Ремонт диодного моста генератора своими руками: Ремонт диодного моста генератора своими руками

Содержание

Ремонт диодного моста генератора. Как заменить диоды?

Приветствую!

Следующая небольшая статья будет интересна тем, кому интересно все ремонтировать самому.

Речь пойдет о том, как отремонтировать диодный мост генератора.

Все написано на примере генератора фирмы Delta Autotechnik. Данный генератор был установлен на Opel Vectra B с двигателем X25XE и проработал на автомобиле около 1 года. Признаками неисправности системы заряда аккумулятора были: поначалу спонтанное мигание лампы зарядки, потом эта лампа засветилась постоянно.

Снимать генератор на данной машине – вещь очень трудоемкая. Генератор расположен в очень неудобном месте (неудобном не потому, что про него говорить неудобно)). Чтобы снять генератор, нужно открутить переднюю часть глушителя, и открутить и вытащить из коробки передач правую полуось. На форумах где-то писали, что можно открутить правую часть подрамника и, опустив ее, вытащить генератор. В общем, геморр еще тот. Из-за всего этого грешить на генератор или регулятор напряжения, или диодный мост, хочется в самом крайнем случае. Лучше сто раз перепроверить и убедиться, что виноват именно генератор. Для начала нужно измерить напряжение на аккумуляторе при заведенном двигателе. Если напряжение меньше 13 В, значит заряд не идет.

Важное замечание! Нельзя отключать аккумулятор от бортовой сети работающего автомобиля, чтобы проверить работоспособность генератора.  Почему? Прочтите статью о проверке генератора.

Затем необходимо проверить напряжение непосредственно на контактах генератора, идущих к АКБ. А вдруг что-то случилось с проводом. На указанном выше автомобиле мерить нужно быстро, так как рядом приемная труба глушителя, а она нагревается почти сразу после пуска двигателя.  Если не идет напряжение с генератора (или меньше 13 В), то, как это не печально, нужно снимать генератор с автомобиля.

Далее отдельно
проверяем регулятор напряжения и диодный мост. 

Недавно приобрел очень хороший компактный мультиметр, который можно всегда возить в машине. Вот его обзор. А заказать такой можно по этой ссылке.

В моем случае сгорели 2 диода, но остальные вздулись, скорей всего, от перегрева

Поэтому лучше менять все 6 диодов на новые.

Сначала нужно узнать, на какой ток должны быть новые диоды. Если генератор 100-амперный, то можно взять диоды на 35 А (так как 3 диода на каждый полюс). Напряжение можно взять от 200 В и выше. Я выбрал диоды фирмы HC-Cargo. Это первое, что нашлось. И на сайте есть фото диодов, что очень удобно. Если искать на сайте этой фирмы, то нужно последовательно выбрать Alternator Components -> Alternator Parts -> Rectifiers -> Rectifier Parts -> Diodes.  Далее, очень важный параметр, это диаметр диода, если диод впрессовывается (Press-fit). Желательно померить диаметр у старых диодов. В моем случае, диоды были с диаметром впрессовываемой части (OD) 12.7 мм (1/2″). Положительная полярность (Polarity Positive) означает, что впрессовываемая часть – это катод, а торчащий вывод (Lead) – анод. Для отрицательной полярности (Polarity Negative) все в точности наоборот. Для выпрямительного моста генератора нужно 3 диода положительной полярности и 3 отрицательной. Для генератора Delta Autotechnik я заказывал диоды с артикулами: 130911 и 130912.

Замена диодов. Далее все относится к генератору фирмы Delta Autotechnik. Но принцип для всех одинаков. По такому варианту делал я, но каждый может придумать свой вариант замены. Диоды запрессованы в пластины из алюминия. Для выпрессовки старых диодов понадобится выколотка диаметром чуть меньшим диаметра диода . И если есть трубка с диаметром 14-15 мм, то лучше поставить ее с противоположной стороны. И выколоткой просто выбить старые диоды. Запрессовывать новые диоды нужно с той же стороны, с которой выбивались старые. С противоположной стороны также лучше поставить трубку. Затем, лучше через деревянный брусок, забить новые диоды.

      

Перед запрессовкой новых диодов лучше еще раз проверить с помощью мультиметра, какие диоды в какую пластину диодного моста запрессовываются.

В пластину, которая лежит снизу и имеет контакт с корпусом генератора, запрессовываются диоды с отрицательной полярностью (Polarity Negative). Диодный мост собирается в  порядке, обратном разборке.

      

Корпус генератора имеет большую шероховатость. Поэтому перед установкой нижней пластины с диодами, которая имеет контакт с корпусом генератора, лучше смазать место ее соприкосновения с корпусом тонким слоем теплопроводной пасты. Паста наносится очень тонким слоем, только лишь, чтобы заполнить мельчайшие неровности поверхности и создать однородную среду для улучшения теплоотдачи.

         

   

Диодный мост устанавливается на свое место. Выводы обмоток зажимаются и/или припаиваются к соответствующим контактам моста.

Оставить сообщение:

[contact-form-7 id=”3550″ title=”Контактная форма 1″]

См. также:


Если Вы нашли что-то полезное, поделитесь с друзьями:

  • Ремонт диодного моста генератора

    https://deneb-80.ru/wp-content/plugins/svensoft-social-share-buttons/images/placeholder.png

    Приветствую! Следующая небольшая статья будет интересна тем, кому интересно все ремонтировать самому. Речь пойдет о том, как отремонтировать диодный мост генератора. Все написано на примере генератора фирмы Delta Autotechnik. Данный генератор был установлен на Opel Vectra B с двигателем X25XE и проработал на автомобиле около 1 года. Признаками неисправности системы заряда аккумулятора были: поначалу спонтанное мигание лампы […]

  • Facebook
  • Twitter
  • ВКонтакте
  • Одноклассники
  • Mail.ru
  • Google+
  • Livejournal

Диодный мост ваз 2106: Замена, Как проверить

Сегодня мы поговорим о том, как проверить диодный мост своими руками, сэкономив при этом деньги и время на поездку к специалистам в автосервис. Когда-то я уже писал о том, как сделать ремонт генератора ВАЗ 2101, на этот раз мы поговорим конкретно про диодный мост, точнее о том как его проверить в домашних условиях.

Оглавление

Замена
Как проверить

Замена

Для замены диодного моста надо будет снять генератор с автомобиля. Чтобы разобрать генератор и снять диодный мост Вам понадобятся головки на 8 и 10.

Первым делом нужно разобрать генератор на 2 части, для этого отворачиваем гайки на болтах, которые скрепляют корпус генератора

Далее аккуратно молотком простукиваем по одной из частей генератор, чтобы его разобрать

Следующим действием отворачиваем головкой с удлинителем гайки крепления диодного моста и, отсоединив колодку от генератора, снимаем его

Установка нового диодного моста происходит в обратном порядке.

Как проверить

Заметить, что есть какие-то проблемы с диодным мостом, не так уж и сложно. Достаточно установить, что аккумуляторная батарея не получает достаточный объем заряда или же наоборот поддается избыточному заряду (перезаряд АКБ).

Основная задача выпрямительных диодов генератора — это однонаправленное пропускание электрического тока и блокирование его прохождение назад, от бортовой сети автомобиля.

Если же ток пропускается в обе стороны или же вообще не пропускается через диоды, значит они неисправны. Бывает такое после неудачного «прикуривания» (перепутанный «+» и «-»), а также вследствие попадания на диоды влаги.

Итак, проверка может производиться как на извлеченном из генератора мосту, так и без разборки (снятия). Сначала рассмотрим вариант прозвона диодов при помощи обычной 12-вольтовой лампы, без разборки генератора. Для этого необходимо снять защитный кожух генератора и отсоединить вывод «Б» регулятора напряжения от клеммы «30». Также следует отсоединить провода и от вывода регулятора «В». Обратите внимание, что 3 диода, помеченные красным цветом, это «плюс», а 3 диода с черными метками — «минус».

Первым делом все диоды проверяются на замыкания: через лампу подсоединяем «плюс» от АКБ к клемме «30», в то время как «минус» — к корпусу генератора. В случае, если лампа горит, «плюсовые» и «минусовые» диоды имеют короткое замыкание. После этого проверяются на замыкание отдельно «минусовые» диоды. Для это «плюс» аккумулятора через лампу соединяем с крепежным болтом диодного моста, «минус» — на корпус. Когда наблюдается свечение лампы, это означает, что есть замыкание в одном или нескольких «отрицательных» диодах.

Проверять «положительные» диоды нужно аналогичным способом, только теперь к болту подключаем «минус», а «плюсовую» клемму батареи определяем на зажим «30». Как и в предыдущем случае, свет лампы будет сигнализировать, что имеется замыкание по одному или нескольким «плюсовым» диодам.

Дополнительные диоды «прозваниваются» так: «плюс» через лампу подключается к выводу генератора «61», а «-» идет на болт крепления диодного моста. Свет лампы укажет на наличие короткого замыкания в одном из дополнительных диодов. В заключение отметим, что определить, какой именно диод выдает замыкание, возможно лишь после снятия моста и поочередной проверки всех его элементов.

Ремонт генератора Дэу Сенс, замена диодного моста

Все мы хорошо знаем яркую двадцатилетнюю историю, связанную с самым популярным в Украине автомобилем Дэу Ланос.

Эту страницу совместно писали корейская автокомпания Daewoo, General Motors, Польша и украинский Авто ЗАЗ.

В нашей стране этот автомобиль заслуженно стал народным.

Однако, с этой ярчайшей страницей связана также история ещё одного не менее популярного в нашей стране автомобиля Дэу Сенс.

И эта модель также стала по настоящему народной, поскольку название ей придумывали всем народом.

Сенс стал бюджетной версией Дэу Ланоса.

Этому способствовала комплектация автомобиля двигателями отечественного Мелитопольского моторного завода объёмом 1,3 и 1,4 литра.

Кроме того, в трансмиссии предусмотрена и механическая пятиступенчатая коробка переключения передач.

Ремонтируем своими руками генератор Daewoo Sens

В представленной статье речь пойдёт о том, каким образом можно самому отремонтировать и в частности заменить диодный мост генератора Дэу Сенс.

  • Итак, у нас аккумуляторная батарея стала разряжаться буквально за три часа.
  • Заменили на новую, но ничего всё равно не помогло.
  • Замерили ток утечки и после того, как отсоединили одну клемму с генератора ток утечки упал практически до ноля.
  • Поэтому мы сняли генератор с автомашины с целью проверить его исправность.
  • А точнее его обмотки и диодный мост.
  • Для того, чтобы это всё сделать необходимо взять отвёртку обыкновенную и тестер.
  • В результате обнаружили, что вся причина в диодном мосту, в котором прогорели диоды.

  • А те, что не прогорели, то большинство из них оказались пробитыми.
  • Поэтому мы заказали новый диодный мост, точно такой же, как и в нашем генераторе.

  • А для того, чтобы достать эту деталь в нашем генераторе, пришлось снять его заднюю крышку.

  • А крепится она с помощью защёлок, расположенных по диаметру крышки.

  • Всего их там четыре штуки.
  • Дальше снимаем кожух и регулятор, который крепится вместе со щётками, и после этого просто откручиваем сам диодный мост.
  • После этого отпаиваем все провода от обмоток статора и можем снимать уже сам мост генератора Дэу Сенс.
  • Ну и параллельно хотим рассказать, каким образом можно проверить исправность диодного моста.
  • Для этого выставляем тестер в режим пищалки проверки диодов.

  • Это говорит о том, что при замыкании концов тестер издаёт характерный писк в этом режиме.
  • Теперь берём один конец тестера прикладываем к проверяемому диоду, а второй конец прибора – к площадке, на которой крепится этот диод.

  • Если прибор издаёт при этом писк, значит этот диод пробит.
  • После этого, для полной уверенности меняем концы прибора местами и прибор снова должен издавать писк.
  • Если это так, значит такой диод непременно нужно менять.
  • Если же прибор показывает сопротивление, равное, как в нашем случае – 750 или 760 Ом.
  • И при перемене мест контактов показывает бесконечность – такой диод находится в рабочем состоянии и менять его нет смысла.
  • Таким вот нехитрым образом проверяем по порядку все диоды моста.
  • Не забываем также проверять здесь и вспомогательные диоды.

  • На них прибор должен показать при проверке сопротивление – 690 Ом, а после смены контактов – бесконечность.
  • При необходимости такой диодный мост можно разобрать на две части.

  • В любом случае о том, что мост прогорел можно определить и по следам горения и плавления диодов и частей его корпуса.
  • Поэтому мы его выбрасываем, а вместо него берём новый, тот что мы заказали.
  • Прежде чем его устанавливать в генератор, также с помощью тестера проверяем целостность всех его диодов.
  • Дальше стоит проверить обмотки статора генератора на пробой и уровень сопротивления.
  • Сопротивление обмоток здесь равно примерно 1 Ом.
  • Поэтому выставляем на тестере соответствующий режим.

  • После чего проверяем непосредственным подключением проводов тестера к выводам обмотки попарно.

  • Затем переводим прибор снова в режим пищалки и снова проверяем обмотку, приставляя один конец его к контакту самой обмотки, а второй к корпусу генератора Дэу Сенс.

  • Как и раньше прибор при этом должен показывать бесконечность.
  • Дальше снимаем регулятор вместе со щётками, который крепится болтами.

  • И продолжаем разбирать дальше генератор.

  • Можно, конечно, и не разбирать генератор, а ограничиться его проверкой.
  • Но, лучше это сделать для того, чтобы визуально можно было убедиться в исправности обмотки статора и ротора.
  • Проверяется же сам генератор следующим образом.
  • Переставляется тестер для этого в режим сопротивления.
  • А после этого проверяем сопротивление на роторе между его контактными кольцами.

  • Прибор при этом должен показывать от 1,8 и до 5,0 Ом.
  • В данном случае тестер показал нам 2,5 -2,6 Ом.

  • После этого проверяем ещё не пробита ли обмотка и не пробивает ли в результате этого на корпус генератора.
  • Для этого снова ставим прибор в режим пищалки и приставляем один его конец к одному из контактных колец, а второй к корпусу генератора.

  • Прибор при этом должен показывать бесконечность.
  • Точно также поступаем и со вторым контактным кольцом.
  • И в заключение ещё можно и нужно проверить подшипники на шум при вращении, а также на наличие люфта.

  • Подшипники при этом должны вращаться свободно и бесшумно, а также не иметь ощутимого люфта.
  • Поэтому, если всё нормально после соответствующей проверки, то можно устанавливать на место новый диодный мост и припаивать его к обмоткам.

  • После этого завершаем полностью сборку устройства и устанавливать его обратно на автомобиль.
  • На этом наш рассказ о ремонте и проверке генератора, а также установке диодного моста на Дэу Сенс окочен.

Как сделать мостовой выпрямитель

Мостовой выпрямитель — это электронная сеть, использующая 4 диода, которая используется для преобразования входного переменного тока в выход постоянного тока. Этот процесс называется двухполупериодным выпрямлением.

Здесь мы узнаем основной принцип работы выпрямительных диодов, таких как 1N4007 или 1N5408, а также узнаем , как подключить диоды 1N4007 для быстрого построения мостовой выпрямительной схемы .

Введение

Диоды — один из важных электронных компонентов, используемых для преобразования переменного тока в постоянный.Диоды имеют свойство пропускать постоянный ток в указанном направлении и выпрямлять переменный ток через его выводы. Давайте изучим компоненты более подробно.

Диоды — это крошечные электронные компоненты, которые обычно узнаваемы по цилиндрическому корпусу черного цвета с белой полосой по краю.

Распиновка диодов

У них есть два штифта на двух концах корпуса.

Выводам, также называемым выводами, назначаются соответствующие полярности, называемые катодом и анодом.

Вывод, выходящий со стороны полосы, является катодом, а противоположный вывод — анодом.

Диоды черного цвета обычно рассчитаны на более высокий ток, в то время как меньшие диоды красного цвета имеют гораздо более низкую номинальную мощность.

Номинальная мощность показывает, какой ток можно пропустить через устройство, не нагревая его до опасного уровня.

Диоды выполняют одну важную функцию, которая становится их исключительной собственностью. Когда переменный ток подается через анод и землю диода, выход через катод и землю представляет собой постоянный ток, что означает, что диод может преобразовывать переменный ток в постоянный с помощью процесса, называемого выпрямлением.

Как происходит выпрямление в диодах

Мы знаем, что переменный ток состоит из нестабильного напряжения, то есть напряжение и ток постоянно меняют свою полярность от нуля до заданного максимального пика напряжения, а затем он возвращается к нулю, затем возвращается к отрицательной полярности и направляется к пику отрицательного напряжения и постепенно возвращается к нулевой отметке для повторения еще одного аналогичного цикла.

Это повторяющееся изменение полярности или циклов может иметь определенные периоды времени в зависимости от частоты переменного тока или наоборот.

Когда вышеупомянутый переменный ток подается на анод диода относительно земли, отрицательные циклы блокируются диодом, и разрешается проходить только положительным циклам, которые появляются на катоде диода по отношению к земле.

Теперь, если такой же переменный ток подается на катод диода относительно земли, положительные циклы блокируются, и мы можем получать только отрицательные циклы относительно земли.

Таким образом, в зависимости от полярности диода, приложенный переменный ток эффективно выпрямляется, так что только заданное напряжение появляется на другом конце или выходе устройства.

В случае, если требуется обработать оба цикла переменного тока для повышения эффективности и для получения полностью выпрямленного переменного тока, используется мостовой выпрямитель.

Конфигурация мостового выпрямителя представляет собой интеллектуальную схему из четырех диодов, при которой приложенный переменный ток в сети приводит к выпрямлению обеих половин цикла переменного тока.

Это означает, что как положительная, так и отрицательная полупериоды преобразуются в положительные потенциалы на выходе конфигурации моста.Такое расположение приводит к лучшему и более эффективному сигналу переменного тока.

Фильтрующий конденсатор обычно используется на выходе моста, так что провалы или мгновенные отключения напряжения могут быть скомпенсированы за счет заряда, хранящегося внутри конденсатора, и для генерации хорошо оптимизированного и более плавного постоянного тока на выходе.

Как сделать схему мостового выпрямителя с использованием диодов 1N4007

Изготовить мостовой выпрямитель с использованием четырех диодов 1N4007 совсем не сложно.Просто скрутив выводы четырех диодов по определенной схеме, мостовой выпрямитель можно сделать за секунды.

Для изготовления мостового выпрямителя можно выполнить следующие шаги:

  • Возьмите четыре диода 1N4007.
  • Возьмите два из них и совместите их стороны с полосами или катоды вместе так, чтобы они держались в форме стрелки.
  • Теперь плотно скрутите клеммы так, чтобы соединение сохраняло ориентацию. Держите эту пару диодов в стороне.
  • Теперь выберите оставшуюся пару диодов и повторите описанную выше процедуру, однако убедитесь, что теперь противоположные концы или аноды проходят через описанные выше шаги.
  • Наконец, пришло время исправить последнюю мостовую сеть, которая выполняется путем объединения двух вышеупомянутых сборок вместе с их соответствующими свободными концами, как показано на рисунке.
  • Ваша конструкция мостового выпрямителя готова и может использоваться по назначению.

В качестве альтернативы описанному выше методу изготовления моста можно следовать и на печатной плате, вставив диоды в печатную плату в соответствии с объясненными ориентациями и припаяв их в требуемых местах.

Мостовой выпрямитель — обзор

α, β Модулятор пространственного вектора тока

В зависимости от значений γ k , выходные напряжения на плечах мостового выпрямителя могут принимать только восемь возможных различных состояний, представленных в виде векторов напряжения в α, β система отсчета (рис. 36.47б) для источников с изолированной нейтралью.

При наличии только двух независимых токов необходимо использовать два трехуровневых гистерезисных компаратора для токовых ошибок, чтобы точно выбрать все восемь доступных векторов напряжения.Каждый трехуровневый компаратор может быть получен путем суммирования выходных сигналов двух компараторов с двумя уровнями каждый. Один из этих двух компараторов ( δ , δ ) имеет большую ширину гистерезиса, а другой ( δ δ ) имеет более узкую ширину гистерезиса. Полосы гистерезиса представлены значениями e и ρ. В таблице 36.1 представлены все возможные комбинации выходов полученных четырех двухуровневых компараторов, их суммы дают два трехуровневых компаратора ( δ, α , δ), P lUS вектор напряжения, необходимый для реализации стратегии отслеживания тока. ( i α, r i α, β ) = 0 (обеспечивая ( i α, r i α, β ) d (i α, r — i α, β ) / dt < 0, плюс переменные γ k и компоненты напряжения α, β .

Из анализа повышающего выпрямителя с ШИМ сделан вывод, что, если, например, приложен вектор напряжения 2 ( γ 1 = 1, γ 2 = 1, γ 3 = 0), в режиме повышения токи i α и i будут уменьшаться. Напротив, если приложен вектор напряжения 5 (γ 1 = 0, γ 2 = 0, γ 3 = 0), то токи i α и i оба увеличатся.Следовательно, вектор 2 должен быть выбран, когда оба тока i α и i превышают их соответствующие опорные значения, то есть для δ α = — 1, δ = — 1, тогда как вектор 5 должен должен быть выбран, когда оба тока i α и i находятся под соответствующими ссылками, или для δ α = 1, δ = 1. Почти все выходные данные таблицы 36.2 могут быть заполнены с помощью такого рода рассуждения.

ТАБЛИЦА 36.2. Результаты двухуровневого и трехуровневого компаратора, показывающие соответствующий выбор вектора, соответствующие напряжения компонент γ k и вектора α, β ; векторы отображены на рис. 36.47b

76 9027 vo / 2 9027 9027 9027 0,5 9027 −0,5 0,5 9 9 δ α = 0, δ β = –1, вектор выбирается по значению текущей ошибки i α (если δ > 0 и δ <0, то вектор 2; если δ <0 и δ > 0, то вектор 3). Когда δ α = 0, δ = 1, если δ > 0 и δ α 0, то вектор 6, иначе если δ <0 и δ > 0, затем вектор 5. Векторы 0 и 7 выбраны так, чтобы минимизировать частоту переключения (если включены два из трех верхних переключателей, то вектор 7, в противном случае вектор 0). Декодер пространственного вектора может быть сохранен в справочной таблице (или в EPROM), входы которой являются выходами четырех двухуровневых компараторов, а логический результат операций необходим для выбора между векторами 0 и 7.

Стартеры и генераторы: общая неправильная диагностика

Неисправные диоды — частая причина выхода из строя генератора. Диоды являются частью выпрямительного узла, который преобразует выход переменного тока генератора переменного тока в постоянный. Выходной сигнал заряда генератора проходит через шесть диодов в выпрямительном узле, прежде чем он поступит на аккумулятор и электрическую систему.

Следовательно, чем выше зарядная нагрузка, тем они нагреваются.

При нормальном вождении и зарядке диоды не сгорают, но нечастые поездки и короткие поездки в ночное время с включенными фарами и другими аксессуарами могут увеличить зарядные нагрузки и значительно сократить срок их службы.

Мощность зарядки генератора падает при выходе из строя диодов. Если только один или два диода вышли из строя, генератор все еще может производить достаточный ток для удовлетворения электрических потребностей транспортного средства, но этого может быть недостаточно, чтобы выдерживать более высокие нагрузки или поддерживать полностью заряженный аккумулятор. Это может со временем привести к разрядке аккумулятора.

Отказ диодов также может привести к утечке переменного тока в электрическую систему. Напряжение переменного тока создает электрический «шум», который может сбивать с толку электронные модули и цифровую связь.Негерметичный диод также может пропускать ток из аккумулятора через генератор, когда автомобиль не находится в движении.

Неисправный регулятор напряжения также может вызвать проблемы с зарядкой. Некоторые старые автомобили имеют внешние регуляторы напряжения, тогда как многие автомобили более поздних моделей используют PCM для управления мощностью зарядки. Генераторы с внутренней регулировкой имеют небольшой твердотельный модуль, который контролирует мощность зарядки. Внутренние регуляторы напряжения также могут выйти из строя из-за слишком высокой температуры.

Лучший способ определить проблемы генератора — это провести стендовые испытания.Стендовое испытание проверит диоды и внутренний регулятор, а затем сообщит вам, способен ли генератор вырабатывать свой номинальный ток и напряжение. Если генератор не проходит какую-либо категорию испытаний, вашему клиенту нужен новый генератор.

Если стартеры и генераторы проходят удовлетворительную проверку, но на автомобиле не работают, проблема должна быть в другом. Возможно, это может быть неисправность в жгуте проводов или разъеме или поврежденная цепь управления PCM.

Ошибочный диагноз — это причина № 1 ненужных возвратов генератора.Так что, если в вашем магазине есть стендовый тестер, обязательно используйте его. Не только проверяйте старый генератор переменного тока вашего клиента, чтобы убедиться, что он неисправен, но также проверяйте новый или модернизированный генератор переменного тока, прежде чем он выйдет на рынок, чтобы убедиться, что он исправен.

Неправильный диагноз также может привести к ненужной замене совершенно исправного стартера. Стендовое испытание покажет вам, достаточно ли быстро проворачивается стартер для надежного запуска и не потребляет слишком большой ток.

Ремонт импульсного источника питания

Внутреннее обозначение блока питания ATX:

А — выпрямитель мостовой
В — конденсаторы входного фильтра
между B и C — радиатор высоковольтных транзисторов
C — трансформатор
между C и D — Радиатор низковольтных сильноточных выпрямителей
D — катушка выходного фильтра
E — конденсаторы выходного фильтра

Выход трансформатора (который теперь представляет собой переменный ток) затем выпрямляется специальными высокоскоростными диодами, чтобы снова переключить его на постоянный ток.Однако этот выход не является чистым постоянным током и требует обширной фильтрации для удаления высокочастотного «шума», который генерируется быстрым переключением транзисторов. Фильтрация осуществляется с помощью комбинации катушек (также известных как «дроссели») и конденсаторов.

Выходное напряжение источника питания регулируется путем подачи части выходного сигнала обратно на интегральную схему, которая управляет переключающими транзисторами. Если выходное напряжение слишком низкое, ИС позволяет транзисторам оставаться под напряжением в течение более длительного периода времени, повышая напряжение.Слишком высокое выходное напряжение сигнализирует микросхеме о необходимости сократить транзисторы, снижая выходное напряжение.

Отказ источника питания

Я обнаружил, что есть лишь небольшая часть компонентов, которые не работают в импульсных источниках питания регуляторов. Чаще всего выходят из строя сами переключающие транзисторы. В транзисторах происходит короткое замыкание, в результате чего через трансформатор протекает большой ток и перегорает предохранитель.

Отказ транзистора часто вызван неисправными конденсаторами.Чрезвычайно часто встречаются вздутые или протекающие конденсаторы выходного фильтра. Любой неисправный конденсатор следует заменить. Чтобы предотвратить повторение этого общего отказа, конденсаторы выходного фильтра следует заменить специальными конденсаторами с низким ESR (эквивалентным последовательным сопротивлением). Эти конденсаторы специально разработаны для работы в условиях строгой фильтрации в импульсном источнике питания. Большинство производителей источников питания не устанавливают конденсаторы с низким ESR в качестве оригинального оборудования, поскольку они несколько дороже обычных конденсаторов.Однако использование их в качестве запасных компонентов того стоит, поскольку они значительно продлят срок службы источника питания в полевых условиях. Когда я работаю с источником питания, я заменяю все конденсаторы выходного фильтра конденсаторами с низким ESR, независимо от того, хорошие они или плохие. Поскольку сервисный вызов стоит гораздо дороже, чем конденсаторы, это разумный поступок.

Отказ диода — еще одна распространенная проблема. В импульсном блоке питания довольно много диодов, и выход из строя любого из них приведет к срабатыванию предохранителя или отключению блока питания.Чаще всего выходят из строя диоды из-за короткого замыкания выходных выпрямителей +12 В или -5 В. Выход из строя этих диодов не приведет к срабатыванию предохранителя. Блок питания просто обнаруживает короткое замыкание и отключается. Некоторые из этих отказов могут быть вызваны использованием выходов +12 или -5 В для питания ламп дверцы монетоприемника. Выход -5 В не имеет защиты от перегрузки по току во всех источниках питания. Закороченный патрон лампы может привести к срыву диода из-за слишком большого тока от источника питания. Диоды +12 В могут перегореть, если случайно использовать лампочки на 6 В вместо ламп на 12 В.Также возможно короткое замыкание высоковольтных входных диодов. Это часто сопровождается коротким замыканием коммутирующих транзисторов и перегорает предохранитель.

Проверка и ремонт

Все испытания проводятся при выключенном питании. Начнем с тестирования пары переключающих транзисторов. Они будут установлены на радиаторе, что поможет им работать холоднее. Проверьте их с помощью омметра или цифрового мультиметра, настроенного на диапазон проверки диодов. Проверьте каждый транзистор на короткое замыкание между эмиттером и коллектором.Замените все транзисторы, которые вы сочтете неисправными. Хотя некоторые технические специалисты утверждают, что вам следует заменить их оба, даже если только один из них неисправен, я не счел это необходимым.

Между прочим, эти транзисторы всегда будут казаться закороченными между базой и эмиттером при тестировании «в цепи». Обычно я не утруждаюсь тестированием перехода база-эмиттер транзисторов. Когда переключающие транзисторы выходят из строя, они всегда замыкаются между эмиттером и коллектором. Если вы сомневаетесь, вытащите транзисторы из цепи, чтобы проверить их.Если транзисторы закорочены, предохранитель перегорит. Обязательно проверьте и высоковольтные диоды. Высоковольтные диоды обычно являются частью мостового выпрямителя, хотя могут быть отдельными диодами.

Затем проверьте выходные выпрямители. Необходимо проверить три пары диодов. Одна пара предназначена для выхода -5 В. Они будут довольно маленькими; примерно такого же размера, как вездесущий 1N4004, с которым все мы знакомы. Диоды +12 В обычно несколько больше.Два выходных диода +5 В размещены вместе в «двойном диодном» корпусе, который очень похож на транзистор. Как и переключающие транзисторы, этот диодный корпус установлен на радиаторе. Обычно на нем напечатаны символы схемы диодов. Этот диод обычно не тестирует правильно в цепи. Тестирование можно упростить, отпаяв его с помощью «присоски для припоя» вместо того, чтобы полностью снимать его с печатной платы. Я видел очень мало отказов выходных диодов +5 В.Все диоды необходимо заменить быстродействующими диодами, иначе блок питания будет генерировать чрезмерный шум.

Выполните эти тесты, заменив все выходные конденсаторы на конденсаторы с низким ESR и включите источник питания. Блок питания следует проверить под нагрузкой. Используйте резистор на 1 Ом, 50 Вт или эквивалент в качестве «фиктивной нагрузки», подключенный между выходом +5 В и землей (DC COM). Это потребляет 5 ампер от источника питания, что достаточно для тестирования. Если источник питания все еще не работает, возможно, неисправна интегральная схема.Проверьте микросхему, сняв ее с печатной платы и установив в надежный источник питания. У меня есть запасной блок питания с розеткой, который я использую исключительно для тестирования интегральных схем. Практически все расходные материалы используют одну и ту же микросхему; тип 494. Эквивалентные интегральные схемы: TL494CN, uA494, uPC494C, IR3MO2 и MB3759. Их можно заменить на ECG1729.

Получение запасных частей

Одним из главных аргументов в пользу того, чтобы выбросить неисправные блоки питания в мусорное ведро, было то, что стоимость заменяемых компонентов почти равна стоимости нового блока питания.Это просто неправда. Коммутационные транзисторы доступны по цене около 0,90 доллара за штуку.

В большинстве случаев вы можете сказать, что конденсатор плохой, просто взглянув на его верхнюю поверхность. Если он вздулся вверху, это плохо, и его следует немедленно заменить. Иногда конденсаторы, которые выглядят нормально, тоже могут быть плохими, и для их определения вам понадобится измеритель ESR. Конденсаторы, которые вы хотите заказать, произведены Nichicon. Закажите 3300 мкФ при 16 вольт (номер детали UVX1C332M) и 1000 мкФ при 25 вольт (номер детали UVX1E102M.Они подходят для замены конденсаторов выходных фильтров практически во всех моделях источников питания. Помните, что при замене конденсаторов фильтра вы всегда можете заменить конденсатор более высоким напряжением. НАПРИМЕР. Конденсатор на 1000 мкФ, 16 В можно заменить на 1000 мкФ, 25 В.

Слишком высокий выход минус 5 В

Большинство источников питания импульсных регуляторов имеют три выхода постоянного тока. Один из них — это основной выход +5 В постоянного тока, который питает компьютерную систему.Остальные — выходы +12 и -5 В. Эти выходы постоянного тока часто используются для питания системы генерации звука и самого аудиоусилителя. Когда вы тестируете источник питания, важно проверить все три выхода. Это особенно верно, когда у вас есть игра, которая в основном работает нормально, но имеет искаженный или отсутствующий звук.

При отказе источника питания импульсного регулятора все три выхода обычно упадут до нуля вольт. Однако иногда выходное напряжение может повышаться.Если вы обнаружите, что выходы +5 В постоянного тока и +12 В постоянного тока в норме, но выходное напряжение -5 В постоянного тока слишком высокое (более -6 В постоянного тока), попробуйте заменить дроссель выходного фильтра -5.

Дроссель фильтра -5 В легко найти даже без принципиальной схемы. Просто проследите след на печатной плате от выхода -5 В постоянного тока источника питания. В конечном итоге вы придете к компоненту, который может выглядеть как конденсатор, но будет четко обозначен на плате буквой «L» и, как правило, будет сопровождаться схематическим обозначением катушки.Катушка намотана на ферритовую катушку и покрыта пластиковой гильзой, на которую нанесена термоусадка. Осмотрите катушку. Если термоусадочная крышка расплавилась или отсутствует полностью, змеевик может быть неисправен.

Есть несколько вариантов получения катушки на замену. Предпочтительный метод — отключить катушку от ненужного источника питания. В качестве альтернативы вы можете снять перегоревший провод с ферритового сердечника и самостоятельно перемотать дроссель, используя провод соответствующего калибра. На нем не так много витков провода, чтобы за пять минут не перемотать новую катушку.

Замена выходного конденсатора

Я получил несколько звонков и писем от операторов и технических специалистов, у которых возникли проблемы с получением запасных конденсаторов для источников питания импульсных регуляторов. Рекомендую использовать конденсаторы марки Nichicon. Я использую их почти два года и на сегодняшний день не видел повторного выхода конденсатора из строя.

Я рекомендую вам заказать только два конденсатора различных марок Nichicon для использования в качестве замены конденсаторов выходного фильтра.Когда у вас есть номера деталей, это очень помогает. Для выхода +5 В постоянного тока используйте конденсаторы емкостью 3300 мкФ, 16 В постоянного тока. Номер детали Nichicon — UVX1C332M. Для каждого блока питания требуется два таких блока.

Чтобы упростить заказ и хранение, я использую один и тот же конденсатор для выходов +12 В постоянного тока и -5 В постоянного тока. Это конденсатор емкостью 1000 мкФ, 25 вольт. Номер детали Nichicon — UVX1E102M. Хотя в некоторых источниках питания для вывода +12 В постоянного тока используется конденсатор на 2200 мкФ, я считаю, что 1000 мкФ вполне удовлетворительны.В большинстве источников питания используется по одному конденсатору для выходов +12 В постоянного тока и -5 В постоянного тока, поэтому заказывайте такое же количество конденсаторов на 1000 мкФ, как и для конденсаторов на 3300 мкФ. При замене конденсаторов выходного фильтра рекомендуется заменить их все сразу.

Замена выходного диода

Выходные диоды — частая неисправность в источниках питания импульсного регулятора. Я бы сказал, что от двадцати пяти до тридцати процентов из них имеют плохие выходные диоды.

Высокоскоростные диоды

Имеется три пары выходных диодов; по одной паре для каждого из выходов: +5 В постоянного тока, +12 В постоянного тока и -5 В постоянного тока.Это не обычные диоды. Это специальные быстродействующие диоды с «быстрым восстановлением». Высокоскоростные диоды предназначены для очень быстрого переключения (около 40 тысяч циклов в секунду) источника питания.

Я редко заменял диодную сборку +5 В в блоке питания импульсного регулятора. Выходные диоды +12 и -5 В являются наиболее частыми отказами. Плохое испытание этих диодов при проверке «в цепи» является нормальным явлением. Обычно на выходе источника питания имеется резистор с низким сопротивлением (обычно около 100 Ом), который вызывает очень низкие показания при проверке выходных диодов +12 или -5 В.Большинство людей распаивают и удаляют один конец каждого диода, чтобы проверить его, но обычно вы можете обойти этот шаг. Когда эти диоды выходят из строя, они, как правило, полностью замыкаются. Вместо значения около 100 Ом вы получите значение около нуля Ом; тупик!

Запасные диоды

Выходные диоды +12 В обычно имеют оригинальный номер детали, например, PXPR302 или FR302. Это диоды на 3 ампера. Выходные диоды -5 В часто имеют тип PXPR1502 или аналогичные. Хорошая инженерная практика диктует, что в этой схеме должны использоваться высокоскоростные диоды с «быстрым восстановлением».Я обнаружил, что нормальные диоды преждевременно выходят из строя и как таковые неприемлемы в качестве замены. Чем больше вы работаете над ремонтом блоков питания, тем легче это становится. Если учесть, что многие ремонты блоков питания производятся с заменой одного диода, то можно увидеть, что они совсем не одноразовые!

Плохие импульсные блоки питания обычно попадают в следующие категории:

1. Мертвый и тихий с сгоревшим предохранителем
2. Мертвый и тихий с исправным предохранителем
3.Мертвые и щебетание / щелчки с предохранителем исправны
4. Выходное напряжение в порядке, но игра ведет себя глупо с этим источником питания.

# 2 исправить труднее всего.

Импульсные блоки питания работают следующим образом:

Сторона высокого напряжения: выпрямление сетевого напряжения методом грубой силы с помощью набора диодов — либо отдельных, либо 4-выводного мостового выпрямителя. Он фильтруется через конденсатор и поступает в схему переключения (после понижения через другие компоненты) и в главный переключающий транзистор.Проблемы здесь относятся к №1 и их довольно легко исправить.

Регулировка: эта схема запускает питание и проверяет правильность вывода. Он запускает колебания главного переключающего транзистора и контролирует выходной сигнал высокочастотного понижающего трансформатора через механизм обратной связи. Проблемы здесь связаны с № 2 — решить эту проблему сложно.

Сторона низкого напряжения: здесь находятся выпрямительные диоды, дроссельные катушки фильтра и конденсаторы, которые превращают высокочастотный выход переменного тока трансформатора в выход постоянного тока, необходимый для игры.Здесь есть небольшая часть схемы, которая обеспечивает обратную связь с регулирующей схемой, чтобы все работало стабильно. Проблемы здесь связаны с №3 и №4.

ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ: * ВСЕ * перечисленные методы поиска и устранения неисправностей выполняются при выключенном питании. Имейте в виду, что проблемы, перечисленные под номерами №2, №3 и №4, связаны с тем, где предохранитель находится в ХОРОШЕМ порядке, а в секции высокого напряжения платы может быть заряд на больших конденсаторах фильтра. У некоторых источников питания есть резисторы для утечки через них.Другие НЕТ. Используйте резистор 150 кОм 1/2 Вт, чтобы удалить эти колпачки и проверить напряжение своим измерителем, чтобы избежать неприятного электрошока. Постоянный ток заставляет ваши мышцы сокращаться, и если вы возьмете в руки блок питания, вы можете обнаружить, что не можете их отпустить. Да, однажды со мной такое случалось. Соблюдайте соответствующие меры предосторожности. Вот как я узнал, что не все блоки питания имеют резисторы для защиты от утечки основных фильтров на стороне высокого напряжения. Блин блоки питания Apple II …

Крепление стороны высокого напряжения:

С помощью омметра проверьте сопротивление во всех комбинациях 4 ножек мостового выпрямителя.Они НЕ должны показывать нулевое сопротивление. Если да, поменяйте местами провода и проверьте еще раз … если есть … замените компонент.

Проделайте то же испытание на выводах главного переключающего транзистора и любого другого полупроводника (диода / транзистора) в секции высокого напряжения. Замените все закороченные компоненты.

Имейте в виду, что в некоторых импульсных источниках питания вокруг переключающего транзистора используются маломощные резисторы. Если вы читаете около 2 Ом, возможно, вы читаете их. Закороченный компонент обычно составляет 1/2 Ом или меньше.

Если вы обнаружите закороченные компоненты где-либо в секции высокого напряжения, вам следует проверить резисторы на предмет обрыва и при необходимости заменить. Замените предохранитель, отремонтируйте все потрескавшиеся паяные соединения, соберите заново и проверьте …

Устранение неполадок со стороны низкого напряжения: Чириканье питания обычно означает проблемы с выходом. Это может быть проблема и с регулирующей частью, но я никогда не видел этого в этом случае. В каждом случае чирикающих источников питания, над которыми я работал, закрывался выпрямительный диод в секции низкого напряжения.

Некоторые диоды представляют собой сдвоенные диоды, похожие на транзисторы. Посмотрите на печатную плату, поскольку большинство из них помечены как «D #» или «CR #». Проверьте эти компоненты с помощью омметра и найдите тот, который показывает короткое замыкание в обе стороны. Высокоскоростные сдвоенные выпрямители обычно считывают очень низкое сопротивление в одну сторону — выглядят почти закороченными — но они будут считывать высокие значения в другую сторону, если они не закорочены.

Замените закороченные выпрямители, устраните трещины в паяных соединениях, соберите заново и проверьте.

Блок питания работает, но игра с ним нестабильна: проверьте конденсаторы фильтра на выходной секции блока питания. Ищите те, у которых верхняя часть разделена, или те, которые наклонились или поднялись из-за того, что резиновая заглушка выскочила из дна. Если все они выглядят нормально, либо стреляйте в них, либо проверьте выходы с помощью осциллографа и поищите на них беспорядочные высокочастотные пульсации переменного тока. При необходимости замените колпачки, чтобы очистить эти выводы, исправить любые потрескавшиеся паяные соединения, собрать и проверить.

Проблема в разделе регулирования: Ну, это может быть сложно понять. Единственный раз, когда мне удавалось починить их без схемы (что не очень часто, так как вы обычно не можете получить схемы для них), это когда дробовик колпачков в секции регулирования или обнаружил трещину паяного соединения.

Что делать, если у меня возникла проблема, связанная с №1 или №3, и я не могу найти закороченный компонент? Что ж, это становится сложнее. Иногда полупроводник не замыкается. Иногда он становится «негерметичным», что означает, что прямое сопротивление низкое, как обычно, но сопротивление обратного пути ниже, чем должно быть.Если вы столкнетесь с подобными ситуациями, внимательно проверьте компоненты. Если вы обнаружите один с низким односторонним сопротивлением и около 500-1000 Ом (может быть, немного больше, может немного меньше), то снимите одну ногу детали, поднимите ее из платы и проверьте, что часть вне цепи. . Если он показывает низкий уровень в одном направлении и не высокий в другом (в другом случае должно быть десятки, если не сотни тысяч Ом или выше), замените его, так как он может иметь негерметичность.

За эти годы я починил сотни коммутационных блоков — Apple II и более старые Mac II, SE, SE / 30 и множество клонов ПК.Я также отремонтировал их для различных сетевых устройств. Помните о мерах предосторожности и убедитесь, что колпачки сняты, и вы в безопасности.

Топ 8 самых популярных однофазных 1 мостовых диодов и бесплатная доставка

Изучение границ силовых устройств на основе GaN — Electronics Weekly Electronics WeeklyКак программно конфигурируемое оборудование помогает повысить гибкость промышленных модулей ввода / вывода — ELE Times ELE TimesBioWorld MedTech Patent Основные моменты: Неделя 39 — BioWorld Online Технологические устройства BioWorld Online5G для беспроводного решения O-RAN — Тестирование Eetasi__ Eetasi__RCD — Какие тесты? — Voltimum VoltimumActive диоды для мостовых выпрямителей режут этот надоедливый 0.Падение 6V — Electronics Weekly Electronics WeeklyDallas Invents: за неделю с 31 августа выдано 143 патента »Dallas Innovates — dallasinnovate__ dallasinnovate__7 октября 2021 — Искусство и т. Д. — Международный экзаменатор The International Examiner Министерство обороны США> Контракт — Министерство обороны Министерство обороны Понимание гармоник искажение, создаваемое электроникой | Electronics360 — Electronics360 Electronics360Сентябрь 15, 2021 — Arts Etc. — The International Examiner The International Examiner «Мне нравится эта штука Питера Грина, но это был не я»: Линдси Бэкингем о Fleetwood Mac и его первом альбоме за десятилетие — Guita__ Guita__This Week в PowerBites: Регуляторы с новым взглядом, умные контроллеры — Дизайн электроники Конструкция электроники Основы полупроводниковых схем | Электроника360 — Электроника360 Электроника360EV Инновации в зарядной станции Повышение эффективности и скорости — Электронный дизайн Электронный дизайн Редкий диод угрожает арктическим амбициям береговой охраны — Hackaday HackadayБыстрые датчики тока для продвинутых приложений — Design World Network Design World Network Electronics Weekly Пассивный термодиод ограничивает направление теплового потока — Электронный дизайн Электронный дизайнКак технология карбида кремния меняет автомобильную бортовую зарядку — ELE Times Генераторы переменного тока ELE делают отличные электродвигатели; Вот как — Hackaday HackadayВведение в методы и топологии преобразования постоянного тока в постоянный ток — Electropages ElectropagesUL10: Пешеходные мосты — Журнал Urban Land — Городские земли Городские земли Расширяются центры обработки данных, как инженеры повышают эффективность преобразования переменного / постоянного тока? — Новости — Все о схемах Все о схемахЧастотно-регулируемые приводы и скорость двигателя переменного тока — НОВОСТИ ACHR НОВОСТИ ACHR Повышение безопасности переключения с помощью драйвера реле с нулевым переходом — Электронный дизайн Электронный дизайнЭта неделя в PowerBites: двигатели с печатными статорами, USAF одобряет eVTOL — Электронный дизайн Дизайн электроники Молекулярные мосты усиливают печатную электронику: исследователи повышают эффективность проводящих чернил и устройств, соединяющих хлопья слоистых материалов с небольшими молекулами Spectrum: Упрощение конструкции электропитания электромобилей за счет преодоления проблемы мощности драйвера затвора — отраслевые статьи — Все о схемах Все о схемах Опережают ли в этом году запасы диодов (DIOD) своих компьютерных и технологических аналогов? — Nasdaq NasdaqЗа счетчиком накопление энергии находит свое место — Электронный дизайн Электронный дизайн Стандарт Intel ATX12VO: исследование повышения эффективности энергоснабжения компьютеров — Hackaday HackadayПолучите бесплатный тройной выпрямитель Mesa / Boogie для AmpliTube — MusicRadar MusicRadarReview: Heritage Audio Britstrip — MusicTrip -сделанное чудо: проблемы строительства железнодорожного моста I-90 в штате Вашингтон — Железнодорожные путевые конструкции Железнодорожные путевые сооружения Одноклеточная цитометрия с помощью мультиплексного предсказания флуоресценции с помощью безметочной отражательной микроскопии — Science Advances Science AdvancesINDEEDopt: параметризация ReaxFF на основе глубокого обучения рамки | npj Computational Materials — Natur__ Natur__ 1 сентября 2021 г. — Arts Etc.- Международный экзаменатор Международный экзаменатор В чем разница между источниками питания постоянного и переменного тока? — Электронный дизайн Электронный дизайнМощные диодные лазеры — новые, яркие и синие — Оптика Фотоника Новости Оптика Фотоника НовостиLT4320 Контроллер идеального диодного моста сокращает рассеяние мощности, повышает эффективность Business Magazine Tunneling Business Magazine Как убить свой любимый частотно-регулируемый привод — Design World Network Design World Network Используйте генератор SPWM в конструкциях инверторов для возобновляемых источников энергии — ED__ ED__The Dawn of E-Bomb — IEEE Spectrum IEEE SpectrumPosters Abstracts> North American Solid State Chemistry Конференция 2021> USC Dana and David Dornsife College of Letters, Arts and Sciences — USC Dornsife College of Letters, Arts and Sciences USC Dornsife College of Letters, Arts and Sciences Эта неделя в PowerBites: AI Power Conversion, NASA’s Electric X-Plane — Electronic Design Электронный Серия DesignFirst, получившая квалификацию в аэрокосмической отрасли, увеличивает эффективность электрической системы самолета — GlobeNewswire GlobeNewswirePCIM: линейный идеальный трехфазный выпрямитель сокращает потери — Electronics Weekly Electronics WeeklyWatches Wonders 2021: Новые часы от лучших мировых брендов — Отчет Robb Отчет Robb , структура, детали, анонсы книг и журналов на 19 августа 2021 года — Журнал поездов Журнал поездовThermaltake Toughpower TF1 Обзор блока питания мощностью 1550 Вт — Оборудование Тома Аппаратное обеспечение Тома Обеспечение футуристических функций автомобиля с комфортным двигателем — Электронный дизайн Электронный дизайн Xiaomi дразнит по воздуху беспроводная зарядка, но она не появится на его устройствах в этом году — TechCrunch TechCrunchСуперлюминесцентные светодиоды преодолевают разрыв — Photonic__ Photonic__Подробнее на конструкцию встроенного зарядного устройства для электромобилей — ED__ ED__ Защита входа для схем операционных усилителей с низким уровнем искажений — Электронный дизайн Электронный дизайн ignE-Meters предлагают несколько способов борьбы с кражей и подделкой электроэнергии — Электронный дизайн Конструирование электроники10 технологических компаний на следующие 10 лет — IEEE Spectrum IEEE Spectrum Наночастицы, покрытые поверхностно-активным веществом, в наномедицине и продуктах питания | IJN — Dove Medical Press Dove Medical PressМонолитные светоизлучающие чипы из нитрида индия-галлия переменного тока — Semiconductor Today Semiconductor TodayАэрокосмическая отрасль Руководство по сокращению и сокращению — Aviation Today Aviation TodayАрхитектура и работа обратного источника питания — Электронный дизайн Изобретения Далласа: 144 патента за неделю от 24 августа »Dallas Innovates — dallasinnovate__ dallasinnovate__ Тонкие пленки из сурьмы демонстрируют программируемую оптическую нелинейность — Science Advances Science Advances — Physics Today Physics Today Обзор источника питания XPG Pylon 650W — Tom’s Hardware Модель Tom’s HardwareModel железнодорожный локомотив, грузовой вагон, конструкция, детали, декорации, книга, программное обеспечение и объявления о предложениях клубов на 12 августа 2021 года — Журнал Trains Magazine Trains Magaz Стабильность R-позвоночника определяет устойчивость к ингибиторам RAF: всесторонний анализ онкогенных мутантов BRAF с вставкой петли αC-β4 в рамку — Science Advances Science Advances Обнаружение микропластов — Технологические сети Технологические сети ?!) — Электронный дизайн. Создание электронного оборудования. Создание жизнеспособных электромобилей. — Разработка электронного оборудования. Build Circuits — IEEE Spectrum IEEE SpectrumBio-механизм Прогнозирование ингибирования β-ситостерола | AABC — Dove Medical Press Компания Dove Medical PressAustralia представляет первое двустороннее зарядное устройство для электромобилей Laser — Dental Tribune International Dental Tribune International В Линчбурге стартует долгожданный проект Lakeside Drive — Lynchburg News и Advance Lynchburg News и объявления о железнодорожных локомотивах, грузовых вагонах, легковых автомобилях, конструкции, инструментах и ​​книгах на 5 августа 2021 года — Журнал Trains Журнал Trains: Ирландия привлекает стартапы из США — eeNews Europe eeNews EuropeIEEE Spectrum IEEE Spectrum Секреты гитарного тона Джимми Пейджа в Led Zeppelin’s Communication Breakdown — Guitar World Guitar World Как лечение морщин на бровях может освежить ваш внешний вид — NewBeauty Magazine NewBeauty Magazine Подробно: активный мостовой выпрямитель Linear Technology — ElectronicsWeekl__ ElectronicsWeekl__AC-power your circuit — ED__ ED__Свод правил безопасности малых рыболовных судов общей длиной менее 15 м — GO__ GO__ Фильтрация и подавление электромагнитных помех на умных предприятиях будущего — Электронный дизайн Электронный дизайн Связь между интеллектуальными счетчиками и собственным потреблением энергии — ESI-Afric__ — ESI Africa ESI Africa Модифицированная установка для сварки надгробных камней содержит множество хаков npj 2D-материалы и приложения — Natur__ Natur__Square D Easy предлагает ИБП для легкой промышленности — EE Times EE Times 18 августа 2021 г. — Искусство и т. д.- Международный экзаменатор Международный экзаменатор

TVS диодов | Диоды поверхностного монтажа

Littelfuse предлагает широкий ассортимент TVS-диодов, включая варианты с высоким пиковым импульсным током и пиковой импульсной мощностью до 10 кА и 30 кВт соответственно. Littelfuse поддерживает нашу продукцию благодаря более чем 80-летнему опыту в области защиты цепей и прикладным знаниям, полученным в результате работы с нашими ведущими в отрасли заказчиками. Вы можете узнать больше о нашем ассортименте диодов для телевизоров, просмотрев наше руководство по выбору диодов для телевизоров.

Диод-ограничитель переходного напряжения (также известный как TVS-диод) — это защитный диод, предназначенный для защиты электронных схем от переходных процессов и угроз перенапряжения, таких как EFT (электрически быстрые переходные процессы) и ESD (электростатический разряд). TVS-диоды — это кремниевые лавинные устройства, которые обычно выбирают из-за их быстрого времени отклика (низкое напряжение ограничения), более низкой емкости и низкого тока утечки. TVS-диоды Littelfuse доступны как в однонаправленных (однополярных), так и в двунаправленных (биполярных) схемах диодных схем.

При выборе диодов TVS необходимо учитывать некоторые важные параметры, а именно: Обратное напряжение зазора (VR), пиковый импульсный ток (IPP) и максимальное напряжение ограничения (VC max). Просмотрите руководство по выбору TVS-диодов, чтобы узнать больше о том, как выбирать эти устройства и полный TVS-диод Littelfuse, предлагающий

.

Что такое диоды TVS?

TVS-диоды — это электронные компоненты, предназначенные для защиты чувствительной электроники от высоковольтных переходных процессов.Они могут реагировать на события перенапряжения быстрее, чем большинство других типов устройств защиты цепей, и предлагаются в различных форматах для поверхностного и сквозного монтажа печатных плат.

Они работают путем ограничения напряжения до определенного уровня (называемого «зажимным устройством») с помощью p-n-переходов, которые имеют большую площадь поперечного сечения, чем у обычного диода, что позволяет им проводить большие токи на землю без повреждений.

TVS-диоды обычно используются для защиты от электрического перенапряжения, например, вызванного ударами молнии, переключением индуктивной нагрузки и электростатическим разрядом (ESD), связанным с передачей по линиям передачи данных и электронным схемам.

Littelfuse TVS-диоды подходят для широкого диапазона приложений защиты цепей, но в первую очередь были разработаны для защиты интерфейсов ввода-вывода в телекоммуникационном и промышленном оборудовании, компьютерах и бытовой электронике.

Характеристики диода

Littelfuse TVS включают:

  • Низкое сопротивление скачку напряжения
  • Доступны однонаправленные и двунаправленные полярности
  • Диапазон обратных напряжений от 5 до 512 В
  • Соответствует требованиям RoHS — олово с матовым покрытием, бессвинцовое покрытие
  • Номинальная мощность для поверхностного монтажа от 400 Вт до 5000 Вт
  • Номинальная мощность осевых выводов от 400 Вт до 30 000 Вт (30 кВт)
  • Сильноточная защита доступна для 6кА и 10кА

Чтобы получить представление о других технологиях подавления переходных процессов и их сравнении, см. Примечание по применению Littelfuse AN9768.

Littelfuse TVS Diode Таблица выбора продукции

TVS-диоды используются для защиты полупроводниковых компонентов от высоковольтных переходных процессов. Их p-n-переходы имеют большую площадь поперечного сечения, чем у обычных диодов, что позволяет им проводить большие токи на землю без повреждений. Littelfuse поставляет TVS-диоды с пиковой мощностью от 400 Вт до 30 кВт и обратным противостоящим напряжением от 5 В до 495 В.

Вы можете получить дополнительные инструкции по выбору TVS-диодов, посетив страницу определения и выбора TVS-диодов, нажав здесь

δ δ δ δ δ β Vector γ 1 γ 2 γ 3 V α
−0.5 −0,5 −0,5 −0,5 −1 −1 2 1 1 0 vo / 6 −0,5 −0,5 −0,5 0 −1 2 1 1 0 vo / 6 −0,5 −0. 5 1 −1 3 0 1 0 -vo / 6 vo / 2
−0,5 0,527 − 0 −1 3 0 1 0 -vo / 6 vo / 2
−0,5 0,5 0 0 0 или 7 0 или 1 0 или 1 0 или 1 0 0
0.5 0,5 0,5 −0,5 1 0 4 0 1 1-2 / 3vo 0 0,5 0,5 −0,5 0 0 0 или 7 0 или 1 0 или 1 0 или 1 0 0
0,5 -0. 5 −1 0 1 1 0 0 2 / 3vo 0
−0,5 −0,5 1 6 1 0 1 vo / 6 -vo / 2
0,5 -0,5 0,5 0,5 0,5 0,5 0,5 6 1 0 1 vo / 6 -vo / 2
0.5 0,5 0,5 0,5 1 1 5 0 0 1 -vo / 6 -vo / 2 0,5 0,5 0,5 0 1 5 0 0 1 -vo / 6 -vo / 2
0. 5 0 0 0 или 7 0 или 1 0 или 1 0 или 1 0 0
0,5 0,5 1 0 4 0 1 1 -2 / 3vo 0
0,5 −0,5 9027 0 0 или 7 0 или 1 0 или 1 0 или 1 0 0
−0.5 −0,5 −0,5 0,5 −1 0 1 1 0 0 2 / 3vo
Название серии и ссылка на страницу Тип корпуса Напряжение обратного зазора (В R ) Диапазон пиковой импульсной мощности 2 (P PP ) Пиковый импульсный ток
(I PP 8×20 мкс)
Рабочая температура
Поверхностный монтаж — стандартные приложения (400-5000 Вт):
SMAJ DO-214AC 5.0-440 400 Вт Не применимо от -85 ° до + 302 ° F
(от -65 ° до + 150 ° C)
P4SMA DO-214AC 5,8-495 400 Вт
SACB DO-214AA 5,0-50 500 Вт
SMBJ DO-214AA 5.0-440 600 Вт
П6СМБ DO-214AA 5,8-495 600 Вт
1КСМБ DO-214AA 5,8-136 1000 Вт
SMCJ ДО-214АБ 5,0-440 1500 Вт
1.5SMC ДО-214АБ 5,8-495 1500 Вт
SMDJ ДО-214АБ 5,0–170 3000 Вт
5.0SMDJ ДО-214АБ 12-170 (однонаправленный)
12-45 (двунаправленный)
5000 Вт
с осевыми выводами — стандартные приложения (400-5000 Вт):
P4KE ДО-41 5.8-495 400 Вт Не применимо от -85 ° до + 302 ° F
(от -55 ° до + 175 ° C)
SA ДО-15 5,0–180 500 Вт
SAC ДО-15 5,0-50 500 Вт
P6KE ДО-15 5.8-512 600 Вт
1.5КЕ ДО-201 5,8-495 1500 Вт
LCE ДО-201 6.5-90 1500 Вт
3КП P600 5,0-220 3000 Вт
5КП P600 5.0-250 5000 Вт
с осевыми выводами — высокая мощность:
15 кПа P600 17-280 15000 Вт Не применимо От -85 ° до + 302 ° F
(от -55 ° до + 175 ° C)
20 кПа P600 20.0-300 20000 Вт
30 кПа P600 28,0-288 30000 Вт
AK6 Радиальный вывод 58-430 NA 6000A От -67 до + 347 ° F
(от -55 до + 150 ° C)
AK10 Радиальный вывод 58-430 NA 10000A
Автомобильные приложения:
SLD P600 10-24 2200 на основе импульса 1 мкс / 150 мс NA от -85 ° до + 302 ° F
(от -65 ° до + 175 ° C)
  1. Подробную информацию о большинстве перечисленных здесь серий продуктов можно найти, щелкнув название серии в крайнем левом столбце.
  2. Максимальное напряжение зажима (В C ) см. В таблице электрических характеристик в техническом паспорте каждой серии
  3. Вы можете получить дополнительные инструкции по выбору TVS-диодов, прочитав Руководство по выбору электронных продуктов Littelfuse.
  4. Все продукты не содержат галогенов
  5. Вся продукция соответствует требованиям RoHS

Временные угрозы — что такое переходные процессы?

Переходные процессы напряжения определяются как кратковременные всплески электрической энергии и являются результатом внезапного высвобождения энергии, ранее накопленной или вызванной другими способами, такими как большие индуктивные нагрузки или молния.В электрических или электронных схемах эта энергия может выделяться предсказуемым образом посредством контролируемых переключающих действий или произвольно индуцироваться в цепи от внешних источников.

Повторяющиеся переходные процессы часто вызываются работой двигателей, генераторов или переключением компонентов реактивной цепи. С другой стороны, случайные переходные процессы часто вызываются молнией и электростатическим разрядом (ESD). Молнии и электростатические разряды обычно возникают непредсказуемо и могут потребовать тщательного мониторинга для точного измерения, особенно если они индуцируются на уровне печатной платы.Многочисленные группы по разработке стандартов на электронику проанализировали возникновение переходных напряжений с использованием общепринятых методов мониторинга или тестирования. Ключевые характеристики нескольких переходных процессов показаны в таблице ниже.

НАПРЯЖЕНИЕ ТЕКУЩИЙ RISE-TIME ПРОДОЛЖИТЕЛЬНОСТЬ
Освещение 25 кВ 20кА 10 мкс 1 мс
Переключение 600 В 500A 50 мкс 500 мс
EMP 1кВ 10A 20 нс 1 мс
ESD 15кВ 30A <1 нс 100 нс

Таблица 1.Примеры переходных источников и магнитуды

Характеристики скачков напряжения в переходных процессах

Переходные пики напряжения обычно представляют собой волну «двойной экспоненты», как показано ниже для молний и электростатических разрядов.

Рис. 1. Форма волны переходного процесса при молнии

Рис. 2. Форма сигнала ESD-теста

Время экспоненциального нарастания молнии находится в диапазоне от 1,2 мкс до 10 мкс (по существу, от 10% до 90%), а продолжительность находится в диапазоне от 50 до 1000 мкс (50% от пикового значения).С другой стороны, ESD — это событие гораздо меньшей продолжительности. Время нарастания составляет менее 1.0 нс. Общая продолжительность составляет примерно 100 нс.

Почему переходные процессы вызывают все большее беспокойство?

Миниатюризация компонентов привела к повышенной чувствительности к электрическим нагрузкам. Например, микропроцессоры имеют конструкции и токопроводящие дорожки, которые не могут выдерживать высокие токи от переходных процессов электростатического разряда. Такие компоненты работают при очень низких напряжениях, поэтому нарушения напряжения необходимо контролировать, чтобы предотвратить прерывание работы устройства и скрытые или катастрофические отказы.

Чувствительные микропроцессоры сегодня преобладают в широком спектре устройств. Все, от бытовой техники, такой как посудомоечные машины, до промышленных устройств управления и даже игрушек, использует микропроцессоры для повышения функциональности и эффективности.

В большинстве автомобилей теперь также используется несколько электронных систем для управления двигателем, климатом, торможением и, в некоторых случаях, системами рулевого управления, тяги и безопасности.

Многие вспомогательные или вспомогательные компоненты (например, электродвигатели или аксессуары) в приборах и автомобилях представляют временные угрозы для всей системы.

Тщательная разработка схемы должна учитывать не только сценарии окружающей среды, но и потенциальные эффекты этих связанных компонентов. В таблице 2 ниже показаны уязвимости различных компонентных технологий.

Тип устройства Уязвимость (вольт)
VMOS 30-1800
МОП-транзистор 100-200
GaAsFET 100-300
СППЗУ 100
JFET 140-7000
КМОП 250-3000
Диоды Шоттки 300-2500
Биполярные транзисторы 380-7000
SCR 680-1000

Таблица 2: Диапазон уязвимости устройства.

Сравнение с другими диодными технологиями:


Диодные массивы
Класс диода Приложение Замечания
Обычный диод, выпрямитель Регулятор мощности Используется для «рулевого» больших токов; преобразование переменного тока в постоянный. Обычно встречается в больших упаковках, таких как ТО-220.
Стабилитрон Регулятор мощности Используется для регулирования постоянного напряжения в источниках питания.Обычно встречается в средних и больших упаковках (Axial, TO-220).
Кремниевый авалансный диод (SAD), ограничитель переходных напряжений (TVS) Защита от перенапряжения Используется для защиты цепей, подверженных воздействию высоких энергий, таких как скачки молнии или переходные процессы напряжения, от механического переключения электрических цепей (EFT). Обычно встречается в корпусах среднего размера (Axial, DO-214).
Диодная матрица Защита от перенапряжения относятся к более широкой категории кремниевых защитных массивов (SPA), предназначенных для защиты от электростатического разряда.Обычно встречается в небольших корпусах для поверхностного монтажа (SOIC-8, SOT-23, SC-70 и т. Д.).
Диод Шоттки Регулятор мощности Используется для высокочастотного выпрямления, необходимого для импульсных источников питания.
Варакторный диод RF тюнинг Единственное известное применение диодов, в котором используется характеристика емкости перехода.

Сравнение по рабочим характеристикам:


Класс диода Напряжение обратного пробоя
BR , В Z )
Емкость (C Дж ) Замечания
Обычный диод, выпрямитель 800-1500В Очень высокий Преобразование переменного тока в постоянный
Стабилитрон до 100 В от среднего до высокого Регулятор мощности постоянного тока
Кремниевый диод Avalance (SAD), до 600 В Средний Защита от грозовых перенапряжений и переходных процессов напряжения
Диодная матрица до 50 В Низкий (<50 пФ) Защита от электростатического разряда высокочастотных цепей передачи данных

Сравнение по конструкции устройства:

Диод Шоттки образован переходом металл-полупроводник.В электрическом отношении он проводит по основной несущей и обладает быстрым откликом с меньшими токами утечки и напряжением прямого смещения (VF). Диоды Шоттки широко используются в высокочастотных цепях.

Стабилитроны образованы сильно легированным полупроводниковым переходом P-N. Есть два физических эффекта, которые можно назвать состоянием Зенера (эффект Зенера и эффект Лавины). Эффект Зенера возникает, когда к переходу P-N приложено низкое обратное напряжение, проводящее из-за квантового эффекта.Эффект лавины возникает, когда напряжение больше 5,5 В, прикладываемое в обратном направлении к PN-переходу, во время которого образованная электронно-дырочная пара сталкивается с решеткой. Стабилитроны на основе эффекта Зенера широко используются в качестве источников опорного напряжения в электронных схемах.

TVS-диод образован специально разработанным полупроводниковым переходом P-N для защиты от перенапряжения. PN-переход обычно имеет покрытие для предотвращения преждевременного искрения напряжения в непроводящем состоянии.Когда происходит переходное напряжение, TVS-диоды проводят, чтобы ограничить переходное напряжение, используя эффект лавины. TVS-диоды широко используются в качестве устройства защиты от перенапряжения в телекоммуникациях, общей электронике и цифровых потребительских товарах для защиты от молний, ​​электростатических разрядов и других переходных процессов напряжения.

SPA — это Silicon Protection Arrays . Это массив интегрированных PN-переходов, тиристоров или других кремниевых защитных структур, собранных в многополюсную структуру.SPA можно использовать в качестве интегрированного решения для защиты от электростатического разряда, молнии и EFT для телекоммуникаций, общей электроники и цифровых потребительских рынков, где существует множество возможностей защиты. Например, его можно использовать для защиты от электростатических разрядов HDMI, USB и Ethernet.

Глоссарий по TVS-диодам

Зажимное устройство
TVS — это зажимное устройство, которое ограничивает скачки напряжения из-за лавинного пробоя с низким импедансом надежного кремниевого PN перехода.Он используется для защиты чувствительных компонентов от электрического перенапряжения, вызванного наведенной молнией, переключением индуктивной нагрузки и электростатическим разрядом.

Диапазон рабочих температур
Минимальная и максимальная рабочая температура окружающей среды контура, в котором будет применяться устройство. Рабочая температура не учитывает влияние соседних компонентов, это параметр, который должен учитывать проектировщик.

Емкость
Свойство элемента схемы, позволяющее накапливать электрический заряд.В защите цепи емкость в закрытом состоянии обычно измеряется на частоте 1 МГц при подаче напряжения смещения 2 В.

Напряжение обратного зазора (В R )
В случае однонаправленного TVS-диода это максимальное пиковое напряжение, которое может быть приложено в «блокирующем направлении» без значительного протекания тока. В случае двунаправленного переходного процесса он применяется в любом направлении. Это то же определение, что и максимальное напряжение в выключенном состоянии и максимальное рабочее напряжение.

Напряжение пробоя (В BR )
Напряжение пробоя, измеренное при заданном испытательном постоянном токе, обычно 1 мА. Обычно указывается минимум и максимум.

Пиковый импульсный ток (I PP )
Максимальный импульсный ток, который можно применять повторно. Обычно это двойной экспоненциальный сигнал 10×1000 мкс, но также может быть 8×20 мкс, если указано.

Максимальное напряжение зажима (В C или В CI )
Максимальное напряжение, которое может быть измерено на устройстве защиты при воздействии на него максимального пикового импульсного тока.

Пиковая импульсная мощность (P PP )
Выражаясь в ваттах или киловаттах, для экспоненциального переходного процесса 1 мс (см. Рисунок 1, стр. 23) это I PP , умноженное на V CL .

Можно ли заменить неисправный диод в генераторе?

Если один или несколько диодов генератора вашего автомобиля выходят из строя, то выпрямительный узел диода обычно необходимо заменить .В Grimmer Motors, мы можем выполнить замену диода генератора выпрямителя на вашем автомобиле. Этот позволит генератору генератора поддерживать аккумулятор заряженным.

Щелкните, чтобы увидеть полный ответ

Что касается этого, можете ли вы заменить диод в генераторе переменного тока?

Можно заменить все детали генератора генератора переменного тока , включая диоды в плате выпрямителя.Единственная верная неисправность генератора — это поломка корпуса. Даже неисправность одной обмотки излечима, хотя она и требует дорогостоящей перемотки.

Кроме того, как узнать, неисправен ли диод генератора? Обычно неисправный диод генератора приведет к тому, что ваши фары или подсветка приборной панели будут мерцать или тускнеть, а иногда и разряжать аккумулятор за ночь или в считанные минуты. * Чтобы проверить на предмет и , возможно, неисправный диод генератора , переключите вольтметр на , низкое значение на шкале напряжения переменного тока (переменного тока).

Еще люди спрашивают, сколько стоит замена диода генератора?

«Если фары тускнеют, важно пройти проверку системы зарядки». Уэйтс говорит, что средняя цена по сравнению с заменой генератора на восстановленный составляет 400 долларов, в то время как Ганнинг добавляет, что восстановленный генератор на типичном отечественном автомобиле стоит примерно от 300 до 500 долларов, включая детали и работу.

Будет ли генератор по-прежнему заряжаться с неисправным диодом?

Неисправные диоды — частая причина отказа генератора .Если только один или два диода вышли из строя, генератор может по-прежнему вырабатывать ток, достаточный для удовлетворения электрических потребностей транспортного средства, но этого может быть недостаточно, чтобы выдерживать более высокие нагрузки или поддерживать полностью заряженную батарею .

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *