который будет «преодолевать разрыв» между остановкой цепи холостого хода и включением основной цепи.

Это ускорительный насос, приводимый в действие рычагом акселератора, который подает струю топлива под низким давлением при быстром открытии дроссельной заслонки. Размер и продолжительность этого должны быть соответствующим образом настроены, чтобы зазор был перекрыт и переход от холостого хода к главной цепи достигался плавно.

Дроссель

Когда двигатель холодный, воспламенение и сгорание происходит с меньшей легкостью, и часть паров топлива конденсируется на холодном впускном коллекторе и стенках цилиндра.Таким образом, требуется на более богатая смесь — больше топлива для воздуха. Для этого используется «дроссель». Это устройство, ограничивающее поток воздуха на входе в карбюратор. Это работает аналогично закрытому дросселю, за исключением того факта, что он закрывается перед холостым и главным контурами. Здесь низкое давление, вызванное ограничением, всасывает топливо через все топливные контуры — холостой ход, холостой ход и основной. Дроссель может управляться автоматически с помощью термостата или управляться вручную.Дроссель может также быть известен как душитель для старых автомобилей.

В некоторых карбюраторах нет специального клапана ограничения подачи воздуха, вместо этого используется устройство для обогащения смеси. Обычно используется на небольших двигателях, особенно на мотоциклах, он работает путем размыкания вторичного топливного контура. Выход этого контура расположен за дроссельной заслонкой и, когда он включен, подает дополнительное топливо, когда дроссель открыт. закрыт и вакуум высокий. Когда дроссельная заслонка открывается, разрежение в отверстии падает, и он подает меньше топлива.Это саморегулирование позволяет быстрее запустить двигатель.

Элементы прочие

На взаимодействие между каждой цепью также могут влиять различные механические соединения или соединения, работающие под давлением воздуха, а также чувствительные к температуре и электрические компоненты. Они вводятся по таким причинам, как реакция, топливная экономичность или контроль автомобильных выбросов. В комбинацию карбюратор / коллектор могут быть включены дополнительные усовершенствования, например, электрический нагрев для компенсации холодного двигателя.

Подача топлива

Поплавковая камера

Для обеспечения постоянной подачи топлива карбюратор имеет «поплавковую камеру» (или «чашу»), в которой находится некоторое количество топлива, готовое к использованию. Он преобразует топливо из давления топливного насоса в атмосферное. Это работает аналогично унитазу; поплавок управляет впускным клапаном. Если поплавок опускается, впускное отверстие открывается, позволяя топливу течь под давлением топливного насоса. Обычно специальные вентиляционные трубки позволяют воздуху выходить из камеры по мере ее заполнения.

Если двигатель должен работать в любом направлении (например, цепная пила), поплавковая камера не может работать. Вместо этого используется мембранная камера. Гибкая диафрагма образует одну сторону топливной камеры и расположена так, что по мере того, как топливо втягивается в двигатель, диафрагма вынуждается внутрь под давлением окружающего воздуха. Диафрагма соединена с игольчатым клапаном, и по мере ее движения внутрь она открывает игольчатый клапан для впуска большего количества топлива, пополняя тем самым топливо по мере его потребления. Когда топливо пополняется, диафрагма выдвигается из-за давления топлива и небольшой пружины, закрывая игольчатый клапан.Достигается сбалансированное состояние, при котором создается постоянный уровень топлива в резервуаре, который остается постоянным при любой ориентации.

Силовой клапан

При открытии дроссельной заслонки разрежение в двигателе начинает уменьшаться. В зависимости от конструкции карбюратора клапан открывается внезапно или постепенно, чтобы больше топлива попало в главный контур.

Стволы нескольких карбюраторов

Отсутствует изображение
1961_Ferrari_250_TR_61_Spyder_Fantuzzi_engine.jpg Двигатель Colombo Type 125 «Testa Rossa» в Ferrari 250TR Spyder 1961 года с 12 отдельными стволами, питаемыми 12 «трубами», видимыми в верхней части двигателя.

Некоторые карбюраторы имеют более одной трубки Вентури или «бочки»: двухступенчатый или регистровый карбюратор. Это сделано для того, чтобы приспособиться к более высокому расходу воздуха при большем рабочем объеме двигателя. Многоствольные карбюраторы могут иметь первичный и вторичный стволы, причем последний открывается только во время интенсивной работы двигателя. Например, карбюратор с 4 цилиндрами часто имеет два основных и два дополнительных. Причина этого в том, что большой карбюратор, оптимизированный для высоких расходов, неэффективен при меньших расходах; такое первичное / вторичное расположение пытается быть лучшим из обоих миров.

Регулировка карбюратора

Слишком много топлива в топливно-воздушной смеси считается слишком богатым; не хватает топлива слишком «бедная». «Смесь» обычно контролируется регулируемыми винтами автомобильного карбюратора или пилотным рычагом на винтовом самолете (поскольку смесь зависит от плотности (высоты) воздуха). Правильное соотношение воздуха и бензина составляет 14,6: 1, что означает, что на каждую единицу веса бензина будет сожжено 14,6 единиц воздуха; см. также стехиометрию. это строго самый эффективный, но для большей мощности используется более богатая смесь около 11: 1, а для экономии топлива смесь 18: 1.Регулировку карбюратора можно проверить, измерив содержание окиси углерода и кислорода в выхлопных газах. Более сложный способ определения правильной смеси, используемый в современных двигателях с впрыском топлива, — это использование лямбда-зонда в выхлопной системе. Выходной сигнал лямбда-зонда подается в систему управления двигателем, которая, в свою очередь, регулирует количество впрыскиваемого топлива.

Смесь также можно судить по состоянию и цвету свечей зажигания: черные, сухие, покрытые сажей свечи указывают на слишком богатую смесь, отложения от белого до светло-серого цвета на свечах указывают на бедную смесь.Правильный цвет должен быть коричневато-серым. См. Также чтение свечей зажигания.

История и развитие

Карбюратор был изобретен венгерским инженером Донтом Бнки в 1893 году. Фредерик Уильям Ланчестер из Бирмингема, Англия, рано экспериментировал с фитильным карбюратором в автомобилях. В 1896 году Фредерик и его брат построили первый в Англии автомобиль с бензиновым двигателем — одноцилиндровый двигатель внутреннего сгорания мощностью 5 л.с. (4 кВт) с цепным приводом. Недовольные производительностью и мощностью, они перестроили двигатель в следующем году в двухцилиндровую горизонтально-оппозиционную версию, используя его новую конструкцию фитильного карбюратора.Эта версия завершила поездку на 1000 миль (1600 км) в 1900 году, успешно включив карбюратор, что стало важным шагом вперед в автомобильной инженерии.

Производителей

Некоторые производители карбюраторов


Дополнительная литература

  • Heldstab, Уэйн, « Секрет сверхмощных кабураторов: как они работают, как их строить ».

Внешние ссылки

Патенты

пт: Карбюратор он: מאייד nl: carburateur ja: キ ャ ブ レ タ ー pl: Ganik pt: Карбурадор ru: Карбюратор

Что такое карбюратор? — Определение, типы и принцип работы — Выбор инженеров

Карбюратор называют «сердцем» автомобиля, и нельзя ожидать, что двигатель будет работать правильно, выдавать надлежащую мощность или работать гладко, если его «сердце» не выполняет свои функции должным образом.

Что такое карбюратор?

Карбюратор также обозначается как карбюратор, устройство для снабжения двигателя с искровым зажиганием смесью топлива и воздуха. Компоненты карбюраторов обычно включают камеру хранения жидкого топлива, дроссель, жиклер холостого хода (или медленно работающий), главный жиклер, ограничитель воздушного потока в форме Вентури и ускорительный насос.

Карбюраторы добавляют топливо к воздуху, чтобы получилась смесь, подходящая для горения в цилиндрах. Цилиндры современных автомобилей более эффективно питаются от систем впрыска топлива, которые потребляют меньше топлива и меньше загрязняют окружающую среду.B

Но вы по-прежнему найдете карбюраторы в двигателях старых автомобилей и мотоциклов, а также в компактных двигателях газонокосилок и бензопил.

Бензиновые двигатели рассчитаны на то, чтобы всасывать точно необходимое количество воздуха, поэтому топливо сгорает должным образом, независимо от того, запускается ли двигатель с холодного или горячего режима на максимальной скорости.

Получение правильной топливно-воздушной смеси — это работа умного механического устройства, называемого карбюратором: трубка, которая пропускает воздух и топливо в двигатель через клапаны, смешивая их вместе в разных количествах, чтобы соответствовать широкому диапазону различных условий вождения. .

Вы могли подумать, что «карбюратор» — довольно странное слово, но оно происходит от глагола «карбюратор». Это химический термин, означающий обогащение газа путем соединения его с углеродом или углеводородами. Итак, технически карбюратор — это устройство, которое насыщает воздух (газ) топливом (углеводородом).

Кто изобрел карбюратор?

Первый карбюратор был изобретен Сэмюэлем Мори в 1826 году. Первым, кто запатентовал карбюратор для использования в нефтяном двигателе, был Зигфрид Маркус, получивший от 6 июля 1872 года патент на устройство, смешивающее топливо с воздухом.

Очень упрощенная схема оригинального карбюратора Карла Бенца из его патента 1888 года. Топливо из бака попадает в то, что он назвал генератором внизу, где оно испаряется.

Топливный пар проходит вверх через серую трубу и встречает воздух, спускающийся по той же трубе, который выходит из атмосферы через перфорационные отверстия наверху. Затем смесь воздуха и топлива в камере проходит через клапан в цилиндр, где они сгорают для выработки энергии.

Детали карбюратора

Ниже приведены детали карбюратора:

  • Дроссельный клапан
  • Сетчатый фильтр
  • Вентури
  • Система дозирования
  • Система холостого хода
  • Плавающая камера
  • Поплавковая камера смешивания
  • Поплавковая камера
  • Дроссельный клапан
  • Дроссельный клапан: Это клапан, предназначенный для регулирования подачи жидкости в виде пара или газа и воздуха в двигатель и приводится в действие маховиком, рычагом или, в частности, автоматически с помощью регулятора.
  • Фильтр: Это устройство, которое используется для фильтрации топлива перед попаданием в поплавковую камеру. Он состоит из тонкой проволочной сетки, которая фильтрует топливо и удаляет из него пыль и другие взвешенные частицы. Если эти частицы не удалить, они могут заблокировать форсунку.
  • Вентури: Воздух проходит через суженную горловину внутри карбюратора, называемую трубкой Вентури, что ускоряет его поток в этой точке. Поскольку воздух течет быстрее, его давление падает, поэтому внутри трубки Вентури возникает небольшой вакуум.Топливный жиклер открывается в трубку Вентури, и частичный вакуум всасывает топливо через жиклер в воздушный поток.
  • Дозирующая система: Сопло для выпуска топлива расположено в цилиндре карбюратора так, что его открытый конец находится в горловине или в самой узкой части трубки Вентури. Именно эта разница давлений или дозирующая сила заставляет топливо течь из выпускного сопла.
  • Система холостого хода: Она обеспечивает топливовоздушную смесь на скоростях ниже примерно 800 об / мин или 20 миль в час. Когда двигатель работает на холостом ходу, дроссельная заслонка почти закрыта. Поток воздуха через воздушный рупор ограничен для создания достаточного вакуума в трубке Вентури.
  • Поплавковая камера: Поплавковая камера — это устройство для автоматического регулирования подачи жидкости в систему. Чаще всего он находится в карбюраторе двигателя внутреннего сгорания, где он автоматически измеряет подачу топлива в двигатель.
  • Смесительная камера: В смесительной камере образовалась смесь воздух + топливо. А потом поставили на двигатель цилиндр.
  • Порт холостого хода и переходной порт: В дополнение к главному соплу в части Вентури карбюратора, два других сопла или отверстия подают топливо в цилиндр двигателя.
  • Дроссельная заслонка: Дроссельная заслонка иногда устанавливается в карбюратор двигателей внутреннего сгорания. Его цель — ограничить поток воздуха, тем самым обогатив топливно-воздушную смесь при запуске двигателя.

Как работает карбюратор?

Карбюратор использует вакуум, создаваемый двигателем, для втягивания воздуха и топлива в цилиндры. Дроссельная заслонка может открываться и закрываться, позволяя большему или меньшему количеству воздуха попадать в двигатель. Этот воздух проходит через узкое отверстие, называемое трубкой Вентури.Это создает разрежение, необходимое для работы двигателя.

Карбюраторы довольно сильно различаются по конструкции и сложности. Самый простой из возможных — это, по сути, большая вертикальная воздушная труба над цилиндрами двигателя с горизонтальной топливной трубкой, присоединенной с одной стороны.

По мере того, как воздух течет по трубе, он должен проходить через узкий изгиб посередине, что заставляет его ускоряться и понижать давление.

Этот изогнутый участок называется трубкой Вентури. Падающее давление воздуха создает эффект всасывания, который втягивает воздух через топливопровод сбоку.

Когда жидкость течет в более узкое пространство, ее скорость увеличивается, но давление падает. Это объясняет, почему ветер свистит между зданиями и почему лодки, плывущие параллельно друг другу, часто сталкиваются друг с другом.

Это пример закона сохранения энергии: если бы давление не упало, жидкость, втекая в узкое сечение, набирала бы дополнительную энергию, что нарушило бы один из самых основных законов физики.

Карбюратор работает так:

  • Воздух поступает в верхнюю часть карбюратора из воздухозаборника автомобиля, проходя через фильтр, очищающий его от мусора.
  • При первом запуске двигателя воздушную заслонку можно настроить так, чтобы она почти блокировала верхнюю часть трубы, чтобы уменьшить количество поступающего воздуха (увеличивая содержание топлива в смеси, поступающей в цилиндры).
  • В центре трубки воздух проходит через узкий изгиб, называемый трубкой Вентури. Это заставляет его ускоряться и понижать давление.
  • Падение давления воздуха вызывает всасывание в топливопроводе, втягивающее топливо.
  • Дроссель — это клапан, который поворачивается для открытия или закрытия трубы.Когда дроссельная заслонка открыта, в цилиндры поступает больше воздуха и топлива, поэтому двигатель производит больше мощности, а автомобиль едет быстрее.
  • Смесь воздуха и топлива стекает в цилиндры.
  • Топливо подается из мини-топливного бака, называемого камерой поплавковой подачи.
  • По мере того, как уровень топлива падает, поплавок в камере опускается и открывает клапан вверху.
  • Когда клапан открывается, в камеру поступает больше топлива из основного бензобака. Это заставляет поплавок подниматься и снова закрывает клапан.

Типы карбюраторов

Существуют три типа карбюраторов :

  • Карбюраторы с восходящей тягой
  • Карбюраторы горизонтального типа
  • Карбюраторы с восходящей тягой

— с восходящей тягой

-9017 карбюраторы с восходящей тягой -9017 carbureto rs

Карбюратор с восходящим потоком — это тип карбюратора, который является компонентом двигателей, которые смешивают воздух и топливо, в котором воздух входит снизу и выходит сверху, чтобы попасть в двигатель.

Карбюратор с восходящим потоком воздуха был первым широко используемым типом карбюратора. В карбюраторе с восходящим потоком воздух течет вверх в трубку Вентури, согласно Эдварду Абдо в Power Equipment Engine Technology. Другие типы — это карбюраторы с нисходящим и боковым тягами. Для карбюратора с восходящим потоком может потребоваться сборник капель.

Карбюратор с пониженной тягой s

Этот карбюратор работает с более низкой скоростью воздуха и большими проходами. Это связано с тем, что сила тяжести способствует потоку топливовоздушной смеси в цилиндр.

Карбюратор с нисходящим потоком может подавать большие объемы топлива, когда это необходимо для высокой скорости и большой выходной мощности.

В этом типе карбюратора воздух поступает из верхней части смесительной камеры, а топливо поступает из нижней части смесительной камеры, здесь также работает тот же принцип, из-за низкого давления, создаваемого двумя трубками Вентури, топливо выходит через трубы, а затем здесь произошло смешение топлива и воздуха.

Карбюратор горизонтального типа s

Этот тип карбюратора используется, когда у нас ограниченное пространство для сборки.В карбюраторе с горизонтальной или боковой тягой, как следует из названия, жиклерная трубка расположена в горизонтальном направлении. Еще одно преимущество карбюратора этого типа — снижение сопротивления потока за счет отсутствия прямоугольного механизма в зоне впуска.

Принцип работы карбюратора этого типа очень прост. Здесь карбюратор остается в горизонтальном положении, когда воздух поступает через один конец карбюратора, показанный на рисунке ниже. И смешиваясь с топливом, получается воздушно-топливная смесь, а затем воздушно-топливная смесь направляется в цилиндр двигателя для сгорания.

Как почистить карбюратор?

Перед чисткой карбюратора ознакомьтесь с руководством пользователя. Всегда следуйте полным инструкциям производителя по чистке и техническому обслуживанию. Перед чисткой убедитесь, что карбюратор остыл на ощупь.

  1. Разбавленный очиститель: В большой емкости смешайте разбавленный очиститель. Тем не менее, важно использовать некоррозионный очиститель, который не повреждает и не разрушает какие-либо пластмассовые или резиновые детали на карбюраторе. Вам следует избегать использования уксуса, потому что уксусная кислота делает металл подверженным ржавчине.Кроме того, никогда не следует использовать отбеливатель, потому что гипохлорит натрия (отбеливатель) вызывает коррозию металлов, таких как сталь и алюминий, и портит прорезиненные уплотнения.
  2. Очистите воздушный фильтр: Перед очисткой карбюратора проверьте воздушный фильтр, чтобы убедиться, что воздух, поступающий в карбюратор, чистый и не забитый, что может привести к выбросу черного дыма из выхлопной трубы. Перекройте подачу топлива и отсоедините провод свечи зажигания, если он есть. Снимите корпус и барашковую гайку, крепящую фильтр, и снимите внешний элемент.Используйте баллончик со сжатым воздухом для удаления мусора.
  3. Снимите карбюратор: И снимите любую защитную пластину или экран, а также рычаги и шланги, используя плоскогубцы и отвертку, если это необходимо. Кроме того, снимите все крышки или зажимы, удерживающие карбюратор на месте, и снимите зажим для шланга, который соединяет его с топливопроводом. Снимите карбюратор и с помощью сжатого воздуха сдуйте излишки грязи с внешнего кожуха. (Примечание: если вы не знакомы с этой процедурой, перед чисткой проконсультируйтесь со специалистом.)
  4. Снимите поплавок карбюратора: Снимите болт, удерживающий поплавок карбюратора (чашеобразный контейнер) на месте, соблюдая осторожность, чтобы не пролить оставшийся газ внутри поплавка (утилизируйте его надежно). Это обычная причина скопления лака на карбюраторах. Также снимите штифт, на котором поворачивается поплавок, и отложите его в безопасном месте. Теперь вытащите поплавок из корпуса.
  5. Удалите другие съемные компоненты: Отметьте расположение и размещение любых других компонентов карбюратора, которые вы снимаете, чтобы обеспечить доступ для очистки.
  6. Замочите и протрите компоненты: Погрузите поплавок карбюратора и другие компоненты в большую емкость с разбавленным очистителем и тщательно замочите на 10 минут. Используйте латунную щетку для чистки всех металлических деталей и жесткую нейлоновую щетку для чистки пластиковых деталей. Убедитесь, что крошечные вентиляционные отверстия очищены. Также очистите мелкие детали в чистящем растворе.
  7. Промойте и высушите: Промойте все детали карбюратора в ведре с чистой водой и дайте им полностью высохнуть на воздухе.Для небольших отверстий и вентиляционных отверстий используйте баллончик со сжатым воздухом, чтобы удалить лишнюю влагу.
  8. Соберите и замените: Осторожно соберите карбюраторы и установите их на двигатель. Заново соедините все шланги, зажимы и провода.

Функции карбюраторов:

Основными функциями карбюраторов являются

  • Основная функция карбюраторов — смешивание воздуха и бензина и обеспечение смеси с высоким сгоранием.
  • Управляет частотой вращения двигателя.
  • Он также регулирует соотношение воздух-топливо.
  • Увеличивайте или уменьшайте количество смеси в зависимости от оборотов двигателя и изменения нагрузки.
  • Для постоянного поддержания определенного количества топлива в поплавковой камере.
  • Выпарить топливо и смешать его с воздухом до получения гомогенной топливовоздушной смеси.
  • Для подачи правильного количества топливовоздушной смеси с правильной плотностью при любых условиях нагрузки и скорости двигателя.

Преимущества карбюратора:
  • Детали карбюратора не такие дорогие, как топливные форсунки.
  • При использовании карбюратора вы получаете больше воздушно-топливной смеси.
  • По результатам дорожных испытаний карбюраторы обладают большей мощностью и точностью.
  • Карбюраторы не ограничены количеством газа, перекачиваемого из топливного бака, что означает, что цилиндры могут протягивать больше топлива через карбюратор, что приведет к более плотной смеси в камере и большей мощности.

Недостатки карбюратора:
  • При очень малых оборотах смесь, подаваемая карбюратором, настолько слабая, что не воспламеняется должным образом и для ее обогащения в таких условиях требуется некоторая установка в карбюраторе .
  • На работу карбюратора влияют изменения атмосферного давления.
  • Потребляется больше топлива, поскольку карбюраторы тяжелее топливных форсунок.
  • Больше выбросов в атмосферу, чем у топливных форсунок.
  • Расходы на обслуживание карбюратора выше, чем у системы впрыска топлива.

Применение карбюратора:
  • Используется для двигателя с искровым зажиганием.
  • Используется для контроля скорости транспортных средств.
  • Он превращает основной топливный бензин в мелкие капли и смешивается с воздухом для плавного и правильного сгорания без каких-либо проблем.

FAQ s. Что такое карбюратор?

Карбюратор также обозначается как карбюратор, устройство для снабжения двигателя с искровым зажиганием смесью топлива и воздуха. Компоненты карбюраторов обычно включают камеру хранения жидкого топлива, дроссель, жиклер холостого хода (или медленно работающий), главный жиклер, ограничитель воздушного потока в форме Вентури и ускорительный насос.

Какие бывают карбюраторы?

Существует три типа карбюраторов в зависимости от направления подачи смеси:
1.Карбюратор с восходящей тягой.
2. Карбюратор горизонтального типа.
3. Карбюратор нисходящего типа.

Какие части карбюратора?

Детали карбюратора:
1. Дроссельная заслонка
2. Фильтр
3. Вентури
4. Дозирующая система
5. Система холостого хода
6. Поплавковая камера
7. Смесительная камера
8. Холостой ход и порт передачи

Каким образом карбюратор работает?

Карбюратор использует вакуум, создаваемый двигателем, для втягивания воздуха и топлива в цилиндры.Дроссельная заслонка может открываться и закрываться, позволяя большему или меньшему количеству воздуха попадать в двигатель. Этот воздух проходит через узкое отверстие, называемое трубкой Вентури. Это создает разрежение, необходимое для работы двигателя.

Как очистить карбюратор?

Инструкции по очистке карбюратора:
1.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.