Строение глушителя автомобиля: Конструкция глушителя

Содержание

Составные части глушителя


Устройство глушителя автомобиля

Дата публикации: .
Категория: Автотехника.

Если бы не созданный французской компанией Panhar-Levassor первый в мире глушитель, то возможно сегодня бензиновых автомобилей не было бы. Выхлопная система позволила «успокоить» ДВС и дать этому мотору «вторую жизнь».

Первоначально глушители выполняли не много функций и считались больше вспомогательной составляющей, нежели важной, как другие агрегаты. Однако с течением времени выхлопные системы начали играть более значительную роль. Сегодня благодаря глушителям удается не только значительно снижать уровень шума от работающего мотора, но и уменьшать температуру выхлопных газов, выводить отработанные газы за пределы авто и уменьшать уровень вредных выбросов в окружающую среду.

Исходя из этого, стоит обратить внимание на строение глушителя, а также на его разновидности.

Основные элементы выхлопной системы

Конструкция выхлопной системы становится более сложной, но с каждой новой моделью машины она включает в себя все те же элементы.

Коллектор

Приемная труба является промежуточным звеном между двигателем машины и нейтрализатором (катализатором). Коллектор отвечает за вывод газов. Так как в этом случае идет очень сильная механическая и температурная нагрузка, которая может доходить до 1000 градусов, то к этой части глушителя предъявляются довольно строгие требования. Поэтому при изготовлении приемной трубы используют только самые лучшие сплавы чугуна и стали.

Также на этой детали иногда устанавливают вибро-компенсатор (гофру), благодаря которому вибрация двигателя гасится и не переходит дальше по выхлопной системе.

Нейтрализатор

В каталитическом нейтрализаторе (или катализаторе) происходит «дожиг» несгоревших остатков топлива и переработка окиси углерода. Этот элемент выхлопной системы представляет собой специальную камеру или бачок, в котором расположен керамический или металлический элемент в виде сот. Благодаря этим сотам газовые смеси очищаются за счет химических реакций.

Сейчас производители начали изготавливать многосекционные нейтрализаторы, отвечающие всем международным стандартам, которые производят обработку большего спектра вредных веществ.

Передний глушитель (резонатор)

Резонатор – по сути, является одной из тех деталей, которые принято называть глушителями. Этот элемент выполняет функцию снижения шума, но никак не очистки выхлопных газов. Когда газы проходят через резонатор, создается много шума. Поэтому внутренняя «начинка» переднего глушителя представляет собой многочисленные решетки и отверстия, которые позволяют снизить скорость вырывающихся газов, а также вибрацию. По большому счету резонатор – это бак с перфорированной трубой.

Передние глушители бывают:

  • Активными. Такие глушители изготавливаются из специальных звукопоглощающих материалов, а их конструкция отличается простотой.
  • Реактивными. В глушителях этого типа используются комбинации из расширительных, а также резонаторных камер.

Не стоит путать резонатор с задним глушителем, так как их конструкция сильно отличается.

Задний глушитель

Когда мы говорим «глушитель» то чаще всего в виду имеется именно задняя часть выхлопной системы.

Этот элемент производит окончательное поглощение шума, а также осуществляет завершающий вывод газов.

В отличие от резонатора, внутренняя «начинка» заднего глушителя неоднородна. Внутри него установлено несколько камер со специальными наполнителями. Благодаря пористой структуре, системе перегородок и воздуховодам удается не только избавиться от сильного шума, но снизить температуру в системе.

Говоря о снижении шума, нельзя обойти стороной другой тип системы, который снижает повышенный шум в выхлопной трубе.

Прямоточный глушитель

В обычных глушителях в процессе сопротивления отработанным выхлопным газам, теряется часть мощности мотора. Хоть этот расход и незначительный, многие автолюбители ищут способы, как сделать глушитель тише без потери мощностей двигателя. Для этих целей производители разработали специальные прямоточные модели.

Устройство такого глушителя отличается от привычной схемы. В отличие от штатных моделей, в прямоточных агрегатах мощность двигателя не только снижается, но и повышается, за счет использования энергии выходящих газов.

Суть работы «прямотоков» заключается в том, что при выходе газов из коллектора требуется меньшее сопротивление. Благодаря этому мотору не приходится затрачивать лишней энергии, чтобы преодолеть давление. Полученная разница преобразуется в полезную мощность движения.

Сам прямоточный глушитель представляет собой прямую трубу с перфорированной поверхностью. По большому счету она заключена во внешний кожух. Внутри глушителя также есть разделители и камеры, просто их меньше, чем у штатных систем. Благодаря такой конструкции, отработанные выхлопные газы движутся по прямой и не встречают сильного сопротивления. В то же время, благодаря перфорированной поверхности они расширяются и свободно выходят.

Внешний кожух прямоточного глушителя покрыт специальным поглощающим составом, за счет чего газы, находящиеся внутри, не резонируют, а звук мотора не превышает допустимых пределов. Таким образом, уровень шума сводится к минимуму.

Чтобы усилить эффект некоторые автовладельцы используют дополнительные внешние сегменты.

Как еще можно снизить уровень шума глушителя

Также для снижения шума можно установить зеркальный глушитель. Такие модели работают по такому же принципу, как и акустические зеркала. Чаще всего зеркальные глушители можно встретить в выхлопных системах двухтактных моторов мотоциклов и скутеров. Устройство глушителя в этом случае представляет собой выпускное колено и резонаторную банку, в которой отработанные газы «утихомириваются». При этом уровень сопротивления будет значительно ниже, а на мощность двигателя не будет расходоваться. Однако стоит учитывать, что из-за зеркального эффекта температура выхлопной трубы будет повышаться.

Подобный принцип используется в системах автомобилей ВАЗ 2107, Нива, 2115 и многих других.

Помимо этого существуют поглотительные и ограничительные глушители, которые также понижают шум.

В заключении

Конструкция автомобильных глушителей постоянно претерпевает изменения, хоть общий принцип работы и сама конструкция остается неизменной уже много десятков лет. Сегодня это не обычная металлическая «банка» а полноценная система, которая обеспечивает правильную работу двигателя автомобиля. Именно поэтому, если из глушителя начинает идти пар или раздаются хлопки, необходимо незамедлительно производить диагностику и ремонт этого немаловажного узла.

Выхлопная система автомобиля: схема устройства, возможные неисправности и методы диагностики

Многие автолюбители даже не представляют, насколько важна выхлопная система автомобиля в безаварийной работе силового агрегата, и не уделяют её обслуживанию должного внимания, в результате чего, может произойти выход из строя двигателя. Именно по этой причине, стоит внимательно ознакомиться с принципом работы выхлопной системы, её конструктивными особенностями, и знать, из чего состоит выхлопная система.

В работе двигателя внутреннего сгорания важная роль отводится своевременному выводу наружу отработавших газов, начинающих скапливаться в камере сгорания головки блока цилиндров сразу после воспламенения топливной смеси. Данную задачу призваны выполнять выхлопные системы, или как говорят автолюбители, глушители, которыми оснащаются все современные машины. Должная работа выхлопной системы, направленная на отвод из мотора остатков отработанной топливной смеси, целиком зависит от исправности всех её составных элементов, имеющих некоторые конструктивные отличия в зависимости от типа двигателя.

Принцип работы выхлопной системы

Современная автомобильная выхлопная система состоит из нескольких частей, в отличие от первых устройств, имеющих вид механического клапана, который принудительно открывался водителем автомобиля вручную. Все элементы выхлопной системы, которые соединяются между собой с помощью крепёжных болтов через расположенные на их концах фланцы, предназначены для:

  • отвода из камеры сгорания двигателя выхлопных газов и прочих не сгоревших остатков топливной смеси;
  • уменьшения выделяемого мотором во время работы шума;
  • уменьшения количества токсичных веществ находящихся в выхлопе автомобиля;
  • предотвращения попадания в салон транспортного средства токсичных газов.

Устройство выхлопной системы автомобиля обладает довольно простым принципом работы, которая подразумевает отвод отработанных газов из камеры сгорания, проводя их через трубы к задней части транспортного средства, понижая при этом, за счёт герметичности всей конструкции и соединений через фланцы с термоустойчивыми уплотнителями, выделяемый мотором шум.

Уменьшение количества токсичных веществ в выхлопных газах достигается за счёт применения в конструкции выхлопной системы каталитических нейтрализаторов (катализаторов), работоспособность которых контролирует специальный датчик, называемый лямбда-зонд. В современных дизельных автомобилях, для повышения показателя экологичности выхлопа, производители используют сажевый фильтр, которым также оснащается выхлопная система дизеля.

В конструкции дизельного мотора, а также современного бензинового агрегата, довольно часто используется турбонагнетатель, который использует для подачи в камеру сгорания воздушную смесь из кислорода и отработавших газов, забираемых из выпускного коллектора. Количество попадающих в турбину выхлопных газов, регулирует датчик, расположенный на корпусе выпускного коллектора.

Устройство конструкции и назначение её составных частей

Детали, составляющие данную конструкцию, имеют различную функциональную нагрузку и собственные обозначения, отражающие этапность их работы. Сама схема выхлопной системы и наименования её частей, выглядят следующим образом:

  1. коллектор выпускной;
  2. приёмная труба выхлопных газов;
  3. катализатор или по-другому каталитический нейтрализатор;
  4. резонатор или пламегаситель;
  5. глушитель.

Коллектор выпускной, представляет собой навесной тип оборудования силового агрегата, и предназначен для поступления в него отработавших частиц и газов топливной смеси с камер сгорания каждого из цилиндров, и изготавливается в основном из керамики, сплавов чугуна или нержавеющей стали, обладающих повышенной термоустойчивостью.

Конструкция выхлопной системы

Приёмная труба, именуемая автолюбителями как «штаны», из-за схожего внешнего вида, предназначена для объединения нескольких потоков выхлопных газов в один, и для дальнейшего их продвижения к каталитическому нейтрализатору (катализатору). Труба зачастую оснащается так называемой гофрой, с помощью которой происходит гашение вибрации, передаваемой на всю конструкцию выхлопной системы работающим мотором.

Катализатор, представляет собой керамические соты, поверхность которых покрыта слоем сплава из платины и иридия, что позволяет вступить в химическую реакцию с ними выхлопным газам, в результате чего происходит их разделение на кислород и оксид азота. Выделенный кислород в катализаторе помогает более эффективно сгорать остаткам топливной смеси, в результате чего к глушителю подаётся исключительно азотно-диаксидноуглеродная смесь. Работу каталитического нейтрализатора контролирует специальный датчик лямбда зонд, передавая сигнал на блок управления силового агрегата автомобиля. Аналогичный датчик, устанавливается и на выпускной коллектор, для анализа показателей токсичности поступающих в катализатор отработанных газов.

Резонатор или пламегаситель, предназначен для понижения высокой температуры отработанных выхлопных газов, что достигается с помощью его ячеистого внутреннего строения. Последней деталью в конструкции, является глушитель, задача которого заключена в понижении шума работающего двигателя за счёт перфорированной трубы внутри его корпуса.

Все составные части выхлопной системы соединены друг с другом через фланцы с помощью крепёжных болтов и термостойких уплотнителей, отвечающих за герметичность данной конструкции, без которой невозможна полноценная работа двигателя современного автомобиля.

Схема выхлопной системы

Возможные неисправности, методы их устранения и варианты тюнинга

Конструкция выхлопной системы является идеальным вариантом для проведения тюнинга легкового автотранспортного средства, благодаря простате монтажа её составных частей и наличием большого ассортимента различных деталей. Самым частым вариантом тюнинга глушителя является установка так называемого прямоточного выхлопа, когда из системы убирается резонатор.

Наиболее частые неисправности выхлопной системы связаны с потерей герметичности деталей или их соединений, уплотнители в которых могут сильно износиться. Для замены уплотнительных элементов, необходимо приобрести ремонтный комплект выхлопной системы, и открутив крепёжные болты, поменять их на новые.

Сделанные из различных сплавов металла детали выхлопной системы, подвергаются значительному нагреву, резкому перепаду температур, и работают в условиях повышенных нагрузок, в результате чего подвержены сильному износу и прогаранию внутренних частей. Определить данные поломки позволит громкий шум работающего мотора и визуальная диагностика выхлопной системы, после проведения которой, повреждённую деталь конструкции необходимо либо заменить на новую, в случае внутренних неисправностей, либо отремонтировать её корпус с помощью электро/газосварки.

В современных автомобилях работа силового агрегата контролируется блоком управления, который получает определённые сигналы от многочисленных датчиков, расположенных на всех его конструктивных узлах. В конструкции выхлопной системы расположен датчик, именуемый лямбда-зондом, замеряющий количество токсичных веществ в отработанных газах. Его неисправность или некорректную работу способен выявить только диагностический стенд, после чего датчик необходимо заменить.

Эксплуатировать автомобиль с неисправной выхлопной системой нельзя, это может привести, как к поломке силового агрегата, на клапанах образуется закоксование рабочей поверхности, приводящее к потере мощности мотора, так и к возможному нанесению вреда здоровья водителя и всех пассажиров, из-за попадания в салон токсичных выхлопов.

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Глушитель — назначение, устройство, работа

»   Глушитель — назначение, устройство, работа

Посмотреть глушитель в каталоге «АВТОмаркет Интерком»                   

 

Глушитель является одним из важнейших элементов выпускной системы. Эксплуатация современного автомобиля без глушителя просто невозможна. Функции автомобильного глушителя:

1. уменьшение шума отработавших газов;

2. преобразование самих отработавших газов, то есть уменьшение их скорости, температуры (t), пульсации.

 Стоит помнить о давлении отработавших газов, оно очень высокое. При движении газов, которые уже отработали по выпускной системе могут создаваться определенный звук, который способен распространяться активнее газов. Автомобильный глушитель уменьшает звуковые колебания, преобразуя их в тепловую энергию. К тому же с использованием глушителя в выпускной системе образуется определенное противодавление, которое в итоге приводит к определенному снижению мощности двигателя.

Какие технологии в глушителе уменьшают шум?

— расширение (сужение) потока, что позволяет уменьшать звуковые колебания;

— изменение направления потока. Угол поворота потока воздуха находится в районе 80-350°, что гасит средние и значительные звуки.

— изменение звуковых волн, которое в зависимости от характера их накладывания, может приводить к изменению состояний — увеличению (конструктивная интерференция) или уменьшению (деструктивная интерференция) амплитуды колебаний. В глушителе применяются 2 вида изменений. Технология работает с помощью специальных перфорационных отверстий в самих трубах глушителя на иномарку или автомобиля ваз. Изменяя размер отверстий и объем (V) окружающей трубу камеры можно получить уменьшение звуков в значительном диапазоне частот.

— поглощение звуковых волн. Данный способ подойдет при уменьшении высокочастотных звуковых колебаний.

Часто используют два вида изменений звука.

В выпускаемых автомобилях применяют от 1 до 5 глушителей, но чаще всего – два. Близкий к мотору глушитель называется предварительным (или передним) глушителем или резонатором. Затем идет задний (главный) глушитель. Как правило, для каждой конкретной модели машины и марки двигателя применяют определенные глушители.

Как устроен резонатор

Резонатор служит для предварительного уменьшения звуковых колебаний и потока отработавших газов. Резонатор — это перфорированная труба в металлическом корпусе. Для того, чтобы эффективно уменьшить колебания в трубе применяют дроссельное отверстие.

Устройство основного глушителя

Основной глушитель значительно «гасит» шум. Он имеет более усложненное строение. В металлическом корпусе расположено небольшое количество перфорированных трубок. Корпус поделен перегородками на несколько камер. Некоторые из этих камер могут заполняться специальным звукопоглощающим материалом. В основном глушителе поток газов, которые уже много раз изменяли свое направленность – лабиринтный глушитель.

Водители, которые хотят усовершенствовать, тюнинговать выпускную систему больше всего обращают внимание на глушитель. При тюнинговых работах выпускной системы устанавливается т.н. прямоточный глушитель (одна прямоточная труба на все камеры без изменения направления потока). Такой глушитель обладает уменьшенным противодавлением, но значительной прибавки в мощности двигателя он не дает. Основной плюс прямоточного глушителя «благородное» или «спортивное» звучание вашей машины (кому, что больше «по душе»).

Устройство прямоточного глушителя

Строение прямоточного глушителя соединяет корпус из нержавеющей стали, в котором расположена специальная перфорированная труба, которая обернута стальной сеткой и особым звукопоглощающим материалом. Стальная сетка защищает звукопоглощающий материал от выдува. В качестве звукопоглощающего материала используется простое стекловолокно. В прямоточном глушителе звуковые волны без проблем проходят через отверстия трубы, металлическую сетку и поглощаются стекловолокном (преобразуются в простую тепловую энергию).

Устройство прямоточного глушителя автомобиля 🦈 AvtoShark.com

Если глушитель автомобиля работает с перебоями, систему необходимо ремонтировать. Для замены оборудования лучше обратиться в сервис по обслуживанию транспорта.

От исправности каждой детали зависит безопасность окружающих.

Автор статьи: Ярослав Алчевский

Устройство глушителя автомобиля представляет собой конструкцию, которая снижает уровень шума от преобразования энергии. Но этим функции не ограничиваются. Деталь важна для бесперебойной работы двигателя.

Предназначение глушителя в автомобиле

Современные автомобили невозможно представить без шумопоглощающих фильтров. Устройство предназначено для:

  • снижения звуковых колебаний отработанных газов;
  • уменьшения пульсации, температуры и скорости выхлопов.

Первоначально систему считали вспомогательным элементом транспорта. Сегодня автоглушители предохраняют двигатель и защищают окружающую природу от вредных веществ.

Кто придумал глушитель

На заре автомобилестроения безлошадные экипажи пугали пешеходов страшным ревом, когда проезжали по улицам. Над изобретением звукового фильтра работали инженеры многих стран. На вопрос, кто придумал глушитель для автомобиля, компании по выпуску машин отвечают неодинаково.

По одной из версий, всех опередили французы. В конце девятнадцатого века фирма «Панар-Левассор» первой оснастила экипаж акустическим преобразователем. Примерно в это же время устройство стал использовать Мильтон Ривз, который известен как автор многоколесных самоходных машин.

Другая версия гласит, что звуковой фильтр изобрела женщина. Жительнице США Долорес Джонс надоел грохот проезжающих мимо машин. В итоге американка осуществила свою мечту сделать немного тише окружающий мир.

Разновидности глушителей

Модели различают по характеристикам и принципу действия. Преобразователи шума делают из металла – нержавеющей или черной стали с алюминиевым, цинковым покрытием. Первый тип универсален, подходит для разных машин, недорого стоит, но имеет маленький срок эксплуатации. Алюминизированные служат долго, но их выпускает ограниченное количество предприятий.

Схема устройства глушителя

По принципу работы глушителя автомобиля выделяют несколько групп:

  • Самые простые – ограничительные. Деталь сделана в форме трубы, которая сначала сужается и создает сопротивление, а заканчивается расширением. Устройство используют в качестве предварительного фильтра, а не для отвода выхлопных газов.
  • Отражательные. В корпусе вмонтированы акустические зеркала. Звуковая волна, сталкиваясь с препятствиями, постепенно теряет свою силу. Такая конструкция глушителя автомобиля применяется на выходе системы.
  • Резонаторные. В состав резонаторных приспособлений входят несколько камер, которые разделяет сплошная перегородка. Колебания частоты в замкнутых пространствах гасят друг друга. Такие конструкции отработанному потоку препятствуют незначительно. Глушители размещают после приемной трубы.
  • Поглотительные. Поглотители шумовые эффекты гасят с помощью специальных материалов. В корпусе не устанавливают лабиринт перегородок. Пространство заполняют стекловатой или минеральными волокнами. Звукоизоляция таких моделей ниже, поэтому привлекает сторонников тюнинга.

В спортивных машинах часто используют прямоточные фильтры. Такой глушитель автомобиля устроен более просто. В корпус из высокопрочного металла вмонтирована труба с многочисленными отверстиями. Перфорированная конструкция покрыта стекловолокном и стальной сеткой. Звуковые волны, проходя через систему, преобразуются в тепловую энергию. Цена прямоточных моделей обычно выше, их изготавливают полностью из нержавеющей стали.

Устройство глушителя автомобиля допускает сочетание разных типов. Подобный метод используют во время проектирования дорогих автомобилей, чтобы добиться бесшумной работы двигателя.

Устройство глушителя машины

Схема глушителя автомобиля состоит из нескольких элементов, которые соединены в определенной последовательности.

Коллектор

Это приспособление предназначено для отвода отработанных газов. При изготовлении детали используют особо прочные материалы. Температура внутри трубы достигает 1000°C – такие нагрузки выдерживают только сплавы металлов. Для погашения вибрации двигателя иногда устанавливают гофру.

Нейтрализатор

Следующий элемент системы выполнен в форме бочонка. Глушитель авто в разрезе напоминает улей с металлическими сотами. Остатки топлива, поступая в нейтрализатор, сгорают.

Нейтрализатор выхлопных газов

Очищение газов происходит во время химических реакций в каждой секции. Содержание вредных веществ в отработанном выхлопе не превышает нормативы международных стандартов.

Передний глушитель (резонатор)

Передний глушитель автомобиля устроен в виде бака, внутри которого проходит труба с перфорированными отверстиями. Комбинация решеток снижает скорость потока и приглушает рев вырывающихся наружу газов.

Различают активные устройства с несложной конструкцией и реактивные приспособления из совокупности расширительных камер.

Задний глушитель

Внутреннее пространство элемента имеет неоднородную структуру. Камеры с пористыми наполнителями, сложная комбинация перегородок обеспечивают окончательное подавление звуковых вибраций. Приспособление является завершающим звеном в системе по выводу отработанных газов.

Принцип работы глушителя

Устройство глушителя автомобиля основано на простых принципах:

  1. Из камеры сгорания отработанные газы по трубе подаются к задней части машины. За счет герметичности и уплотнителей шум от мотора постепенно снижается.
  2. Уровень токсичных веществ уменьшают с помощью катализатора. Один датчик, контролирующий содержание кислорода, расположен на входе, другой лямбда-зонд – с противоположной стороны.
  3. Очищенные газы направляются сначала в резонатор, а затем в глушитель.
  4. Из основного фильтра выхлоп попадает в атмосферу.

Принцип работы глушителя автомобиля – в чередовании тесных и широких камер. В узких местах скорость потока падает, а в просторной части волны рассеиваются. За счет сложной траектории движения удается понизить частоту колебания звука. В металлических перфорированных трубах используют явление интерференции, направленное на изменение амплитуды волн. Шумовые эффекты также уменьшают изолирующие наполнители.

Как выглядит устройство глушителя автомобиля в разрезе, демонстрирует схема:

Устройство глушителя

Что будет, если снять глушитель с машины

Некоторые владельцы транспорта считают, что преобразователь звука снижает мощность работы двигателя. Мнение основано на том, что гоночные машины не оборудованы шумопоглощающими фильтрами.

Строение глушителя автомобиля – это сложная система, где все детали тщательно подобраны. Если исключить из схемы одно звено, это неизбежно отразится на характеристиках агрегата. Сверхскоростные модели для автоспорта проходят тщательный контроль. Система вывода газов обладает повышенной герметичностью и разработана согласно стандартам безопасности.

Самостоятельный демонтаж глушителя приведет к повышенной нагрузке на двигатель. В итоге появится вибрация кузова, возрастет уровень шума, а в салоне может ощущаться неприятный запах. Существует риск отравления выхлопными газами. И не факт, что автомобиль без фильтра поедет быстрее.

Если глушитель автомобиля работает с перебоями, систему необходимо ремонтировать. Для замены оборудования лучше обратиться в сервис по обслуживанию транспорта. От исправности каждой детали зависит безопасность окружающих.

Устройство глушителя автомобиля

Автор admin На чтение 4 мин. Просмотров 145

Ещё на заре появления первых автомобилей в конце 19-го начале 20-го вв., глушитель стал тем средством, которое позволило популяризовать их среди городского населения. Рев мотора и в наше время остается существенной проблемой, когда дело касается транспортных средств. В наше время используются новые методы подавления шума, которые в целом достаточно эффективны. С течением времени устройство глушителя постоянно совершенствовалось.

Современный автомобильный глушитель — это агрегат, предназначенный для снижения уровня шума, а также температуры и токсичности выхлопных газов.

У любого автомобиля подобные параметры должны соответствовать установленным стандартам. Сложность заключается в том, что для выполнения поставленных задач необходимы достаточно сложные системы. Поэтому устройство глушителя включает несколько основных элементов. Каждый из них выполняет определенную функцию.

Основные элементы системы

Конструкция глушителя включает несколько элементов. Фактически она будет, примерно, одинаковой для каждой модели автомобиля.

  1. Коллектор;
  2. Нейтрализатор;
  3. Передний глушитель;
  4. Задний глушитель.

Коллектор подключается непосредственно к самому двигателю, выполняя задачу по выводу газов. Нагрузка в данном случае очень высокая и касается это как механического, так и температурного воздействия (вплоть до 1000 градусов). Особые требования предъявляются к материалу, из которого изготавливается эта часть глушителя автомобиля. Для этого применяются лучшие сплавы чугуна и стали.

Согласно международным стандартам производители должны позаботиться о снижении вредоносного воздействия. И эта задача возлагается на каталитический нейтрализатор или конвертер. Он представляет собой особую камеру, где происходит фактическая очистка газовой смеси.

Сейчас производители нередко изготавливают катализаторы, способные проводить очистку в широком диапазоне вредных веществ. Для этого камеру каталитического нейтрализатора делают многосекционной. Корпус изготавливается из металла или керамики. При этом он имеет ячеистую структуру, благодаря которой увеличивается площадь контакта газов непосредственно с каталитическим слоем.

Какие материалы применяются для каталитических реакций

Непосредственно рабочая зона нейтрализатора глушителя автомобиля покрывается платиной и палладием. При контакте с ними большая часть вредных токсинов в выхлопных газах нейтрализуется. Сам катализатор производители располагают ближе к мотору, так как высокая температура способствует ускорению реакций.

Конечно, до сих пор не существует универсального глушителя, способного нейтрализовать абсолютно все токсины и вредные вещества, но производители все равно постоянно совершенствуют технологии.

Передние и задние глушители

Последние две части — это непосредственно сами глушители автомобиля в том понимании, к которому мы все привыкли. Выделяют передний и задний глушители. Как раз они предназначаются уже непосредственно для снижения уровня шума, и они ничего не очищают.

Передний глушитель обычно называют резонатором. Газы, проходя по предыдущим частям с высокой скоростью, создают довольно много шума. Различные решетки и многочисленные отверстия, во-первых, снижают скорость продвижения газов, а вместе с этим и вибрацию. Для поглощения звуковых эффектов применяются специальные материалы. Подобным образом, удается убрать эффект резонанса. Именно здесь происходит основная работа по снижению уровня шума автомобиля.


Выделяют два основных вида:
  • Активные;
  • Реактивные.

Активные глушители сделаны из звукопоглощающего материала и отличаются относительно простой конструкцией. Единственная проблема — со временем он сильно загрязняется. В реактивных применяются комбинации из расширительных и резонаторных камер.

Последняя часть — это фактически основной глушитель транспортного средства.

Функция заднего глушителя заключается в окончательном поглощении шума и отвода выхлопных газов. Его внутренняя структура неоднородна и состоит из серии небольших камер со специальными наполнителями.

Необходимо отметить, что в более новых машинах, как правило, совмещается несколько технологий сразу. Пористая структура, система перегородок и различные воздуховоды позволяют окончательно избавиться от шума и снизить температуру до безопасной.

Устройство прямоточного глушителя

Те автомобилисты, которые стремятся всяческими способами повысить мощность своего транспортного средства, устанавливают специальные прямоточные глушители.

Особенность устройства прямоточного глушителя заключается в том, что он способен использовать энергию выходящих газов для увеличения мощности автомобиля. Со штатным глушителем такое невозможно.

Суть заключается в том, что выхлопные газы выходит из выпускного коллектора с меньшим сопротивлением. Благодаря этому двигатель тратить чуть меньше энергии, так как ему нужно тратить меньше энергии на преодоление давления. И именно эту разницу удается преобразовать в полезную мощность движения.


Устройство прямоточного глушителя включает прямую трубу с перфорированной поверхностью, фактически заключенную во внешний кожух. Внутри содержится меньше разделителей и различных камер. Таким образом, отработанные газы проходят по прямой без особого сопротивления, но за счет перфорированной поверхности они свободно расширяются, так что особых проблем с выходом не возникает.

Шумопоглощение обеспечивается за счет специального внешнего кожуха с нанесенным поглощающим составом. Благодаря нему газы внутри не резонируют, и звук двигателя находится в пределах допустимых пределов. Для улучшения эффекта могут применяться несколько отдельных внешних сегментов.

Нередко различные системы глушителя разрабатываются непосредственно под конкретные модели автомобилей с учетом его особенностей и рабочих характеристик.

Мне нравится2Не нравится
Что еще стоит почитать

принцип работы, вид в разрезе

Автоликбез30 августа 2017

В процессе езды коленчатый вал двигателя авто совершает от 1,5 до 5–7 тыс. оборотов в минуту. Соответственно, в цилиндрах происходит 25–120 вспышек и микровзрывов топлива ежесекундно. В результате выделяется толкающая поршни энергия, отработанные газы и мощные звуковые волны. Чтобы убрать громкий рокот и шум из выхлопной трубы, доставляющий неудобства водителю и окружающим, было изобретено звукопоглощающее устройство – глушитель. Поскольку он служит не вечно, автолюбителям полезно будет знать, как устроен данный элемент и можно ли его отремонтировать в случае неисправности.

Где находится элемент и как он выглядит?

Главный источник шума – камеры сгорания работающего двигателя. Образующиеся там звуковые волны не могут проникать сквозь сплошные металлические стенки и стремятся выйти наружу по пути наименьшего сопротивления – через трубу выпускного тракта вместе с отработанными газами. Там и установлен глушитель в виде металлического бочонка круглой либо овальной формы.

Схема работы выхлопной системы автомобиля выглядит так:

  1. Первой за выпускным коллектором установлена виброизоляционная гофра. Ее задача – сгладить колебания, передающиеся трубе от мотора.
  2. Пройдя гофру, дым и звуковые волны попадают в каталитический нейтрализатор. Его задача – дожечь остатки горючих газов, чтобы не выбрасывать в атмосферу. Внутри детали расположены мелкие керамические соты, которые частично поглощают и рассеивают звук.
  3. После нейтрализатора выхлоп проходит в бачок резонатора. Это первая ступень подавления шума.
  4. Последним в цепочке стоит глушитель, окончательно гасящий звуковые колебания.

По сути, резонатор – это тоже глушитель, его строение и принцип действия вы узнаете из следующего раздела.

Бачок резонатора всегда стоит вдоль оси машины, а глушитель может устанавливаться поперек (в задней части авто). Встречаются варианты, когда оба элемента совмещены в едином корпусе с целью экономии места. На автомобилях с V-образными двигателями большой мощности устанавливается распределенная система выхлопа на 2 трубы. Соответственно, количество всех деталей удваивается.

Конструкция и принцип действия

Существует 4 способа погасить мощные звуковые импульсы, реализуемые на различных транспортных средствах:

  • ограничение шума;
  • отражение;
  • резонансное подавление шумов;
  • поглощение.

Ограничивающее устройство – простейший вариант глушителя, применяющийся на некоторых моделях тракторов. Элемент представляет собой сужающуюся трубу, помещенную внутрь металлического бачка. Недостатки изделия очевидны – шум подавляется частично, а мощность двигателя заметно снижается.

Зеркальные элементы ставятся на мотоциклы и скутеры.  Принцип работы глушителя следующий: газы из выхлопного колена попадают в отражающую банку, меняют направление движения и выбрасываются наружу. За счет отражения звуковые колебания гасятся и уровень шума снижается. Деталь успешно функционирует с двухтактными моторами, но для автомобиля ее эффективности недостаточно.

Третий способ реализован в автомобильных резонаторах. Внутри стального бачка стоит несколько перегородок, а между ними устроены резонансные камеры, соединенные стальными трубками. Сглаживание шумовых импульсов достигается за счет двух факторов:

  1. Газы и звуковые волны несколько раз меняют направление движения, отражаясь от перегородок.
  2. Размеры камер и патрубков рассчитаны таким образом, чтобы частота колебаний звука совпадала. Тогда волны гасятся благодаря возникающему резонансу.

Необходимо понимать, что конструкция резонатора не является универсальной для всех машин. Автомобили комплектуются двигателями различной мощности, издающими шумы разной амплитуды и частоты. Звукопоглотитель разрабатывается отдельно под каждую марку и модель автомобиля.

Устройство глушителя автомобиля в разрезе, действующего по принципу поглощения шумов, изображено на схеме.

Как и в резонаторе, здесь устанавливаются перегородки и перемычки в виде трубок. Только в последних выполнено множество отверстий различного диаметра (перфорация), а по бокам уложен негорючий поглощающий материал. Как правило, для данных целей используется базальтовая либо каолиновая вата, спокойно выдерживающая температуру газов 600–700 °С.

Звуковые волны, проходя через соседние патрубки с отверстиями, частично рассеиваются и гасятся за счет наложения друг на друга. Вторая часть колебаний поглощается наполнителем, а третья сглаживается благодаря перегородкам и изменению направления потока.

О прямоточной системе

Любой автомобильный глушитель снижает мощность двигателя, создавая значительное сопротивление на пути потока дымовых газов. Такую цену приходится платить за комфорт и практически беззвучный выхлоп. Но для автомобилистов, занимающихся тюнингом своих «железных коней», существует альтернативный вариант – звукопоглотитель прямоточного типа.

Задача данного элемента – снизить потери мощности, продолжая поглощать звуковые колебания от работы двигателя. Прямоток является компромиссным решением, поскольку в угоду мощности он гасит шум не столь эффективно, как штатные элементы авто. Из чего состоит такой глушитель:

  • металлический корпус, оснащенный двумя патрубками;
  • внутри находится перфорированная прямая труба, соединяющая входное и выходное отверстие;
  • между корпусом и трубой заложен звукопоглощающий материал – каолиновая или базальтовая вата.

Звуки, идущие по прямой трубе с отверстиями, частично поглощаются волокном, но другая часть беспрепятственно проходит наружу, ведь перегородки и резонансные камеры отсутствуют. Поэтому автомобили, оборудованные прямотоком, издают рокочущий звук, особенно при нажатии на педаль акселератора.

Высший уровень тюнинга – комбинированная система выхлопа с заслонкой, управляемой из салона автомобиля. С ее помощью поток газов можно переключать между двумя ветками: на первой стоит обычный эффективный глушитель, а на второй – прямоток. Это позволяет использовать мощь мотора только при необходимости, а в обычных условиях ездить по городу без лишнего «рева» из выхлопной трубы.

Характерные неисправности

Существует одна причина, по которой глушитель автомобиля выходит из строя – длительное воздействие отработанных газов, обладающих высокой температурой. Рано или поздно металлический корпус элемента прогорает, что сопровождается рокотом под днищем автомобиля (оттуда, где расположена неисправная деталь).

Срок службы глушителя сильно зависит от материала, из которого он изготовлен:

  • обычный «черный» металл со специальным покрытием;
  • нержавеющая сталь.

Более дешевый вариант, сделанный из «черного» металлопроката, способен прогореть через 20–30 тыс. км пробега, в то время как нержавеющий корпус отработает 100 тыс. км и больше. Другое дело, что в течение длительного срока могут выгореть внутренности глушителя и уровень шума заметно повысится.

Неисправности устраняются двумя способами: замена глушителя и ремонт с помощью сварки. В любом случае вам придется посетить автосервис, где после диагностики мастера помогут принять верное решение. Если отверстие свища небольшое, то опытный специалист заварит его прямо на машине. Второй вариант – наложить заплатку из металла, для чего глушитель потребуется снять. Элемент с выгоревшими внутренностями ремонту не подлежит, только замене.

Kia Sportage: Глушитель: Расположение компонентов и компонентов — Система впуска и выпуска — Механическая система двигателя

Kia Sportage: Глушитель: Расположение компонентов и компонентов — Система впуска и выпуска — Механическая система двигателя — Руководство по обслуживанию и ремонту Kia Sportage SL
1. Передний глушитель
2. Каталитический нейтрализатор
3. Центральный глушитель
4. Главный глушитель
5. Прокладка

Интеркулер: Порядок ремонта
Снятие и установка 1.Отсоедините отрицательную клемму аккумуляторной батареи (A). Момент затяжки 4,0 ~ 6,0 Н · м (0,4 ~ 0,6 кгсм, 3,0 ~ 4,4 фунта на фут) 2. Снимите узел воздушного фильтра. (1) Удалять …
Глушитель: Порядок ремонта
Снятие и установка 1. Снимите передний глушитель (A). Момент затяжки: 39,2 ~ 58,8 Н · м (4,0 ~ 6,0 кгсм, 28,9 ~ 43,4 фунт-футов) 2. Снимите каталитический нейтрализатор (B) после снятия …

Авторские права www.kispmanual.com 2014-2020

.

компонент глушителя — предложения от производителей, поставщиков, экспортеров и оптовиков компонентов глушителя

  • Продукты

  • Продам

  • Покупки

  • Компании

  • Доступ к глобальной базе данных покупателей

Продукция Лидеры для продажиКомпанииВсе категории ——————————- Сельское хозяйствоОдеждаАвтомобили и мотоциклыБизнес услугиХимияКомпьютерное оборудование и программное обеспечениеСтроительство и недвижимостьПотребительская электроникаЭлектрическое оборудование и материалыЭлектроника Компоненты и расходные материалыЭнергетикаОкружающая среда Излишки инвентаряМодные аксессуарыЕда и напиткиМебель и мебельОбщее промышленное оборудованиеОбщие механические компонентыПодарки и ремеслаОборудованиеЗдравоохранение РазвлеченияТелекоммуникацииТекстиль и кожаЧасы, ювелирные изделия, очкиИнструментыИгрушкиТранспорт

.

Детали глушителей выхлопных газов, компоненты глушителя выхлопа, компоненты глушителя на заказ

Овальные глушители 3 ½ ”и 4 дюйма высотой
2 ½ дюйма и 3 дюйма Сердечник
Сердечники жалюзи 12 дюймов
1 ¾ дюйма, 2, 2 ½ дюйма и 3 дюйма
3 ½ дюйма и 4 ”круглые глушители
1 ¾”, Сердечники 2 «, 2 ½» и 3 «

ИНДУСТРИЯ ПЕРВЫЕ! Компоненты глушителя, которые позвольте ВАМ создавать свои собственные глушители! Мы получили много звонков от производителей, которые искали помощь в этой области.Они устали брать готовый глушитель, разделите его, чтобы он поместился в определенном месте, но не он похож на какой-то Франкен-глушитель. Oни хотели, чтобы глушитель выглядел так же профессионально, как и остальные Работа.

Мы вас услышали и нашли решение. В настоящее время вы можете сделать так, будто вы потратили много времени и денег создание для вашего клиента полностью индивидуального глушителя, но с намного меньше хлопот! Мы сделали самую сложную часть, требующую специализированного оборудования, которое немногие магазины обладают.Не волнуйся, мы сохраним твой секрет!

Cone Engineering предоставит вам компоненты Все, что вам нужно, — это окончательная калибровка и сварка. Эти компоненты их можно легко укоротить или сложить для увеличения длины предоставляя вам идеальный размер, необходимый для этого специального применения.

Нажмите здесь >> Пользовательские компоненты глушителя: Цены и характеристики

Наши глушители с эллиптической овальной гонкой очень легкие но невероятно сильный.Нержавеющая сталь 304 калибра 22 конструкция делает его легким, а эллиптическая овальная форма дает невероятную силу. Перфорированный сердечник обернутый с шерстью из нержавеющей стали образует гортанную кору! Минимальный уменьшение дБ, но поддерживает максимальный поток при встрече с глушителем требования для многих беговых дорожек.

Нажмите здесь >> Custom Компоненты глушителя: цены и характеристики

.

Sound Advice: Краткое руководство по выбору правильного глушителя

Как звучит высокая производительность?

В зависимости от глушителя звук высокой производительности может быть любым — от низкого хриплого рычания до оглушительного рева — и всего, что между ними. Идеальный глушитель издаст ровное рычание, рев или грохот, чтобы поддержать характеристики и внешний вид вашего автомобиля. Вот почему для хот-роддеров важно выбрать подходящий глушитель для своего автомобиля.

Принцип работы глушителя
Описание работы глушителя простое: снижение шума. Как только происходит внутреннее сгорание, двигатель выпускает выхлопные газы в виде импульсов высокого давления. Эти импульсы высокого давления создают очень мощные звуковые волны, а глушитель должен уменьшить этот мощный звук до приемлемого уровня.

Описание работы простое, но способ, которым глушитель выполняет свою основную задачу, более разнообразен и сложен. В идеале глушитель на вторичном рынке обеспечит хороший звук выхлопа без создания слишком большого противодавления, снижающего мощность.В зависимости от стиля глушитель использует определенную комбинацию перегородок, камер, перфорированных трубок и / или звукопоглощающего материала для достижения этой цели. Производители глушителей настраивают эти компоненты по-разному для получения разных звуков выхлопа. Чтобы помочь вам выбрать подходящий глушитель, соответствующий вашему вкусу звука и производительности, мы создали это трехэтапное руководство:

1. Найдите подходящую посадку: воздухозаборники, диаметры и др.
Независимо от того, какой глушитель вы выберете, вам нужно задать себе несколько вопросов о существующей выхлопной системе:

  • Это одинарная или двойная система? Это поможет вам определить необходимое количество воздухозаборников на глушителе. Например, для одного выхлопа потребуется одно впускное отверстие на глушителе. Если вы объединяете двойной выхлоп в один глушитель, вам понадобится глушитель с двойным впуском.
  • Какой диаметр выхлопной трубы? Вам нужно будет подобрать впускные отверстия, а в некоторых случаях выпускные отверстия, чтобы они соответствовали существующему диаметру выпускного отверстия.
  • Сколько места доступно для глушителя (ей)? Вам необходимо убедиться, что внешние размеры вашего глушителя обеспечивают надлежащий зазор под автомобилем. Правильная длина обеспечит легкий монтаж и надежный зажим; правильный размер и форма корпуса позволят ему поместиться в пределах ходовой части вашего автомобиля.

2. Выберите стиль: камерный, турбо или сквозной
Три основных типа глушителя: камерный, турбо и прямоточный. У каждого стиля есть свои достоинства и недостатки.

Идеально подходят для уличных машин и маслкаров, глушители с камерами предназначены для снижения шума выхлопных газов, обеспечивая при этом хриплый производительный звук для улицы. Они используют серию внутренних камер, которые имеют определенную длину, чтобы отражать звуковые волны друг против друга.Когда звуковые волны сталкиваются друг с другом, они нейтрализуют друг друга, вызывая снижение шума выхлопных газов. Точный звук выхлопа и снижение шума камерных глушителей зависит от размера и количества камер. Некоторые производители также используют звукопоглощающие перегородки или вставки внутри камер, чтобы еще больше уменьшить или изменить звук выхлопа.

Турбоглушители обычно используют набор перфорированных трубок, которые часто направляют выхлопные газы через глушитель по S-образной форме.Хотя эта конструкция более строгая, чем другие стили, S-образная конструкция позволяет газам проходить через большее количество трубок для лучшего снижения шума. Идеально подходят для уличных применений, некоторые глушители турбо-типа также содержат звукопоглощающий материал, который упакован вокруг трубок для усиления глушения.

Прямоточные глушители, или стеклопакетов, предназначены для обеспечения максимального потока и мощности. Эти глушители имеют прямую перфорированную трубу, обернутую звукопоглощающим материалом, например, стекловолокном.Идеально подходит для гонок, эта установка позволяет выхлопным газам проходить через трубу с очень небольшим ограничением, но обеспечивает меньшее шумоподавление, чем камерные глушители. Прямоточная конструкция также имеет тенденцию быть более компактной, чем глушители других типов, что делает их популярным выбором среди уличных роддеров и изготовителей нестандартных автомобилей.

3. Рассмотрите конструкцию: глушители из алюминия и нержавеющей стали
Глушители должны быть прочными, чтобы выдерживать выхлопные газы высокого давления, поглощать удары дорожного мусора и противостоять коррозии.Производители обычно используют трехслойный корпус, состоящий из внешней оболочки, внутреннего корпуса и слегка изолированного слоя между ними.

Корпус глушителя обычно изготавливается из алюминизированной или нержавеющей стали. Преимущество выбора глушителя из алюминированной стали — это стоимость. Алюминированная сталь обычно дешевле, чем нержавеющая сталь; однако глушители из нержавеющей стали обладают превосходной коррозионной стойкостью, долговечностью и сроком службы, чем версии из алюминизированной стали.

Щелкните ссылку слайд-шоу выше, чтобы увидеть примеры различных стилей и конфигураций глушителей. И обязательно ознакомьтесь с нашими публикациями о заголовках и стилей выхлопа , чтобы дополнить свои знания о выхлопной системе.

Исчерпывающее исследование: как выбрать выхлопную систему вторичного рынка

Header How-To: 5 ключей к выбору правильных заголовков

Видео: X-образные выхлопные трубы в сравнении с H-образными трубами

Автор: Дэвид Фуллер Дэвид Фуллер — управляющий редактор OnAllCylinders.За свою 20-летнюю карьеру в автомобильной промышленности он освещал различные гонки, шоу и отраслевые мероприятия, а также написал статьи для нескольких журналов. Он также сотрудничал с ведущими и отраслевыми изданиями по широкому кругу редакционных проектов. В 2012 году он помог основать OnAllCylinders, где ему нравится освещать все аспекты хот-роддинга и гонок. .

Hyundai Accent: Глушитель. Расположение узлов и агрегатов — система впуска и выпуска

Hyundai Accent: Глушитель. Составные части и расположение компонентов — система впуска и выпуска — механическая система двигателя

Компоненты

1. Передний глушитель
2. Каталитический нейтрализатор и центральный глушитель в сборе
3. Главный глушитель
4. Прокладка
5. Подвеска
Глушитель.Порядок ремонта
Снятие и установка 1. Отсоедините отрицательную клемму аккумуляторной батареи. Момент затяжки : 4,0 ~ 6,0 Нм (0,4 ~ 0,6 кгсм, 3,0 ~ 4,4 …
См. Также:

Размеры

Дефростер
ВНИМАНИЕ Чтобы предотвратить повреждение проводов, прикрепленных к внутренней поверхности заднее стекло, никогда не используйте острые инструменты или средства для мытья окон, содержащие абразивные вещества очистить окно. УВЕДОМЛЕНИЕ Если …

Основные компоненты системы обнаружения пассажиров
Устройство обнаружения, расположенное на сиденье переднего пассажира. Электронная система для определения того, работает ли система подушки безопасности переднего пассажира должен быть активирован или деактивирован. Сигнальная лампа loca …

© 2011-2020 Авторские права www.hamanual.com

.

Глушители и детали глушителей для тракторов

Allis Chalmers Глушители и компоненты глушителя

Глушители и компоненты глушителя

David Brown Глушители и компоненты глушителя

Глушители и компоненты глушителя Deutz

Глушители и компоненты глушителя Ford

International Глушители и компоненты глушителя

Глушители и компоненты глушителя John Deere

Massey Ferguson Глушители и компоненты глушителя

Миннеаполис Moline Глушители и компоненты глушителя

Oliver Глушители и компоненты глушителя

Белые глушители и компоненты глушителя

.

Автомобильные глушители — Международный Водительский Центр

Первые автомобильные глушители использовались исключительно для удаления из системы отработанных газов. Второй задачей автоглушителей было уменьшение уровня шума. Современный автомобильный глушитель представляет собой настоящее произведение искусства, которое не только положительно сказывается на работе двигателя, но и являет собой яркий штрих в дизайне машины.

Функционал автомобильного глушителя

Главная задача автомобильного глушителя заключается в замедлении скорости движения отработанных газов. Это позволяет сгладить такты во время работы мотора. Точных стандартов для внутренней конструкции нет, поэтому каждый производитель старается найти свои уникальные ходы, которые дадут ему преимущества над конкурентами.

Первоначально глушители выполняли не много функций и считались больше вспомогательной составляющей, нежели важной, как другие агрегаты. Однако с течением времени выхлопные системы начали играть более значительную роль. Сегодня благодаря глушителям удаётся не только значительно снижать уровень шума от работающего мотора, но и уменьшать температуру выхлопных газов, выводить отработанные газы за пределы авто и уменьшать уровень вредных выбросов в окружающую среду:

Особенности конструкции автомобильных глушителей

Вариаций конструкции глушителя для автомобилей существует множество. При этом значение имеют следующие факторы:

– марка машины;

– объём двигателя;

– производитель;

– модель.

К счастью, несмотря на множество вариаций, внутреннее устройство у всех глушителей для автомобилей практически идентичное. Оно состоит из перегородок, перфорированных патрубков и жаростойкой ваты.

В целом выхлопная система состоит из коллектора (приёмной трубы), катализатора (нейтрализатора), переднего глушителя (резонатора, пламегасителя), средней трубы и заднего глушителя. Передние глушители бывают как активными, так и реактивными. Наряду с обычными глушителями существуют и прямоточные.

Увеличение нагрузки вынуждает конструкторов увеличить размеры автомобильного глушителя. Также изменению подвергается внутреннее строение. Каждая конструкция представляет собой собрание трубок и перегородок. Главная же её задача – максимально эффективное использование объёма.

Благодаря множеству отверстий в трубках отработанные газы могут быстро рассеиваться в объёме конструкции автомобильного глушителя. В свою очередь, роль перегородок заключается в том, чтобы направить их обратно. Это сглаживает неравномерность потока.

При массовом производстве глушителей используются:

  1.   Обычная (чёрная) сталь.
  2.   Нержавеющая сталь.
  3.   Аллюминированная (аллюминизированная) сталь.
  4.   Аллюмоцинковая сталь.

Из-за постоянного развития автомобильной промышленности появилось новое поколение глушителей, которые позволяют в значительной мере увеличить эффективность работы двигателя. Конструкция автомобильных глушителей постоянно претерпевает изменения, хоть общий принцип работы и сама конструкция остаются неизменными уже много десятков лет. Сегодня это не обычная металлическая «банка», а полноценная система, которая обеспечивает правильную работу двигателя автомобиля.

Как появился первый автомобильный глушитель

Благодаря французской компании Panhard-Levassor на свет родился первый глушитель (звуковой фильтр), «успокоивший» двигатель внутреннего сгорания и давший бензиновому мотору вторую жизнь. Указанная компания делала автомобили на продажу и первой снабжала их звуковыми фильтрами ещё в 1894 г. Однако есть версия, что в 1897 г. глушители использовал Мильтон Ривз, известный создатель шести- и восьмиколёсных автомобилей.

Не исчезает из различных источников и самая известная версия того, кто изобрёл глушитель: многие считают, что последний сконструировала Эль Долорес Джонс в 1917 г.

Эволюция системы выпуска

Первые несовершенные глушители отбирали изрядную часть мощности у слабосильных моторов. Дабы сохранить хоть какую-то динамику, конструкторы предусмотрели клапан, позволявший выпускать выхлоп напрямую. По рекомендациям властей того времени, в пределах населённого пункта клапан следовало закрывать. Позже клапан был убран, и целых полвека принципиально в системе строения глушителя ничего не менялось.

В 1992 г. благодаря введению первого экологического стандарта – Евро-1 – возникла необходимость в новых современных глушителях. Через три года грянул Евро-2, и уже тогда начались первые опыты с каталитическими нейтрализаторами выхлопных газов, снижавшими содержание CO, CH и оксида азота. А при Евро-3 (2000 г.) нейтрализаторы с лямбда-зондами и электронным блоком, обрабатывающим информацию, стали обычной комплектацией. В итоге закрепилась схема с двумя датчиками – на входе в нейтрализатор и на выходе. Нейтрализатор в большинстве случаев помещают между коллектором и резонатором, поскольку он эффективен только при высоких температурах.

Ещё интереснее с инженерной точки зрения обстояли дела с дизелем, который потребовал сначала установить сажевый фильтр. А затем в дополнение к фильтру – инжектор водного раствора очищенной мочевины, который позже эволюционировал в систему SCR (Selective Catalytic Reduction) – сложное устройство с кучей датчиков, фильтров и отдельным блоком управления. Если сначала это коснулось только грузовиков, то в 2015 г. (при переходе на антидизельный стандарт Евро-6) стало актуально и для легковых автомобилей. Более простого эффективного способа выдержать установленные нормативы по содержанию оксидов азота пока не нашли.

Уйдёт ли глушитель с автомобильного рынка вообще – покажет будущее. Ведь объёмы продаж электромобилей растут бешеными темпами. А электрокарам глушители ни к чему. Во всяком случае, в ближайшее время грядёт очередное усложнение выпускной системы – в связи с ожидаемым до конца второго десятилетия XXI в. переходом на стандарт Евро-7. Норматив пока находится в стадии разработки, но инженеры наверняка уже ищут новые решения.

Какой бы системы глушитель не стоял на вашем авто, управлять последним без документов невозможно. Попробуйте оформить международное водительское удостоверение у нас на сайте. Это делается без проблем и проволочек, а обладать международными водительскими правами – уникальная возможность обеспечить себе возможности брать авто напрокат в большинстве стран мира!

принцип работы, схема – Фортуна

Двигатель внутреннего сгорания не будет работать без системы, отводящей продукты сгорания топливной смеси в цилиндрах. Устройство выхлопной системы, возникшей одновременно с изобретением ДВС, постоянно совершенствуется, но основополагающие принципы остаются неизменными.

При сгорании топливовоздушной смеси в системе происходит образование отработанных газов. Их нужно своевременно вывести для заполнения цилиндров очередной порцией топлива. Для этого служит система, состоящая из выпускного коллектора, каталитического конвертера и глушителя.

Выпускной коллектор

Это, по сути, несколько труб, соединяющих камеры сгорания цилиндров мотора с каталитическим конвертером. Для изготовления коллектора используется нержавеющая сталь, чугун или керамика. Коллектор постоянно работает в режиме высокого температурного воздействия. По этой причине чугун и нержавеющая сталь являются наиболее предпочтительными материалами для его изготовления. После остановки двигателя происходит охлаждение системы с образованием конденсата. Это значит, что лучшим материалом для коллектора была и остается нержавеющая сталь. Керамика не способна долгое время выдерживать высокую температуру и трескается.

Каталитический конвертер

Газы из коллектора направляются в нейтрализатор, состоящий из множества керамических сот, покрытых платиноиридиевым сплавом. В конвертере происходит химическая реакция с образованием кислорода и оксидов азота. Кислород участвует в процессе сгорания остатков топлива в выхлопных газах. В конечном счете, на выход направляется смесь, состоящая из диоксида углерода и оксида азота.

Глушитель

Этот оконечный элемент выхлопной системы автомобиля выполняет функцию, соответствующую его названию – снижения шума при прохождении отработанных газов. В нем имеется несколько компонентов:

  • труба, соединяющая глушитель с резонатором нейтрализатором;
  • собственно глушители;
  • выхлопная труба;
  • наконечник выхлопной трубы.

Корпус может быть изготовлен из обычной или нержавеющей стали. Обычная сталь прослужит не более шести лет, в то время как нержавейки выходит до пятнадцати лет. Система состоит из нескольких камер, снабженных отверстиями. Многократная фильтрация обеспечивает глушение выхлопных газов за счет гашения звуковой волны. Из глушителя газы следуют в выхлопную трубу, которых, в зависимости от мощности транспортного средства. Может быть до четырех. Наконечник выхлопной трубы, изготовленный из хромированной стали, выполняет только декоративную функцию.

На транспортных средствах с турбонаддувом размеры глушителя меньше, чем на авто в атмосферными двигателями. Причина этого в том, что в турбонаддуве  для работы используется часть выхлопных газов и на выход поступает их незначительная часть.

Все для обслуживания и ремонта авто ищите на страницах интернет-магазина запчастей Фортуна!

Как гасится звук в глушителе машины

Чтобы понять принцип работы выпуска автомобиля и добиться «благородного» звучания мотора, надо ознакомиться с конструкцией глушителя и узнать, как глушится звук, производимый двигателем.

Уровень шума

Если любой глушитель авто создает сопротивление потоку, то лучший глушитель – полное его отсутствие. Но езда с повышенным шумом запрещена на дорогах общего пользования. И не только, в автоспорте также действуют ограничения на шум, производимый двигателем машины. В большинстве классов спортивных автомобилей шум выпуска ограничен уровнем 100 Дб. Это довольно лояльные условия, но без глушителя ни один автомобиль не будет соответствовать требованиям и не будет допущенным к соревнованиям. Поэтому выбор глушителя – компромисс между его способностью поглощать звук и низким сопротивлением потоку.

Как гасится звук в глушителе

Акустические волны (шум) несут в себе энергию, которая возбуждает наш слух. Задача глушителя в том, чтобы энергию колебаний перевести в тепловую. По способу работы глушители надо разделить на четыре группы. Это ограничители, отражатели, резонаторы и поглотители.


ОГРАНИЧИТЕЛЬ

В корпусе глушителя имеется существенное заужение диаметра трубы, некое акустическое сопротивление, а за ним сразу большой объем, аналог емкости. Чем больше сопротивление (меньше отверстие), тем эффективней сглаживание и больше сопротивление потоку. Наверное, плохой глушитель. Но в качестве предварительного глушителя в системе – довольно распространенная конструкция.

ОТРАЖАТЕЛЬ

В корпусе глушителя организуется большое количество акустических зеркал, от которых звуковые волны отражаются. При каждом отражении часть энергии теряется, тратится на нагрев зеркала. Если устроить для звука целый лабиринт из зеркал, то в конце рассеем всю энергию и наружу выйдет весьма ослабленный звук.

По такому принципу строятся пистолетные глушители. Значительно лучшая конструкция, но газовый поток меняет направление, что создаст некоторое сопротивление выхлопным газам. Такая конструкция применяется в оконечных глушителях стандартных систем.

РЕЗОНАТОР

Глушители резонаторного типа используют замкнутые полости, расположенные рядом с трубопроводом и соединенные с ним рядом отверстий. Часто в одном корпусе бывает два не равных объема, разделенных глухой перегородкой. Каждое отверстие вместе с замкнутой полостью является резонатором, возбуждающим колебания собственной частоты. Условия распространения резонансной частоты резко меняются, и она эффективно гасится вследствие трения частиц газа в отверстии.

Такие глушители эффективно в малых размерах гасят низкие частоты и применяются в основном в качестве предварительных. Существенного сопротивления потоку не оказывают, т.к. сечение не уменьшают.

ПОГЛОТИТЕЛЬ

Способ работы поглотителей — в поглощении акустических волн неким пористым материалом. Если звук направим, например, в стекловату, то он вызовет колебания волокон ваты и трение волокон друг о друга. Таким образом, звуковые колебания будут преобразованы в тепло. Поглотители позволяют построить конструкцию глушителя без уменьшения сечения трубопровода и без изгибов, окружив трубу с прорезанными в ней отверстиями слоем поглощающего материала.

Он имеет минимально возможное сопротивление потоку, но хуже снижает шум.

Если требования к выпускной системе автомобиля не распространяются дальше изменения «голоса», то задача упрощается. Подойдёт глушитель поглотительного типа. Его объем, количество и набивка определяют спектр частот, интенсивно поглощаемых. Мягкая набивка поглощает высокие частоты, придавая бархатистость звуку. Глушители резонаторного типа гасят низкие частоты. Таким образом подбирают тембр звучания.

Устройство глушителя — из чего состоит глушитель автомобиля

Любой автомобиль с двигателем внутреннего сгорания оборудован выхлопной системой. Один из основных его элементов — глушитель. Рассмотрим, зачем он нужен в машине, как работает, что это за устройство, а также несколько советов по его установке.

Что такое автомобильный глушитель

Глушитель — это объемный глушитель, установленный на конце выхлопной системы. Устанавливается для гашения звуковых волн, возникающих при работе мотора.Это часть всей выхлопной системы автомобиля.

Кроме того, перед удалением выхлопных газов в окружающую среду их необходимо охладить. Это еще одна особенность этой части. Сегодня существует большое количество разнообразных глушителей, которые отличаются друг от друга не только своей эффективностью, но и конструкцией.

Функции глушителя в выхлопной системе

Как известно всем автомобилистам, если снять в машине глушитель, он будет громче, чем гоночный автомобиль. Кому-то это покажется забавным, однако такой машине нет места в тихом спальном районе.

В выхлопной системе глушитель выполняет следующие функции:

  • Гасит звук выхлопных газов. При работе двигателя в цилиндрах образуются взрывы, которые сопровождаются громким шумом.
  • Снижает скорость выхлопа. Поскольку газы движутся по трубам с большой скоростью, прямой выхлоп доставлял бы значительные неудобства прохожим и машинам, идущим за такой машиной.
  • Охлаждает выхлопные газы. Двигатель внутреннего сгорания работает за счет энергии, которая выделяется при сгорании топливовоздушной смеси.В выхлопной системе температура этих газов достигает нескольких сотен градусов. Чтобы не травмировать людей, проходящих мимо машины, а также избежать произвольного возгорания легковоспламеняющихся предметов, необходимо снизить температуру выхлопа.
  • Отвод выхлопных газов на передел кузова. Вся выхлопная система устроена таким образом, чтобы выхлопные газы не скапливались под автомобилем, когда он стоит на месте (например, в пробке или на светофоре).

Внутри глушителя создается сопротивление движению выхлопных газов. Важно, чтобы этот параметр не превышал допустимых норм, установленных производителем двигателя. В противном случае мотор просто «задохнется» из-за того, что выхлопная система перекрывает выходное отверстие для потока.

Устройство, принцип действия и типы глушителей

Выхлопная система автомобиля состоит из:

  • Приемной трубы;
  • Катализатор;
  • Резонатор;
  • Главный глушитель.

Впускной патрубок соединен с выпускным коллектором. Его предназначение — объединить все выводы от мотора в одну полость. В катализаторе нейтрализуются вредные вещества, входящие в состав выхлопных газов. Благодаря этому элементу выхлоп не так вреден для окружающей среды.

Далее в системе идет резонатор. Основная задача этого элемента — заглушить звук выхлопных газов. Внешне он напоминает уменьшенную версию основного глушителя.

Материалы глушителя

Все глушители изготовлены из стали.Производители используют разные марки этого материала для повышения надежности и эффективности своей продукции при экстремальных нагрузках.

Эта деталь может изготавливаться из следующих марок стали:

  • Углерод
  • Алюминированный;
  • Оцинкованный;
  • Нержавеющая сталь.

Большинство деталей выхлопной системы изготовлены из алюминия, поэтому они имеют более длительный срок службы. Карбоновые варианты, напротив, быстрее выходят из строя. Версии из нержавеющей стали встречаются реже. Однако они относятся к самым дорогим типам глушителей.Прямоточные глушители часто изготавливают из нержавеющей стали, так как температура выхлопных газов в таких системах намного выше в конце трассы.

Резонаторное устройство

Резонатор представляет собой плоскую или круглую металлическую банку. Имеет несколько перегородок, в которых закреплены перфорированные трубки. Устанавливаются они не друг напротив друга, а со смещением, чтобы каждый из них был обращен к перегородке.

Когда выхлопные газы попадают в полость из основной трубы, они попадают в перегородку. Отражаясь, они частично гасят звуковую волну поступающей новой порции газов.Затем они попадают в следующую камеру полости, где происходит аналогичный процесс. На выходе из резонатора звук уже не такой прерывистый, а больше похож на гул, а не на выстрелы.

Через выпускной патрубок поток направляется в бачок глушителя. Этот элемент конструктивно проще разместить в задней части машины, так как там больше места.

Устройство глушителя

Сам глушитель имеет аналогичное устройство, что и резонатор. Если посмотреть на него в разрезе, то в нем такие же камеры пожаротушения, только большего размера.Помимо этих элементов в глушителе может присутствовать поглотитель.

Это специальная камера, в которой проходят перфорированные трубы. Он заполнен пористым материалом для поглощения звуковых волн. В качестве поглотителя используется металлическая стружка, минеральная вата или другой пористый материал, способный выдерживать высокие температуры.

На самом деле глушителей существует множество. Они отличаются друг от друга не только конструкцией акустических камер, но и материалом, из которого они сделаны.По типу конструкции различают:

  • Ограничительное. В таких глушителях выходное отверстие имеет меньший диаметр, чем входное. Суть в том, что пульсирующий выхлоп подавляется за счет того, что он не может беспрепятственно проходить через выпускное отверстие, поэтому распространяется по всей полости баллона.
  • Зеркальное отражение. В таких модификациях выхлопные газы попадают в перегородку акустической камеры, отражаются от нее и попадают в перфорированную трубу, ведущую в следующую камеру.В зависимости от модели деталей таких камер может быть больше двух.
  • Резонатор. Эти глушители имеют до 4 акустических камер. Между собой они соединены перфорированной трубой. Звук подавляется за счет того, что резкие скачки компенсируются большим количеством выходных отверстий вдоль трассы. Такая конструкция не позволяет создавать давление внутри трубы, что снижает расход.
  • Поглощающие. Принцип работы таких моделей уже был описан немного ранее.Это модификация глушителей резонаторного типа, только дополнительно используется негорючий пористый наполнитель для поглощения звуковых волн.

Поскольку каждая конструкция имеет свои преимущества и недостатки, производители часто комбинируют эти типы глушителей.

Конструкция резонансного глушителя

Одной из самых сложных конструкций является модель резонансного глушителя. Конструкция таких моделей аналогична конструкции резонатора, только основной элемент имеет бачок большего размера с увеличенным количеством акустических полостей.

Несколько перфорированных трубок помещены в полость баллона. Их устанавливают не друг напротив друга, а в разных плоскостях, чтобы выхлоп рассыпался по всей полости. Благодаря этому глушитель подавляет все частоты звуковых волн. Как и следовало ожидать, такие разновидности элементов выхлопной системы также создают определенное сопротивление, которое сказывается на мощности мотора.

Характеристики глушитель выхлопной трубы

Особенностью всех глушителей является то, что при устранении температурного и звукового воздействия мощность двигателя частично снижается.Внутри выхлопной системы создается определенное сопротивление. Этот фактор влияет на ход поршня в такте выпуска.

Чем больше это сопротивление, тем труднее ему удалить продукты сгорания. Это означает, что коленчатый вал будет вращаться с меньшей скоростью. Для решения этой «проблемы» некоторые мастера модернизируют выхлопные трубы, удаляя из их полостей перегородки. Некоторые вообще снимают классический глушитель, а устанавливают прямоточный.

Естественно, в таких моделях выхлопные газы удаляются быстрее (энергия не тратится на преодоление различных преград).В результате мощность двигателя увеличивается примерно на 7 процентов. Еще больше мощности можно получить, удалив катализатор из системы.

Перед установкой такого глушителя в свой автомобиль следует помнить две вещи:

  1. В городе нельзя использовать автомобили, звук которых превышает определенный уровень децибел. Рядный глушитель под эти параметры не укладывается. Автомобиль с подобной выхлопной системой может устроить настоящий ажиотаж во дворе многоэтажного дома. Такой системой можно оборудовать автомобиль, который едет по рельсам.
  2. Если в автомобиле снять каталитический нейтрализатор, уровень загрязнения значительно возрастет. В результате автомобиль может не пройти технический осмотр. Даже если проверка не проводится, то забота об окружающей среде — задача каждого жителя планеты, а не отдельных организаций.

Как выбрать глушитель

Обратите внимание, что не каждый глушитель можно установить на свой автомобиль. Проблема в том, что каждый элемент выхлопной системы создан под параметры мотора — его объем и мощность.

Если на машине установлена ​​неподходящая деталь, в выхлопной системе может возникнуть чрезмерное сопротивление для выпуска выхлопных газов. Из-за этого может значительно снизиться мощность мотора.

Вот на что обращать внимание при выборе нового глушителя:

  • Объем бидона. Чем больше банк. Лучше звукопоглощение и лучшее удаление газов.
  • Качественные детали. Если видны металлические складки или окрашенная деталь, то такой глушитель лучше не покупать.
  • Подходящий глушитель можно найти по VIN автомобиля. Так проще забрать оригинальную запчасть. Если такой возможности нет, то поиск следует производить по марке и модели автомобиля.

Отдельно стоит упомянуть возможность покупки б / у запчастей. В случае глушителей это плохая идея. Неизвестно, в каких условиях хранилась запчасть. Поскольку основным материалом, из которого они изготовлены, является сталь, они подвержены коррозии. Велика вероятность купить уже протухший глушитель, но внешне это не будет заметно.

Brand Tour

Покупая любую деталь (а не только элементы выхлопной системы), крайне важно выбирать продукцию известных брендов. Среди производителей, предлагающих качественные глушители, можно выделить следующие:

  • Bosal. Бельгийская компания, которая зарекомендовала себя с качественной продукцией.
  • Уокер. Шведский бренд также продает прочные и эффективные глушители.
  • Польмостров. Особенность польской компании в том, что она предлагает своим покупателям широкий выбор различных модификаций глушителей.Часто продукция компании продается по средней цене.
  • Ассо. Итальянские детали качественные, но часто нуждаются в доработке, ведь даже модель, для которой они созданы, глушитель может не подойти. Это усложняет ремонт выхлопной системы.
  • Атихо. Несмотря на то, что продукция российского производителя не отличается таким же высоким качеством, как европейские аналоги, все товары продаются по доступной цене.

Выбор глушителя зависит от самого автомобилиста и его финансовых возможностей.

Как распознать подделку

Часто недобросовестные продавцы продают китайские или турецкие товары по цене оригинала. Иногда сами не подозревают, что продают подделку. Вот факторы для расчета некачественной продукции:

  • Тонкий металл. Из такого материала делают дешевые детали. Чаще всего такие глушители довольно легкие и поддаются деформации.
  • Упаковка. Если на глушителе отсутствует маркировка производителя (тиснения, насечки, логотипы с голограммами и т. Д.)), то это, скорее всего, подделка.
  • Объем банки. Оригинальная деталь всегда больше, чем подделка, ведь во втором случае производитель не гонится за качеством, чтобы получить больше преимуществ, сэкономив на материале.
  • Стоимость. Оригинал всегда дороже. Однако это не должен быть единственным фактором, по которому определяется качество запчасти. Часто незнанием покупателя пользуются недобросовестные продавцы, реализуя подделку по цене оригинала.

Как установить глушитель

Схема установки автомобильного глушителя довольно проста. Для этого нужно приподнять машину на домкрате или подъемнике. Следующим шагом будет демонтаж старой детали. Все части выхлопной системы соединяются с помощью специальных соединителей — сережек (металлическое кольцо, которое вставляется в стык элементов) и металлического хомута.

Важно, чтобы все края патрубков плотно прилегали друг к другу, иначе выхлопные газы будут вытекать через образовавшееся отверстие. Об этом сразу станет известно, когда водитель запустит двигатель.

Стоит учесть, что в процессе работы выхлопной системы ее элементы сильно нагреваются.Часто это приводит к запеканию стыков. Ввиду этого иногда бывает необходимо ослабить патрубок при демонтаже. В этом случае нужно быть осторожным, чтобы не повредить гофру (если она есть) или выхлопную трубу.

АНАЛОГИЧНЫЕ ИЗДЕЛИЯ

Конструкция и теория выхлопной системы с характеристиками

Высокопроизводительная выхлопная система является отличительным элементом любого транспортного средства внутреннего сгорания. Определение акустического профиля и влияние на диапазон мощности — конструкция выхлопа — это более динамичная наука, чем соединение нескольких труб и установка глушителей.Выхлопная система автомобиля — одна из наиболее часто изменяемых областей, когда редуктор управляет их поездкой.

Мы все ищем тот правильный звук, который заявляет о себе, как песня борьбы для нашей предпочитаемой автомобильной демографии, а тем, кто стремится к максимальной производительности, требуется настроенная длина и форма для достижения желаемой мощности.

Существует множество неправильных представлений о том, как настраиваются выхлопные системы и что на самом деле означают такие термины, как противодавление и продувка, для производительности.Надеюсь, с этим справочником вы будете лучше оснащены, чтобы понять, что нужно вашей конкретной выхлопной системе и как добраться до этой цели.

Давайте разберемся

Выхлопная система стоит больше, чем сумма ее частей, и каждый компонент должен быть адаптирован для работы со следующей деталью, находящейся ниже по потоку, и так далее. Начиная с головки блока цилиндров — мы обычно не думаем о фактическом выпускном отверстии в головке как о части выхлопной системы — но, тем не менее, именно здесь все начинается.Небольшое понимание конструкции впускных отверстий ГБЦ и выпускных направляющих поможет визуализировать, что происходит после того, как сгоревшие газы покидают двигатель.

Бегуны

предназначены для обеспечения неограниченного потока при одновременной поддержке высоких скоростей. Это причина, по которой перенос должен выполняться с осторожностью, чтобы не нарушить динамику инженерной гидродинамики головки. Когда выпускной клапан открывается, расширяющиеся горячие газы устремляются из выпускного отверстия за счет хода поршня вверх. В OEM-приложениях это обычно означает сбрасывание группы цилиндров в выпускной коллектор.

Коллекторы

OEM не оптимизированы для потока.

Выпускные коллекторы обычно являются первой линией разочарования, когда дело доходит до направления выпуска. Поскольку литая конструкция была разработана для упрощения производства, они обычно тяжелые и не обеспечивают желательного смешивания импульсов выхлопа. Хотя некоторые производители улучшили коллекторы разной длины, от них часто отказываются в пользу решений для вторичного рынка.

Самым распространенным из них является «коллектор» — термин «коллекторы» действительно относится к первым трубчатым выпускным коллекторам, которые позволяют отводить выхлопные газы из двигателя.Эти трубы известны в выхлопной промышленности как первичные, потому что за ними обычно следуют последующие трубы различного размера.

Типовой ряд длинных трубок с коллекторами, сформированными из четырех в один.

Первичные элементы имеют разную длину и разную конфигурацию для достижения различных желаемых эффектов, что в конечном итоге приводит к вторичным трубам, которые представляют собой трубки с увеличенным внутренним диаметром, так что они образуют скользящее соединение по внешнему диаметру первичного элемента. В ступенчатых коллекторах могут использоваться трубки разных размеров — до четырех или пяти между первичной частью и коллектором. Теория этой конструкции заключается в создании прогрессивной скорости выхлопа для оптимизации продувки вблизи цилиндра, предотвращая при этом ограничение на выходе. После того, как отдельные отрезки трубки проходят свой путь через моторный отсек, они часто соединяются вместе — это сборное соединение, известное как коллектор.

После коллекторов используется идеально прямой отрезок НКТ для обеспечения некоторой стабилизации вновь смешанных вихревых газов перед тем, как они попадут в глушитель. Гамбит типов глушителей, теорий и итераций продолжается до тех пор, пока вы не доберетесь до дома после неудачного теста на шумовое загрязнение на треке.Мы рассмотрим основные конкурирующие разработки и рассмотрим достоинства и недостатки каждого из них.

Размер имеет значение

Одна из первых проблем при создании или покупке высокопроизводительного выхлопа — это размер. Длина и диаметр трубы напрямую влияют на то, как конечная система влияет на двигатель и выхлоп, так как во всех гоночных приложениях форма должна следовать за функцией — и быть информированной от нее. Мы проконсультировались с Винсом Романом из Burns Stainless, властями по компонентам выхлопной системы для высокотехнологичных приложений.Они дали нам некоторое представление о том, как размер и дизайн выхлопных газов могут повлиять на производительность.

Настройка выхлопной системы для конкретного применения — это индивидуальная задача. Рабочий объем, размер выпускного клапана, система впуска, профиль кулачка, конструкция выпускного отверстия и диапазон оборотов — все это факторы, влияющие на принятие решения о том, какую форму должна принимать выпускная система. Общие практические правила легко усвоить, но при их правильном применении все становится непросто.

Трубка меньшего диаметра будет способствовать высокой скорости и высокой продувке, что приводит к хорошему отклику дроссельной заслонки и мощности от низких до средних.По мере увеличения диаметра трубы скорость может упасть в зависимости от конфигурации двигателя, но поток при работе на высоких оборотах улучшится, что означает высокое значение пиковой мощности. Площадь поперечного сечения трубки играет важную роль в продувке.

«Когда у вас есть выхлопной коллектор, у которого нет коллектора, эта волна продувки ударяется о конец трубы и возвращается, и это важное соотношение вступает в силу. Чем больше соотношение площадей, тем сильнее вакуумная волна. Когда у вас одна труба, соотношение площадей на конце трубы бесконечно, потому что вы открываете ее в атмосферу », — проиллюстрировал Роман.

Онлайн-калькуляторы для настройки выхлопа могут предложить приблизительный размер, но могут не учитывать конкретное приложение. Любезно предоставлено Speed-Wiz.

«Когда вы стреляете той же самой трубкой в ​​коллектор, отношение площадей становится конечным числом, и мы уменьшаем силу этой волны. Это звучит нелогично, но при настроенной длине эта волна будет достаточно сильной, но когда вы выходите из строя, мы ослабляем эту волну так, чтобы это не повлияло на производительность », — продолжил он.

Длина первичных трубок может иметь такое же значение, как и диаметр трубок. Подумайте о тромбоне и о том, как изменяется высота ноты по мере того, как слайд выдвигается или приближается. Более длинная основная трубка будет иметь характеристики, аналогичные характеристикам малого диаметра, а короткая трубка будет похожа на трубку большого диаметра. .

«Когда выпускной клапан открывается, возникает волна давления, которая начинает двигаться вниз по трубе, когда она достигает конца трубы, она меняет направление как волна вакуума, возвращается и ударяет по цилиндру. Вы хотите, чтобы эта волна ударила точно по закрытию выпускного отверстия. Это помогает нам вывести остатки из цилиндра, и впускной канал начнет заполняться », — пояснил Роман.

Обычно размер первой длины первичной обмотки должен быть настолько близок к диаметру выпускного клапана, насколько это возможно. Таким образом, не происходит резкого падения скорости из-за увеличения объема от отверстия головки к выхлопной трубе — после длины, по крайней мере, одного фута, обычно начинают увеличивать диаметр. В случае применения с несколькими клапанами необходимо создать золотую середину, чтобы приспособиться к потоку.

Сначала немного теории: противодавление и продувка

Колебания давления от положительного до отрицательного легко заметны на протяжении всего цикла двигателя.График любезно предоставлен Grumpyvette.

Термин «противодавление» — это, несомненно, наиболее часто употребляемая фраза, чтобы проиллюстрировать важность уборки мусора. Очистка — это эффект, создаваемый использованием инерционной энергии импульса высокоскоростного выхлопного газа. Принцип Бернулли был первым, кто идентифицировал это явление, и его применили ко всему, от мячей для гольфа до самолетов.

Высокоскоростной импульс выхлопных газов уносит с собой энергию; по мере того, как импульс движется в пространстве, он вытесняет за собой следующий объем.Это создает зону низкого давления, подобную слабому вакууму. Представьте себе, когда вы катитесь по автостраде, гигантский полуприцеп проезжает мимо вас намного быстрее — когда грузовик приближается сзади, вас выталкивает за пределы полосы движения носовая волна сжатого воздуха, которую создает грузовик, и грузовик, наконец, проезжает обратный эффект — ваш автомобиль втягивается в зону низкого давления, тянущуюся позади буровой установки. Тот же принцип используется в драфте во многих видах автоспорта.

Струя воздушно-топливной смеси устремляется в цилиндр, как только впускной клапан начинает открываться, в то время как выхлопные газы все еще выходят наружу. Фото любезно предоставлено Muscle Car DIY.

Эффект продувки достигается за счет использования выхлопной системы и коллектора подходящего размера. При правильном выполнении в освободившемся цилиндре остается зона низкого давления, готовая к поступающему всасываемому заряду. Когда впускной клапан открывается, воздушно-топливная смесь может втиснуться еще до того, как поршень начнет двигаться к нижней мертвой точке (НМТ) — это создает очень мягкий эффект принудительной индукции и, в конечном итоге, увеличивает мощность и крутящий момент.

Для создания наиболее агрессивного эффекта продувки требуется тонкий баланс, который в значительной степени обусловлен разделением кулачков распределительного вала (обычно более узкий означает больше, потому что увеличенное перекрытие клапанов оставляет выпускной клапан слегка открытым, создавая этот вакуум, в то время как впускной клапан одновременно открыт), и выпуск калибровка.

Цель состоит в том, чтобы генерировать максимально возможные скорости выхлопных газов при сохранении максимально возможного потока — эти два приоритета противоположны друг другу, когда дело доходит до размера труб, поэтому поиск точки соприкосновения — это вопрос изучения приоритетов.

Карта кулачка показывает нам, где происходит перекрытие клапанов, и облегчается продувка. График любезно предоставлен Grumpyvette.

Противодавление — это термин, который вводит многих в заблуждение, заставляя думать, что это полезная характеристика, что их двигатель каким-то образом нуждается в противодавлении для правильной работы. Недоразумение вступает в игру, поскольку мы стремимся увеличить скорость выхлопных газов за счет ограничения диаметра трубок — ограничение, т.е. противодавление может быть побочным продуктом или симптомом, но не является целью. Ограниченная выхлопная система — не что иное, как препятствие.В конце концов, двигатель — это всего лишь воздушный насос, чем больше воздуха и топлива мы сможем протолкнуть через него, тем больше мощности он будет производить.

Типы и характеристики коллекторов

Коллекторы

представляют собой смесительные камеры выхлопной системы, эта общая камера статического давления позволяет производителю двигателя извлечь выгоду из деликатного выбора распределительного вала, тактичного переноса головки и других параметров, предусмотренных для сборки. Коллекционеры проявляют себя во множестве вариаций и технологий изготовления. Два основных типа образуются и сливаются.

Формованные коллекторы проще и дешевле производить.

Формованные коллекторы чаще встречаются в бюджетных системах и состоят из куска гидроформованного листового металла, предназначенного для размещения концевых концов первичных элементов. Коллекторы слияния изготавливаются из колен труб, фрезерованных под двумя углами для создания шва, по которому они могут быть соединены в две, три, четыре, пять, шесть или восемь разновидностей трубок.

Идея коллектора состоит в том, чтобы позволить одному цилиндру использовать скорость выхлопных газов соседнего цилиндра. В отличие от зум-моделей, где каждая выхлопная труба независима, собранный выхлоп имеет явные преимущества и различия в звуке. В правильно спроектированной выхлопной системе первичные трубы синхронизируются в коллекторе, чтобы ориентировать порядок зажигания по круговой схеме. Последовательность импульсов создает эффект завихрения, который дополнительно улучшает очистку.

Коллекторы слияния трудоемки в изготовлении.

Наиболее распространенные схемы расположения коллекторов обычно обозначаются как четыре в один и три-Y.Эти компоновки, которые чаще всего используются в четырех- и восьмицилиндровых двигателях, обладают совершенно разными характеристиками. Вы можете услышать, как мощность двигателя описывается как пиковая, экспоненциальная или линейная и плоская — на эти характеристики влияет выбор коллектора. Чтобы визуализировать разницу, запомните концепцию вакуумного сигнала.

«Угол слияния коллекторов — это нечто особенное, наш стандартный коллектор составляет 15 градусов — мы обнаружили в ходе наших исследований и испытаний, что любой угол слияния от 7 до 15 градусов дает примерно такую ​​же производительность. Менее семи градусов, и коллекторы становятся слишком длинными, вы получаете потери сопротивления, круче 15 градусов, и вы начинаете слишком сильно поворачивать поток », — заключил Роман.

Выхлопные первичные обмотки расположены в последовательном порядке включения вокруг коллектора, так что один импульс усиливается предыдущим и так далее. Эта подача мощности может быть сродни двухтактному, когда двигатель нужно держать «на трубе» или в узком диапазоне мощности для эффективного управления.

Заголовки Tri-Y на драгстере.

В схеме тройного коллектора используются три простых коллектора типа «два в один», соединенных в пару к одному выходу. Поскольку эти коллекторы спарены, весь блок цилиндров не видит импульсные сигналы от других цилиндров одновременно — вместо этого импульсы очистки слабее, но отправляются чаще. Это обеспечивает более плоскую подачу мощности и, как правило, более низкую пиковую мощность, но более удобную подачу.

Выбор того, какое расположение коллектора лучше всего подходит для вашей комбинации двигателей, может сбить с толку и стать подвижной целью, когда дело доходит до настройки.

«Имея дело с 4-цилиндровыми двигателями V8 с плоским кривошипом, мы обнаружили, что, поскольку импульсы в коллекторе относительно далеки друг от друга, четыре-в-один и три-у примерно одинаковы, мы можем оптимизировать и то, и другое. Когда мы говорим о кривошипно-шатунных двигателях с поперечным расположением плоскости, у которых два последовательных цилиндра работают с одной стороны, мы обнаруживаем, что теоретически тройник может привести к лучшей производительности, потому что мы можем отделить эти импульсы на первом коллекторе », — вспомнил Роман.

Существует бесчисленное множество вариаций на эти темы, от 180-х колонок, ставших знаменитыми благодаря GT40, до коллекторов шесть и восемь в один, которые генерируют воющие звуки выхлопных газов от грубых и неуклюжих отечественных силовых установок.

Типы глушителей

Глушители — неизбежное зло в глазах большинства фанатов скорости, но они не должны мешать работе. Глушители OEM-типа обычно снижают шум, заставляя выхлопные газы перемещаться по лабиринту камер, перфорированных труб и крутых поворотов, полагаясь в основном на замедление выхлопных газов для достижения своей цели.

Рынок запасных частей для глушителей стал бурным из-за последнего поколения энтузиастов, которые, как никто из предыдущих потребителей, требуют выбора и выбора.Самый простой способ классифицировать конструкции глушителей — это использовать метод подавления звука. Наиболее часто встречающиеся школы мысли — это глушители с уплотнением, глушители с камерами, технология отражающего звука и настраиваемый диск.

В период расцвета хот-роддинга был только один вариант между стоковым выхлопом и широко открытым — стеклопакет. Глушители с набивкой, как правило, имеют прямую конструкцию — внутренняя перфорированная или решетчатая трубка обернута синтетическим материалом, например, матовым стекловолокном, а затем заключена в кожух.Эти глушители полагаются на изоляционные качества набивки, чтобы уменьшить шум, но, как известно, со временем ухудшаются.

Камерные глушители редко бывают прямыми и обычно направляют выхлопные газы вокруг перегородок или пластин, приваренных изнутри к глушителю. Звук классических маслкаров 70-х годов характеризуется наличием глушителя с камерами, и они доступны во множестве размеров и уровней выходной мощности.

Глушители с технологией отражающего звука — одни из новейших на рынке.Заимствуя технологию шумоподавления, как в ваших наушниках, эти глушители настроены для конкретного двигателя и противопоставляют определенную длину и амплитуду нежелательных звуковых волн. Этот эффект гашения означает, что внутренние детали глушителя создают наименьшее ограничение для потока выхлопных газов, фактически это прямая труба с небольшим количеством отверстий.

Последний дизайн глушителя — один из самых простых и уникальных, редко выходящий за пределы гоночных кругов. Настраиваемый глушитель дискового типа был впервые разработан одной компанией — Supertrapp.Эти системы являются модульными и используют стопку или стальные диски, сформированные так, чтобы вставлять друг в друга, но позволяют газам выходить между ними. Диски можно добавлять или вычитать из стопки, чтобы изменять уровень шума и влиять на смесь.

Чаще всего встречаются в приложениях, где требуется некоторое шумоподавление, но не установлен максимальный уровень децибел, эти искрогасители дискового типа распространены во всем внедорожном сообществе и даже среди ведущих гоночных команд, таких как Flying Lizard, как показано на их Audi R8.

Источник фото: Люк Маннел

Выводы

Из этого краткого поверхностного введения в гидродинамику и выхлопную систему можно извлечь одну вещь: все дело в уравновешивании скорости и потока. Максимизация обоих поможет вашему тщательно отобранному пакету работать с максимальной эффективностью. Соберите систему, которая соответствует вашим потребностям и подходит для вашей силовой установки. Трубки огромного диаметра могут выглядеть круто, но любой, кто разбирается в тонкостях выхлопной системы, порекомендует вам выбор.

Признаки неисправности или неисправности выхлопных опор

Под вашим автомобилем находится несколько серий различных систем, которые поддерживают его в рабочем состоянии, включая выхлопную систему, которая соединяет металлические кронштейны выхлопной трубы и глушителя с ходовой частью с помощью очень толстых резиновых амортизаторов. Эта выхлопная опора, или выхлопная подвеска, стягивает вместе все детали, связанные с выхлопом, и удерживает их близко к автомобилю, чтобы они не повредились.

Вибрация в этой области транспортного средства может быть огромной, а непосредственная близость к земле дает широкие возможности для дорожного мусора, чтобы подпрыгнуть и попытаться сбить выхлопную систему с места возле двигателя. Опоры выхлопной системы сделаны из более гибкой резины, а не из прочной стали, чтобы дать выхлопу некоторое пространство для движения вместе с транспортным средством, а также обеспечить определенную амортизацию от дорожных ударов.

Наряду с шумоподавлением выхлопные опоры защищают выхлопную трубу и конструкцию выхлопной системы от повреждений, что делает эту деталь важной для быстрого ремонта.Вот несколько общих симптомов, указывающих на неисправность опор выхлопной системы:

1. Выхлопная труба ослаблена или покачивается

Каждый раз, когда выхлопная труба или труба свисают низко или выглядят так, как будто они качаются под автомобилем, самое время проверить выхлопные опоры, чтобы убедиться, что они все еще работают. Возможно, их потребуется только отрегулировать, поэтому проконсультируйтесь с квалифицированным специалистом.

2. Глушитель висит на земле

Глушитель, который буквально волочит землю, — это глушитель с полностью отказавшей выхлопной опорой — он даже мог полностью соскользнуть с автомобиля.В любом случае, скорее проверь глушитель.

3. Выхлоп громче обычного

Существует несколько причин, по которым ваш выхлоп может быть громче обычного, но дрожание и движение выхлопной трубы при выходе из строя опоры — одна из возможных причин для изучения.

Хотя выхлопные опоры не являются частью регулярного технического обслуживания, если вы обнаружите необходимость в замене опорных частей выхлопной системы, неплохо было бы пойти дальше и заменить выхлопные опоры.

Выхлопные системы — откупоривание потенциала вашего двигателя

Если бы ваша машина была оркестром, а двигатель — дирижером, выхлопная система состояла бы из рогатых инструментов. Конечно, группа могла бы играть без духовых, но мелодия была бы отключена, и это звучало бы как дерьмо. Когда дело доходит до понимания того, как работают вторичные выхлопные системы, правда, кажется, омрачена некоторыми сложными и довольно запутанными теориями. Здесь мы расскажем, как работают производительные выхлопные системы, важные особенности, которые следует учитывать, затраты, связанные с послепродажными системами, и, в конечном итоге, как вы можете лучше всего выбрать выхлоп для своего автомобиля.

Сами Шараф

DSPORT Выпуск № 171


Если вы изучите выхлопные системы, то заметите, что общественное мнение разделяется на две точки зрения. Некоторые будут придерживаться мнения, что нулевое противодавление лучше всего для выхлопных систем. Другие скажут, что противодавление необходимо для создания производительности от выхлопа. Итак, какой из них правильный? Чтобы получить правильный ответ, вам нужно подумать, о каком типе двигателя идет речь. В системах с турбонаддувом лучше всего подходит выхлопная система, обеспечивающая наименьшее противодавление.Для двигателей без наддува ответ немного сложнее, поскольку выхлопные трубы на автомобилях без турбонаддува должны соответствовать двум целям. Первая цель выхлопных систем — создать легкий путь для выхода выхлопных газов из двигателя, в то время как поршень перемещается из нижней мертвой точки в верхнюю мертвую точку во время такта выпуска. Если выхлопная система создает значительное противодавление во время этого события, поршень должен использовать энергию (лошадиные силы), чтобы двигаться вверх по цилиндру. Количество энергии, используемой для противодействия противодавлению, известно как насосные потери.Наилучший способ уменьшить потери при перекачке — использовать философию выхлопной системы «больше — лучше». К сожалению, снижение насосных потерь — не единственное соображение для двигателей без наддува. Вторая цель — установить скорость выхлопного потока, которая поможет втянуть больше воздушно-топливной смеси в период перекрытия клапанов — период времени, когда выпускные клапаны закрываются, а впускные клапаны одновременно открываются. Выхлопная система, которая устанавливает оптимальную скорость, может способствовать максимальному заполнению цилиндра горючей смесью воздуха и топлива.В первую очередь за это отвечает выпускной коллектор (коллектор), но значительная часть потока определяется выпускной системой, которая находится после выпускного коллектора. Как вы уже поняли, выхлопная система состоит не только из глушителя. На самом деле, каждый компонент после выпускных отверстий головки (ей) цилиндров влияет на работу выхлопной системы в целом. Узкое место в любой части системы может создать ограничение, которое впоследствии отрицательно повлияет на мощность двигателя.Отдельные компоненты выхлопной системы включают выпускной коллектор (коллектор) для двигателей с наддувом, выпускные коллекторы (коллекторы с турбонаддувом) и водосточные трубы для двигателей с турбонаддувом. Автомобили с турбонаддувом и без него будут иметь промежуточную трубу (В-трубу), каталитический нейтрализатор, выхлопную трубу и глушитель. Обычно выпускные коллекторы OEM изготавливаются из чугуна. Эти заводские детали производятся для направления газов из выпускных отверстий головки (ей) цилиндров в остальную часть выхлопной системы.В большинстве случаев выпускные коллекторы OEM очень узкие и очень тяжелые. Замена заводского выпускного коллектора на послепродажное обслуживание может обеспечить менее ограничительный путь выхода выхлопных газов из двигателя. Кроме того, большинство жаток обеспечивают меньшую массу по сравнению с заводскими чугунными деталями. В некоторых случаях производитель устанавливает каталитический нейтрализатор непосредственно на выпускной коллектор, в остальных случаях — после выпускного коллектора. Как и выпускной коллектор для безнаддувных транспортных средств, турбокомпрессоры выполняют ту же функцию, чтобы отводить выхлопные газы из двигателя.Однако вместо того, чтобы отправлять его в остальную часть выхлопных газов, турбокомпрессоры направляют выхлопной газ в корпус турбины турбокомпрессора. Оттуда по даунпайпу отработанные газы отправляются в остальную часть выхлопной системы. Для таких применений с турбонаддувом устранение любых узких мест в выхлопе после турбинной части турбокомпрессора — простой способ увеличить мощность. Как упоминалось ранее, философия «чем больше, тем лучше» наиболее эффективна для двигателей с турбонаддувом, и должны быть установлены свободно проточные выхлопные системы от турбонагнетателя до выхлопной трубы.

В зависимости от платформы двигателя и конструкции коллектора форма и размер могут различаться. Некоторые коллекторы имеют направляющие равной длины для каждого цилиндра, как показано на этом коллекторе для горизонтально расположенного оппозитного двигателя.

Выхлопные системы могут быть изготовлены из множества различных материалов. Чаще всего используются малоуглеродистые и нержавеющие стали. В то время как масса мягкой и нержавеющей стали сопоставима, нержавеющая сталь намного более устойчива к коррозии, тогда как мягкая сталь очень восприимчива к ржавчине.Решая, какой выхлоп купить, обратите внимание, какая марка нержавеющей стали используется. Некоторые производители выхлопных газов используют T409. T409 содержит достаточно хрома и никеля, чтобы противостоять коррозии, но он не такой прочный, как T304. Сплав T304 содержит примерно 20 процентов хрома и 10 процентов никеля, что позволяет ему быть даже более устойчивым к коррозии, чем T409. Если при замене выхлопной системы требуется уменьшение веса вашего автомобиля, вы можете захотеть изучить выхлопные трубы, изготовленные из более экзотических материалов, таких как титан.Титановые сплавы обладают такой же прочностью, что и сталь, всего лишь в два раза меньше. Механические свойства титана также могут сделать их очень востребованными в высокотемпературных применениях. Хотя может показаться, что все выхлопные трубы должны изготавливаться из титана, обработка и производство трубок из титанового сплава значительно увеличивает стоимость по сравнению с конструкцией из нержавеющей стали.

Высококачественные выхлопные системы вторичного рынка добавят мощности, сделают более стильным и улучшат звук выхлопа.

В дополнение к материалам, используемым в конструкции выхлопных систем, дизайн и производственный процесс в значительной степени определяют конечные характеристики.На самом простом уровне диаметр выхлопной трубы должен соответствовать требованиям двигателя. Как упоминалось ранее, чем больше, тем лучше для приложений с турбонаддувом. Для определения оптимального диаметра выхлопного трубопровода потребуется более тонкая настройка нетурбо-приложений. Важно знать, что диаметр выхлопной трубы и уровень издаваемого звука напрямую связаны. Чем крупнее выхлоп, тем он будет громче. Многие производители проводят тестирование выхлопных систем в децибелах и используют эти данные, чтобы получить представление о том, насколько громким будет ваш автомобиль.Чтобы соответствовать конкретному шасси каждого транспортного средства, выхлопные системы будут иметь множество изгибов в трубопроводах для направления выхлопных газов к задней части автомобиля. Качественный выхлоп должен изгибаться стержнем, а не гнуться под давлением. Изгиб под давлением приводит к уменьшению диаметра, тогда как изгиб оправки сохраняет исходный диаметр НКТ после выполнения изгиба. Это связано с тем, что материалу позволяют растягиваться снаружи изгиба и сжиматься внутри во время процесса изгиба. Точное выполнение поворотов выхлопной системы играет важную роль в определении установки системы.Обеспечение свободного пространства до других компонентов имеет решающее значение при разработке высококачественных выхлопных систем. Трение, дребезжание и вибрация вызывают неприятный шум, ненужный износ и даже выход из строя некоторых компонентов. Наиболее распространенным предложением выхлопных газов является система каталитического нейтрализатора, получившая свое название потому, что она заменяет все, что находится ниже по потоку от каталитического нейтрализатора (ов). Многие энтузиасты предпочтут заменить заводскую выхлопную систему на выхлопную систему. Хотя этот параметр обеспечивает внешний вид и звук, которые нравятся многим, он может не дать наилучшего прироста производительности. Во многих случаях отказ от заводского каталитического нейтрализатора (ов) приводит к увеличению мощности. В системах с турбонаддувом водосточные трубы, как правило, являются самыми большими узкими местами в системе, и, таким образом, водосточные трубы на вторичном рынке обеспечивают максимальную производительность среди всех других компонентов выхлопной системы. Каждое приложение может по-разному реагировать на изменения, поэтому проконсультируйтесь с настройщиками вашего конкретного приложения, чтобы узнать лучшую отправную точку.

Используйте эту диаграмму децибел для справки, решая, не слишком ли шумит выхлопная система.Большинство законов определяют, что выхлопные трубы являются незаконно шумными, превышающими 95 дБ.

Это может быть много информации, которую стоит учесть, поэтому не перегружайте себя вариантами. Сузьте его до того, что подходит вашему приложению и целей, которые вы ставите перед своей машиной. Оттуда полагайтесь на своих местных тюнеров за дальнейшими рекомендациями и используйте эту статью для сортировки различных функций. Щелкните здесь, чтобы получить PDF-файл с результатами различных тестов.

Основы для крепления на болтах | Настройка производительности 101

Какие бывают типы глушителя выхлопа?

Все мы знаем, что традиционные сельскохозяйственные тракторы шумят относительно высоко.Шум в основном исходит от дизельных двигателей и выхлопных труб, но шум небольших автомобилей очень мал. Почему? С одной стороны, в подкапотном пространстве автомобиля установлено множество звукопоглощающих материалов; с другой стороны в автомобиле установлен глушитель выхлопа .


Эта статья содержит следующее:

  • Метод шумоподавления глушителя выхлопа

  • Резистивный глушитель

  • Устойчивый глушитель

  • Глушитель

    Сопротивление глушителя -перфорированная пластина глушителя

  • Глушитель с малым отверстием

  • Активный глушитель

1.

Метод шумоподавления глушителя выхлопа

Метод абсорбции и глушителя: абсорбционный глушитель снижает энергию выхлопных газов за счет трения о стекловолокно, стальное волокно, асбест и другие звукопоглощающие материалы.

Светоотражающий глушитель: световозвращающий глушитель имеет несколько последовательно настроенных камер и пористых отражательных трубок разной длины, соединенных друг с другом. Выхлопной газ подвергается многократным отражениям, столкновениям, расширению и охлаждению, чтобы снизить его давление, уменьшить вибрацию и энергию.

2.Резистивный глушитель

Этот тип глушителя содержит пористые трубки и звукопоглощающие волокна. Когда выхлопной газ проходит через последний, он генерирует вибрацию и тепловую энергию из-за трения и липкости. В этом процессе преобразуется шум, поэтому его еще называют звукопоглощением. процесс. Конкретная форма резистивного глушителя отличается, как и направление воздушного потока.

Глушитель имеет небольшие размеры, поэтому большинство средних барабанов оригинального автомобиля хотели использовать глушитель. Если вы хотите в полной мере использовать его функцию глушителя, место установки, как правило, ближе к направлению движения двигателя. | Большое количество испытаний показали, что сопротивление глушителя носу | Двигатель средней и высокой частоты шумит лучше, чем его средняя и низкая частота. В той же ситуации характеристики устойчивого выхлопа прямо противоположны сопротивлению.

3. Устойчивый глушитель

В конструкции этого типа глушителя, который в основном состоит из перегородок и расширительных камер, нет звукопоглощающей ваты.Общий глушитель имеет три расширительные камеры разного размера. Выхлопной газ отражается в этих камерах и взаимодействует друг с другом (трение) для достижения эффекта снижения шума. Большая камера лучше справляется с шумом, но ее размер также ограничен формой шасси. Преимущества в этом плане.

Кроме того, другой режим работы, объем стойкого глушителя больше сопротивления, поэтому его часто устанавливают в задней части автомобиля. Очевидные характеристики эффекта шумоподавления средней и низкой частоты помогают ему порадовать многих производителей оригинальных автомобилей. «Акустический фильтр», состоящий из трубок и камер с резкими поверхностями раздела для уменьшения шума;

4. Импедансный составной глушитель

Составной глушитель сочетает в себе характеристики первых двух глушителей, то есть он имеет как звукопоглощающую вату, так и расширительную камеру. Как упоминалось выше, два глушителя имеют разную длину и составляют друг друга, когда соответствуют носовой части | скорость двигателя.Форма представляет собой хороший баланс между двумя характеристиками, соответствующий диапазон широк, объем более гибкий, но стоимость относительно высока.

В большинстве кругов модификаций автомобилей используются глушители резистивного типа и составные, которые в некоторой степени связаны с противодавлением выхлопных газов. В Китае на основе композитного хвостового барабана форма пористой трубы в глушителе делится на барабан S, барабан G, барабан H и т. Д.

5. Глушитель с микроперфорированной пластиной

Этот тип глушителя глушитель облицован пластинчатой ​​микроперфорированной структурой.Он может устранять шум воздушного потока в широком диапазоне частот и обладает высокой термостойкостью, маслостойкостью и коррозионной стойкостью. Даже если в воздушном потоке будет много влаги, это не повлияет на работу. Поскольку диаметр перфорации небольшой, а поверхность доски гладкая, потери сопротивления глушителя меньше, чем у глушителя общего сопротивления.

Пластинчатый глушитель с микроперфорацией обычно изготавливается из тонкой пластины из чистого металла толщиной менее 1 мм.Тонкую пластину перфорируют сверлом с отверстием менее 1 мм. Скорость перфорации составляет от 1% до 3%. Путем выбора разной скорости перфорации и разной глубины полости можно управлять спектральными характеристиками глушителя, чтобы он мог получить хороший эффект глушения в требуемом диапазоне частот.

6. Глушитель с маленькими отверстиями

Конструкция глушителя этого типа представляет собой прямую трубку с закрытым концом, в стенке которой просверлено множество небольших отверстий. Принцип работы глушителя с малым отверстием основан на спектре шума струи. Если общая площадь сопла остается постоянной и заменяется множеством маленьких сопел, когда воздушный поток проходит через маленькое отверстие, спектр шума струи переходит в высокочастотный, или сверхвысокая частота делает слышимую звуковую составляющую в спектре. значительно ниже, тем самым уменьшая помехи и вред людям.

Глушитель с маленькими отверстиями имеет широкополосные характеристики глушителя на низких и средних частотах, небольшое отверстие может увеличить коэффициент звукопоглощения, низкая пористость может увеличить ширину полосы звукопоглощения, а глубина диафрагмы может измениться положение пика резонансного поглощения.Глушитель с маленькими отверстиями имеет преимущества строгой конструкции, ширины полосы частот поглощения, небольших потерь сопротивления, устойчивости к высоким температурам и длительного срока службы. Обычно он используется для вентиляции выхлопных газов оборудования высокого давления, такого как котлы и компрессоры.

7. Активный глушитель

Этот глушитель представляет собой набор инструментов, в основном состоящий из микрофонов, усилителей, фазовращающих устройств, усилителей мощности, громкоговорителей и т. Д., Генерирующих звуковые волны, равные исходному звуковому давлению и противофазе, для подавления звуковые волны в исходном звуковом поле, тем самым определенный эффект шумоподавления.

Активные глушители широко используются на электростанциях, химической промышленности, металлургии, текстильной промышленности и других промышленных предприятиях и шахтах для различных типов котлов, выхлопных газов паровых турбин; фанаты; защитные двери и другое оборудование для шумоподавления и шумоподавления.

Если вы хотите купить глушители выхлопа, обращайтесь в GRWA.

Оптимизация шума глушителя выхлопа спецтехники на основе улучшенного генетического алгоритма

1. Введение

Все более серьезные выбросы и шумовое загрязнение были вызваны быстрым развитием автомобильной промышленности, и во многих странах были приняты обязательные стандарты, касающиеся шума транспортных средств.В автомобиле было много источников шума, включая шумы системы охлаждения, шумы двигателя, шумы вибрации кузова, аэродинамические шумы и шумы системы привода. Согласно множеству экспериментов, на шум автомобиля в основном повлияли шумы двигателя и выхлопных газов. Однако на шум двигателя повлияло множество факторов, оптимизация которых была очень сложной. Напротив, конструкция глушителя с низким уровнем шума и снижение шума выхлопных газов были экономичным и эффективным методом.

Глушители для труб с микроперфорацией, основанные на теории звукопоглощения микроперфорированной пластины [1-3], были предложены для шумоподавления в воздуховодах.Благодаря хорошим акустическим характеристикам [4] он широко используется в различных областях [5-10]. Рабочие характеристики глушителей из перфорированных труб были изучены, и Луи провел расчет оптимизации на основе метода конечных элементов [11]. Принимая во внимание соединение между глушителем с перфорированной трубой и двигателями, компания Zhong исследовала метод оптимизации конструкции глушителя [12]. С помощью метода конечных элементов (FEM) Росс [13] смоделировал акустическую систему перфорированных пластин и рассчитал потери передачи простой перфорации.Его результаты расчетов хорошо согласуются с экспериментальным результатом в области низкой частоты, но при больших отклонениях в средней и высокой частоте. Джи [14] предложил многодоменную МГЭ для прогнозирования характеристик устранения шума глушителя с трехходовой перфорированной трубой, результаты численного прогнозирования которого согласовывались с экспериментальными результатами. Применяя одномерный аналитический метод и трехмерную подструктуру BEM, Джи [15] предсказал характеристики шумоподавления прямоточного трубного глушителя, указав эффективный частотный диапазон одномерной теории.Кроме того, им было исследовано влияние скорости перфорации и геометрических параметров на акустические характеристики перфорированных легких глушителей.

Однако исследуемый перфорированный глушитель был в основном нацелен на средневысокочастотный шум свыше 100 Гц, в то время как низкочастотные шумы ниже 100 Гц было трудно устранить. Чтобы устранить шумы менее 100 Гц, есть два способа. Один из способов — увеличить объем выхлопной системы, а другой — изменить внутреннюю структуру глушителя и улучшить звукопоглощающую способность на низких частотах, когда объем глушителя такой же.Из-за ограниченного пространства шасси автомобиля увеличение объема выхлопной системы практически невозможно реализовать. Поэтому внутренняя структура выхлопной системы изменена для увеличения способности глушить низкочастотный звук при неизменном объеме выхлопной системы.

2. Рев-диагностика выхлопной системы для спецавтомобиля

На примере спецтехники проведена субъективная оценка. Результаты экспериментов показали, что значительный рев был при разгоне второй передачи, а скорость вращения составляла около 1400 об / мин.Автомобиль испытывался на второй передаче и полном разгоне. Как показано на рис. 1, микрофоны были помещены в правые уши водителя и второго пилота перед автомобилем. Как выяснилось из результатов, уровни звукового давления (SPL) в правом ухе водителя имеют значительное пиковое значение при 1400 об / мин, в то время как правое ухо второго пилота — нет. Чтобы решить эту проблему, были извлечены кривые звукового давления второго и четвертого порядка на драйвере, а затем соответствующие результаты сравнивались с результатами в целом, как показано на рис.2.

Рис. 1. Положения микрофона для проверки внутреннего шума

Рис. 2. Кривые уровня звукового давления правого уха водителя

Как видно из рис. 2, рев при 1400 об / мин вызван в основном вторым порядком. Шум второго порядка исходит в основном от глушителя двигателя [11]. Поэтому глушители необходимо изучить. Кроме того, шум в салоне также велик при примерно 5500 об / мин.Однако двигатель транспортного средства не может развивать такую ​​высокую скорость при нормальном вождении, на что можно не обращать внимания.

2.1. Эксперименты по шуму выхлопной трубы

Чтобы дополнительно проверить влияние глушителя выхлопа на внутренний шум, был проведен эксперимент по внутреннему вкладу в полубезэховой камере для шума выхлопной трубы специального автомобиля. Как показано на рис. 3, автомобиль был закреплен на вращающейся ступице. В правом ухе водителя был помещен микрофон, а другой микрофон был расположен на расстоянии 50 см прямо от выхлопной трубы и под углом 45 градусов к оси выхлопной трубы.

Эксперимент проводился на второй передаче и полностью открытой дроссельной заслонке для сбора данных в диапазоне от 1000 до 6000 об / мин. Сначала был проведен эксперимент с исходным состоянием, а затем безэховая коробка была снова подключена к выхлопной трубе для эксперимента, при этом положение микрофона на выхлопной трубе осталось неизменным.

Рис. 3. Полевые испытания автомобилей с вращающейся ступицей

2.2. Анализ экспериментальных данных

Затем данные, полученные в результате экспериментов, были обработаны, результаты которых показаны на рис. 4.

Как показано на рис. 4, рев при 1400 об / мин эффективно устраняется после подключения безэховой коробки к выхлопной трубе, что указывает на то, что такая проблема в автомобиле действительно вызвана нерациональной конструкцией глушителей. Поэтому необходимо провести оптимизацию конструкции глушителя. Если только путем экспериментов, то срок проектирования глушителей будет увеличен, а также увеличена его стоимость.Поэтому в статье для оптимизации конструкции глушителя делается попытка использовать трехмерный метод конечных элементов.

3. Основные теории
3.1. Трехмерный FEM

С учетом двух сред, включая отверстия для поглощения воздуха и звука, глушитель с перфорированной трубой разделен на две области Ωa и Ωb. И граница разделена на вход, выход, жесткую стенку и перфорированную стенку, которые представлены Si, So, Sw и Sp соответственно. Во всех регионах основным уравнением трехмерного распространения звука является уравнение Гельмгольца, как показано ниже.

В области Ωa может быть получена следующая формула:

Аналогичным образом в области Ωb может быть получена следующая формула:

, где pa, pb, ka и kb — звуковое давление и волновое число воздуха и звукопоглощающей среды, соответственно.

Рис. 4. Сравнение шума до и после подключения безэховой коробки

a) Общий уровень звукового давления до и после подключения безэховой коробки

б) Состояние второго порядка до и после подключения безэховой коробки

c) Состояние четвертого порядка до и после подключения безэховой коробки

Граничные условия расчета звукового поля для глушителей следующие.

1) Внешняя поверхность глушителей представляет собой жесткую стенку, нормальная скорость которой равна 0. Следовательно, можно получить следующее уравнение:

2) Вход глушителя определяется как граничное условие скорости частицы, которое здесь установлено un = 1. Следовательно, можно получить следующее уравнение:

3) Выход глушителя настроен на полное всасывание, а именно:

4) Посредством контакта акустического импеданса перфорированных элементов, скорость вибрации un и скачок давления Δp нормальной частицы в точках Sp1 и Sp2 перфорированных участков стенки, показанных ниже:

(6)

pp1-pp2uana = ρacaξp.

ξp — акустический импеданс перфорированной стенки, pp1 и pp2 — звуковые давления на одной стороне от воздуха и звукопоглощающего материала в перфорированной стене.

Уравнение конечных элементов имеет следующий вид:

(7)

Ma00Mb-Sa00Sb + Da000papb + jkaξpCp11-Cp12-Cp21Cp22papb = Fa0,

где:

(8)

Ma = Ωa∇N∇NTdV,

(9)

Mb = ρaρb∫Ωb∇N∇NTdV,

(11)

Sb = ρaρb∫Ωbkb2NNTdV,

(13)

Cp11 = Cp12 = ∫Sp1NNTdS,

(14)

Cp21 = Cp22 = ∫Sp2NNTdS,

, где N — вектор-столбец действительной функции.

Звуковое давление в каждом узле может быть получено путем решения уравнения. (7). В результате можно вычислить потери передачи глушителя.

3.2. Потеря передачи

Потери при передаче определяются как разница между уровнями падающей звуковой мощности на входе и уровнями звуковой мощности передачи на выходе, которая может быть выражена следующим образом:

(16)

TL = 20lg10S1S21 / 2p1 + ρ0c0υ12p2,

, где p1 и υ1 — звуковое давление и скорость частиц на входе, соответственно.p2 — звуковое давление на выходе. Когда заданы скорость частицы и скорость частицы υ1 на входе, можно применить метод конечных элементов для вычисления звукового давления p1 и p2 на входе и выходе. Затем потери передачи глушителя можно получить, подставив их в формулу. (16).

4. Численный расчет и экспериментальная проверка потерь передачи
4.1. Численный расчет потерь передачи

Как видно из рис. 5, глушитель представляет собой трехкамерную конструкцию и вывод всасывающего патрубка расположен близко.Воздушный поток выбрасывается из небольшого отверстия, проходит во вторую камеру (которая заполнена пеной глушителя) через перфорированную пластину, а затем снова попадает в первую камеру через перфорированную трубу. По конструкции выхлопной системы было получено, что этот глушитель не может снизить шум на низких частотах, а увеличение объема выхлопной системы — наиболее удобный и эффективный способ улучшить звукопоглощающие способности на низких частотах. . Однако улучшение объема выхлопной системы не может быть достигнуто из-за ограниченного пространства шасси.Следовательно, увеличение звукоизоляции на низких частотах может быть реализовано только путем регулировки внутренней конструкции выхлопной системы.

Рис. 5. Внутреннее устройство глушителей

Рис. 6. ПЭМ сеток глушителя

Рис. 7. Перспективная модель МКЭ сеток глушителя

Во-первых, в ГИПЕРМЕШ импортирована геометрическая модель глушителя.Затем была проведена очистка геометрии галтелей и небольших отверстий глушителя, чтобы улучшить качество сетки и точность вычислений. Конструкция глушителя была разделена на ячейки тетраэдрическими элементами, размер элемента составлял 3 мм. Внутренние перегородки соединялись с камерами совмещенными узлами. Внутренний воздух обрабатывался с помощью элементов тетраэдра, и воздух был связан со структурой глушителя также соузлами. Для средней камеры, показанной на рис.5, между перфорированной трубой и внешней структурой глушителя был заполнен пенопласт глушителя, и это также можно было смоделировать с помощью совмещенных узлов. Итоговая сеточная модель глушителя представлена ​​на рис. 6 и содержала 68958 элементов и 78539 узлов. Глушитель был стальным. Модуль упругости 210 ГПа. Плотность составляла 7800 кг / м 3 , а коэффициент Пуассона составлял 0,3. Скорость звука во внутреннем воздухе составляла 340 м / с, а плотность внутреннего воздуха составляла 1,225 кг / м 3 .На рис. 7 показан прозрачный вариант сетчатой ​​модели глушителя, из которого видно, что глушитель имел три камеры и две перегородки.

Рис. 8. Путь передачи звука в глушителе

Путь распространения шума внутри глушителя показан на рис. 8. Глушитель имел три камеры. Звук сначала шел из трубы 1 в глушитель. После этого часть звука передавалась в трубу 2 и камеру 2 через небольшие отверстия в трубе 1, а другой звук передавался непосредственно в камеру 3 через небольшие отверстия на конце трубы 1.Поскольку камера 3 была закрыта, звук будет перемещаться внутри нее и постепенно рассеиваться. Через небольшие отверстия в Pipe1 и Pipe 2 звук попадет в камеру 2 и будет быстро поглощен пеной глушителя внутри этой камеры. Часть звука внутри трубы 2 войдет в камеру 1, которая также была закрытой структурой, а затем звук будет распространяться внутри этой камеры и постепенно рассеиваться. Кроме того, часть звука из трубы 2 будет напрямую распространяться в окружающую среду.Конечно-элементная модель глушителя была построена на основе геометрической структуры, а внутренние трубы и отверстия будут включены в конечно-элементную модель. Поэтому модель конечных элементов затем была импортирована в программное обеспечение для акустической обработки Virtual.lab, и были установлены свойства материала. Между тем, сетка была предварительно обработана, чтобы получить сетку огибающей поверхности глушителя, которая использовалась в качестве акустической сетки. Затем были определены свойства конструкционного материала и воздуха.Отверстия в двух трубах были смоделированы с использованием проводимости для повышения эффективности и точности вычислений. Затем к входу трубы 1 в конечно-элементной модели применялось возбуждение, и две точки поля были установлены на расстоянии 50 мм от входа и выхода, соответственно, как показано на рис. 9. И затем акустические характеристики трубы. глушитель был рассчитан, и контур звукового давления для поверхности глушителя был извлечен, как показано на рис. 9. Кроме того, кривые уровня звукового давления для двух точек поля могут быть извлечены, а звуковые давления на входе и выходе были обработаны для получения потерь передачи глушителя, как показано на рис.10.

Рис. 9. Контур звукового давления поверхности глушителя

4.2. Экспериментальная проверка потерь передачи

Как видно из рис. 7, было известно, что внутренняя конструкция глушителей очень сложна. Следовательно, необходимо было проверить потери передачи, рассчитанные методом FEM.

Было два глушителя спереди и сзади автомобиля, как показано на рис.11, которые были подключены через прямую трубу. Затем на одном конце был установлен динамик в качестве источника звука. Кроме того, как на входе, так и на выходе, исследуемых в данной статье, был размещен датчик. Наконец, программа MATLAB была применена для обработки звукового давления на входе и выходе. Наконец, были получены потери передачи глушителей и сопоставлены с расчетным результатом, как показано на рис. 12.

Рис. 10. Кривая трансмиссионных потерь глушителей

Фиг.11. Эксперимент по потерям трансмиссии глушителей

Рис. 12. Сравнение экспериментальных и симуляционных потерь при передаче

Как видно из рис. 12, результаты экспериментов и моделирования потерь передачи мало различаются, максимальная разница не превышает 5 дБ. Указывается, что расчетная модель в этой статье надежна и может быть использована для последующего оптимизационного анализа.

Потери передачи глушителя были относительно плавными на рис. 12 и были нормальными. Действительно, было много пиков и впадин в потерях передачи для общих конструкций, таких как приборная панель, крышка головки блока цилиндров и другие тонкостенные детали. И основные причины были следующие. С одной стороны, их структурные модалы были плотными. С другой стороны, их структурная вибрация может легко вызвать радиационные шумы. Однако для глушителя, изучаемого в этой статье, кривые потерь при передаче были относительно гладкими, и соответствующие причины могут быть получены из следующих пунктов.Во-первых, глушитель имел несколько резонансных камер, и когда звук попадал в резонансные камеры, он терял большую часть своей энергии и едва мог погаснуть. В результате невозможно представить шумы вибрационного излучения, вызванные множеством структурных модалей. Во-вторых, в этой статье изучались только низкочастотные шумы (ниже 500 Гц), а количество модальных сигналов для низких частот было относительно небольшим, поэтому соответствующие кривые потерь передачи выглядели гладкими. Собственно, кривые потерь передачи для глушителей в опубликованных статьях также были очень гладкими.Например, применив метод модального зацепления, Ву исследовал потери передачи цилиндрического глушителя с камерой расширения [16]. Когда анализируемая частота была ниже 500 Гц, кривая потерь передачи была очень гладкой. Ву также обнаружил, что отношение длины к диаметру расширительной камеры глушителя влияет на уровень флуктуации потерь передачи на средних и высоких частотах, но не оказывает значительного влияния на форму низкочастотных шумов. Чиу провел экспериментальные и теоретические исследования потерь передачи в многокамерном глушителе [17].Когда анализируемая частота была ниже 500 Гц, кривая потерь передачи также была очень гладкой. Основываясь на расчетах гидродинамики, Мидделберг проанализировал потери при передаче глушителя с несколькими камерами расширения [18] и сравнил результаты расчетов с результатами экспериментов. Кривые как для экспериментальных, так и для численных результатов были очень гладкими. Следовательно, потери передачи глушителя в этой статье также были разумными, а кривые не обрабатывались никаким инструментом.

5. Оптимизация конструкции глушителей

Как было проанализировано на основании экспериментальных данных и потерь при передаче, грохот в основном вызван недостаточной звукоизоляционной способностью выхлопной системы на низких частотах, и, особенно, радиационные шумы второго и четвертого порядка в выхлопной трубе выше. На основе оригинальных глушителей конструкция была улучшена для решения вышеуказанных проблем.

Было два улучшения глушителей. Во-первых, конструкция глушителя была изменена с трехкамерной на четырехкамерную, а с использованием четвертой камеры был разработан низкочастотный резонатор.Внутренняя конструкция улучшенного глушителя представлена ​​на рис. 13, а 2, 3 и 4 перегородки показаны на рис. 14. Три внутренние перегородки были установлены спереди назад внутри глушителя, а внутренние были разделены на четыре части. камеры, включая 9, 10, 11 и 12, соответственно слева направо. На переднем конце глушителей была впускная труба 6, а на заднем конце — выпускная труба 7. Вставная труба 8 была закреплена на перегородке 2, 3 и 4 точечной сваркой. Передний конец трубы был соединен с камерой 9, а задний конец — с камерой 12.В качестве герметичной камеры камера 12 и вставная труба 8 образуют камеру низкочастотного резонатора.

Рис.13. Внутренняя структура улучшенного глушителя

Рис.14. Вид в разрезе перегородки

a) Перегородка 2 и 3

б) Перегородка 4

Некоторые параметры улучшенного глушителя не могут быть оптимальными.В результате потери передачи улучшенного глушителя могут быть не самыми большими, поэтому параметры улучшенного глушителя следует дополнительно оптимизировать.

Потери при передаче были одним из важных показателей для оценки характеристик глушителя, и при проектировании конструкции следует также учитывать требование легкости. Поэтому в этой статье максимизация средних потерь при передаче и минимизация массы рассматривались как цель оптимизации глушителя.Выбранные параметры оптимизации были следующими: радиус r1 входной трубы, радиус r2 средней трубы, радиус r3 выходной трубы, радиус r4 расширительной камеры, длина l1 камеры 9, длина l2. камеры 10, длины l3 камеры 11 и длины l4 камеры 12. Во время процесса оптимизации необходимо убедиться, что общий внешний размер глушителя не увеличился, иначе глушитель нельзя было установить так, чтобы днище автомобиля.Поэтому предотвращение увеличения общего внешнего размера глушителя считалось ограничением. Математическое выражение оптимизации было показано следующим образом:

(17)

Мин. (Вт), Макс. (TL)
20≤r1≤30,
10≤r2≤20,
20≤r3≤30,
30≤r4≤98,
20≤l1≤100,
20≤l2≤100 ,
20≤l3≤100,
20≤l4≤100,
l1 + l2 + l3 + l4≤300.

В формуле. (17) W — полная масса глушителя. TL — средние потери при передаче глушителя.

Фиг.15. Поток улучшенного генетического алгоритма

На основании приведенного выше анализа можно сделать вывод, что оптимизация глушителей была сложной задачей, включающей несколько целей и множество переменных. И генетический алгоритм широко применяется для решения многоцелевой оптимизации. Поэтому в данной статье для оптимизации конструкции глушителя был выбран генетический алгоритм. Согласно большому количеству опубликованных статей, традиционный генетический алгоритм может легко получить локально оптимальное решение в процессе поиска.То есть это приведет к преждевременной конвергенции и быстрому достижению 90% оптимального решения. Чтобы избежать локально оптимального решения, необходимо было расширить пространство поиска и увеличить разнообразие населения.

Метод случайного испытания, также называемый методом Монте-Карло, использует относительно меньше памяти и обладает хорошими статистическими свойствами. В статье, при сохранении скорости кроссовера и скорости мутаций, был принят метод случайных проб, чтобы предотвратить локальную конвергенцию.Другими словами, когда никаких изменений не произошло с оптимальными индивидами в непрерывных n поколениях, это показало, что алгоритм обнаружил локальный экстремум, и необходимо принять некоторые меры для решения этой проблемы. Когда возникла вышеупомянутая проблема, следует выполнить случайные пробные операции с популяцией, а к развивающейся популяции следует применить большое возмущение, чтобы алгоритм мог избавиться от локально оптимальных точек и начать новый поиск. Конкретные операции заключались в следующем: сохранить только оптимальные значения и восстановить остальные особи.Цель случайных пробных операций заключалась в том, чтобы как можно быстрее избавиться от состояния медленной эволюции и начать новый поиск, а не вырождать популяцию. Последовательность усовершенствованного генетического алгоритма, включающего метод случайного испытания, показана на рис. 15. В процессе оптимизации исходная популяция составляла 50, частота кроссовера составляла 0,95, а частота мутаций составляла 0,05. Как значение приспособленности генетического алгоритма изменяется с числом эволюционных поколений, показано на рис.16.

Рис.16. Значение приспособленности меняется вместе с эволюционным поколением.

Рис.17. Сравнение потерь передачи до и после оптимизации

Согласно рис. 16, целевая функция могла иметь стабильные значения после почти 80 поколений. Конструктивные параметры оптимизированного глушителя приведены в таблице 1. Согласно таблице 1 общая масса глушителя уменьшена на 0.9 кг, а средние потери передачи были увеличены на 3,2 дБ, что дало очевидный эффект оптимизации. Основываясь на этих параметрах, глушитель был смоделирован, таким образом, была получена четырехкамерная конструкция глушителя, показанная на рис. 13 в статье. Затем был использован метод конечных элементов для расчета потерь передачи глушителя, и расчетные значения были сопоставлены со значениями исходной конструкции, как показано на рис. 17.

Рис.18. Сравнение уровня звукового давления правого уха водителя до и после оптимизации

a) Общие уровни звукового давления до и после оптимизации

б) Уровни звукового давления второго порядка до и после оптимизации

c) Уровни звукового давления ниже четвертого порядка до и после оптимизации

Как видно из рис.17, потери передачи оптимизированного глушителя резко увеличиваются на низкой частоте. Для дальнейшей проверки фактического эффекта оптимизированного глушителя был изготовлен образец. После субъективной оценки рев глушителя выхлопа исчез при 1400 об / мин, и эксперимент с транспортным средством также проводился в полубезэховой камере, который сравнивался с исходным результатом. На рис. 18 сравнивается звуковое давление в правом ухе водителя при второй передаче и при полном разгоне до и после оптимизации.На рис. 19 также сравнивались звуковые давления в положениях выхлопной трубы на второй передаче и при полном разгоне до и после оптимизации.

Как видно из рис. 18, уровень звукового давления на ухо водителя значительно улучшился около 1400 об / мин, а грохот исчез. Кроме того, из рисунка 19 видно, что радиационный шум в положении выхлопной трубы снижается на 3-7 дБ при 1000–2000 об / мин, шум второго порядка снижается на 5–12 дБ при 1200 об / мин. -2350 об / мин, а шум четвертого порядка снижается на 3–7 дБ при 1000–1500 об / мин.Из этих результатов видно, что оптимизированный глушитель в этой статье возможен.

Рис.19. Сравнение уровней звукового давления положения выхлопных труб до и после оптимизации

a) Общие уровни звукового давления до и после оптимизации

б) Уровни звукового давления второго порядка до и после оптимизации

c) Уровни звукового давления ниже четвертого порядка до и после оптимизации

Таблица 1. Сравнение всех параметров до и после оптимизации

Переменные

Оригинал

Оптимизировано

Радиус входной трубы r1 / мм

30

28

Радиус средней трубы r2 / мм

20

13

Радиус выпускной трубы r3 / мм

30

27

Радиус расширительной камеры r4 / мм

98

85

Длина камеры 1 л1 / мм

75

50

Длина камеры 2 l2 / мм

75

92

Длина камеры 3 л3 / мм

75

41

Длина камеры 4 л4 / мм

75

85

Общая длина л / мм

300

268

Общая масса Вт / кг

5.2

4,3

Средние потери передачи TL / дБ

39,1

42,3

6. Выводы

1) Общий уровень звукового давления правого уха водителя проверяется и сравнивается с уровнем звукового давления второго и четвертого порядка.Как видно из результата, рев при 1400 об / мин в основном вызван чрезмерным шумом второго порядка.

2) Безэховая коробка помещается в конец выхлопной трубы транспортного средства, и затем проверяется соответствующий шум, который сравнивается с предыдущими результатами. Указывается, что после установки безэховой коробки пиковый шум при 1400 об / мин был значительно улучшен, что дополнительно показывает, что рев в этом положении вызван звукоизоляционной способностью выхлопной системы на низкой частоте.

3) Метод конечных элементов применяется для расчета потерь передачи глушителей, результаты которого сравниваются с экспериментальным результатом. Они согласуются друг с другом, и это показывает, что численная модель потерь передачи надежна и может быть использована для последующего анализа.

4) На основе оригинального глушителя улучшена его конструкция, но параметры улучшенного глушителя не могут быть оптимальными. В результате улучшенный генетический алгоритм принят для оптимизации улучшенной структуры.Затем вычислительная модель применяется для расчета потерь при передаче глушителей, результаты которых, наконец, сравниваются с исходными результатами. Как показывают результаты, потери передачи оптимизированной конструкции были значительно увеличены.

5) Чтобы проверить фактические эффекты оптимизированной структуры, для реальных экспериментов производятся образцы, результат которых затем сравнивается с исходным значением. Пиковые шумы как в правом ухе водителя, так и в выхлопной трубе были значительно уменьшены, что свидетельствует о том, что предложенная в документе оптимизация является реальной и эффективной.

Как позаботиться о своем автомобиле

Когда какой-то неожиданный звук выходит из зоны двигателя, большинство автовладельцев воспринимают это как серьезную угрозу. Это может быть приглушенный звук, воющий звук, дребезжащий звук или даже плохой шум подшипника ступицы колеса.

Когда вы слышите дребезжащий звук, источником может быть одна из многих частей двигателя и выхлопной системы. Но если вы точно знаете, что это глушитель, у этого есть решение.

По многочисленным просьбам мы провели полную дискуссию на эту тему.Мы собираемся показать вам возможные причины шума глушителя при ускорении и способы их устранения.

Давайте двигаться дальше-

Что делает глушитель?

Глушитель является частью выхлопной системы и устанавливается на выхлопную трубу. А работа глушителя — уменьшить шум, исходящий от моторной части.

Конструкция глушителя состоит из перфорированных трубок или камер. Он создает встречные звуковые волны, которые предотвращают появление шума двигателя.В результате глушитель подавляет резкие и громкие звуки, исходящие от двигателя. К счастью, вас не беспокоит сильно раздражающий шум двигателя.

Причины шума глушителя при ускорении

Теперь, каков источник дребезжащего шума в глушителе? Особенно, когда вы разгоняете машину.

Ну, есть много компонентов, которые находятся рядом с выхлопной трубой. Это может быть резиновая подвеска для выхлопной системы, ослабленный выхлопной кронштейн, выхлопные патрубки и т. Д.Эти предметы могут случайно соприкоснуться с глушителем, из-за чего в глушителе будет дребезжать звук.

При разгоне автомобиля выхлопная труба контактирует с этими предметами. Вот что создает этот дребезжащий звук.

Другая возможная причина шума глушителя заключается в том, что могут быть проблемы в частях, которые напрямую не связаны с глушителем. Иногда металлические трубы вокруг глушителя уже могут быть повреждены. Это может привести к неправильной работе выхлопной системы !

В любом случае, вы должны знать достаточно, чтобы выяснить источник дребезжащего шума в глушителе и сразу устранить его.Мы проведем вас по шагам. Но перед этим позвольте нам рассказать вам о последствиях дребезжащего глушителя —

Последствия плохого шума глушителя!

Эффект шума глушителя заключается не только в помехах. У него есть и другие последствия.

Например, ослабленный глушитель совершает чрезмерное движение вместе с другими компонентами, находящимися рядом с ним. Таким образом, соседние части будут испытывать нагрузку, что приведет к увеличению шума.

В конце концов, при этом варианте движения глушитель может оказаться в более низком положении, чем он должен быть.Это может заставить его сломаться, ударившись о неровность.

В любом случае не оставляйте глушитель в таком виде, пока вы знаете о проблеме. В следующем разделе вы получите полное представление о том, как решить проблему.

Как исправить шумный глушитель

До сих пор мы обсуждали проблемы шумоглушителя и их причины. Но мы хотим, чтобы вы покончили с этой проблемой и вернули глушитель к работе. Итак, в этом разделе мы проведем вас через ряд шагов, которые позволят сделать это прямо сейчас.

Советы 1. Очистить шумный глушитель так же просто, как затянуть гайку и болт.

Проверьте внешнюю часть глушителя на предмет пыли, мусора или подобных препятствий. Поскольку выхлопная система работает как единое целое, любое присутствие неожиданных материалов может привести к нескольким проблемам, таким как шум, вибрация и т. Д.

Советы 2: Проверьте внутреннюю часть глушителя

Иногда глушитель может застрять также из-за внутренних частиц пыли.Откройте глушитель и проверьте наличие перегородки или других компонентов. Такие предметы часто вызывают ослабление глушителя и внутренний дребезжащий звук.

Чтобы удалить внутреннюю пыль из глушителя, вам понадобится автомобильная щетка с длинной ручкой. Вы можете подумать о том, чтобы приобрести несколько размеров для большего мастерства.

Советы 3: Проверьте болты и кронштейны, с помощью которых крепится глушитель.

Ослабленный глушитель иногда отсоединяется от кронштейна или болта и вызывает неожиданный шум при ускорении.

При необходимости вы можете заменить эти детали на новый автомобильный кронштейн.

Советы 4: Проверьте на внешнюю коррозию

Иногда из-за неисправности глушителя затрагиваются близлежащие детали. Если в ближайшее время не устранить шум глушителя, вокруг деталей глушителя может быть ржавчина или мусор.

Советы 4: Замените на новый

В крайних случаях какой-то глушитель приходит в неремонтное состояние. Если вы убедитесь в этом после тщательного осмотра, это единственный вариант, который вы можете заменить на новый автомобильный глушитель.Доступно множество марок и моделей.

Если вы решили установить новый глушитель, убедитесь, что он соответствует модели вашего автомобиля. При необходимости обратитесь за помощью к производителям.

Вот ролик, как легко исправить шум глушителя!

Когда вы сталкиваетесь с проблемой шума глушителя при ускорении, существует 90% -ная вероятность того, что причиной этого является неочищенный или заклинивший глушитель.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *