Смазка для шариковых подшипников: 5 лучших смазок для подшипников

Содержание

Виды смазок для шариковых подшипников

Правильная смазка имеет решающее значение для производительности подшипника. Она обеспечивает тонкую пленку между контактными областями в подшипнике, чтобы уменьшить трение, рассеять тепло и предотвратить коррозию на шарах и дорожках качения.

Смазка будет влиять на максимальную скорость и температуру, крутящий момент, уровень шума и, в конечном счете, срок службы подшипника. В зависимости от сферы применения существует ряд разновидностей смазок.

Минеральные или синтетические смазочные материалы используются наиболее часто и предназначены для общего и высокоскоростного использования. Для малошумных применений используются мелкофильтрованные версии. Есть версии, устойчивые к воздействию воды, для низких или высоких температур.

Силиконовые смазки имеют широкие температурные диапазоны и меньше изменяют вязкость с понижением температуры. Они также обладают хорошей водостойкостью и безопасны для использования с большинством пластмасс и резин (уплотнительных колец и т.

п.), но не подходят для высоких нагрузок и скоростей. Водонепроницаемы.

Перфторированные смазки или смазки PFPE являются негорючими, совместимыми с кислородом и очень стойкими к многим химикатам. Они не вступают в реакцию с пластмассами или эластомерами. Многие из них имеют низкое давление испарения и подходят для использования в вакууме. Некоторые могут выдерживать температуры до 300 ° C. Используются часто для защиты поверхностей от налипания и обледенения благодаря высоким гидрофобным свойствам.

Сухие смазки рекомендуются там, где стандартные смазочные материалы могут вызывать загрязнение, например, в вакуумных средах. Такие смазки как дисульфид молибдена или дисульфид вольфрама наносятся на шарики и дорожки качения подшипников, обеспечивая плавную работу и более высокую скорость движения. Эти покрытия также устойчивы к воде и разбавленным кислотам. Бывают порошкообразными, воскообразными и покрытиями со связующим, для нанесения которых добавляется растворитель.

Демфирующие смазки

широко используются в автомобильных деталях, чтобы предотвратить треск и скрипы. Они также придают качество переключателям и передачам. Они могут использоваться в подшипниках с медленным вращением, например, в потенциометрах.

Смазочные материалы для пищевой промышленности отвечают специальным санитарным требованиям. Различают два вида смазочных материалов – для случаев, где возможен случайный контакт с пищевыми продуктами, и где контакт отсутствует. Эти смазки очень устойчивы к вымыванию процессами очистки.


Вязкость смазки

Масла с низкой вязкостью и смазки используются там, где требуется низкая смазывающая способность, например в чувствительных инструментах. Смазки с более высокой вязкостью могут быть рекомендованы для высоконагруженных, высокоскоростных или вертикальных применений вала. Масла с низкой вязкостью предпочтительны для высокоскоростных применений, так как они генерируют меньше тепла. Хотя смазки часто обеспечивают гораздо большую стойкость, чем масла, многие современные смазки с низким крутящим моментом могут создавать показатели крутящего момента, похожие по характеристикам на масла.

Большинство масел поддерживают свою консистенцию в широком температурном диапазоне и просты в применении. Для приложений с очень низким крутящим моментом используется легкое приборное масло. Более высокая скорость работы также возможна с маслом, но, поскольку такая смазка не удерживается на месте, она должна непрерывно наноситься струей, масляной баней или масляным туманом, если вращения короткий.

Пропитанный маслом фенольный фиксатор или синтетический фиксатор, изготовленный из материала с очень низким коэффициентом трения, не требует непрерывной внешней смазки. Эти типы фиксаторов часто используются в высокоскоростных зубчатых подшипниках с низким крутящим моментом.

Пластичные смазки (Greases) - это масла, смешанные с загустителем, чтобы они оставались внутри подшипника. Обычно более подходят для высоких нагрузок и имеют очевидное преимущество в том, что они обеспечивают постоянную смазку в течение длительного периода времени без технического обслуживания.


Количество смазки

Нужно учитывать, что слишком много смазки может быть вредным для подшипника. Заполнение смазкой будет означать большее сопротивление качению (более высокий крутящий момент), но, тем не менее, все еще существует риск нагрева. Свободное пространство внутри подшипника важно для того, чтобы излучать тепло от зоны контакта между шарами и дорожкой качения. В результате излишек смазки может привести к преждевременному разрушению.

Стандартная заливка составляет 25% - 35% от внутреннего пространства, но при необходимости может варьироваться. Небольшой процент может быть указан для высокоскоростного приложения с низким крутящим моментом, в то время как гораздо более высокая заливка может быть рекомендована для применения с низкой скоростью и высокой нагрузкой.


Скоростной фактор смазки

Скоростной фактор («DN») рассчитывается как скорость вращения (об/мин) x (внешний диаметр + внутренний диаметр) ÷ 2. Предположим, что подшипник вращается со скоростью 20000 об / мин. Внутренний диаметр подшипника 8 мм и внешний - 22 мм. Вышеприведенная формула дает DN 300 000, поэтому смазка должна иметь фактор выше этой цифры. Многие современные консистентные смазки подходят для высоких скоростей с номиналом 1 млн. DN или более.


Возврат к списку

Все материалы представлены для личного ознакомления и изучения. Разрешается свободное копирование и распространение информации этого раздела при условии неизменного (оригинального) текста и обязательной ссылки на первоисточник - сайт lozovamachinery.com. Использование любых материалов в коммерческих целях разрешается при наличии соответствующего письменного разрешения правообладателя. Редакция и владельцы сайта upec.ua не несут ответственности за ошибки, которые могут содержаться в размещенных материалах, а так же за обусловленные или косвенные убытки, понесенные в связи с предоставлением, применением и использованием настоящих материалов.

Пластичные смазки для подшипников | Автокомпоненты. Бизнес. Технологии. Сервис

На современных автомобилях число точек смазки усилиями конструкторов сокращено до минимума. Но все равно без смазок никак не обойтись при ремонте.

Пластичная смазка состоит из масла, различных присадок, наполнителей, красителя и загустителя, то есть вязкого вещества, подобно губке, удерживающего в себе молекулы масла. В качестве загустителя чаще всего используются мыла, так называются металлические соли жирных кислот – мягкие полужидкие массы.

По названию металла, образовавшего соль, именуется и смазка: литиевая, натриевая, кальциевая, бариевая. Мыло определяет, прежде всего, водостойкость и термостойкость смазки. Литиевые, кальциевые и бариевые смазки – водостойкие, а натриевые не очень, но зато выдерживают более высокую температуру, не становясь жидкими и не вытекая из узлов. Загустителями современных смазок часто служат и различные вязкие полимеры. Масло в составе смазки может быть минеральным или синтетическим (силиконовым, например).

Смазки бывают универсальными и специальными. Универсальные или многоцелевые смазки (multipurpose), как следует из названия, пригодны для применения везде, где от них не требуется каких-то особых качеств. Специальные смазки применяются там, где приходится работать при особо высокой или низкой температуре, в агрессивных средах, при повышенных нагрузках и скоростях скольжения, в течение долгого времени без замены. Существуют специальные смазки, проводящие электрический ток, не боящиеся морской воды и радиации, нерастворимые в топливе или предназначенные только для защиты от коррозии. Особые свойства обеспечиваются составом смазок, так, высокотемпературные смазки, допускающие нагрев свыше 150°C, содержат только синтетические масла. Смазки для тяжелых нагрузок содержат наполнители: дисульфид молибдена (MoS

2), графит, тонкодисперсные порошки мягких металлов (цинк, медь, свинец), фторопласт (тефлон), вязкие полимеры.

Современные универсальные смазки по своим свойствам не уступают многим специальным и вполне могут применяться вместо них. Вот основные марки универсальных автомобильных смазок российского производства*, их свойства и область применения:

Литол-24. Основная и самая распространенная в отечественной автомобильной практике универсальная смазка. Состоит из индустриального минерального масла, загущенного литиевым мылом. Темно-желтая или вишневого цвета мазь, очень водостойкая, выдерживает нагрев до 120°C, может долго работать без замены. Применяется в подшипниках колес и всех прочих узлах трения,

но кроме шарниров равных угловых скоростей (ШРУС).

Лита, Фиол-1, Фиол-2, Фиол-2У, Униол, Северол, Зимол.  Все эти смазки подобны по составу, свойствам и области применения Литолу-24. Северол и Зимол, как следует из названий, более морозостойки, то есть не сильно густеют на морозе. Фиол-2У содержит дисульфид молибдена, она черного цвета и применяется в игольчатых подшипниках карданных шарниров.

ШРУС-4. Смазка, специально предназначенная для шариковых шарниров равных угловых скоростей, где велики удельные нагрузки со скольжением и вероятность задира поверхностей. Состоит из литиевого мыла с минеральным маслом, противозадирные свойства обеспечивает дисульфид молибдена, которого в смазке много – 10% по массе. Он же придает смазке радикально черный цвет. Имеет большое число зарубежных аналогов, также предназначенных прежде всего для ШРУС. Термостойкость – до 120°C. Может применяться в подшипниках качения, для смазки резьбы, шлицев сцепления, червячных, цепных и зубчатых передач, винтов домкратов.

ШРБ-4. Бариевая смазка, созданная специально для шаровых шарниров подвески и шарниров рулевых тяг, работающих в окружении воды, грязи и дорожных реагентов. Вязкая, очень липкая, волокнистая масса желтого цвета, при разлипании тянется между пальцами длинными нитями. Исключительно водостойка, держит нагрев до 130°C, хорошо удерживается на деталях, защищает от коррозии, инертна к резине. Правда, у сегодняшних автомобилей все шарниры, как правило, неразборные и смазывать их не надо. Остаются: подшипники, колесные болты, оси педалей, выводы аккумуляторной батареи.

№158 («Номер 158»). Литиево-калиевая смазка на основе вязкого авиационного масла МС-20. Закладывается в игольчатые подшипники карданных шарниров на заводе на весь срок их службы. Мягкая мазь, содержит канифоль и эффективную антиокислительную присадку – фталоцианин меди, благодаря которой имеет ярко-синий цвет и

ядовита. Будьте осторожны! Применять «сто пятьдесят восьмую» лучше в герметично закрытых узлах: подшипниках электромоторов (стартера), редукторах стеклоочистителей, разумеется, в тех же карданных шарнирах. Рабочая температура – до 100°C.

Графитная смазка УСсА. Состоит из солидола – кальциевого мыла с минеральным маслом и молотого графита. Блестящая, черная, рыхлая масса. Предназначена для грубых механизмов, работающих на открытом воздухе: рессор, цепных передач мотоциклов прежних лет выпуска, винтов домкратов, лебедок, колесных болтов, сцепных устройств. Стоит недорого, водостойка, долго сохраняется на деталях. Не годится для подшипников качения, горячих узлов и точных механизмов, поскольку частицы графита в ней довольно крупные и подшипнику придется их перемалывать, а солидол-основа плавится и распадается уже при 70°C.

МС-1000, МС-Вымпел.  Металлоплакирующие универсальные литиевые смазки. По виду тёмно-серая плотная паста с металлическим блеском. Содержат дисульфид молибдена, микропорошки цинка и других металлов, благодаря чему обладают высокими антизадирными и противоизносными свойствами. Создают металлоплакирующий эффект, то есть образование на трущихся поверхностях тонкой металлической (цинковой или иной) пленки, выглаживающей микронеровности и обеспечивающей низкие потери на трение и минимальный износ. Очень водостойки. Выдерживают температуру до 150°C. Подходят для всех узлов, особенно с высокими нагрузками, в том числе ШРУС.

ЦИАТИМ-201. Авиационная (давно не существующий Центральный институт авиационных топлив и масел) литиевая смазка на основе вазелинового приборного масла. Создана, прежде всего, для работы в авиационных узлах при низкой температуре за бортом. Но давно и широко применяется не только в авиации, но и в промышленности и на автотранспорте. Желтая мягкая мазь. Водостойкая, температурный диапазон – от –60 до +90°C. Неприменима для высоконагруженных узлов, подшипников колес, ходовых резьб и т.п., поскольку масло слишком «легкое».

Смазки типа ЯНЗ-2 и 1-13, как и различные кальциевые смазки – солидолы, считаются устаревшими, упоминание о них можно встретить в инструкциях к старым машинам, и в продаже их также еще можно найти, но в узлах современных автомобилей применять их не рекомендуется. Все они могут быть заменены более совершенными Литолом, Фиолами, МС-1000.

Разумеется, у этих смазок не счесть аналогов иностранного производства. Большинство «магазинных» смазок относится к универсальным. Но при их покупке обращайте внимание на указанную на упаковке область применения или хотя бы на допустимую рабочую температуру.

Смазки выпускаются в банках, тюбиках и специальных круглых картонных тубах, рассчитанных на шприц-нагнетатель.

Срок хранения смазок составляет около пяти-семи лет, в том числе в нераспечатанной емкости. Это не означает, что ровно по окончании срока смазку следует выбросить, все-таки смазка – это не ветчина! Просто свойства постепенно ухудшаются, и закладывать ее после истечения этого срока, скажем, в ответственные узлы нецелесообразно. Признаками старения смазки можно считать ее расслоение на масло и загуститель, а также трещины на поверхности смазки в банке, похожие на трещины на дне пересохшего озера.

Смазки не следует смешивать. При обслуживании узлов трения необходимо обеспечить чистоту и исключить попадание грязи в узел и в банку со смазкой. В частности, накладывать смазку в узел следует специальной чистой лопаточкой или отверткой, но не той, которой только что отворачивали грязные винты. И уж никак не пальцем руки, наверняка измазанной грязью от разборки узла. Внимание! Не заполняйте смазкой весь объем подшипника, достаточно трети или половины. Излишек все равно вытечет, особенно если подшипник высокооборотный.

Сегодня выпускаются и пластичные смазки в аэрозольных баллонах. Пользоваться ими очень просто: жидкая смазка вылетает из баллона под давлением, быстро проникая в самые узкие места между деталями. Через некоторое время растворитель из смазки испаряется, и она становится по-настоящему пластичной. Удобно, поскольку не надо разбирать соединение.

Специальные смазки

Силиконовая смазка. Белая масса, приготовленная на силиконовом (кремнийорганическом) масле, обычно с синтетическим загустителем. Главное преимущество – смазка не вызывает растворения или разбухания обычной, немаслостойкой резины, инертна к пластмассам и прочим синтетическим материалам, менее вредна для кожи рук, чем препараты на минеральных маслах. Непригодна для тяжелонагруженных подшипников колес и подобных.

Технический вазелин. Мягкая полупрозрачная мазь, белая или с желтоватым оттенком. Дешевая и очень легкоплавкая (+45°C), поэтому применяется только как консервационная, для защиты выводов аккумуляторной батареи, да и там может быть заменена любой «настоящей» смазкой. Для любых подшипников непригодна, поскольку наверняка расплавится и вытечет!

Медная смазка. Смесь синтетического или минерального масла с тонкой медной пудрой в виде чешуек. Цвет – соответствующий: яркая розово-золотистая медь. Применяется для резьб, втулок и соединений, работающих при высоких температурах и давлениях, небольших перемещениях и там, где вероятна коррозия. Частицы меди при трении деталей втираются в их поверхности, выглаживая их, увеличивая площадь контакта и уменьшая трение. Обеспечивает защиту от пригорания, «прихватов», задиров, увеличивает токо- и теплопроводность. Может быть использована для крепежных и шлицевых соединений, стыков системы выпуска, резьбы свечей зажигания, колесных болтов, тросов, рессор, клемм аккумулятора, деталей подвески и тормозов. Но в подшипниках качения эту смазку лучше не применять, так как чешуйки меди в ней довольно крупные.

Пушечная смазка ПВК, иногда называемая пушечным салом. Коричневая или темно-желтая вязкая мазь, предназначенная для долговременного противостояния коррозии при хранении. Применяется для защиты армейской техники, стоящей под открытым небом, откуда и появилось это грозное название. Содержит петролатум (похожее на очень вязкое повидло вещество) и ингибиторы коррозии. Для смазки узлов трения, и подшипников в том числе, смазка ПВК совсем непригодна!

Смазка подшипников

Назначение смазки

Смазка необходима для уменьшения трения и изнашивания внутри подшипника. Надлежащая смазка и соответствующие процедуры позволяют подшипникам достигать своего предполагаемого срока службы.

Главным образом, смазка служит следующим целям:

• Cнижение трения и изнашивания. Кольца подшипника, элементы качения и сепаратор подшипника защищены от прямого контакта металла с масляной пленкой, которая уменьшает трение и тепловыделение в области контакта.

• Увеличение срока службы. Усталостная долговечность подшипников зависит в большей мере от вязкости и густоты смазки. Интенсивная густота пленки увеличивает усталостную долговечность подшипника.

• Охлаждение. Циркуляционное масло может использоватся для отвода тепла из подшипника. Циркуляционная система, как правило, используется при выработке подшипником чрезмерного тепла в силу высоких скоростей, высоких нагрузок, или когда тепло из источника, находящегося рядом с подшипником, оказывает влияние на его функционирование. Качество масел ухудшается при высоких температурах, следовательно, важно сохранять охлажденными и масло, и подшипник.

• Другое назначение. Соответствующая смазка также помогает предотвратить попадание инородного материала в подшипники и защищает от коррозии.

Основные методы смазки

Смазка подшипника может производиться с использованием либо масла, либо консистентной смазки. Наиболее удовлетворительное функционирование достигается посредством выбора метода, наиболее подходящего для области конкретного применения. Это, конечно, также зависит от условий, в которых будет работать подшипник.

Смазка маслом превосходит в смазочной способности, однако консистентная смазка позволяет создать более простую инфраструктуру вокруг подшипников. В следующей таблице проводится сравнение смазки маслом и консистентной смазки.

 

Рабочие характеристики При консистентой смазке При смазке маслом
Конструкция корпуса и способ уплотнения Простой

– Может быть комплексным

– Необходимо осторожное обращение

Скорость Предельная скорость составляет 65-80% от скорости смазки маслом Высокая предельная скорость
Охлаждающий эффект Низкий Перенос тепла возможен при использовании циркуляционной смазки под давлением
Текучесть Плохо Хорошо
Полная замена смазки Иногда затруднительна Легкая
Удаление инородных частиц Удаление инородных частиц из смазки невозможно Легкая
Внешнее загрязнение, вызванное утечкой Загрязнение близлежащей территории происходит редко

– Часто происходит без должных контрмер

– Не подходит в тех случаях, когда нужно избегать внешних загрязнений

Смазка консистентной смазкой

Консистентная смазка - это полутвердый смазочный материал на основе базового масла и сгустителя. Иногда добавляются другие ингредиенты для передачи особых свойств смазочной основы.

Добавки: консистентная смазка часто содержит разнообразные добавки, такие как антиоксиданты, ингибиторы коррозии и добавки высокого давления для придания смазке особых свойств. Добавки высокого давления рекомендуется для использования при применении в условиях тяжелых нагрузок. Для продолжительного использования без пополнения необходимо добавить антиоксидант.

Консистенция: показывает "мягкость" консистентной смазки. В следующей таблице отражено соотношение между консистенцией и рабочими условиями.

Номер консистенции (данные шкалы Национального института пластичных смазочных материалов)

 

  0 1 2 3 4

Консистенция(1)

(1/10 мм)

385≈355 340≈310 295≈265 250≈220 205≈175
Рабочие условия

–Для централизованной смазки.

–Когда может произойти ложное бринеллирование.

– Для централизованной смазки.

–Когда может произойти фреттинг-коррозия.

–Для низких температур.

– Для общего использования.

– Для подшипников с уплотнениями.

– Для высокой температуры.

– Для общего использования.

– Для подшипников с уплотонениями.

– Для высоких температур.

– Для подшипников с уплотнениями

(1) Консистенция - глубина следа в консистентной смазке, достигаемая конусом при нажатии определнным весом, указанном в единицах 1/10 мм. Чем больше величина, тем мягче смазочный материал.

Смешение разных видов консистентной смазки

В общем, консистентная смазка разных видов должна смешиваться. Смешение с различными видами загустителей может разрушить состав и физические свойства консистентной смазки. Даже если загустители одного вида, возможные различия в добавках могут привести к разрушающему эффекту.

Количество консистентной смазки

Количество консистентной смазки, помещаемой в корпус, зависит от конструкции корпуса, частоты вращения подшипника, характеристик выбранной консистентной смазки и температуры окружающей среды.

В случаях, когда рабочая скорость не превышает наполовину предельные скорости подшипника, подшипник должен быть наполнен смазкой наполовину или до 2/3 части. Если скорость подшипника превышает половину предельной скорости, то количество консистентной смазки следует сократить от половины до 1/3 и проводить периодичское пополнение смазки. При несложных рабочих условиях первоначальной смазки должно быть достаточно на длительное время без необходимости пополнения. Когда условия становятся жесткими, то появляется необходимость в периодическом пополнении смазки.

Следует избегать чрезмерного количества (переполнения) смазки, так как это приведет к перегреву подшипника.

Пополнение консистентной смазки

Частое пополнение требуется в сложных рабочих условиях, таких как высокая температура окружающей среды или когда загрязняющее вещество может попасть в подшипник. Необходимо составить графики регулярного пополнения смазки. В случаях чрезвычайно сложных условий или расположения подшипников в удаленной области, корпус подшипника должен быть сконструирован так, чтобы пополнение и замена осуществлялись наиболее простым способом. Существуют автоматические системы смазки, и их следует применять.

В нормальных рабочих условиях может быть необходимо периодически смазывать подшипник в целях замены утекающей смазки и удаления испорченной смазки.

Даже при использовании консистентной смазки высокого качества её свойства со временем ухудшаются, в связи с чем, требуется периодическое пополнение.

На рис. (1) и (2) показаны временные интервалы пополнения для различных видов подшипников, работающих на разных скоростях.

Рис. (1) и (2) применимы к условиям смазки высококачественным литиевым мыльноминеральном маслом, выдерживающим температуру 70°С и номинальную нагрузку (P/C=0,1).

Температура

Если температура подшипника превышает 70°С, то на каждые следующие 15°С временной интервал пополнения смазки сокращается наполовину.

Консистентная смазка

Что касается шарикоподшипников, временной интервал пополнения смазки может быть увеличен в зависимости от используемого вида консистентной смазки. (Например, высококачественное литьевое мыльносинтетическое масло может превысить в два раза временной интервал пополнения, показанный на рис. (1). Если температура подшипников менее 70ºС, то подходит использование в качестве смазки литьевое мыльноминеральное масло и литьевое мыльносинтетическое масло).

Нагрузка

Временной интервал пополнения зависит от величины нагрузки подшипника. Смотрите рис. (3). Если Р/C превышает 0,16, то рекомендуется проконсультироваться у специалистов.

(3) Коэффицент нагрузки

 

P/C ≤0.06 0.1 0.13 0.16
Коэффицент нагрузки 1.5 1 0.65 0.45

Смазка маслом

Когда рабочая скорость превышает предельную скорость консистентной смазки, допустимо для подшипника, то следует использовать смазку жидким материалом. Существует несколько методов смазки. Выбор наилучшего метода зависит от рабочих условий.

1) Смазка погружением: не для высоких скоростей

2) Смазка капельной подачей: для высоких скоростей

3) Смазка масляным туманом: от высоких до сверхвысоких скоростей

4) Смазывание разбрызгивателем: коробки передач/редукторы

5) Циркуляционная система смазки: высокие скорости и высокие температуры

6) Струйная смазка: сверхвысокие скорости, такие как у реактивных двигателей или у станочных шпинделей

 

Смазки для подшипников качения

Смазку подшипников качения можно считать главным фактором надежности эксплуатации оборудования. Правильно подобранная, она минимизирует количество случаев поломок механизмов или самого подшипника.

 

Типы подшипников качения и порядок функционирования

Подшипники, которые относятся к типу качения, способствуют вращению узлов оборудования и уменьшению силы трения. Чаще всего эта деталь применяется для поддержания движения осей и валов. Функционирование основано на принципе трения качения. Конструкция детали такова: между внешним и внутренним кольцами заключены тела качения, разделенные сепаратором, служащим для минимизации износа и силы трения. По принципу воспринимаемой нагрузки подшипники снабжаются теламиразных подвидов: шариками или роликами. Роликоподшипники используются чаще при максимальных нагрузках, а шариковые подшипники — в узлах механизма, на который воздействует вращение высокой частоты.

Основные функции смазки для подшипников качения

Главная роль смазки в функционировании подшипника — предотвращение соприкосновения шариков и роликов с дорожкой катания, выполненной из металла. Именно при смазывании уменьшается трение скольжения, деталь становится менее подверженной износу и поломке.

Правильно подобранная смазка минимизирует возможность деформации детали, повышает надежность в эксплуатации, продлевает срок службы всего узла. Используется масло или консистентная смазка с присадками. Различные варианты смазочного материала выполняют следующие задачи: снижение температуры работы, защита от возникновения коррозии, попадания грязи, снижение уровня вибрации, шума.

Основные функции смазки для подшипников качения

Главная роль смазки в функционировании подшипника — предотвращение соприкосновения шариков и роликов с дорожкой катания, выполненной из металла. Именно при смазывании уменьшается трение скольжения, деталь становится менее подверженной износу и поломке.

Правильно подобранная смазка минимизирует возможность деформации детали, повышает надежность в эксплуатации, продлевает срок службы всего узла. Используется масло или консистентная смазка с присадками. Различные варианты смазочного материала выполняют следующие задачи: снижение температуры работы, защита от возникновения коррозии, попадания грязи, снижение уровня вибрации, шума.

Принципы подбора консистентного или масляного вида смазки

В большинстве случаев (до 90%) сегодня применяется именно густая (консистентная) смазка. Несомненными плюсами можно считать такие характеристики:

  • обеспечение уплотнения;
  • невысокие конструктивные расходы;
  • шумопонижающие свойства;
  • большой срок годности.

Правильно выбранную консистентную смазку возможно использовать в подшипниках любой конструкции с большим диапазоном вращательных скоростей и типами нагрузок. Исключение составляют аксиальные роликоподшипники самоустанавливающиеся.

Состав и характеристика консистентной смазки

В состав входит:

  • основное масло — минеральное или синтетическое;
  • сгуститель — бентонит, силикагель, металлические мыла, поликарбамид;
  • присадки — усилители адгезии, ингибиторы окисления, коррозии, твердые материалы, присадки, предназначенные для защиты от естественного износа, повышения качества ЕР, предотвращения трения.

Консистентные виды смазки оптимальны для заполнения подшипников качения: благодаря своему составу они остаются в месте нанесения, уплотняют их, защищают от негативных наружных воздействий температуры, влаги и попадания механических частиц.

Техническая характеристика смазки — восприятие нагрузки, защита от «старения», коррозии, адгезионная способность, устойчивость к деформации — определяется ее составом (основным маслом-наполнителем и сгустителем), а также типами присадок.

Критерии выбора консистентных смазок

При подборе стоит ориентироваться на конструкцию собственно подшипника, тип разделителя-сепаратора, материала его изготовления, а также технические характеристики функционирования детали: частота вращения, термическое воздействие, попадание пыли, воды, использование в неблагоприятной среде, уровень давления. Консистентные материалы имеют отличительные технические параметры:

  1. Класс NLGI. Консистенция выступает мерой твердости во всех смазках для подшипников. По этому показателю (NLGI) они делятся на типы: от очень мягких класса 000 до очень твердых (6-й класс). В подшипниках качения оптимальны к использованию смазки классов от 1 до 4 по показателю NLGI.
  2. Температура каплепадения (в °C). Этот показатель определяется температурой, при которой консистентная смазка сжижается. Температура эта, как правило, превышает рабочую в несколько раз. Последняя определяется двумя показателями: теплом, выделяемым при работе детали, температурой воздуха окружающей среды.
  3. Показатели качества смазки, определенные на четырехшариковой машине. Эта машина представляет собой устройство, предназначенное для исследования различных типов веществ для смазывания, используемых при различных степенях контактных напряжений. Конструкция аппарата представляет собой вращающийся шарик, который скользит по трем шарикам, расположенным статично. В случае проведения испытаний на предельно допустимые нагрузки смазочного материала на крутящийся шарик воздействует испытательная нагрузка, ступенчато повышающаяся. Процедура проводится до тех пор, пока тепло, выделяемое в процессе работы, не «сварит» систему четырех шариков.
  4. Коэффициент количества оборотов — показатель DN. Эта величина показывает, какая предельная окружная скорость может применяться в подшипнике качения при использовании консистентной смазки. Показатель рассчитывается по трем параметрам: средний диаметр детали в миллиметрах, скорость вращения детали, коэффициент, который служит для учета доли силы трения скольжения в конкретной конструкции подшипника.

Значение SKF-Emcor. Этот показатель применяется для определения антикоррозийных свойств консистентной смазки. В процессе исследования добавляют воду, а самоустанавливающийся шарикоподшипник рассматривается на предмет наличия коррозии при указанной продолжительность эксплуатации, определенных временных периодах простоя (по показателю DIN 51802), частоте вращения. Обследование проводится визуально: если на испытуемых кольцах не обнаружено признаков коррозии, степень ее равна нулю. Максимальное покрытие коррозией — степень 5.

Важность смазки подшипников качения

Непременной предпосылкой для эффективной работы, длительной эксплуатации и надежности подшипника считается его регулярная смазка. Здесь необходимо соблюдать определенные требования производителя детали. Подшипник заполняется так, чтобы материал покрыл все рабочие поверхности: дорожки качения, шарики или ролики, сепаратор. Полностью заполняется корпус медленновращающихся подшипников, показатель DN в которых не превышает значения 50000. В быстровращающихся деталях с показателем DN более 400000 заполняется четверть пространства полости детали. В остальных случаях рекомендовано заполнять свободное пространство в подшипнике на треть объема.

Оптимальная эксплуатационная надежность достигается только тогда, когда время добавления смазочных материалов не превышено. При впрыскивании смазки обязательно следить за тем, чтобы предельный срок годности был меньшим, чем допустимый срок эксплуатации детали. В работе используется специальный шприц или автоматическая система.При определенной конструкции узла добавлять смазочный материал желательно во время работы механизма.

Количество вещества при первом заполнении должно находиться в пределах 50–80% от свободного объема полости детали. Если же вывести старую смазку возможности нет, то новый материал подается в деталь ограниченно. Во избежание переизбытка вещества в полости подшипника, когда замена производится с длительными интервалами, необходимо полностью менять консистентную смазку.

Если необходимо перевести подшипник на другой вид смазочного материала, проводят полную очистку внутренней полости. Также нужно проверить возможность смешивания и совместимость материалов.

Смазка для подшипников. Лучшие пластичные материалы

Подшипники широко используются в различном промышленном оборудовании, технике, легковых и грузовых автомобилях, спортивном инвентаре и т.д. Свою распространенность они получили благодаря простоте устройства и невысокой стоимости.

В процессе эксплуатации на эти узлы воздействуют различные нагрузки, скорости, высокие и низкие температуры. Без должного обслуживания они быстро выходят из строя. Снизить их износ, защитить их от температурного воздействия, коррозии и прочих факторов, отрицательно влияющих на работоспособность и надежность, позволяют специальные смазки.

Сравним наиболее известные смазки для подшипников и выберем из них лучшую.

ТОП-5 пластичных смазок для подшипников

EFELE MG-211

1место

EFELE MG-211

0/100

РЕЙТИНГ

0

100

EFELE MG-211 – противозадирная литиевая смазка, предназначенная для узлов, работающих при повышенных нагрузках. Диапазон рабочих температур от -30 до +120 °C.

Материал широко применяется в узлах трения ходовой части подъемно-транспортных машин и автомобилей, в подшипниках вентиляторов, электродвигателей, металлообрабатывающих станков, механизмов общепромышленного оборудования. Подходит также для узлов трения конвейерных систем, машин и установок в цементной, сталелитейной и горнодобывающей промышленности.

Кроме подшипников смазку можно использовать в направляющих, зубчатых передачах, шлицевых соединениях и гибких валах в оболочках.

EFELE MG-211 обладает повышенной несущей способностью, высокими антикоррозионными и противоизносными свойствами. Материал устойчив к смыванию водой и отличается хорошей коллоидной стабильностью, а также длительным сроком службы. Может выполнять функцию антиаварийной смазки.

Molykote Multilub

2место

Molykote Multilub

0/100

РЕЙТИНГ

0

100

Molykote Multilub – пластичная литиевая смазка для долговременного смазывания. Диапазон рабочих температур от -25 до +120 °C.

Материал предназначен для узлов трения ходовой части подъемно-транспортных машин и автомобилей, подшипников электродвигатей и вентиляторов, подшипников шпинделей, шарико-винтовных передач, направляющих металлообрабатывающих станков.

Может использоваться в узлах трения конвейерных систем, различных открытых и закрытых зубчатых передачах, шлицевых соединениях и гибких валах в оболочках.

Смазка работает во влажной среде, устойчива к вымыванию водой. Она обладает повышенной несущей способностью, антикоррозионными и противоизносными свойствами, а также свойствами антиаварийной смазки и длительным сроком службы.

Mobilux EP 2

3место

Mobilux EP 2

0/100

РЕЙТИНГ

0

100

Mobilux EP 2 – пластичная литиевая смазка для узлов оборудования, работающих в тяжелых условиях. Диапазон рабочих температур от -20 до + 130 °C.

Смазка используется в узлах и механизмах автомобильной техники и промышленного оборудования. В частности ее применяют для обслуживания подшипников и втулок, которые работают при повышенных нагрузках, высоких скоростях, а также ударных нагрузках.

Материал обладает антикоррозионными и противоизносными свойствами, не вымывается водой и устойчив к ее длительному воздействию. Он отличается длительным сроком службы и может использоваться в централизованных системах подачи смазки.

Renolit EP 2

4место

Renolit EP 2

0/100

РЕЙТИНГ

0

100

Renolit EP 2 – многоцелевая пластичная литиевая смазка с противозадирными и противоизносными присадками. Диапазон рабочих температур от -25 до +130 °C.

Материал используется в узлах легковых и грузовых автомобилей, специальной техники, промышленного оборудования. Может применяться в редукторах, централизованных системах смазки и в качестве смазки универсально назначения.

Renolit EP 2 устойчив к воздействию воды, выдерживает повышенные нагрузки, обладает противозадирными и антикоррозионными свойствами.


Shell Gadus S2 V100 2

5место

Shell Gadus S2 V100 2

0/100

РЕЙТИНГ

0

100

Shell Gadus S2 V100 2 – многоцелевая пластичная литиевая смазка. Диапазон рабочих температур до +130 °C. Нижнюю границу производитель не указывает.

Материал используется в подшипниках электромоторов, водяных насосов, закрытых подшипниках, смазываемых однократно на весь срок службы. Подходит для общепромышленного применения, централизованных смазочных систем и некоторых легконагруженных узлов.

Смазка обладает окислительной и механической стабильностью, антикоррозионными свойствами и длительным сроком хранения.

Зачем нужны подшипники?

Подшипники – это узлы, которые являются частью опор вращающихся валов и осей. Они принимают осевые и радиальные нагрузки, которые приложены к оси или валу, и передают их на другие части конструкции, например корпус или раму. Они также должны обеспечивать движение с минимальными потерями и удерживать вал в пространстве. Именно от качества подшипника зависит КПД, срок службы и работоспособность того или иного оборудования.


Выделяют две большие группы подшипников по типу трения. Это узлы качения и скольжения. Отдельной группой стоят магнитные подшипники.


Подшипники скольжения

Подшипники скольжения представляют собой корпус с отверстием, в который запрессована втулка. Наиболее распространенная конструкция состоит из разъемного корпуса и вкладыша, выполненного чаще всего из цветного металла. Зазор, находящийся между отверстием втулки подшипника и валом, позволяет валу свободно вращаться.

В зависимости от условий эксплуатации, окружной скорости цапфы и конструкции выделяют следующие виды трения: жидкостное, граничное, сухое и газодинамическое. В подшипниках, где трение жидкостное, в момент пуска проходит этап граничного.

Смазочный материал – это одно из основных условий надежной работы подшипника. Он обеспечивает разделение подвижных частей, низкое трение, отводит тепло и защищает от агрессивного внешнего воздействия. Выделяют жидкие, пластичные, твердые и газообразные смазочные материалы.

Самые высокие эксплуатационные свойства отмечаются у пористых самосмазывающихся подшипников, которые изготавливаются методом порошковой металлургии. В процессе работы они нагреваются и выделяет смазочный материал из пор. Так смазка попадает на рабочие поверхности. В состоянии покоя она впитывается обратно.

Подшипники скольжения можно разделять по форме подшипникового отверстия (одно- или многоповерхностные, со смещением поверхностей или без, со смещением центра или без), по направлению восприятия нагрузки (радиально-упорные, осевые, радиальные), по конструкции (встроенные, разъемные, неразъемные), по количеству масленок (с одним или несколькими клапанами), регулируемые и нерегулируемые.

К преимуществам подшипников скольжения относят:

  • Простую конструкцию
  • Экономичность при больших диаметрах валов
  • Способность выдерживать большие вибрационные и ударные нагрузки
  • Надежность в приводах, работающих при высоких скоростях
  • Возможность регулировки зазора
  • Возможность установки на шейки коленчатых валов разъемных подшипников

Из недостатков можно выделить пониженный КПД, высокие требования к чистоте смазочного материала и температуре, неравномерный износ цапфы и подшипника, большой расход смазки, большие потери на трение при пуске, сравнительно большие осевые размеры.


Подшипники качения

Подшипники качения работают преимущественно в условиях трения качения. Они состоят из 2 колец, тел качения, сепаратора, который отделяет тела качения друг от друга, удерживает на одинаковом расстоянии и направляет их движение. Снаружи внутреннего кольца и внутри наружного кольца расположены желоба, по которым перемещаются тела качения.

С целью уменьшения габаритов, а также для повышения жесткости и точности в некоторых узлах техники задействованы совмещенные опоры. Они представляют собой желоба, которые выполнены непосредственно на поверхности корпусной детали или на валу.

Некоторые виды подшипников качения выпускаются без сепаратора. Они содержат большое количество тел качения и отличаются большей грузоподъемностью. Отрицательной стороной отсутствия сепаратора является снижение предельных частот вращения вследствие повышенных моментов сопротивления вращению.

Подшипники качения бывают шариковыми (радиальные, сферические, упорные, радиально-упорные, радиальные для для корпусных узлов), роликовые с цилиндрическими (радиальные, упорные), коническими (радиально-упорные, упорные), сферическими роликами (радиальные самоустанавливающиеся, упорные самоустанавливающиеся), с игольчатыми роликами (упорные, радиальные, комбинированные), радиальные тороидальные, радиальные с витыми роликами, комбинированные, роликовые и шариковые опорные, опорно поворотные устройства.

В сравнении с подшипниками скольжения, узлы качения обладают следующими преимуществами:

  • Меньшие потери на трение
  • Более высокий коэффициент полезного действия
  • Момент трения при пуске меньше в 10-20 раз
  • Простота обслуживания и замены
  • Меньший расход смазки
  • Низкая стоимость
  • Простота ремонта оборудования
  • Экономия цветных металлов, которые нужны при производстве подшипников скольжения

К недостаткам подшипников качения относят сложность установки и монтажа узлов, шум при работе, непригодность для работы при высоких вибрационных и ударных нагрузках, высокую стоимость при небольших партиях, ограниченную возможность применения в условиях очень высоких нагрузок и высоких скоростей, повышенную чувствительность к погрешностям при установке.

Магнитные подшипники

Магнитные подшипники (подвесы) работают по принципу левитации, которая создается магнитными и электрическими полями. Благодаря этому можно осуществить подвес вращающегося вала без физического контакта и обеспечить его вращение без износа и трения.

По принципу действия магнитные подшипники делятся на магнитогидродинамические, сверхпроводящие, диамагнитные, кондукторные, индукционные, LC-резонансные, электростатические, активные и на постоянных магнитах. Сегодня наибольшей популярностью пользуются активные магнитные подшипники (АМП). Это мехатронные управляемые устройства, где положение ротора стабилизируется при помощи сил магнитного притяжения, которое действует на ротор со стороны электромагнитов. Система автоматического управления регулирует в них ток посредством сигналов датчиков перемещения ротора.

Полный бесконтактный подвес ротора осуществляется при помощи одного осевого АМП и двух радиальных, либо двух конических АМП. Именно поэтому такая система содержит и подшипники, которые встроены в корпус машины, и электронный блок управления, который соединен с датчиками и обмотками электромагнитов при помощи проводов. Обработка сигналов может быть как аналоговой, так и цифровой.

К преимуществам активных магнитных подшипников относят:

  • Относительно высокую грузоподъемность
  • Возможность применения при высоких скоростях, низких и высоких температурах, вакууме и т.д.
  • Высокую механическую прочность
  • Возможность создания неконтактной устойчивой подвески тела
  • Возможность изменять жесткость и демпфирование в широких пределах

Для работы активных магнитных подшипников требуется сложная и дорогостоящая аппаратура, а также внешний источник энергии. К сожалению, все это сильно снижает надежность и эффективность всей системы. Поэтому в настоящее время ведутся разработки пассивных магнитных подшипников (ПМП). Например, высокоэнергетические постоянные магниты на основе неодим-железо-боре (NdFeB), которые не требуют сложных систем регулировки.


Область применения подшипников

Область применения подшипников скольжения обусловлена отсутствием возможности использования подшипников качения. Например, они широко распространены в оборудовании с высокой частотой вращения: в центрифугах, станках и т.д. Но в условиях, при которых подшипники эксплуатируются, их срок службы относительно мал.

Также подшипники скольжения применяются в случаях, когда узел должен быть разборным, например, подшипник коленчатого вала, когда узел должен работать под воздействием высоких ударных нагрузок и/или обладать малыми геометрическими размерами (стартеры). В сельскохозяйственной технике применение этих подшипников обусловлено условиями эксплуатации: агрессивные среды, тяжелые нагрузки, низкие скорости, влажность.

Незаменимы они в металлообрабатывающем оборудовании. Так в прокатных станах вместо подшипников качения используются текстолитовые вкладыши. Это обусловлено тем, что вал к вкладышу должен прилегать не менее, чем на 60 %.

Подшипники качения широко применяются в различном электрическом оборудовании. В отличии от узлов скольжения, они менее подвержены износу. Это особенно важно для техники, где малые воздушные зазоры, меньшие потери на трение и длительная эксплуатация без замены смазочного материала.

В малогабаритных электрических машинах используются закрытые подшипники с одной или двумя защитными шайбами. Это обусловлено тем, что для их установки не требуется специальных уплотнителей для удержания смазочного материала, так как уплотнения уже встроены в сам подшипник.

Помимо различных электрических машин подшипники качения применяются в узлах авиационной техники, где нет высоких удельных нагрузок, различных скоростных приборах, автомобильной технике (выжимные, ступичные и т.д.), конвейерных системах, судоходной, сельскохозяйственной специальной технике, грузовых автомобилях и т.д.

Активные магнитные подшипники применяются в турбокомпрессорах, турбовентиляторах, турбомолекулярных насосах, электрошпинделях, турбодетандерах (криогенная техника), газовых турбинах и турбоэлектрических агрегатах и инерционных накопителях энергии.


Виды смазочных материалов для подшипников

Регулярное обслуживание подшипников является залогом их длительной, эффективной и надежной работы. Но нельзя просто так взять и заложить любую смазку в узел. Нужно руководствоваться определенными требованиями производителя детали. Смазочный материал закладывается так, чтобы были покрыты все рабочие поверхности подшипника: сепаратор, ролики или шарики, дорожки качения. Низкоскоростные подшипники заполняются полностью. В скоростных узлах, где значение DN превышает 400000 об/мин смазка должна занимать 1/4 пространства. Во всех остальных случаях она закладывается на 1/3 объема.


Для обслуживания подшипников используются масла, пластичные смазки, твердые смазочные материалы и газы.


Масла

Масло для подшипников применяется в случаях, когда узлы работают при высоких температурах и скоростях. Оно обеспечивает их постоянное охлаждение путем отвода тепла в окружающую среду.

Выделяют синтетические, полусинтетические и минеральные масла. Синтетика производится на основе полимеров и различных соединений органических кислот. Сегодня на рынке представлены полиальфаолефиновые (ПАО), полигликолевые (ПАГ) и эфирные масла. По сравнению с минеральными, они практически не подвержены изменениям вязкости при перепадах температур и не теряют своих характеристик в агрессивной среде.

Минеральные масла изготавливают на основе продуктов нефтепереработки. Для усиления их рабочих свойств в состав материалов вводят различные присадки. Наряду с синтетикой, они широко используются в подшипниках качения и скольжения.

Полусинтетика изготавливается на основе минеральных и синтетических масел.

Масла выполняют несколько важный функций:

  • Фрикционная. Снижает силу трения при контакте скользящих или вращающихся поверхностей
  • Защитная. Образует защитную пленку, которая предохраняет от коррозии и механических повреждений
  • Барьерная. Защищает внутренние поверхности подшипника от проникновения механических частиц и агрессивных веществ
  • Терморегулирующая. Снижает вероятность перегрева путем отвода тепла наружу

Несмотря на то, что для обслуживания необходимо использовать рекомендованные производителем подшипников масла, но бывает, что рекомендации отсутствуют и неизвестно, каким смазочным материалом воспользоваться. В этих случаях при подборе необходимо исходить из условий эксплуатации.

В подшипники, которые работают при низких температурах, рекомендуются масла с температурой застывания на 15-20 ˚С ниже условий эксплуатации. Например, если подшипник работает при температуре -20 ˚С, смазочный материал должен выдерживать минимум -35 ˚С. При этом вязкость продукта должна быть минимальной. Для смазывания высокотемпературных узлов нужно применять вязкие масла.

Чем выше угловая скорость вращения подшипника, тем меньше должна быть вязкость смазки. Если подшипник эксплуатируется при частых пусках, остановах и реверсах, масло должно быть более вязким.

В подшипниках скольжения преимущественно используются синтетические масла. В подшипниках качения вязкость материала определяется конструкцией детали. Например, в цилиндрических и шариковых подшипниках вязкость масла должна составлять не менее 13 мм2/с, в сферических и конических – не менее 20 мм2/с, в упорных – не менее 13 мм2/с.

Масла в подшипники поступают несколькими методами:

  • Погружение (для низких и средних скоростей)
  • Капельная подача (для быстроходных подшипников)
  • Масляный туман (для высоких и сверхвысоких скоростей)
  • Разбрызгивание (коробки передач, редукторы)
  • Циркуляционная система смазки (высокие температуры и скорости)
  • Струйная смазка (сверхвысокие скорости)

Пластичные смазки


Они представляют собой мази, которые служат для снижения трения. По сравнению с маслами они лучше удерживаются на вертикальных поверхностях, не выходят из контакта с взаимодействующими поверхностями и герметизируют смазываемые узлы.

Пластичные смазки применяют, если подшипники работают при малых, средних, высоких скоростях и/или ударных нагрузках. В отличие от масел, пластичные смазки имеют более широкую область применения и подходят практических для любых условий эксплуатации узлов.

В зависимости от факторов работы подшипников выделяют:

  • Универсальные смазки
  • Высокотемпературные смазки для подшипников
  • Морозостойкие смазки
  • Смазки для высокоскоростных подшипников
  • Смазки для высоких и экстремально высоких нагрузок
  • Смазки для оборудования пищевой промышленности
  • Смазки для узлов, работающих под воздействием химически агрессивных сред
  • Шумоподавляющие смазки

Пластичные смазки на 70-90 % состоят из базового масла (минеральное, синтетическое, полусинтетическое) и загустителя 10-15 %. В качестве загустителей используются различные мыла, продукты органического и неорганического происхождения и твердые углеводороды. Именно они позволяют смазке в состоянии покоя вести себя как твердое тело, а под воздействием нагрузок – как жидкое.


По составу пластичные смазки могут быть литиевыми, силиконовыми, полимочевинными и т.д.

Присадки и различные добавки составляют до 5 % от общей массы смазочного материала. Это могут быть противозадирные, антиокислительные, антикоррозионные компоненты и т.д. Для придания дополнительных свойств в смазку добавляют антифрикционные и герметизирующие вещества: порошки цинка, меди или свинца, графит, дисульфид молибдена и др.

По классификации NLGI консистенция смазочных материалов бывает следующей:

  • 000 – вязкие и очень густые масла
  • 00 – очень мягкие смазки
  • 0, 1 – мягкие смазки
  • 2 – вазелинообразные
  • 3 – почти твердые
  • 4 – зернистообразные
  • 5 – твердые
  • 6 – мылообразные

Данная классификация применяется только к импортным смазкам. В отечественных материалах она не используется.

По типу загустителя смазки могут быть мыльные (на основе солей карбоновых кислот), углеводородные (на основе тугокоплавких углеводородов), неорганические (на основе силикагеля, графита, асбеста и др.) и органические (на основе производных карбамида и кристаллических полимеров).

Твердые смазочные материалы

В чистом виде твердые смазки применяются только в подшипниках скольжения. Они образуют тонкий сухой слой, который снижает износ и трение. Подобные материалы используются в случаях, когда масла и пластичные смазки не соответствуют условиям эксплуатации и требованиям оборудования, например в вакууме, радиации и т.д. Они широко распространены в металлургии, приборостроении и машиностроении.


В качестве твердых смазочных материалов и покрытий на их основе используют политетрафторэтилен (ПТФЭ, тефлон), графит, дисульфид молибдена (MoS2) или мягкие металлы (медь, цинк и т.д.)

Дисульфид молибдена отличается низким коэффициентом трения и в атмосфере, и в вакууме. В инертной атмосфере он термостабилен при температурах до +1100 °С, но в контакте с воздухом применение материала ограничено температурами +350 °С...+400 °С. MoS2, в отличие от графита и ПТФЭ, обладает более высокой грузоподъемностью. Также материал при работе в вакууме заменяет графит.

Графит обладает низким коэффициентом трения и очень высокой термостабильностью (до +2000 °С). Адсорбированные пары в графите значительно усиливают его смазывающие свойства. Но в сухой среде, например, в вакууме, применение графита может быть ограничено.

При использовании графита при температурах ниже -100 °С следует обеспечить принудительное поступление адсорбированных паров к графитному смазочному слою, так как при отрицательных температурах его коэффициент трения увеличивается.

Из-за окисления при температурах +500 °С...+600 °С применение графита ограничено, но с добавлением неорганических присадок его можно использовать при температурах до +550 °С. В глубоком вакууме материал теряет свои смазывающие свойства, устойчивость к радиации и химическим средам.

Политетрафторэтилен (ПТФЭ) имеет очень низкий коэффициент трения как в атмосфере, так и вакууме. Его можно использовать при температурах от -100 °С до +250 °С. ПТФЭ не отличается долговечностью и высокой грузоподъемностью как другие материалы. Он не используется при высоких температурах, так как обладает низкой теплоотдачей и теплопроводностью, но имеет высокую стойкость к различным агрессивным средам.

Порошки мягких металлов, таких как цинк, индий, медь, серебро, золото и свинец обладают низким коэффициентом трения и в вакууме, и в атмосфере. Они широко применяются при высоких температурах до +1000 °С, а также для смазывания элементов с минимальным скольжением.

Газы

Газовые смазки – это смазки, при которых поверхности трения деталей, находящиеся в относительном движении, разделены газом. Для этого применяют воздух, хладон, неон и азот, а также низковязкие газы, например, водород. Данный вид смазывания применяются в турбокомпрессорах, газовых турбинах, ультрацентрифугах, оборудовании ядерных установок, узлах трения точных приборов.

Существует 3 вида газовой смазки:

  • Газодинамическая
  • Газостатическая
  • Газостатодинамическая (гибридная)

Газодинамическая смазка разделяет поверхности благодаря давлению, которое возникает в слое газа из-за движения поверхностей. Она применяется в низконагруженных и высокоскоростных узлах, например подшипниках компрессоров и ротационных насосов, высокооборотных электродвигателей, ультрацентрифугах.

Газостатическая смазка разделяет поверхности, которые находятся в относительном движении или покое, благодаря газу. Он поступает в зазор между поверхностями под давлением в 0,3 МПа. Данный вид смазки применяется в узлах механических генераторов ультразвука, скоростных центрифуг, высокоскоростных шлифовальных головок.

Газостатодинамическая смазка универсальна. Она объединяет принципы работы газодинамической и газостатической смазки.

Характеристики и свойства смазок

В зависимости от типа и состава все смазочные материалы обладают определенными свойствами. Тем не менее основные характеристики смазок можно унифицировать.

Начнем с прочности смазки для подшипников. Чем она выше, тем меньше вероятность того, что смазочный материал выдавится из подшипника. Данное свойство применимо к пластичным смазкам и маслам. Твердые смазочные материалы и газы лишены данной характеристики. Тем не менее смазка не должна обладать слишком высокой прочности, так как она не сможет свободно попасть в зону трения.

Вязкость смазки определяет ее консистенцию. Она варьируется от очень мягкой до мылообразной в пластичных смазках, и от очень жидкой до очень густой в маслах. Вязкость является непостоянной величиной, так как зависит от внешних факторов: температур, деформации т.п.

Термостойкость определяет верхнюю границу рабочих температур смазочного материала. Чем она выше, тем лучше смазка будет работать при высоких температурах. Если термостойкость недостаточная, то смазочный материал может вытечь из зоны трения, закоксоваться и даже воспламениться. Поэтому термостойкие смазки являются наилучшим решением для работы при высоких температурах.

Морозостойкость определяет нижнюю границу рабочих температур. Если она недостаточная, то смазка загустеет и затруднит движение узлов. Низкотемпературные смазки позволяют узлам бесперебойно работать при отрицательных температурах.


Механическая стабильность определяет поведение смазок после деформации. Изменение свойств зависит от того, насколько интенсивному и продолжительному воздействию они подвергались. Смазки с низким показателем механической стабильности не рекомендуется использовать в негерметичных узлах.

От физико-химической стабильности зависит способность смазочных материалов сохранять свойства и состав в результате окисления, выделения дисперсионной среды или испарения.

Водостойкость – это устойчивость смазки к воздействию воды: вымыванию, растворению. Водостойкие смазочные материалы не впитывают воду и не вступают в химическую реакцию с ней.

Адгезия – это способность смазки удерживаться на различных поверхностях. Материалы с хорошей адгезией липкие на ощупь, трудно смываются и стираются.

Противозадирные, противоизносные, антикоррозионные свойства позволяют смазкам предотвращать заедания и задиры трущихся поверхностей, снижать их износ и защищать от коррозионного воздействия.

Смазка подшипников качения | OKS Spezialschmierstoffe GmbH

Правильная смазка подшипников качения снижает количество случаев выхода машин из строя по причине повреждения подшипников и повышает эксплуатационную надежность

Принцип действия и типы подшипника качения

Подшипники качения обеспечивают вращательное движение с уменьшением трения между различными компонентами машины.
Поэтому в технике подшипники качения используются, в том числе, для приведения в движение и поддерживания валов и осей. В основе работы подшипников качения лежит принцип трения качения: они состоят из внутреннего и внешнего кольца, между которыми перекатываются тела качения, которые для еще большего снижения трения и износа отделяются друг от друга сепаратором. В зависимости от нагрузки тела качения могут иметь различные формы, например, шарики или ролики. По причине трения качения, связанного с формой тела качения, шариковые подшипники подходят больше для использования с большой частотой вращения, а роликовые подшипники, напротив, лучше использовать при высоких нагрузках.

Задачи смазки подшипников качения

Цель смазки подшипников качения состоит в том, чтобы за счет смазочной пленки предотвратить соприкосновение металлических поверхностей катания и скольжения и, таким образом, еще сильнее уменьшить трение скольжения в подшипнике качения. Кроме того, смазка подшипника качения улучшает защиту от износа. Благодаря этому предотвращаются повреждения подшипников, продлевается срок службы подшипника и повышается эксплуатационная надежность. К дополнительным задачам, которые выполняет смазка в подшипнике качения, в зависимости от типа смазочного материала (масло или консистентная смазка с соответствующим использованием присадок), относятся: защита от коррозии, отвод тепла из подшипника, защита подшипника от загрязнений внутри и снаружи, уменьшение шума при работе подшипника, а также обеспечение уплотняющего эффекта уплотнений подшипника.

Критерии выбора консистентной или масляной смазки
В примерно 90% всех подшипников качения используется консистентная смазка. Существенными преимуществами консистентной смазки являются:

  • очень низкие конструктивные затраты
  • хорошее уплотнение подшипника
  • длительный срок эксплуатации
  • низкий момент сил трения
  • хорошая аварийная антизадирная способность при использовании твердых смазочных веществ
  • хорошие шумопонижающие свойства

При правильном выборе консистентные смазки обеспечивают для всех конструкций подшипников (кроме аксиальных самоустанавливающихся роликоподшипников) надежную смазку при широком диапазоне скорости вращения и нагрузки.

Структура и характеристики консистентных смазок
Консистентные смазки состоят из основного масла, связанного сгустителем. Благодаря этому масло остается на месте смазки. Там оно обеспечивает защиту от трения и износа и уплотняет место смазки, защищая его от внешних воздействий, например, влаги и посторонних материалов. Поэтому консистентные смазки идеально подходят для применения в подшипниках качения. Типичные рабочие характеристики консистентной смазки, например, температура каплепадения, способность к восприятию нагрузки и водостойкость, определяются основным маслом и сгустителем. Улучшение защиты от коррозии и износа, способности к восприятию нагрузки, адгезионной способности и стойкости к старению достигается за счет добавляемых в консистентную смазку присадок.

Параметры для выбора консистентной смазки для подшипников качения

Выбор консистентной смазки для подшипников качения зависит от конструкции подшипника качения и материала сепаратора подшипника качения (металлы или пластмассы), а также от таких условий применения, как рабочая температура, диапазон частоты вращения, давление и влияние окружающей среды (вода, пыль или агрессивные среды). Для характеристики консистентной смазки для подшипников качения используются следующие параметры.

1. Класс NLGI

Для консистентных смазок консистенция является мерой твердости. Консистентные смазки классифицируются по NLGI от очень мягких (класс 000) до очень твердых (класс 6). Для использования в подшипниках качения подходят консистентные смазки классов NLGI 1-4.

2. Температура каплепадения (в °C)

Температурой каплепадения консистентной смазки считается температура, при которой происходит сжижение консистентной смазки. Эта температура существенно выше рекомендуемой рабочей температуры, которая определяется в подшипнике качения не только температурой окружающей среды, но и теплом, возникающим при его эксплуатации.

3. Показатель качества смазочного материала, полученный на четырехшариковой машине

Четырехшариковый аппарат – это испытательное устройство для смазочных материалов, которые используются при высоких контактных напряжениях. Он состоит из вращающегося шарика, скользящего по трем неподвижным шарикам. При испытаниях на максимальное восприятие нагрузки смазочного вещества на вращающийся шарик действует испытательная нагрузка, которая ступенчато повышается, пока под воздействием теплоты трения не произойдет сваривание системы четырех шариков.

4. Величина DN (коэффициент числа оборотов)

Величина DN указывает на то, до какой максимальной окружной скорости может использоваться консистентная смазка в подшипнике качения. Она рассчитывается из скорости вращения подшипника, среднего диаметра подшипника (в мм) и коэффициента для учета доли трения скольжения при соответствующей конструкции подшипника.

5. Значение SKF-Emcor

Метод SKF-Emcor используется для оценки антикоррозионных свойств консистентных смазок для подшипников качения. При этом в консистентную смазку добавляется вода, а самоустанавливающиеся шарикоподшипники проверяются на наличие коррозии при заданной продолжительности работы, скорости вращения и длительных простоях в соответствии с DIN 51802. Если визуальный контроль испытуемых колец не показал наличия коррозии, то степень коррозии равна 0. При очень сильной коррозии присваивается степень коррозии 5.

Смазка подшипников качения

Важной предпосылкой для достижения высокой эксплуатационный надежности подшипника качения является его непрерывное снабжение смазочным материалом. При первой или повторной смазке подшипника нужно соблюдать указания производителя подшипника. Заполнять подшипник нужно таким образом, чтобы все его функциональные поверхности покрывались консистентной смазкой. Медленно вращающиеся подшипники (величина DN < 50.000) и их корпус могут быть заполнены полностью, а быстро вращающиеся подшипники (величина DN > 400.000) – до 1/4 свободной внутренней полости подшипника. В остальных случаях рекомендуется заполнять подшипники на 1/3.

Смазываемые консистентной смазкой подшипники обладают достаточной эксплуатационной надежностью, если сроки добавления смазки не превышены. Добавление смазки необходимо в том случае, если срок годности консистентной смазки меньше, чем ожидаемый срок службы подшипника. Добавление смазки выполняется с помощью смазочного шприца или автоматических смазочных систем. По возможности добавление смазки следует выполнять во время эксплуатации. Количество добавляемой смазки составляет 50–80% от количества смазки при первом заполнении. Если нет возможности для отвода старой консистентной смазки, то количество консистентной смазки должно быть ограничено, чтобы предотвратить избыточное смазывание подшипника.

При больших интервалах добавления смазки следует стремиться к полной замене консистентной смазки. Перед переходом на другой вид консистентной смазки необходимо тщательно очистить подшипник качения или добавлять консистентную смазку до тех пор, пока старая консистентная смазка не будет полостью вытеснена из подшипника. В этом случае следует предварительно проверить смешиваемость и совместимость смазочных материалов.

Назад к обзору

Расчет смазки для подшипников качения (часть 1)

   Для выбора смазки (жидкой или густой) необходимо учитывать, что густая смазка повышает момент вращения, который увеличивается при низких температурах. Там, где скорость не превышает нескольких сотен оборотов в 1 мин, требуется смазка маслом.

   

   При скорости, превышающей эту величину, лучше употреблять гу­стую смазку, так как подшипникам необходимы лучшие условия смазки и у них есть тенденция освободиться от свободной жидкости. Густую смазку легче удержать, чем масло. Кроме того, с увеличением скорости сопротивление густой смазки вращению меньше вследствие прирабатываемости смазки. Выбирают сорт густой смазки по табл. 52.

   Допускаемые скорости подшипников качения при густой смазке определяют из соотношения внутреннего Диаметра в мм и числа оборо­тов в минуту (d и п). Практически окружная скорость вращения не должна превышать 4—5 м/сек, но можно пользоваться определенными формулами.

  1. Для шариковых и роликовых подшипников с цилиндрическими ро­ликами

dn≤3000 000/(√d/50)

   (для подшипников d<50 мм dn <300 000).

   2. Для других подшипников-при d >40 мм

dn≤160 000/(√d/50)

   Максимальные значения dn, полученные по приведенным формулам, могут быть повышены, если благоприятствуют температурные условия работы подшипника. Интервалы смены густой смазки в подшипниках, могут быть определены по следующим формулам:

   1.  Для шариковых подшипников среднего размера (d =150 — 180 мм).

   Суммарное число оборотов между пополнениями подшипника смазкой

         α=2000*106/d

   2.  Для среднего диаметра подшипников с цилиндрическими роликами

         α=1000*106/d

   3.  Для других роликовых подшипников среднего диаметра

         α=500*106/d

   Для этих же целей в эксплуатационных условиях можно пользовать-

   Для этих же целей в эксплуатационных условиях можно пользовать­ся номограммой (рис. 96,а). Периодичность смены смазки, полученная по вышеприведенным формулам, должна быть понижена в следующих случаях: для подшипников d >200 мм; для подшипников, работающих при высоких скоростях, где dn >200000; когда температура подшипника близка к рекомендуемой рабочей температуре густой смазки. Для полу­чения интервала между пополнениями смазки в часах полученные значе­ния а следует разделить на 60 п.

   Необходимые и достаточные дозы консистентной смазки, расходуе­мые на первоначальное заполнение корпуса подшипника и на периодиче­ское пополнение, регламентируются данными, приведенными в табл. 53. По приблизительным нормам объем заполнителя должен занимать по­ловину свободного пространства корпуса подшипника.

      

      

   Для подшипников качения с dвн > 140 мм количество смазки для за­полнения корпуса подсчитывают по формуле

Q3=1,001B(D2d2),

   где Q3 — количество смазки, необходимое для заполнения корпуса, г;

   В — ширина подшипника, мм;

   D — наружный диаметр подшипника, мм;

    d — внутренний диаметр подшипника, мм.

   Количество смазки для периодического добавления

         Q=0,0005DB г.

   Это же количество можно определить и по табл. 54. Для подшипни­ков с dвн >260 мм периодичность добавки смазки определяют экспериментально для каждого случая отдельно или по формулам, приведенным выше. Ходовые зазоры в лабиринте и уплотнении вала изменяются от конструкции и во многом зависят от механической точности, вибрацион­ного перемещения вала и нужны во избежание фрикционного контакта на высокой скорости. В неответственных конструкциях используют зазо­ры от 0,076 до 0,127 мм на радиус и почти столько же в осевом направ­лении.

Смазка подшипников - Консистентная смазка подшипников

Смазка

Смазка абсолютно необходима для правильной работы шариковых и роликовых подшипников. Правильная смазка уменьшит трение между внутренними поверхностями скольжения компонентов подшипников и уменьшит или предотвратит контакт металла по металлу тел качения с их дорожками качения. Правильная смазка снижает износ и предотвращает коррозию, обеспечивая длительный срок службы подшипников.

Смазка, особенно циркулирующее масло, также отводит тепло от подшипника.

Существует два основных типа смазочных материалов для подшипников: масло и консистентная смазка. Первое довольно просто понять, поскольку оно является свободно текущей жидкостью, а второе - немного сложнее. Чтобы быть смазочным материалом, все консистентные смазки содержат масло, которое улавливается утолщенной основой. Именно эта основа создает впечатление, что смазка является более вязким типом масла; однако фактическое смазывание выполняет масло в пластичной смазке. Каждый тип смазки имеет свои преимущества и недостатки и выбирается в зависимости от области применения.Основными преимуществами двух основных типов смазочных материалов являются:

Смазка Преимущество Недостаток

Нефть

Легко распределяется, смазывает другие компоненты, меньше лобовое сопротивление, легче сливать и заменять. Лучше при высокой температуре.

Возможна утечка (проблема окружающей среды), смазка больше не требуется

Смазка

Остается на месте, не протекает легко, улучшает герметичность и не требует контроля.

Требуется больше труда для очистки и пополнения. Высокотемпературная смазка очень дорога.

Каждый производитель смазочного материала может предоставить лист технических характеристик для каждого из своих продуктов, и каждый лист будет иметь список примерно из 20 свойств и их значений, связанных с этим смазочным материалом. Важнейшим свойством любой смазки для подшипников качения является вязкость масла. Если спецификация относится к маслу, значения вязкости относятся к маслу.Если это пластичная смазка, это должно относиться к «вязкости базового масла» или другому подобному термину, в зависимости от производителя. Обычно четыре значения вязкости отображаются следующим образом:

  • сСт при 40 ° C (104 ° F), единицы СИ
  • сСт при 100 ° C (212 ° F), единицы СИ
  • SUS @ 100 ° F (38 ° C) Британские единицы
  • SUS @ 210 ° F (99 ° C) Британские единицы

Очень важно выбрать смазочный материал, который будет обеспечивать минимально приемлемую вязкость при рабочей температуре подшипника, которая обычно находится между самой низкой и самой высокой эталонными температурами, указанными выше.Обычно значения вязкости масла очень быстро уменьшаются с повышением температуры. Определение рабочей температуры подшипника - довольно сложный расчет, который выходит за рамки этого каталога. Другое дело - расчет вязкости смазочного материала при этой температуре на основе спецификаций производителя смазочного материала. Часто предыдущий опыт работы с существующей аналогичной машиной указывает на приемлемую смазку. В ходе домашних испытаний прототипа или первой машины можно определить рабочие температуры.В большинстве машин используется смазка, подобранная в соответствии с наиболее жесткими требованиями к одному из компонентов машины, например подшипнику, шестерне и т. Д.

Присадки являются очень важной характеристикой современных масел и консистентных смазок и часто могут иметь значение для успешной и долгосрочной эксплуатации подшипников и других компонентов машин. При выборе любого смазочного материала следует всегда учитывать добавки.

Подшипники, которые мы предлагаем

Компания

American Roller Bearing в основном производит подшипники для тяжелых условий эксплуатации, которые используются в различных отраслях промышленности в США и во всем мире.Наши подшипники промышленного класса не только должны обеспечивать длительный срок службы по критерию усталости при качении, но они также должны сохранять целостность конструкции от ударов, перегрузок и случайных скачков на высокой скорости. Для этого была оптимизирована конструкция каждого подшипника для тяжелых условий эксплуатации, включая наши подшипники с большим внутренним диаметром.

Смазка маслом

С точки зрения производительности масло является лучшей формой смазки, и оно предлагает несколько способов подачи на подшипники. Самая простая форма - это поддержание статического уровня масла в корпусе подшипника.В некоторых типах оборудования, например, с шестернями и / или шатунами, масло, подаваемое к этим компонентам, создает туман или брызги, которые смачивают контактные поверхности подшипников. Иногда это называют «смазкой разбрызгиванием».

Следующими по сложности являются масляный туман и системы воздух / масло, которые предназначены для подачи точного количества масла, необходимого для смазки, предотвращения излишка масла, которое может взбить подшипник, увеличения сопротивления и температуры.

Для высокоскоростных приложений часто требуется циркуляционное масло с струйной подачей.Форсунки впрыскивают масло непосредственно в подшипник, обеспечивая двойную функцию смазки и отвода тепла. Эти системы сложны и дороги, и их выбирают в случае крайней необходимости.

Консистентная смазка

Обычно консистентная смазка выбирается, если это позволяют требования к смазке подшипника. Типичные системы смазки намного проще масляных и не так дорого стоят. Часто необходимы только отверстия для подачи смазки и внешний смазочный ниппель для пополнения.

При выборе смазки для области применения необходимо учитывать некоторые ее свойства для ожидаемых условий эксплуатации. Приоритет этих свойств:

  1. Требуемая вязкость масла при температуре подшипника.
  2. Марка по рабочей температуре.
  3. Мыльная основа, которая лучше всего подходит для нанесения.
  4. Наличие противозадирных присадок.

Уровень «Марка» смазки является показателем жесткости смазки.Марки «0» и «1» относительно мягкие и обычно используются при низких рабочих температурах. Классы «2», «3» и «4» используются при все более высоких температурах. Уровень «3» также обычно используется в вертикальных установках, чтобы предотвратить оседание всей смазки на дне подшипника.

Различные утолщающие основы обладают определенными преимуществами, поэтому их можно выбирать для различных областей применения. Некоторые из их основных преимуществ:

Кальций:

Врожденная противозадирная способность, коррозионная стойкость, безопасность для пищевой промышленности, только при низких температурах.

Натрий:

Низкая стоимость, универсальное применение, средне-высокие температуры.

Литий:

Более высокая температура, высокие скорости.

Бентон Глина:

Тяжелые нагрузки при высоких температурах, стойкость к вымыванию водой.

Синтетика:

Очень высокая температура.(Высокая стоимость)

Смазка подшипников

Во многих случаях необходимо регулярно пополнять смазку, так как старая смазка «высыхает» из-за попадания масла в движущиеся части подшипника, а загущающая основа окисляется. Повторная смазка должна быть неотъемлемой частью конструкции оборудования, а некоторые типы подшипников уже имеют функцию повторной смазки. Хорошие конструкторы обеспечат в самой машине доступные смазочные каналы для попадания смазки в подшипник.Если старая смазка преграждает путь, толкать новую смазку к подшипнику очень мало. Гораздо лучше ввести новую смазку в центр подшипника и дать ей вытолкнуть старую смазку с каждой стороны. Если в выбранном подшипнике это невозможно, то смазку необходимо нанести на одну сторону подшипника, в то время как другая сторона полости корпуса обеспечивает место для старой смазки. Некоторые конструкции машин предусматривали продувочное отверстие или позволяли старой смазке выходить из-под кромок уплотнения.В некоторых типах оборудования, применяемого в отраслях промышленности, где в воздухе содержатся абразивные частицы, консистентная смазка используется в качестве фильтрующего материала для улавливания этих частиц. Регулярная смазка этих подшипников и их корпусов удаляет загрязненную смазку из корпусов подшипников. Важно помнить, что повторную смазку следует производить, когда смазка в подшипнике еще хороша.

Интервалы повторной смазки, которые всегда обеспечивают необходимое количество масла для подшипников, не всегда могут быть точно спрогнозированы.Мы знаем, что правильный интервал в основном зависит от рабочей температуры, количества часов работы в день, а также размера и скорости подшипника. Некоторое оборудование требует повторной смазки всех подшипников каждый день, некоторые - раз в неделю, некоторые - каждые две недели, а некоторые - раз в месяц. В подобных случаях часто бывает полезно полностью промывать подшипники один раз в год, повторно набивать новую смазку и продолжать работу по установленной программе повторной смазки. Пользователям рекомендуется не только проверять состояние старой смазки, но и отправлять образцы в лабораторию, которая специализируется на анализе использованных смазочных материалов.Знания, полученные для каждого конкретного случая применения, являются лучшим показателем правильного интервала замены смазки.

Получить рекомендации по смазке не составит труда, поскольку существует множество производителей и дистрибьюторов смазочных материалов, которые должны обладать знаниями и техническими характеристиками для оказания профессиональной помощи. Опыт, полученный с их продуктами на аналогичном оборудовании и / или в аналогичных условиях эксплуатации, часто является лучшей причиной для выбора марки и типа смазки для подшипников в единице оборудования.

Мы постарались определить наиболее важные характеристики смазочного материала для наших подшипников, чтобы они обеспечивали долгий срок службы владельцам и операторам оборудования, в котором они установлены. Были кратко затронуты только некоторые характеристики обычных масел и консистентных смазок, оставив многие другие характеристики различных смазочных материалов, которые предстоит объяснить специалистам по смазочным материалам. Если у клиентов наших подшипников есть какие-либо вопросы или опасения по поводу рекомендаций по смазочным материалам для их оборудования, не стесняйтесь обращаться в отдел продаж American Roller Bearing или к одному из наших представителей на местах.Политика компании American Roller Bearing Company гласит, что мы не рекомендуем какой-либо конкретный смазочный материал или даже компанию, производящую смазочные материалы. Однако мы проверим, подходит ли смазка, выбранная нашими клиентами, для наших подшипников.

Нажмите здесь, чтобы запросить ценовое предложение, или позвоните нам по телефону 828-624-1460

Смазка подшипников: масло или консистентная смазка

Некоторые инженеры рассматривают смазочные материалы как простое и беспорядочное вспомогательное средство индустриальной эпохи.Однако, как и сами подшипники качения, смазка - это древняя технология, которая претворяется в жизнь в современных формах. На самом деле инженеры использовали жидкости для уменьшения трения тысячи лет, но появление нефтяной промышленности в конце 19 века стимулировало появление современных смазочных материалов для подшипников. Сегодня смазочные материалы для подшипников выполняют несколько функций:

Создание барьера между контактными поверхностями качения
Создание барьера между контактными поверхностями скольжения
Защита поверхностей от коррозии
Уплотнение от загрязнений
Обеспечение теплопередачи (в случае масляной смазки)

Смазочные материалы представляют собой масло или консистентную смазку.Масляные смазки чаще всего используются в высокоскоростных и высокотемпературных приложениях, где требуется отвод тепла от рабочих поверхностей подшипников. Подшипниковые масла представляют собой либо натуральное минеральное масло с присадками для предотвращения ржавчины и окисления, либо синтетическое масло. В синтетических маслах основой обычно являются полиальфаолефины (PAO), полиалкиленгликоли (PAG) и сложные эфиры. Хотя синтетические и минеральные масла схожи, они обладают разными свойствами и не являются взаимозаменяемыми. Минеральные масла являются наиболее распространенными из двух.

Наиболее важной характеристикой при выборе масла для подшипника является вязкость.Вязкость - это мера внутреннего трения жидкости или сопротивления потоку. Жидкости с высокой вязкостью гуще, как мед; жидкости с низкой вязкостью тоньше воды. Инженеры выражают сопротивление жидкости потоку в универсальных секундах Сейболта (SUS) и сантистоксах (мм2 / сек, сСт). Разница в вязкости при разных температурах - это индекс вязкости (VI). Вязкость масла зависит от толщины пленки, которую оно может создать. Эта толщина имеет решающее значение для разделения элементов качения и скольжения в подшипнике.В некоторых подшипниках используется масло, но консистентная смазка является предпочтительным смазочным материалом для 80–90% подшипников.
Консистентная смазка состоит примерно на 85% из минерального или синтетического масла с загустителями, дополняющими остальной объем смазки.

Загустители обычно представляют собой металлические мыла на основе лития, кальция или натрия. Составы для высокотемпературных применений часто включают полимочевину. Более высокая вязкость консистентной смазки помогает удерживать ее внутри подшипниковой оболочки. При выборе пластичной смазки наиболее важными факторами являются вязкость базового масла, способность предотвращать ржавление, диапазон рабочих температур и способность выдерживать нагрузки.

Посмотрите 5 лучших видеороликов о смазке подшипников в Интернете здесь.

Смазка подшипников качения для критических условий работы

Консистентная смазка - это наиболее распространенный тип смазки, используемый сегодня для смазки подшипников качения. Таким образом смазываются около 90 процентов всех подшипников. Важно правильно выбрать пластичную смазку в соответствии с конкретными требованиями и рассчитать срок службы смазочного материала.Для точного расчета срока службы смазки необходимо знать и применять ограничивающие факторы. Правильный расчет обеспечит минимальное количество смазки (MQL).

Шариковые и цилиндрические роликоподшипники, используемые в электродвигателях, являются примером подшипников качения с MQL. Если, однако, эти типы подшипников подвергаются негативным воздействиям, эффективный срок службы смазки может быть быстро сокращен и может произойти повреждение подшипников.

В этой статье обсуждаются некоторые из этих негативных влияний и их последствия на основе практических примеров.Практическое значение будет представлено через проблему непрерывности электрического тока (токи в подшипниках или искровую эрозию подшипников) и влияние на смазку и подшипники качения.

Консистентная смазка подшипников качения

Консистентная смазка для подшипников качения состоит из загустителя, масла и отобранных присадок для улучшения желаемых свойств. Фактическая смазка для подшипников качения - это масло, которое может быть минеральным, полностью синтетическим или их смесью.

К этим маслам добавляются различные типы присадок, которые влияют на свойства коррозионной стойкости и / или создают слои, защищающие поверхность металла в экстремальных условиях. Добавки также улучшают вязкость при различных температурах.

Задача загустителя - впитывать масло и в небольших количествах отдавать его в несущий элемент в течение длительного периода.

На практике для смазки подшипников качения используется всего несколько граммов консистентной смазки, и этого количества обычно хватает на долгое время.Следовательно, особенно важен точный расчет срока службы смазки.

Расчет срока службы смазки

Срок службы пластичной смазки для подшипников качения зависит от выбора пластичной смазки, типа подшипника, условий работы и воздействия окружающей среды.

Основание для расчета срока службы пластичной смазки можно увидеть на общепринятой диаграмме (рисунок 2).

На этой диаграмме показано противопоставление того, что часто называют «универсальной смазкой» (литиевая смазка на основе минерального масла, консистентная смазка A), и кривой срока службы высококачественной синтетической консистентной смазки на основе сложноэфирного масла на основе полиуретана (консистентная смазка B). .

Преимущества синтетических масел, загущенных полимочевиной, возрастают при повышении температуры. Срок службы смазки в них в 20 раз выше, чем у стандартных пластичных смазок, в зависимости от температуры. Это означает, что пользователь может увеличить запас прочности на случай повреждения подшипников из-за смазки и одновременно увеличить интервалы замены смазки.

Так называемое значение типа подшипника (kf) предполагает фактическую конструкцию смазываемого подшипника. Этот коэффициент может принимать значения от 0.9 и 10 для кинематически простых шарикоподшипников.

Для кинематически сложных подшипников (например, осевых цилиндрических роликоподшипников с высоким трением скольжения) коэффициент kf может достигать значений до 90. Чем больше число, тем больше площадь поверхности и большее общее напряжение, приложенное к маслу и матрице загустителя. Сферические роликоподшипники, как категория, имеют тенденцию оказывать наибольшее давление на пластичные смазки.

Коэффициент скорости n * dm (об / мин * средний диаметр подшипника) является классификационным числом для скорости вращения подшипника качения и зависит от условий эксплуатации.

Таким образом, уже можно узнать доступный срок службы конкретного типа используемой смазки, хотя это только теоретическое значение. В следующем расчете необходимо учитывать факторы, влияющие на фактическое применение, и оценивать их важность.

tfq = tf * f1 * f2 * f3 * f4 * f5 * f6
tfq… Практический срок службы смазки в часах
tf… срок службы смазки из рисунка 2
f1… f6… влияющие факторы

Эти факторы отражают известные негативные влияния на срок службы смазки для роликовых подшипников, которые сокращают срок службы смазки в соответствии со значениями, показанными на Рисунке 2.

Факторы влияния

Необходимо учитывать влияние загрязнения (f1), вибрации (f2), повышенной температуры подшипника (f3), высокой нагрузки на подшипник (f4) и циркуляции воздуха (f5) на подшипнике или вокруг него.

Значения могут легко варьироваться от 0,1 до 1 (нет влияния), что означает, что результат фактического расчета сильно зависит от уровня опыта человека, оценивающего значения факторов.

Структурные факторы (f6) также могут значительно сократить срок службы смазки.Например, направление сборки подшипника (горизонтальное, вертикальное или угловое) важно для интервала повторного смазывания. Из-за различного влияния центробежных сил на смазку необходимо учитывать ведомую дорожку качения подшипника (вращающегося IR или OR).

Диапазоны коэффициента уменьшения должны выбираться из диапазона. По мере того, как условия становятся более суровыми, значение коэффициента становится меньше, что сокращает расчет срока службы смазки. Опыт играет ключевую роль в точной оценке.

f1 = Среда окружающей среды, степень загрязнения (от 0,1 до 0,9)
f2 = Динамика нагрузки, удары (от 0,1 до 0,9)
f3 = Температура подшипника (от 0,1 до 0,9)
f4 = нагрузка на подшипник (от 0,1 до 1,0)
f5 = воздушный поток (от 0,1 до 0,7)
f6 = Тип установки, центробежная энергия (от 0,5 до 0,7)

Хотя коэффициенты понижения 1, 2, 5 и 6 основаны на эмпирических значениях, температура подшипника (3) и нагрузка (4) могут быть отнесены к химико-физическим связям и зависят от типа смазки.

Для стандартной консистентной смазки (литиевое мыло и минеральное масло) термическое старение непропорционально возрастает после любого повышения температуры выше 140 ° C. Срок службы смазки сокращается почти до нуля, когда она достигает точки каплепадения примерно при 190 ° C. Можно было ожидать повышенного отделения масла и, из-за увеличенной циркуляции, заметного увеличения скорости окисления.

Когда консистентная смазка достигает точки каплепадения, происходит необратимое и самопроизвольное вытекание масла, и консистентная смазка теряет свои свойства.Срок службы смазки также снижается при экстремально низких температурах, но это невозможно измерить с той же конфигурацией испытательного стенда. Следовательно, можно определить факторы срока службы пластичной смазки на основе характеристик в диапазоне температур.

Подшипники с консистентной смазкой в ​​электродвигателях

Смазанный роликовый подшипник в электродвигателе предлагается для демонстрации возможного срока службы смазки. В общем, подвеска роторов с помощью смазываемых консистентной смазкой роликовых подшипников широко используется и хорошо известна, а также является хорошим примером подшипника, подверженного различным влияющим факторам.

С появлением современных технологий преобразования частоты было обнаружено дополнительное отрицательное влияние на срок службы подшипников, которое продолжает вызывать отказы: токи в подшипниках.

Обычно подшипники качения в электрических машинах подвергаются минимальной нагрузке, при этом типичная нагрузка составляет от P / C = 0,05 до C / P = 20. Нагрузка по отношению к несущей способности подшипника настолько минимальна, что возможно достижение максимального диапазона выносливости.

В действительности, отказы подшипников все еще происходят через 15 000–20 000 часов с этим типом подшипников.При правильном повторном смазывании срок службы смазки может быть согласован с оптимальным сроком службы подшипников и, таким образом, легко достичь 100 000 часов и более.

В стратегиях планового профилактического обслуживания электродвигатели часто заменяют через два-три года эксплуатации. Интервал определяется множеством факторов, но обычно это связано с предыдущим жизненным циклом приложения. Ремонт двигателя требует времени, является дорогостоящим и представляет повышенный риск с каждой новой установкой.

В новом оборудовании современные методы преобразования частоты, такие как высокочастотные двигатели с регулируемой скоростью, регулирование скорости двигателя, увеличение скорости и увеличенные часы работы - все это имеет различные эффекты, которые сокращают срок службы (см. Врезку). Более высокая скорость электродвигателя приведет к повышенным температурам подшипников, подвергая смазку более сильным центробежным силам.

Эти центробежные силы удаляют масло с контактных поверхностей в то время, когда это наиболее важно для функционирования и выживания подшипников.Это может привести к преждевременному старению (окислению и затвердеванию) из-за чрезмерной нагрузки на рабочие характеристики пластичных смазок общего назначения.

Экстремальные температуры подшипников 212 ° F (100 ° C) могут вызвать испарение масла, конденсацию и проблемы со стабильностью смазки и подшипника. В последние годы к этим проблемам добавилось увеличение количества отказов из-за электрической дуги (высокочастотный переменный ток, проходящий между ротором и рамой через подшипник) в высокочастотных приводах.

При переключении прямоугольного напряжения возникают гармоники в МГц-диапазоне, которые невозможно изолировать с помощью обычных изоляционных материалов. Обычные меры, применяемые производителями подшипников (изоляция поверхности кольца подшипника керамическим слоем толщиной примерно 100 микрон), уже не приносят успеха. Эти методы эффективны только при работе с постоянным током (DC) или низкочастотным переменным током (AC).

Предполагается, что в этих высокочастотных токах остается так много энергии, что происходит заземление через смазочную пленку, и элемент и смазка повреждаются.Это влияние не принимается во внимание традиционными расчетами сегодня и, в свою очередь, привело к повреждению подшипников в современных машинах, использующих методы преобразования частоты для регулирования скорости.

Распознавание влияний окружающей среды (f1 и f3) и выбор надлежащим образом сокращенных факторов жизненного цикла могут способствовать преодолению дугового напряжения на элементе. Владелец оборудования может помочь компенсировать влияние загрязнения и температурных загрязнителей, которые будут присутствовать в этих обстоятельствах, уменьшив их количество при увеличении частоты пополнения смазочного материала в процессе эксплуатации.

Неисправности подшипников

Наблюдается сильное окисление и затвердевание смазки, возникающее в результате высокотемпературного напряжения, вызванного электрическим заземлением (искрение). Потеря смазочного материала приводит к смешанному трению и износу в зоне контакта роликов.

Тот факт, что подшипник не может быть легко заменен снаружи, играет решающую роль в возможном отказе элемента. Вновь добавленная смазка не может вытеснить уже имеющуюся затвердевшую и окисленную смазку и делает замену смазки невозможной.При нормальных интервалах повторного смазывания отказ подшипника неизбежен (рисунки с 3 по 8).


Рисунок 3. Состаренная смазка между сепаратором и IR


Рисунок 4. Повторное смазывание невозможно


Рисунок 5. Смешанная смазка в CRB


Рисунок 6. Повреждения из-за плохой смазки


Рис. 7. Вода извне


Рисунок 8.Проблема с конденсированной водой

Как уже упоминалось, наблюдается заметное увеличение повреждения электрическим током из-за высокочастотного переменного тока. Тусклые коричневые дорожки качения и дорожки на шаре или роликах являются типичными (рис. 9–14).


Рис. 9. CRB-Внешнее кольцо коричневого цвета


Рис. 10. Мяч с коричневыми лентами


Рис. 11. Повреждение радиального шарикоподшипника


Рисунок 12.Изображение SEM, показывающее гонку


Рисунок 13. Поврежденный CRB Причитающийся ток


Рисунок 14. Поврежденная смазка

Как показано на Рисунке 12, реальный кратер электрического тока невелик и может быть идентифицирован только с помощью SEM. Сегодня типичный диаметр почти круглых кратеров, присутствующих в большинстве распространенных отказов, составляет от 1 до 4 мкм.

Практика показывает, что несущие поверхности будут повреждены даже при минимальной нагрузке.Эти дуги также приводят к катастрофическому старению смазки в зоне контакта качения, вызванному окислением, что значительно сокращает срок службы смазки (Рисунки 13 и 14).

В местах контакта роликов испорченная смазка больше не может эффективно смазывать, в то время как внешние части подшипника удерживают свежую смазку.

Это состояние иногда называют недостаточным смазыванием, что может быть точным описанием вторичного механизма отказа, но не обязательно является основным фактором отказа.Корректирующие меры обычно не приносят успеха, если действительная причина не определена и не исправлена ​​правильно.


Рис. 15. Типичный рисунок рифления
(Предоставлено MH Electric Motor and Control Corp.)

Последняя стадия характеризуется типичным рисунком канавки из-за наличия подшипниковых токов (рис. 15).


Рисунок 16. DuoMax 160

Смазка роликовых подшипников консистентной смазкой - обычная практика для долговременной смазки.Для достижения ожидаемого срока службы особое внимание следует уделять правильному расчету срока службы смазки. Устранение ряда влияющих факторов может значительно сократить срок службы смазки. Современные электродвигатели с преобразователями частоты для регулирования скорости вращения сталкиваются с повышенными проблемами из-за подшипниковых токов в точках контакта качения.

Эти токи приводят к поверхностям подшипников качения, которые повреждаются микрократерами после термического разрушения смазки в точках контакта с металлом небольшими электрическими дугами.Это конкретное сокращение срока службы смазки еще не учитывалось при обычных расчетах срока службы смазки. Отказ из-за подшипниковых токов продолжает увеличиваться в связи с частым использованием современной приводной техники для управления двигателями.

Преобразователи IGBT

Биполярные транзисторы с изолированным затвором (IGBT) появились на рынке в 1990-х годах. Они представляют собой огромное усовершенствование технологии привода, увеличивая частоту переключения до 20 кГц, уменьшая гармоники и слышимый шум.

Однако в последнее время стало очевидно, что эти улучшения были куплены дорогой ценой: технология IGBT воскресила проблемы подшипников из-за электрического разряда, создав новую проблему для производителей электродвигателей.

Механизм переключения инвертора также создает так называемое синфазное напряжение.

Из-за высоких частот переключения инверторов IGBT становятся актуальными паразитные емкости между обмоткой статора и статором, а также между обмоткой ротора и статора.

18. Смазочные материалы | Миниатюрные и малые шариковые подшипники | Инженерная информация

Выбор смазочного материала сильно влияет на характеристики шарикоподшипников. Характеристики подшипников, такие как срок службы, крутящий момент, стабильность вращения и шум, зависят от смазочных материалов, даже если в подшипниках используются одинаковые материалы и компоненты.
Внутри подшипников залита консистентная смазка или масло. После заполнения они редко меняются. Как правило, консистентная смазка является стандартом для подшипников закрытого типа, поскольку срок службы консистентной смазки больше, чем у масел.

Смазка состоит из загустителя и масла (базового масла). Склеивание волокон и отделение масла от загустителя играет важную роль в консистентной смазке. Волоконная связь удерживает масла внутри, и масла постепенно высвобождаются путем отделения масла. Если бы были залиты только масла, они могли бы вытекать.Поскольку загуститель смазки твердый, он может оставаться внутри. Медленное выделение базовых масел из-за отделения масла увеличивает срок службы смазки. Когда в определенных областях применения требуется чрезвычайно низкий крутящий момент или ограниченное колебание крутящего момента, масла работают лучше, чем консистентная смазка. Масла хорошо растекаются, а вот жир - нет, потому что он твердый. Эта характеристика смазки вызывает сопротивление вращению. Если используется смазка, состоящая только из масла, необходимо ориентироваться на срок службы. Остальные компоненты смазки - это добавки.Устойчивые к окислению агенты, смазочные агенты (улучшающие граничную смазку), противозадирные агенты (предотвращающие заедание в результате горения) и антикоррозионные агенты - вот некоторые из присадок, которые могут повлиять на рабочие характеристики различных типов пластичных смазок.


Количество смазки

Стандартный объем смазки для малых и миниатюрных подшипников составляет 30%. Количество смазки варьируется в зависимости от области применения и определяется следующим образом.

х 5 ~ 10% Без кода (стандарт) 25 ~ 35%
л 10 ~ 15% H 40 ~ 50%
т 15 ~ 20% Дж 50 ~ 60%

Банкноты
Химическая атака

Пластмассы теперь чаще используются для сборок с шарикоподшипниками из-за тенденции к меньшим и более легким устройствам.Неблагоприятные комбинации пластичной смазки и пластика могут привести к химической реакции, которая разрушает компоненты и приводит к растрескиванию их.
При выборе консистентной смазки и масла необходимо учитывать условия применения и окружающую среду.
См. Подробности в разделе 17. Сочетание с пластиковыми деталями.


Электропроводность

Электропроводящая смазка - один из вариантов для специальных применений, в которых окружающая среда является проводящей. Электропроводность зависит от условий приложения (частота вращения, нагрузка и т. Д.).
Обратите внимание, что срок службы смазки и срок службы проводимости не равны.

Имя Литиевая суповая смазка Смазка карбамид Смазка фторсодержащая Токопроводящая смазка Нефть
Шум ○ 90 401 (△) ○ 90 401 (△) × ×
Крутящий момент ◎◎ ×
Высокая температура ◎◎ ◎◎ ◎◎ ◎◎ ◎◎
Низкотемпературный ○ 90 401 (△) ◎◎
(○)
Высокая скорость
деградация пластика × × × ×
проводимость
с низким содержанием пыли × × × ×
цена × × × ×
Характеристика общий низкий крутящий момент термостойкость, высокая скорость термостойкость термостойкость термостойкость термостойкость термостойкость проводимость теплостойкость, проводимость низкий крутящий момент пластиковое сопротивление
Вязкость базового масла мм 2 / S при 40 ℃ представляет значение 24 16 48 100 190 85 85 210 148 208 12 32
конусное проникновение представляет значение 250 275 235 263 280 280 280 290 235 327
диапазон температур применения * -50

+150
-50

+130
-40

+200
-40

+180
-50

+260
-65

+260
-50

+220
-50

+200
-40

+125
-50

+225
-57

+177
-40

+130

* Эти диапазоны основаны на информации, предоставленной каждым производителем смазки.Обратите внимание, что это не конкретные диапазоны температур для подшипников.

Шесть часто задаваемых вопросов о подшипниках и выборе между маслом и консистентной смазкой

Подшипники вращения состоят из гладких роликов или металлических шариков, а также внутренней и внешней поверхностей (дорожек), по которым движутся ролики или шарики. Эти ролики или шарики несут груз и позволяют осям свободно вращаться. Подшипники обычно испытывают радиальную и осевую нагрузку. Радиальные нагрузки перпендикулярны валу, а осевые нагрузки возникают параллельно валу.В зависимости от области применения некоторые подшипники должны выдерживать обе нагрузки одновременно.

Вот еще одна подборка статей с сайта motioncontroltips.com «Мир дизайна» Beartips.com . Этот сайт охватывает не только вопросы смазки и интеграции подшипников, но и поворотные подшипники в виде шариковых и роликовых подшипников, а также упорные подшипники.

Ниже представлены особенности, которые наш коллега Майк Сантора недавно разместил там. Щелкните заголовки, чтобы узнать больше.

Что такое «плавающая» подшипниковая опора?

Два подшипника поддерживают и устанавливают вал в осевом и радиальном направлении по отношению к неподвижному корпусу. Есть «фиксированная» сторона и «плавающая» сторона. Фиксированная сторона управляет валом в осевом направлении. Плавающая сторона имеет большую свободу движения (плавающую), чтобы помочь компенсировать смещение и тепловое расширение или сжатие…

Смазка подшипников: масло или консистентная смазка

Смазка подшипников вращения осуществляется в виде масла или консистентной смазки, но обычно консистентная смазка служит дольше благодаря загустителям, поддерживающим смазочный слой между дорожками качения и телами качения.Смазка с противозадирными присадками также продлевает срок службы подшипников при воздействии более высоких нагрузок. Даже в этом случае масло чаще используется для открытых подшипников или подшипников с низким крутящим моментом или высокими скоростями. Более низкая вязкость масел обеспечивает меньшее сопротивление, чем пластичные смазки…

Почему в некоторых подшипниках необходим предварительный натяг?

Одним из заключительных этапов процесса производства подшипника является сборка отдельных компонентов подшипника: наружного кольца, внутреннего кольца, шариков и держателя (или сепаратора шариков).

Когда подшипники собраны, необходимо иметь регулируемый внутренний зазор , или люфт между кольцами и шариками… Однако в некоторых случаях этот внутренний зазор должен быть удален для правильной работы пары подшипников. Приложение осевой нагрузки к паре подшипников с целью устранения свободных внутренних зазоров составляет предварительный натяг .

Когда следует использовать масло для подшипников?

Шон П.Келли, инженер по полевым приложениям в NMB Technologies Corporation, говорит, что смазка предпочтительнее, когда требуется более длительный срок службы.

«Это происходит из-за того, что загуститель смазки медленно выделяет базовое масло, создавая смазочный слой между дорожками качения и телами качения…»

Почему вам следует рассмотреть воздушные подшипники

Воздушные подшипники легко не заметить. В большинстве случаев механические подшипники работают достаточно хорошо для движения. Большинство, но не все. Субмикронный гул подшипников не вариант? Геометрические характеристики и угловая повторяемость имеют первостепенное значение? Вот советы, которые упростят процесс спецификации…

Какие минимальные нагрузки и почему они важны для подшипников?

Эрик Фанеф, инженер по приложениям, промышленный рынок, SKF USA Inc.объясняет, что для многих радиальных подшипников обычно предусматривается определенное пространство между телами качения и дорожками качения для обеспечения теплового расширения и предотвращения заклинивания подшипника…

Что делается с поддельными подшипниками?

В этом интервью старший вице-президент, генеральный совет и секретарь SKF USA Тимоти Д. Гиффорд поделился некоторыми взглядами на текущую ситуацию с контрафактными подшипниками. В частности, Гиффорд рассказывает нам, как подшипниковая промышленность борется с мировым рынком контрафактной продукции…

Назначение и способ смазки | Базовые знания подшипников

Смазка - один из наиболее важных факторов, определяющих рабочие характеристики подшипников.Пригодность смазки и метод смазки имеют решающее влияние на срок службы подшипников.

Функции смазки:

  • Для смазки каждой части подшипника, а также для уменьшения трения и износа
  • Для отвода тепла, выделяемого внутри подшипника из-за трения и других причин
  • Для покрытия контактной поверхности качения соответствующей масляной пленкой с целью продления усталостной долговечности подшипников.
  • Для предотвращения коррозии и загрязнения грязью

Смазка подшипников в целом подразделяется на две категории: консистентная смазка и смазка маслом. Таблица 12-1 дает общее сравнение между ними.

Таблица 12-1 Сравнение консистентной и масляной смазки

Изделие Смазка Масло
Уплотнительное устройство Легко Немного сложный и требует особого ухода для обслуживания
Смазывающая способность Хорошо Отлично
Скорость вращения Низкая / средняя скорость Применяется также на высоких скоростях
Замена смазки Слегка хлопотная Легко
Срок службы смазки Сравнительно короткий длинный
Охлаждающий эффект Без охлаждающего эффекта Хорошо (необходим тираж)
Фильтрация грязи Сложная Легко

12-1-1 Консистентная смазка

Смазка консистентной смазкой широко применяется, поскольку нет необходимости в пополнении в течение длительного периода после заполнения консистентной смазкой, а для устройства уплотнения смазочного материала может быть достаточно относительно простой конструкции.
Есть два метода консистентной смазки. Один из них - это закрытый метод смазки, при котором консистентная смазка заранее заливается в экранированный / герметичный подшипник; другой - метод подачи, при котором подшипник и корпус сначала заполняются смазкой в ​​надлежащих количествах, а затем пополняются через регулярные промежутки времени путем пополнения или замены.
В устройствах с многочисленными впускными отверстиями для консистентной смазки иногда используется централизованный метод смазки, при котором впускные отверстия соединяются трубопроводами и вместе с ними подаются консистентная смазка.

1) Количество смазки

Как правило, смазка должна заполнять примерно от одной трети до половины внутреннего пространства, хотя это зависит от конструкции и внутреннего пространства корпуса.
Следует иметь в виду, что чрезмерная смазка будет выделять тепло при взбалтывании и, следовательно, изменится, испортится или размягчится.
Однако, когда подшипник работает на малой скорости, внутреннее пространство иногда заполняется консистентной смазкой на две трети от полной, чтобы

2) Пополнение / замена смазки

Метод пополнения / замены смазки во многом зависит от метода смазки.Какой бы метод ни использовался, следует соблюдать осторожность, чтобы использовать чистую смазку и не допускать попадания грязи или других посторонних предметов в корпус.
Кроме того, желательно доливать смазку той же марки, что и была залита вначале.
При повторной заливке смазки необходимо ввести новую смазку внутрь подшипника.
На рис. 12-1 показан один пример метода подачи.

Рис. 12-1 Пример способа подачи смазки (с использованием сектора для смазки)

В этом примере внутренняя часть корпуса разделена смазочными секторами.Смазка заполняет один сектор, затем течет в подшипник.
С другой стороны, смазка, текущая изнутри, вытесняется из подшипника центробежной силой смазочного клапана.
Когда смазочный клапан не используется, необходимо увеличить пространство корпуса на напорной стороне для хранения старой смазки.
Корпус открыт, и сохраненная старая смазка регулярно удаляется.

3) Интервал подачи смазки

При нормальной эксплуатации срок службы смазки следует рассматривать примерно так, как показано на Рис.12-2 , и пополнение / замена должны выполняться соответственно.

Рис. 12-2 Интервал подачи смазки

4) Срок службы смазки в экранированном / закрытом шарикоподшипнике

Срок службы смазки можно оценить по следующей формуле, если однорядный радиальный шарикоподшипник заполнен консистентной смазкой и закрыт щитками или уплотнениями.

Условия для применения уравнения (12-1) следующие:

12-1-2 Масляная смазка

Масляная смазка применима даже при высоких скоростях вращения и несколько высоких температурах и эффективна для снижения вибрации и шума подшипников.Таким образом, масляная смазка используется во многих случаях, когда консистентная смазка не работает. Таблица 12-2 показывает основные типы и методы смазки маслом.

Таблица 12-2 Тип и способ смазки маслом

① Масляная ванна
  • Самый простой способ погружения подшипников в масло для эксплуатации.
  • Подходит для низкой / средней скорости.
  • Датчик уровня масла должен быть предусмотрен для регулировки количества масла.
    (В случае горизонтального вала)
    Около 50% самого нижнего тела качения должно быть погружено в воду.
    (В случае вертикального вала)
    Примерно от 70 до 80% подшипника должно быть погружено.
  • Лучше использовать магнитную пробку, чтобы частицы износостойкого железа не рассеивались в масле.
② Подвод масла
  • Масло капает с помощью смазочного устройства, а внутренняя часть корпуса заполняется масляным туманом под действием вращающихся частей. Этот метод имеет охлаждающий эффект.
  • Применяется при относительно высокой скорости и средней нагрузке.
  • Обычно расходуется от 5 до 6 капель масла в минуту.
    (Трудно отрегулировать капельницу до 1 мл / ч или меньше.)
  • Это необходимо для предотвращения скопления слишком большого количества масла на дне корпуса.
③ Брызги масла
  • В этом типе смазки используется шестерня или простой отражатель, прикрепленный к валу для разбрызгивания масла. Этот метод позволяет подавать масло для подшипников, расположенных вдали от масляного бака.
  • Может использоваться на относительно высоких скоростях.
  • Необходимо поддерживать уровень масла в определенном диапазоне.
  • Лучше использовать магнитную пробку, чтобы частицы износостойкого железа не рассеивались в масле.
    Также рекомендуется установить экран или перегородку для предотвращения попадания загрязняющих веществ в подшипник.
④ Принудительная циркуляция масла
  • В этом методе используется система маслоснабжения циркуляционного типа.
    Подаваемое масло смазывает внутреннюю часть подшипника, охлаждается и отправляется обратно в резервуар по трубопроводу для выпуска масла. Масло после фильтрации и охлаждения перекачивается обратно.
  • Широко применяется при высоких скоростях и высоких температурах.
  • Лучше использовать маслоспускной патрубок примерно в два раза толще маслоподающего трубопровода, чтобы предотвратить скопление слишком большого количества смазки в корпусе.
  • Необходимое количество масла: см. Замечание 1.
⑤ Маслоструйная смазка
  • В этом методе используется форсунка для впрыскивания масла при постоянном давлении (от 0,1 до 0,5 МПа), и он очень эффективен при охлаждении.
  • Подходит для высоких скоростей и больших нагрузок.
  • Обычно сопло (диаметром от 0,5 до 2 мм) располагается на расстоянии 5-10 мм от стороны подшипника.
    Когда выделяется большое количество тепла, следует использовать от 2 до 4 форсунок.
  • Поскольку при струйной смазке подается большое количество масла, старое следует сливать с помощью масляного насоса, чтобы предотвратить чрезмерное количество остаточного масла.
  • Необходимое количество масла: см. Замечание 1.
⑥ Смазка масляным туманом (смазка распылением)
  • В этом методе используется генератор масляного тумана для создания сухого тумана (воздух, содержащий масло в форме тумана).Сухой туман непрерывно направляется поставщику масла, где он превращается во влажный туман (липкие капли масла) с помощью сопла, установленного на корпусе или подшипнике, а затем распыляется на подшипник.
  • Этот метод обеспечивает и поддерживает наименьшее количество масляной пленки, необходимой для смазки, и имеет преимущества предотвращения загрязнения масла, упрощения технического обслуживания подшипников, продления усталостной долговечности подшипников, снижения расхода масла и т. Д.
  • Требуемое количество тумана: см. Замечание 2.
⑦ Масляно-воздушная смазка
  • Дозировочный насос подает небольшое количество масла, которое смешивается со сжатым воздухом с помощью смесительного клапана. Примесь подается в подшипник непрерывно и стабильно.
  • Этот метод позволяет количественно контролировать масло в очень малых количествах, всегда добавляя новое смазочное масло. Таким образом, он подходит для станков и других приложений, требующих высокой скорости.
  • Сжатый воздух и смазочное масло подаются к шпинделю, увеличивая внутреннее давление и помогая предотвратить попадание грязи, смазочно-охлаждающей жидкости и т. Д.от входа. Кроме того, этот метод позволяет смазочному маслу проходить через подающую трубу, сводя к минимуму загрязнение атмосферы.
Замечание 1 Требуемая подача масла при принудительной циркуляции масла; методы смазки масляной струей
Значения коэффициента трения
μ .
Тип подшипника μ
Радиальный шарикоподшипник 0,0010 - 0,0015
Радиально-упорный шарикоподшипник 0.0012 - 0,0020
Подшипник роликовый цилиндрический 0,0008 - 0,0012
Конический роликоподшипник 0,0017 - 0,0025
Подшипник роликовый сферический 0,0020 - 0,0025

Значения, полученные с помощью приведенного выше уравнения, показывают количество масла, необходимое для отвода всего выделяемого тепла, без учета тепловыделения.
В действительности поставляемая нефть обычно составляет от половины до двух третей расчетной стоимости.
Тепловыделение широко варьируется в зависимости от области применения и условий эксплуатации.
Для определения оптимальной подачи масла рекомендуется начинать работу с двух третей расчетного значения, а затем постепенно уменьшать масло, измеряя рабочую температуру подшипника, а также подаваемое и сливаемое масло.

Примечание 2 Примечания к смазке масляным туманом
1) Требуемое количество тумана (давление тумана: 5 кПа)

В случае высокой скорости ( d m n ≧ 40 万) необходимо увеличить количество масла и усилить давление тумана.

2) Диаметр трубопровода и конструкция смазочного отверстия / канавки

Когда скорость потока тумана в трубопроводе превышает 5 м / с, масляный туман внезапно конденсируется в масляную жидкость.
Следовательно, диаметр трубопровода и размеры смазочного отверстия / канавки в корпусе должны быть рассчитаны таким образом, чтобы скорость потока тумана, полученная по следующему уравнению, не превышала 5 м / с.

3) Масло тумана

Масло, используемое для смазки масляным туманом, должно соответствовать следующим требованиям.

  • способность превращаться в туман
  • обладает высокой устойчивостью к экстремальным давлениям
  • хорошая термостойкость / устойчивость к окислению
  • нержавеющая
  • Образование шлама маловероятно
  • Превосходный деэмульгатор

(Смазка масляным туманом имеет ряд преимуществ для подшипников с высокой скоростью вращения. Однако на его характеристики в значительной степени влияют окружающие конструкции и условия эксплуатации подшипников.
Если вы планируете использовать этот метод, обратитесь в JTEKT за советом, основанным на многолетнем опыте JTEKT в области смазывания масляным туманом.)

Смазка шариковых подшипников - GMN

Смазка шариковых подшипников - GMN

Выбор подходящих смазочных материалов в первую очередь зависит от максимальной рабочей частоты вращения подшипников.

Выбор смазочных материалов

Чтобы оптимально использовать характеристики высокоточных шарикоподшипников GMN при обработке, необходимо уделять особое внимание подходящей смазке подшипников.

Максимально возможное число оборотов в минуту, а также максимальный ожидаемый срок службы основаны на образовании смазочной пленки, которая снижает трение между частями подшипников качения и скольжения.


ДАЛЬНЕЙШИЕ ЗАДАЧИ СМАЗКИ:
  • Погашение структурного шума и вибрации
  • Отвод тепла
  • Уплотняющий эффект
  • Защита от коррозии

Пригодность современных высокоскоростных пластичных смазок для очень высоких скоростей позволяет все шире использовать удобные и экономичные преимущества консистентной смазки. Эксплуатационные требования, превышающие характеристики консистентных смазок, обеспечивают подшипники с масляной смазкой с максимальным сроком службы в самых высоких диапазонах частоты вращения и температур.

Критерии выбора типа смазки (+++++: очень хорошо · +: плохо)

СМАЗКА

ОБ / МИН ПОДХОДИТ ДЛЯ СМАЗКИ

Выбор подходящей консистентной смазки в первую очередь зависит от максимальной рабочей частоты вращения подшипников.
Конкретное ключевое значение оборотов в минуту n · dm учитывает связанные с работой обороты подшипника и относится к максимальной скорости требуемой смазки.
Учет основных значений частоты вращения при выборе смазочных материалов ограничивает влияние на характеристики подшипников из-за отсутствия смазки.
Разделение смазочной пленки в зависимости от скорости может привести к нарушению трения, нагреву и повышенному износу подшипников.

ОПРЕДЕЛЕННОЕ КЛЮЧЕВОЕ ЗНАЧЕНИЕ ОБОРОТОВ: N · DM

n · dm подшипник = n · (D + d) / 2 [мм / мин]

  • n: Рабочая частота вращения подшипника
  • d: Диаметр отверстия подшипника [мм]
  • D: Наружный диаметр подшипника [мм]

Многие производители смазочных материалов предлагают широкий ассортимент пластичных смазок, которые были разработаны для использования с быстро вращающимися или высоконагруженными шарикоподшипниками.
Посредством ориентированной на требования комбинации или обработки базового масла, загустителя и присадок в процессе производства, в частности предлагаются особые свойства, такие как защита от износа, низкий уровень шума или термостойкость.

Вы можете найти техническую информацию по теме «Консистентная смазка высокоточных шарикоподшипников» в нашем разделе загрузок.

СМАЗКА СМАЗКА СРОК СЛУЖБЫ

Учет необходимого срока службы смазки имеет решающее значение для долгосрочной и надежной работы подшипников с консистентной смазкой.Время смазки может составлять более пяти лет при благоприятных условиях эксплуатации.

Расчет продолжительности смазки (t f ) выполняется с учетом характеристик смазочного материала и рабочих нагрузок на подшипник.

  • Тип смазки, количество смазки, распределение смазки
  • Конструкция и тип подшипника
  • Условия монтажа (чистота)
  • Условия эксплуатации
    (Скорость, скоростная характеристика, нагрузки, температура и т. Д.)
УСЛОВИЯ ЭКСПЛУАТАЦИИ * ДЛЯ СМАЗКИ РУКОВОДСТВО T
F
  • Стандартная смазка на основе литиевого мыла
  • Рабочая температура до 70 ° C
  • Нагрузка на подшипник (P и C <0,1)
  • Благоприятные условия окружающей среды в отношении…
    … пыли,
    … влаги
    … воздуха, проходящего через подшипник *

* (Согласно Таблице 3 GfT, смазка подшипников качения, сентябрь 2006 г.)

Более высокие рабочие температуры приводят к сокращению времени смазки.(Начиная с рабочей температуры 70 ° C, повышение на 15 ° К может вдвое сократить первоначально определенную продолжительность смазки).

Для более высоких нагрузок на подшипники (P и C> 0,1), ударных нагрузок и вибраций необходимы соответствующие корректировки ориентировочных значений времени смазки (tf).

GMN рекомендует специальную смазку с оптимизированными требованиями для экстремальных условий эксплуатации.

Время смазки подшипников со стальными или керамическими шариками

ШАРИКОВЫЕ ПОДШИПНИКИ GMN С СМАЗОЧНОЙ СМАЗКОЙ

Все прецизионные шарикоподшипники GMN могут поставляться со смазкой.

  • Стандартный уровень заполнения составляет 30% (допуск: ± 5%) свободного пространства
  • Уровень заполнения 20-25% рекомендуется для облегчения работы подшипников
  • 35% смазки обеспечивает длительный срок службы
  • Подшипники без смазки поставляются со стандартной консервацией.
  • Подшипники серии KH имеют стандартный объем смазки 25% (LUBCON TURMOGREASE Highspeed L 252).
  • Шариковые подшипники с канавками имеют стандартный объем смазки 30% (KLÜBER ASONIC GLY 32).Другие смазки доступны по запросу.
СМАЗКА

Теоретически для смазки достаточно смазки <10% свободного объема подшипника.
Однако для большинства применений рекомендуется содержание смазки от 25 до 30% по соображениям безопасности и расхода смазочных материалов.

Ориентировочное значение для смазки высокоточных шарикоподшипников GMN консистентной смазкой группы I можно найти в соответствующих технических информационных листах или в дополнение к дополнительной технической информации в нашей области загрузок.

Техническая информация: «Смазки серии 60 и 62».

Техническая информация: «Смазки серии 618 и 619».

СМАЗКА

СМАЗКА НАРУЖНОГО КОЛЬЦА С ПОДШИПНИКАМИ

Системы консистентной смазки используются, если срок службы консистентной смазки или пригодность частоты вращения для постоянной смазки недостаточны.

Расположение подвода смазки на подшипниковых парах

по схеме «O».

B = ширина подшипника (отдельный подшипник), B0 = осевое расстояние до закрытой стороны, ØB1 = опорный диаметр

Расположение подвода смазки для пар подшипников

при тандемном расположении.

B = ширина подшипника (отдельный подшипник), B0 = осевое расстояние до закрытой стороны, ØB1 = опорный диаметр

ОБЗОР

Место подачи смазки для одиночных подшипников (+ AG)

Вы можете найти техническую информацию о «повторном смазывании» в нашей области загрузок.

Другие типы и размеры по запросу.

ОСНОВНЫЕ ДАННЫЕ ДЛЯ ИНДИВИДУАЛЬНЫХ ПОДШИПНИКОВ (+ AG)

СМАЗКА МАСЛА

По сравнению с подшипниками с консистентной смазкой, использование смазочных масел обеспечивает длительную и надежную работу при максимальных оборотах. Чтобы обеспечить маслом быстро вращающиеся подшипники, доступны различные процедуры воздушно-масляной смазки (минимальные объемы смазки), смазка впрыском масла и смазка масляным туманом.

МАСЛЯНО-ВОЗДУШНАЯ СМАЗКА

Масло-воздушная смазка обеспечивает целенаправленную и регулируемую подачу смазки на поверхности качения и скольжения в подшипнике.

Смазка транспортируется воздушным потоком полосами по внутренней стенке прозрачной подающей трубки и подается с необходимыми интервалами равномерно к точкам смазки.

Масло-воздушная смазка обеспечивает высочайшую эффективность в отношении использования и смазывающего эффекта при максимальных оборотах:

  • Пониженная рабочая
  • Минимальные потери на трение
  • Пониженное тепловыделение
  • Высокая эксплуатационная безопасность
  • Целевая и регулируемая подача смазочного материала
  • Низкий расход масла
  • Низкое образование масляного тумана
  • Очень хорошая смазка
  • Экологичность и высокая рентабельность
  • Охлаждение масла и фильтрация масла не требуются (по сравнению со смазкой впрыском)

Масло-воздушная смазка (схема)

PRELUB: СМАЗКА ДЛЯ ШАРИКОВЫХ ПОДШИПНИКОВ GMN

Чтобы гарантировать высокое качество высокоточных шарикоподшипников GMN, мы рекомендуем нашу смазочную установку PRELUB с электронным управлением.

Это не только рекомендуется для наших шпинделей, но также обеспечивает точно контролируемую подачу смазки для эффективной смазки подшипников, а также максимальной безопасности эксплуатации.

ПОДАЧА МАСЛА ЧЕРЕЗ РАСПОРКУ

В обычных системах смазки подшипников форсунки для впрыска масла устанавливаются в промежуточной втулке или в проставке между двумя подшипниками.

Подача масла через проставку

ПОДАЧА МАСЛА ЧЕРЕЗ МАСЛЯННУЮ ФОРСУНКУ

Положение сопла параллельно оси шпинделя достаточно для приложений с высокими оборотами.
Угловое положение сопла увеличивает пригодность числа оборотов подшипника (более точная подача смазки в области роликов).

Параллельное расположение форсунок

Положение форсунки под углом

КОНСТРУКТИВНЫЕ ХАРАКТЕРИСТИКИ
  • Длина и диаметр отверстия для масляных форсунок:
    Достаточная подача смазочного материала обеспечивается при соотношении между длиной форсунки и диаметром отверстия форсунки более 3 и менее 5 (давление масляно-воздушного потока больше, чем противодавление вызванные турбулентностью подшипников).
  • Масло для высокоточных шпинделей:
    Гидравлическое масло с кинематической вязкостью VG 32 или VG 46 мм 2 / сек
  • Фильтрация масла:
    Класс чистоты 13/10 по ISO 4406 (размер частиц <5 мкм)
  • Объем масла на импульс смазки:
    от 30 до 35 мм 3 на соединение для 1 или 2 подшипников
  • Время цикла:
    VG32: от 2 до 4 мин., VG46: 4–10 мин. (независимо от подшипника d)
  • Количество форсунок:
    1 на подшипник
  • Диаметр сопла:
    1.2 мм (подшипник d <50 мм) ... 1,6 мм (подшипник d> 70 мм)
  • Положение форсунки:
    Между клеткой и ИК-краем (таблицы технических данных, клетка ТА)
  • Подача масла, слив масла:
    Прозрачный шланг диаметром 4 мм
  • Давление воздуха перед шпинделем:
    от 0,6 до 1 бар
  • Объем воздуха:
    от 3 до 4 м 3 / ч (от 50 до 65 л / мин) от 3 до 4 м3 / ч (от 50 до 65 л / мин)
  • Качество воздуха:
    В соответствии с ISO 8573: Размер частиц <5 мкм,
    Концентрация частиц <5 мг и м 3 ,
    Точка росы <3 ° C, концентрация масла <1 мг и м 3
  • Ввод в эксплуатацию:
    Пуск шпинделя после обеспечения подачи масла

Техническую информацию по теме «Смазка маслом» можно найти в нашей области загрузок.

СМАЗОЧНЫЕ МАСЛА

Минеральные смазочные масла обеспечивают достаточную смазку подшипников шпинделей станков.

Часто используемые смазочные масла

Настройки файлов cookie

Ссылка на использование файлов cookie: Мы используем файлы cookie на нашем веб-сайте.Некоторые из них являются существенными (технически необходимыми), в то время как другие помогают нам улучшить наш веб-сайт и ваш опыт просмотра. Вы можете принять несущественные файлы cookie или подтвердить, нажав «Сохранить настройки», текущий или индивидуально настроенный выбор. Ваши настройки файлов cookie можно просмотреть на нашем веб-сайте (Заявление о конфиденциальности, 2.3 Файлы cookie) и вы можете изменить их в любое время.

Ссылка на обработку данных Google, YouTube в США ваших данных, собранных на нашем веб-сайте: Ссылка на обработку данных Google, YouTube в США ваших данных, собранных на нашем веб-сайте: нажав «Я принимаю все файлы cookie», вы даете ваше согласие в соответствии со статьей 49 раздел 1 предложение 1 лит.GDPR для передачи ваших данных в США и для обработки там. Европейский суд оценил Соединенные Штаты как страну с неадекватным уровнем защиты данных в соответствии со стандартами ЕС. В частности, существует риск того, что ваши данные могут быть обработаны властями США в целях контроля и мониторинга, возможно, без возможности обжалования. При нажатии кнопки «Сохранить настройки» передача ваших данных не осуществляется, и выбирается только «Основные».

Настройки файлов cookie

Здесь вы найдете обзор всех используемых файлов cookie.Вы можете дать свое согласие на использование целых категорий или отобразить дополнительную информацию и выбрать определенные файлы cookie.

Имя Borlabs Cookie
Провайдер Владелец сайта
Назначение Сохраняет предпочтения посетителей, выбранные в поле Cookie Borlabs Cookie.
Имя файла cookie borlabs-cookie
Срок действия cookie 1 год
.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *