Четырехтактный двигатель одноцилиндровый — принцип работы и устройство
В настоящее время, двигатели внутреннего сгорания применяются в большом количестве различных технических средств, причем, данными средствами являются не только автомобили. Такой род двигателей, как и двухтактный ДВС, применяется и в мототехнике и в специализированных устройствах, предназначенных для строительства, например, бензопила. Данные агрегаты представлены 4 тактными ДВС, имеющие по одному цилиндру, а не как в современном автомобиле – по четыре. В этой статье вы узнаете, как устроен одноцилиндровый четырехтактный двигатель, его принцип работы и ремонт.
Принцип работы одноцилиндрового четырехтактного двигателя
Устройство одноцилиндрового ДВС: 1 – головка цилиндра; 2 – цилиндр; 3 – поршень; 4 – поршневые кольца; 5 – поршневой палец; 6 – шатун; 7 – коленчатый вал; 8 – маховик; 9 – кривошип; 10 – распределительный вал; 11 – кулачок распределительного вала; 12 – рычаг; 13 – впускной клапан; 14 – свеча зажигания
Данные двигатели получили широкое распространение даже в автомобилях. Несмотря на малое количество цилиндров, они имеют довольное малое отношение площади рабочей части цилиндра ко всему рабочему объему двигателя. Это преимущество говорит о том, что такой мотор имеет минимальные потери самое главной — тепловой энергии, а значит, обладает высоким коэффициентом полезного действия.
Устройство такого двигателя практически не представляет собой ничего сложного, в отличии от современных атмосферных и турбированных моторов. Он представлен всего одним цилиндром, во внутренней части которого перемещается такой же поршень, как и во многоцилиндровых автомобильных двигателях. В верхней части камеры сгорания располагаются два клапана, которые отвечают за подачу топливной смеси, а второй за выпуск отработавших газов.
Работа данного двигателя заключается в следующем. Всего такой мотор имеет четыре такта:
- Впуск. Поршень внутри цилиндра располагается в самой верхней мертвой точке и движется вниз в строгом соответствии с поворотом коленчатого вала на 180 градусов. Пока поршень движется вниз, открывается, клапан, отвечающий за подачу топливной смеси, и в камеру сгорания подается топливо, смешанное с воздухом. После достижения поршнем самой нижней мертвой точки начинается следующий такт.
- Сжатие. Во время этого такта задача поршня – вернуться в верхнюю мертвую точку. Коленчатый вал вращается дальше, еще на 180 градусов, при этом: впускной клапан полностью закрывается, а поршень движется наверх, сжимая уже готовую смесь.
- Рабочий ход. Как только поршень достигнет самой верхней мертвой точки, в камере сгорания смесь будет сжата до критической отметки. В этот самый момент на электродах свечи зажигания при помощи ряда устройств возникает искра, которая воспламеняет топливовоздушную смесь. С этого момент начинается такт расширения, или как его называют по-другому – рабочего хода. Поршень, под действием энергии, возникшей от воспламенения смеси, движется снова вниз, заставляя вращаться коленчатый вал. Клапана находятся в закрытом состоянии.
- Такт выпуска. После достижения нижней мертвой точки, поршень снова движется вверх под действием силы инерции, передаваемой от коленчатого вала. В этот момент открывается выпускной клапан и под давлением через него во впускной коллектор выходят отработавшие газы. Такт завершается после закрытия выпускного клапана и после того, как поршень окажется в верхней точке. Далее цикл тактов повторяется.
Основным тактом любого двигателя является рабочий ход. Именно в этот момент происходит самое главное – преобразование энергии тепла в механическую энергию.
Частые неисправности 4-х тактных ДВС
Чтобы изучать особенности ремонта двигателей такого типа, необходимо кое-что знать о его основных проблемах. А он имеет всего одну проблему – это высокая температура. Так как потери тепла стали минимальными, трущиеся детали стали уязвимее к механическим нагрузкам, а значит, нуждаются в качественном охлаждении. Дело в том, что основная жидкость, которая на максимальном уровне контактирует с этими деталями – масло, не может обеспечить должного отвода тепла. Поэтому для такого мотора разрабатываются две системы охлаждения: воздушная и жидкостная со специальной системой термостатов.
Ремонт такого двигателя можно выполнить своими силами. Для этого нужен минимум знаний и стандартный набор инструментов. Если в процессе эксплуатации наблюдаются различные стуки, которые доносятся из головки блока цилиндров, то клапанный механизм нуждается в регулировке. Все регулировки производятся при снятом двигателе и демонтированной клапанной крышке. Кроме того, необходимо снять специальную крышку на генераторе, под которой расположена гайка. Вращая эту гайку, мы вращаем коленчатый вал, для установки поршня в верхнюю мертвую точку. Чтобы определить этот момент, необходимо довести до совмещения специальные метки на роторе. После этого, под кулачки распределительного вала устанавливают измерительные щупы и замеряют тепловые зазоры клапанов. Выполнять данную процедуру нужно, естественно, на холодном двигателе, иначе результат регулировки будет не правильным.
После этого, мотор необходимо собрать и проверить. Его устанавливают на агрегат и запускают. Если он работает ровно без шумов, то регулировка клапанов прошла успешно.
Вот и все. Вот так легко можно произвести ремонт одноцилиндрового четырехтактного двигателя своими руками без помощи мастеров автосервиса. Это поможет вам хорошо сэкономить на их услугах и даст вам бесценный опыт.
Как устроен одноцилиндровый четырехтактный двигатель? + видео » АвтоНоватор
Довольно часто на машины устанавливают одноцилиндровый четырехтактный двигатель, купить который можно в специализированных магазинах или же заказать через интернет. Этот механизм является простейшим поршневым двигателем с камерой внутреннего сгорания и с одним рабочим цилиндром. В чем же его особенности?
Как работает одноцилиндровый четырехтактный двигатель?
Эти моторы распространены довольно широко как в автомобилях, так и в других транспортных средствах, таких как мотоциклы, тракторы, мопеды. Кроме того, в Китае выпускают одноцилиндровые движки объемом 1,03 литра, которые применяются для привода тяжелых мотоблоков. Главными достоинствами можно назвать наименьшее отношение площади цилиндра к рабочему объему, поэтому потери тепла минимальные, а индикаторный КПД достаточно высокий.
Устройство одноцилиндрового дизельного двигателя, впрочем, как и бензинового, заключается в следующем. Всего у таких двигателей четыре такта, первый такт отвечает за впуск. Изначально поршень занимает позицию в верхней предельной или мертвой точке (ВМТ), а коленчатый вал, поворачиваясь на 180 градусов, перемещает его в самую нижнюю точку, тоже называемую мертвой (НМТ). Кроме этого открывается и впускной клапан, а благодаря разряжению, образовавшемуся в цилиндре, в него буквально засасывается горючая смесь, которая, перемешавшись с оставшимися в нем продуктами сгорания, образует рабочую смесь.
Во время следующего такта – сжатия, поршень возвращается обратно в ВМТ, в данный промежуток оба клапана находятся в закрытом положении, что способствует сжатию рабочей смеси, а, следовательно, скачку вверх температуры и давления. Далее идет рабочий ход (третий такт) от искры, создаваемой свечами, происходит воспламенение и сгорание смеси, также приводящее к резкому повышению этих показателей.
Поршень опускается и толкает шатун, который, совершая вращательное движение, воздействует на коленчатый вал. В этот момент и происходит преобразование тепловой энергии в так нам необходимую механическую. Также открывается выпускной клапан, это приводит к снижению температуры и давления. Последний же такт отвечает за выпуск отработанных газов через выпускной клапан в глушитель и затем в атмосферу.
Какие капризы имеет одноцилиндровый дизельный двигатель?
Так как одноцилиндровый дизельный двигатель во время работы создает высокие температуры, то его трущиеся детали, создающие пары, нуждаются в охлаждении и хорошей смазке. А зазоры между ними необходимо периодически промывать, дабы удалить ненужные продукты механического износа. Кроме того, масло еще и обеспечивает отвод тепла от нагруженных поверхностей. Отсюда следует, что поддерживать хороший уровень качественного масла в таком автомобиле необходимо.
Чтобы не допустить перегрев труженика и вовремя охладить элементы головок движка и гильзы цилиндров, применяют дополнительно систему охлаждения, она может быть как воздушной, так и жидкостной. В данных системах устанавливают термостаты, чтобы обеспечить стабильную рабочую температуру. Когда все эти узлы работают четко, ваша машина выдает максимально эффективную жизнедеятельность, пользоваться – одно удовольствие. Но отсюда можно сказать и о существенном дискомфорте при каких-либо поломках, это становится заметно резко.
Осуществляем ремонт одноцилиндрового четырехтактного двигателя
Ремонт такого двигателя иногда можно осуществить и самостоятельно, если речь идет о не очень серьезных повреждениях. Таким образом, если вы услышали характерные стуки, возникшие в головке цилиндра, вполне возможно, что необходима регулировка зазоров в газораспределительном механизме
. Как раз эту операцию можно произвести своими руками, правда, если вы хоть приблизительно знакомы с устройством моторов.Осуществлять регулировку лучше всего на снятом двигателе, естественно после его остывания.
Действовать необходимо следующим образом. Сначала снять свечу зажигания и крышку головки цилиндра, а с левой стороны головки цилиндра нужно снять круглую крышку, таким образом, можно увидеть установочные метки ГРМ. Отворачиваем пробку с левой крышки генератора и получаем доступ к гайке крепления ротора. Поворачивая данную гайку ключом, мы поворачиваем и коленчатый вал. Эту несложную операцию мы производим до того момента, как метки ГРМ наконец совпадут.
Затем, вставляя плоские щупы в зазоры между регулировочным винтом и клапаном, регулируем их величину. Достигнув нужного положения, сворачиваем нашу «кухню», и можно все собрать в обратной последовательности.
Оцените статью: Поделитесь с друзьями!
Oдноцилиндровый ДВС
Описание устройства простейшего двигателя
Чтобы сразу не смущать сложными терминами и громоздкими определениями, сначала рассмотрим простейший одноцилиндровый двигатель внутреннего сгорания (ДВС), работающий на бензине, устройство которого представлено на рисунке 4.1.
Состоит этот двигатель из блока с цилиндрическим отверстием внутри – гильзой цилиндра. В гильзе находится поршень, соединенный через шатун с коленчатым валом. Коленчатый вал, в свою очередь, связан с распределительным валом через цепь (эта связь постоянна и передаточное отношение (О том, что такое «передаточное отношение», будет рассказано в главе 5 «Трансмиссия») составляет 1 к 2, то есть распределительный вал делает один оборот за два оборота коленчатого вала).
Рисунок 4.1 Одноцилиндровый двигатель внутреннего сгорания.
Рисунок 4.2 Разрез бензинового двигателя внутреннего сгорания.
Рисунок 4.4 Двигатель внутреннего сгорания с воздушным охлаждением.
Распределительный вал вместе с клапанами расположен в головке блока цилиндров, которая установлена соответственно на блок цилиндров.
Теперь разложим все по частям.
Блок цилиндра — литая деталь из чугуна или из алюминиевого сплава. Блок цилиндров образует картер. По сути, это корпус, внутри которого находятся основные элементы кривошипно-шатунного механизма (о котором речь пойдет ниже). Этот корпус имеет двойные стенки (именуемые рубашкой блока). В полостях между стенками течет охлаждающая жидкость, если двигатель с жидкостным охлаждением. Если двигатель с воздушным охлаждением, то блок имеет одну стенку с многочисленными ребрами для отвода тепла, как показано на рисунке 4.3.
В блоке имеются гильза и масляные каналы для подвода смазки к трущимся деталям. Рабочая поверхность гильзы, с которой соприкасается поршень, называется зеркалом цилиндра.
Поршень имеет вид перевернутого стакана, обычно отлит из алюминиевого сплава. В цилиндр поршень устанавливается с очень небольшим зазором (обычно сотые доли миллиметра). Чтобы газы, образовавшиеся при сгорании топлива, через этот зазор не прорвались в картер блока цилиндров, поршень уплотнен кольцами. Обычно устанавливают два компрессионных кольца (они воспринимают основную нагрузку при перемещении поршня) и одно маслосъемное (оно состоит из нескольких элементов), необходимое для снятия со стенок цилиндра моторного масла.
Поршень, шарнирно, то есть через палец соединен с верхней головкой шатуна, а шатун, в свою очередь, шарнирно соединен с коленчатым валом. Шатун вместе с коленчатым валом и называют кривошипно-шатунным механизмом. Благодаря шатуну поступательное движение поршня вверх и вниз преобразуется во вращательное движение коленчатого вала. Примечание
Уважаемый читатель может подумать, что пропустил целый раздел, ведь на рисунке 4.1 отсутствует и палец, и верхняя головка шатуна, но это не так — вышеприведенное описание дано для общего представления о двигателе внутреннего сгорания, а вот устройство каждого из элементов подробно рассмотрено в разделе 4.7 «Блок цилиндров и кривошипно-шатунный механизм».
Головка блока цилиндра — по сути, это корпус (обычно из алюминиевого сплава), в котором, в зависимости от конструкции (Слова «в зависимости от конструкции» означают, что не всегда распределительный вал или валы располагают в головке блока. Об этом подробнее будет рассказано в главе 4. 6 «Головка блока цилиндров»), находится распределительный вал (или валы), а также клапаны – впускной и выпускной. Распределительный вал и клапаны называют газораспределительным механизмом (ГРМ). Распределительный вал необходим для своевременного открытия впускных и выпускных клапанов. Клапаны плотно прилегают к головке блока цилиндра и прижимаются с помощью клапанных пружин.
Вот и весь четырехтактный бензиновый двигатель внутреннего сгорания. Сложного ничего нет.
Принцип работы двигателя внутреннего сгорания
Четырехтактным двигатель называется потому, что полный рабочий процесс разбит на четыре промежутка – такта. Из этих тактов только один рабочий, то есть тот, во время которого происходит перемещение поршня под действием газов, выделяющихся при сгорании топливовоздушной смеси. Каждый такт приходится (приблизительно) на один полуоборот коленчатого вала.
Примечание
Верхняя мертвая точка (ВМТ) — крайнее положение поршня в верхней части цилиндра.
Нижняя мертвая точка (НМТ) — крайнее положение поршня в нижней части цилиндра.
Расстояние от ВМТ до НМТ называется ходом поршня.
Наверняка, у каждого в детстве был велосипед. И, если спускала шина, то ее необходимо было подкачать насосом. Так вот, хотя и отдаленно, но этот насос для накачивания шин напоминает нам наш одноцилиндровый двигатель. Внутри цилиндрического корпуса насоса тоже есть клапаны и так же двигается поршень. Когда вы тяните ручку поршня на себя, через клапан в корпусе всасывается воздух, когда двигаете поршень вниз — клапан на впуске закрывается и воздух выходит через клапан на выпуске в трубку, попадая в шину колеса велосипеда. Теперь мысленно представим перевернутый насос, у которого мы начали перемещать поршень вниз, набирая при этом внутрь корпуса воздух, так же мысленно закрываем выпускное отверстие, например, пальцем, и начинаем перемещать поршень насоса вверх – воздух при этом начнет сжиматься, так как деваться ему некуда. Доведя поршень насоса до упора, мы возьми и подожги засыпанный до начала этого действа порох в корпусе. Сгорая, этот порох будет выделять большое количество газа, который, в свою очередь, повысит давление внутри корпуса и начнет перемещать поршень, только уже без нашего участия – самостоятельно.
Есть такое понятие, как «рабочий цикл». Это совокупность процессов, происходящих последовательно в цилиндре двигателя при вращении коленчатого вала на два полных оборота (720o). Рабочий цикл состоит из тактов.
Примечание
Читая далее описание процессов, вспомните о насосе, который был описан перед этим.
Собственно, ничего сложного. Практически все четырехтактные двигатели внутреннего сгорания, использующие в качестве топлива бензин, работают по такому принципу.
Первый такт. Впуск воздуха, смешанного с топливом
Коленвал, вращаясь, перемещает поршень вниз из ВМТ. В этот момент открыт впускной клапан, через него в цилиндр всасывается воздух вперемешку с распыленным топливом (в виде очень мелких капелек). Далее поршень достигает НМТ, впускной клапан закрывается
Второй такт. Сжатие
Коленвал продолжает вращаться, а поршень начинает от НМТ перемещаться вверх, сжимая при этом топливовоздушную смесь, дополнительно более тщательно смешивая топливо с воздухом, чтобы смесь была максимально однородная. Оба клапана закрыты
Третий такт. Рабочий ход
Поршень в ВМТ, в камере сгорания сжатая и нагретая до высокой температуры смесь, в этот момент возникает разряд между электродами свечи, который поджигает топливо. Сгорая, топливовоздушная смесь выделяет газы, которые, к слову, разогреты до 800 градусов Цельсия, создается высокое давление, под действием которого поршень перемещается вниз, толкая коленчатый вал. Весь процесс протекает до НМТ
Четвертый такт. Выпуск
Газы свое дело сделали, теперь от них необходимо избавиться, чтобы подготовить цилиндр для следующей порции топливовоздушной смеси. После НМТ, открывается выпускной клапан, поршень под действием силы инерции поднимается вверх, выталкивая отработанные газы. После того, как поршень достигнет ВМТ и будут удалены все отработанные газы, весь процесс повторится заново.
Как работает одноцилиндровый 4 тактный двигатель
На сайте вы найдете информацию о том как сделать качественный ремонт автомобиля своими руками, подробные фото отчеты по ремонту ауди с4, а также много полезной информации о диагностике и профилактике неисправностей.
поиск google
Breadcrumbs
Меню сайта:
Последние публикации
Перетяжка потолка ауди 100 с4.(Часть 3)
В первой и второй частях мы снимали обшивку потолка, сегодня же мы займемся самой перетяжкой.
Перетяжка потолка ауди 100 с4.
(Часть 2)Продолжим снятие обшивки потолка. В первой части мы сняли обшивку люка и накладки передних стоек. Сегодня мы все-таки снимем потолок.
Перетяжка потолка ауди 100 с4.(Часть 1)
В уже не молодых автомобилях, не редко можно столкнуться с проблемой провисания потолка. Происходит это, как правило, по двум причинам:
Одноцилиндровый четырехтактный бензиновый двигатель принцип работы.
В наше время на автомобилях используются четырехтактные многоцилиндровые двигатели. Для того, чтобы вы могли самостоятельно ремонтировать двигатель и определять характер неисправности, вначале необходимо узнать его устройство и принцип работы. Для того чтобы представить как же он все таки работает, рассмотрим принцип работы одноцилиндрового четырехтактного бензинового двигателя. Отличие у них только в количестве цилиндров.
Рис 1 – Одноцилиндровый четырехтактный бензиновый двигатель в разрезе.
1 – глушитель. 2 – пружина клапана. 3 – карбюратор. 4 – впускной клапан. 5 – поршень. 6 — свеча зажигания. 7 – выпускной клапан. 8 – шатун. 9 – маховик. 10 – распределительный вал. 11 – коленчатый вал.
- Принцип работы одноцилиндрового четырехтактного двигателя следующий:
Такт впуска. Такт – это процесс, происходящий в цилиндре за один ход поршня.
Рис 2 – Такт впуска.
1 – впускной клапан. 2 – свеча зажигания. 3 – выпускной клапан. 4 – шатун.
Направление вращения коленчатого вала происходит по часовой стрелке. Вначале поршень у нас находится в верхней мертвой точке ВМТ. За первый такт коленчатый вал совершает пол оборота (180 градусов), тем самым перемещая поршень из ВМТ в нижнюю мертвую точку НМТ. Когда поршень перемещается вниз, у нас в цилиндре создается разряжение. Одновременно с перемещением поршня открывается впускной клапан 1, в конце первого такта клапан откроется полностью. Благодаря создавшемуся разряжению в цилиндре засасывается горючая смесь, которая представляет собой смешанные пары бензина с воздухом. Не забываем, что в цилиндре у нас еще присутствуют продукты сгорания от предыдущего цикла. В итоге это все смешивается и у нас получается рабочая смесь.
Рис 3 — Такт сжатия.
Следующий оборот на 180 градусов приводит перемещение из НМТ в ВМТ. В этом такте оба клапана у нас закрыты, что приводит рабочую смесь к сжатию и повышению давления до 1.8 МПа и температуры 600 градусов Цельсия. Подробнее о такте сжатия.
Такт расширение. Рабочий ход.
Рис 4 — Такт расширение. Рабочий ход.
По окончанию сжатия происходит воспламенение рабочей смеси от искры создаваемой свечей 2 и ее сгорание. Что приводит к увеличению температуры до 2500 градусов Цельсия и давления до 5 МПа. За счет резкого повышения давления, поршень начинает перемещаться вниз, толкая шатун 4, который в свою очередь совершает вращательное действие на коленчатый вал. В этом такте совершается полезная работа, тепловая энергия преобразуется в механическую. При подходе поршня к НМТ начинает открываться выпускной клапан 3, через который отводятся отработанные газы. В результате температура у нас падает до 1200 градусов, а давление до 0.65 МПа. Подробнее о такте рабочего хода.
Такт выпуска.
Рис 5 – Такт выпуска.
В этом такте у нас полностью открывается выпускной клапан 3. Поршень перемещается из нижней мертвой точки в высшую, выталкивая отработанные газы. Далее газы попадают в выпускной коллектор, затем пройдя через глушитель в атмосферу. В конце такта температура в цилиндре падает до 500 градусов, а давление до 0.1 МПа. Полностью цилиндр от отработанных газов не освобождается, какой-то их процент остается и участвует в последующем такте. Подробнее о такте выпуска.
В процессе работы двигателя все перечисленные такты повторяются циклически. При 3 такте, где совершается рабочий ход поршня, механическая энергия от коленвала передается маховику, которую он накапливает и использует ее в последующих тактах. Благодаря маховику работа двигателя становится ровной и устойчивой.
Источник
Так ли прост одноцилиндровый четырехтактный двигатель?
Довольно часто на машины устанавливают одноцилиндровый четырехтактный двигатель, купить который можно в специализированных магазинах или же заказать через интернет. Этот механизм является простейшим поршневым двигателем с камерой внутреннего сгорания и с одним рабочим цилиндром. В чем же его особенности?
Как работает одноцилиндровый четырехтактный двигатель?
Эти моторы распространены довольно широко как в автомобилях, так и в других транспортных средствах, таких как мотоциклы, тракторы, мопеды. Кроме того, в Китае выпускают одноцилиндровые движки объемом 1,03 литра, которые применяются для привода тяжелых мотоблоков. Главными достоинствами можно назвать наименьшее отношение площади цилиндра к рабочему объему, поэтому потери тепла минимальные, а индикаторный КПД достаточно высокий.
Устройство одноцилиндрового дизельного двигателя, впрочем, как и бензинового, заключается в следующем. Всего у таких двигателей четыре такта, первый такт отвечает за впуск. Изначально поршень занимает позицию в верхней предельной или мертвой точке (ВМТ), а коленчатый вал, поворачиваясь на 180 градусов, перемещает его в самую нижнюю точку, тоже называемую мертвой (НМТ). Кроме этого открывается и впускной клапан, а благодаря разряжению, образовавшемуся в цилиндре, в него буквально засасывается горючая смесь, которая, перемешавшись с оставшимися в нем продуктами сгорания, образует рабочую смесь.
Во время следующего такта – сжатия, поршень возвращается обратно в ВМТ, в данный промежуток оба клапана находятся в закрытом положении, что способствует сжатию рабочей смеси, а, следовательно, скачку вверх температуры и давления. Далее идет рабочий ход (третий такт) от искры, создаваемой свечами, происходит воспламенение и сгорание смеси, также приводящее к резкому повышению этих показателей.
Поршень опускается и толкает шатун, который, совершая вращательное движение, воздействует на коленчатый вал. В этот момент и происходит преобразование тепловой энергии в так нам необходимую механическую. Также открывается выпускной клапан, это приводит к снижению температуры и давления. Последний же такт отвечает за выпуск отработанных газов через выпускной клапан в глушитель и затем в атмосферу.
Какие капризы имеет одноцилиндровый дизельный двигатель?
Так как одноцилиндровый дизельный двигатель во время работы создает высокие температуры, то его трущиеся детали, создающие пары, нуждаются в охлаждении и хорошей смазке. А зазоры между ними необходимо периодически промывать, дабы удалить ненужные продукты механического износа. Кроме того, масло еще и обеспечивает отвод тепла от нагруженных поверхностей. Отсюда следует, что поддерживать хороший уровень качественного масла в таком автомобиле необходимо.
Чтобы не допустить перегрев труженика и вовремя охладить элементы головок движка и гильзы цилиндров, применяют дополнительно систему охлаждения, она может быть как воздушной, так и жидкостной. В данных системах устанавливают термостаты, чтобы обеспечить стабильную рабочую температуру. Когда все эти узлы работают четко, ваша машина выдает максимально эффективную жизнедеятельность, пользоваться – одно удовольствие. Но отсюда можно сказать и о существенном дискомфорте при каких-либо поломках, это становится заметно резко.
Осуществляем ремонт одноцилиндрового четырехтактного двигателя
Ремонт такого двигателя иногда можно осуществить и самостоятельно, если речь идет о не очень серьезных повреждениях. Таким образом, если вы услышали характерные стуки, возникшие в головке цилиндра, вполне возможно, что необходима регулировка зазоров в газораспределительном механизме. Как раз эту операцию можно произвести своими руками, правда, если вы хоть приблизительно знакомы с устройством моторов.
Осуществлять регулировку лучше всего на снятом двигателе, естественно после его остывания.
Действовать необходимо следующим образом. Сначала снять свечу зажигания и крышку головки цилиндра, а с левой стороны головки цилиндра нужно снять круглую крышку, таким образом, можно увидеть установочные метки ГРМ. Отворачиваем пробку с левой крышки генератора и получаем доступ к гайке крепления ротора. Поворачивая данную гайку ключом, мы поворачиваем и коленчатый вал. Эту несложную операцию мы производим до того момента, как метки ГРМ наконец совпадут.
Затем, вставляя плоские щупы в зазоры между регулировочным винтом и клапаном, регулируем их величину. Достигнув нужного положения, сворачиваем нашу «кухню», и можно все собрать в обратной последовательности. Запустите мотор и послушайте, все ли посторонние звуки удалось устранить. Если да, то оставляем автомобиль в покое, если нет, возможно, причина не в этом. Скорее всего, поломки двигателя носят более серьезный характер, следует немедленно обратиться к специалистам.
Источник
Принципы работы простейшего одноцилиндрового двигателя внутреннего сгорания
В этой статье будут рассмотрены принципы работы простейшего одноцилиндрового двигателя внутреннего сгорания. Этот двигатель взят для простоты понятия физических процессов, для того чтобы понять, как работают все подобные двигатели. На самом деле всё намного сложнее каждый процесс имеет столько особенностей, что и у специалистов, хорошо знающих работу двигателя, часто возникают споры по многим вопросам. Но все бензиновые двигатели (двигатели с принудительным зажиганием) работают на основе принципов, впервые описанных немецким инженером Отто.
Двигатель нужен для обеспечения автомобиля (если это не стационарный двигатель) механической энергией. Двигатель создаёт эту энергию. Но из школьного курса физики известно, что энергия не возникает из ничего и не исчезает бесследно. Что же является источником механической энергии, вырабатываемой двигателем, какую энергию он преобразует в механическую? Источником энергии двигателя внутреннего сгорания является энергия межмолекулярных связей углеводородного топлива, сгорающего в цилиндрах двигателя. Во время сгорания углеводородного топлива происходит разрыв этих связей с большим выделением тепловой энергии, которую двигатель и преобразует в механическую энергию в форме вращательного движения.
Для химических реакций, происходящих при сгорании топлива, требуется окислитель. Для этого используется кислород, содержащийся в окружающем атмосферном воздухе. Воздух это смесь газов, кислорода в этой смеси приблизительно 21%. В цилиндрах двигателя сгорает смесь топлива с воздухом. В идеальном случае все молекулы углеводородов, поданные в цилиндр, сгорая, соединяются со всеми молекулами кислорода, поданными в цилиндр во время одного рабочего цикла. То есть после процесса сгорания в цилиндре двигателя не должно остаться не одной молекулы топлива, и не одной свободной молекулы кислорода.
Химические реакции, во время которых полностью используются все активные вещества, называются стехиометрическими. Во время стехиометрического процесса для полного сгорания всех молекул 1-го килограмма топлива необходимо использовать приблизительно 14,7 килограммов воздуха. Это идеальный процесс, но реально при работе двигателя на различных режимах обеспечить его достаточно трудно, тем более что на некоторых режимах двигатель будет работать устойчиво, только если смесь отличается от стехиометрической.
Разобравшись, откуда берётся механическая энергия, приступим к изучению принципов работы двигателя. Как уже было отмечено ранее, здесь будет рассматриваться работа четырёхтактного двигателя внутреннего сгорания, работающего по циклу Отто. Основным признаком цикла Отто можно назвать то, что перед воспламенением топливовоздушная смесь предварительно сжимается, а зажигание смеси происходит от постороннего источника – в современных двигателях только при помощи электрической искры.
За время становления и развития двигателя внутреннего сгорания было изобретено очень много различных конструкций и, разумеется, двигатель, работающий на принципах цикла Отто, был далеко не единственный. Из двигателей с возвратной поступательным движением поршня можно назвать двигатель, работающий по циклу Аткинсона, а из двигателей с круговым движением поршня наиболее известен роторно-поршневой двигатель Ванкеля. Существует большое количество вообще экзотических конструкций. Но все они не получили широкого практического применения. Более 99,9% используемых в настоящее время двигателей внутреннего сгорания работают по циклу Отто, (в данной статье сюда будут отнесены и дизельные двигатели) которые в свою очередь подразделяются на двигатели с электрическим воспламенением смеси и дизельные двигатели, с компрессионным воспламенением смеси.
Принципы работы таких двигателей и будут рассмотрены в этой статье.
И бензиновые и дизельные двигатели могут быть не только четырёхтактными, но и двухтактными. В настоящее время двухтактные двигатели на автомобиле не применяются, поэтому в данной главе они рассматриваться не будут.
Прежде чем рассматривать принципы работы двигателя рассмотрим, из каких основных деталей он состоит.
Основные детали простейшего ДВС
- Цилиндр.
- Поршень.
- Камера сгорания.
- Шатун.
- Коленчатый вал.
- Впускной канал.
- Впускной клапан.
- Впускной распределительный вал.
- Выпускной канал.
- Выпускной клапан.
- Выпускной распределительный вал.
- Свеча зажигания.
- Топливная форсунка (не показана).
- Маховик двигателя (не показан).
1. Цилиндр – основа двигателя, именно в нём происходит процесс сгорания топлива, цилиндр является направляющим элементом для движения поршня.
2. Поршень – деталь, перемещающаяся в цилиндре под воздействием расширяющихся газов или под воздействием кривошипно-шатунного механизма. Условно примем, что скользящее соединение, между поршнем и стенками цилиндра абсолютно герметично, то есть, ни какие газа не могут просочиться через это соединение.
3. Камера сгорания – пространство над поршнем, когда поршень находится в самой верхней точке своего хода (ВМТ).
4. Шатун – это стержень, передающий усилие от поршня к кривошипу коленчатого вала и, наоборот, от коленчатого вала к поршню.
5. Коленчатый вал – служит для преобразования возвратно-поступательного движения поршня во вращательное, именно такое движение наиболее удобно для использования.
6. Впускной канал – канал, по которому топливовоздушная смесь поступает в цилиндр двигателя.
7. Впускной клапан – соединяет впускной канал с цилиндром двигателя. Условно принимаем, что в закрытом состоянии клапан полностью герметичен, а в открытом состоянии он не оказывает сопротивление проходу топливовоздушной смеси в цилиндр двигателя.
8. Впускной распределительный вал – открывает и закрывает впускной клапан в нужное время.
9. Выпускной канал – канал, по которому отработавшие газы выводятся из двигателя в атмосферу.
10. Выпускной клапан – соединяет выпускной канал с цилиндром двигателя. Условно принимаем, что в закрытом состоянии клапан полностью герметичен, а в открытом состоянии он не оказывает сопротивление проходу отработавших газов из цилиндра двигателя.
11. Выпускной распределительный вал – открывает и закрывает выпускной клапан в нужное время.
12. Свеча зажигания – служит для воспламенения сжатой топливовоздушной смеси в необходимое время.
13. Топливная форсунка – служит для распыления топлива в воздухе, поступающем в цилиндр двигателя.
14. Маховик двигателя – служит для необходимого перемещения поршня за счёт сил инерции во время всех тактов, кроме рабочего.
Далее придётся понять и запомнить довольно много специальных терминов, но сейчас упомянем, без полного объяснения, только некоторые.
1 — Верхняя мёртвая точка (ВМТ) – точка в которой поршень останавливается при изменении направления своего движения вверх цилиндра на движение вниз.
2 — Нижняя мёртвая точка (НМТ) – точка в которой поршень останавливается при изменении направления своего движения вниз цилиндра на движение вверх.
3 — Ход поршня – расстояние, проходимое поршнем при перемещении от ВМТ к НМТ или наоборот.
4 — Такт двигателя – перемещение поршня от одной мёртвой точки к другой. Во время каждого такта коленчатый вал двигателя совершает половину оборота (180?).
5 — Цикл – периодичное повторение четырёх тактов двигателя во время работы. Полный цикл двигателя состоит из четырёх тактов и совершается за два полных оборота коленчатого вала (720?).
Принципы работы простейшего одноцилиндрового четырёхтактного двигателя:
1 — Такт всасывания
(поступления топливовоздушной смеси в цилиндр).
Впускной клапан открыт.
Выпускной клапан закрыт.
Под воздействием внешнего усилия (стартёра двигателя, заводной ручки или инерции маховика), передаваемого поршню шатуном, поршень перемещается от ВМТ к НМТ. Поскольку соединение между поршнем и цилиндром полностью герметично, в пространстве над поршнем образуется пониженное давление (разрежение). Под воздействием атмосферного давления воздух через впускной канал, и открытый впускной клапан, начинает поступать в цилиндр двигателя. В это время топливная форсунка распыляет в поступающем воздухе необходимое количество топлива, в результате чего в цилиндр поступает горючая топливовоздушная смесь.
При достижении поршнем НМТ впускной клапан закрывается.
2 — Такт сжатия.
Оба клапана закрыты.
Под воздействием внешнего усилия поршень перемещается из НМТ к ВМТ. При этом в цилиндре происходит сжатие топливовоздушной смеси. По окончании такта сжатия, когда поршень встаёт в положении ВМТ, вся топливовоздушная смесь находится в сжатом состоянии в камере сгорания.
В это время свеча зажигания при помощи электрической искры воспламеняет сжатую топливовоздушную смесь. В дизельном двигателе в камеру сгорания при помощи топливной форсунки впрыскивается мелко распылённое топливо. В результате чего в обоих случаях происходит воспламенение смеси.
3 — Рабочий такт.
Оба клапана закрыты.
При сгорании топливовоздушной смеси в цилиндре резко поднимается температура и, главное, давление. Это давление равномерно давит во все стороны, но стенки камеры сгорания и цилиндра рассчитаны на это давления. А вод давление, оказываемое расширяющимися газами на поршень, днище которого является нижней частью камеры сгорания, заставляет поршень перемещаться вниз от ВМТ к НМТ. Это усилие через шатун передаётся на кривошип коленчатого вала, который преобразует поступательное движение поршня во вращательное движение.
При достижении поршнем НМТ открывается выпускной клапан.
4 — Такт выпуска.
Впускной клапан закрыт.
Выпускной клапан закрыт.
Под воздействием внешнего усилия, передаваемого на поршень через шатун, поршень перемещается из положения НМТ в положение ВМТ. Во время этого перемещения поршень вытесняет из цилиндра отработавшие газы через открытый выпускной клапан в выпускной канал и далее в атмосферу.
И так, мы рассмотрели полный цикл двигателя, состоящий из четырех тактов. Далее этот цикл повторяется бесконечно, пока двигатель не будет выключен или не закончится бензин в баке автомобиля.
Наверное, Вы обратили внимание, что из четырёх тактов полезным является только один – рабочий такт. Именно во время этого такта вырабатывается необходимая энергия. Все другие такты являются вспомогательными. Возможно, такая конструкция может показаться не эффективной, но лучшего, по всем показателям, пока ничего не изобретено. Да, существуют двухтактные двигатели, в которых полный цикл осуществляется за один поворот коленчатого вала. Существует роторно-поршневой двигатель Ванкеля, в котором вообще нет деталей, совершающих возвратно-поступательное движение, но этим конструкциям, при некоторых преимуществах, присущи свои недостатки, поэтому двигатели, работающие по четырёхтактному циклу Отто, в настоящее время имеют практически монопольное распространение в мире. И какой-либо замены им, в обозримом будущем, реально не предвидится.
Дизельный двигатель.
Двигатель, изобретённый немецким изобретателем Рудольфом Дизелем, очень похож и по конструкции и принципам работы на двигатель, работающий на бензине, описанный ранее. Но есть одно существенное различие. В этом двигателе воспламенение топливовоздушной смеси происходит не при помощи электрической искры, а за счёт контакта топлива с горячим воздухом находящемся в цилиндре. Такое воспламенение рабочей смеси называется компрессионным зажиганием. А откуда в цилиндре взялся горячий воздух, где его подогрели? Разумеется, никто его нарочно не грел. Если Вам когда-либо приходилось накачивать ручным насосом шину велосипеда, или автомобиля, вы могли обратить внимание, что довольно быстро насос начинает нагреваться. И вообще из школьного курса физики известно, что при сжатии все газы нагреваются, а воздух есть ничто иное, как смесь газов. Сжатие воздуха в двигателе происходит очень быстро, поэтому к концу такта сжатия воздух, находящийся в цилиндре дизельного двигателя, имеет очень высокую температуру (700 ? 900?С).
Поскольку физический процесс немного отличается от описанного ранее бензинового двигателя, в конструкции дизельного двигателя имеются некоторые отличия. Главное отличие в более высокой степени сжатия. У дизельного двигателя отсутствует свеча зажигания, вместо неё непосредственно в головку блока цилиндров вставлена топливная форсунка, разумеется, во впускном канале топливная форсунка отсутствует. В отличие от бензинового двигателя, в цилиндры которого во время такта всасывания поступает смесь бензина с воздухом, цилиндры дизельного воздуха поступает чистый воздух. При достижении поршнем ВМТ во время такта сжатия, в камере сгорания дизельного двигателя находится сжатый воздух, имеющий высокую температуру. И в то время, когда в бензиновом двигателе происходит воспламенение смеси при помощи электрической свечи, в камеру сгорания дизельного двигателя под большим давлением впрыскивается мелко распылённое дизельное топливо. Соприкасаясь с горячим воздухом, находящимся в камере сгорания, топливо воспламеняется.
Запомните основные отличия дизельного двигателя от бензинового.
1 – Топливо в дизельном двигателе воспламеняется не при помощи электрической искры, а за счёт контакта топлива с воздухом, имеющим высокую температуру.
2 – Регулировка крутящего момента и мощности двигателя осуществляется за счёт изменения качества, а не количества топливовоздушной смеси, поэтому в дизельном двигателе отсутствует дроссельная заслонка, регулирующая количество поступающего в цилиндры двигателя воздуха. То есть крутящий момент изменяется количеством впрыскивания топлива без изменения объёма всасываемого воздуха.
Не путайте дизельный двигатель с современными бензиновыми двигателями, с непосредственным впрыском. В этих двигателях топливная форсунка перенесена из впускного канала на головку двигателя, но не вместо свечи зажигания, а установлена совместно с ней. В этом случае топливная форсунка впрыскивает топливо непосредственно в цилиндр. Топливовоздушная смесь в таком двигателе воспламеняется не при помощи компрессионного зажигания, а при помощи электрической искры. А имеющаяся во впускном тракте дроссельная заслонка регулирует количество воздуха, поступающего в цилиндр.
Мы рассмотрели принципы работы простейшего одноцилиндрового двигателя, поняли, как возникает необходимая нам механическая энергия, но для простоты объяснения пришлось прибегнуть очень ко многим упрощениям. Например, клапаны открываются или закрываются не точно в ВМТ или НМТ. Свеча бензинового двигателя воспламеняет смесь или топливная форсунка дизельного двигателя нагнетает топливо в цилиндр не совсем точно при нахождении поршня в ВМТ. Да и двигатель, чаще всего имеет не один, а несколько цилиндров, от 1-го до 16, в автомобильной промышленности, а авиации или на флоте встречались двигатели, имеющие 64 цилиндра. Но основой любого двигателя является цилиндр.
Ранее были рассмотрены некоторые термины, имеющие отношение к цилиндру двигателя, теперь придётся их рассмотреть более подробно и познакомиться с некоторыми новыми.
1. Радиус кривошипа.
Расстояние между осями коренных и шатунных шеек коленчатого вала.
Коренными называются шейки коленчатого вала, в которых вал вращается в блоке цилиндров двигателя.
Шатунными называются шейки, к которым подсоединены шатуны поршней.
Для образования кривошипа ось коренных шеек смещена относительно оси шатунных шеек.
Радиус кривошипа является очень важным конструкционным параметром двигателя. Изменяя радиус кривошипа можно подобрать необходимое соотношение между крутящим моментом и максимальными оборотами двигателя, при неизменном объёме цилиндра.
(Обычно измеряется в миллиметрах)
2. Ход поршня:
Ход поршня, то есть расстояние между НМТ и ВМТ, равен удвоенной величине радиуса кривошипа.
3. Диаметр цилиндра:
Это диаметр внутреннего отверстия цилиндра. Условно принимаем, что диаметр поршня равен диаметру цилиндра.
(Обычно измеряется в миллиметрах)
4. Рабочий объём цилиндра:
Рабочим объёмом цилиндра называется объём, вытесняемый поршнем при перемещении от НМТ к ВМТ.
(Обычно измеряется в кубических сантиметрах (см?) или литрах.)
Рабочий объём цилиндра равен произведению хода поршня на площадь днища поршня.
5. Объём камеры сгорания.
Это объем пространства, находящегося над поршнем, во время нахождения поршня в ВМТ.
(Обычно измеряется в кубических сантиметрах.)
Камера сгорания большинства двигателей имеет сложную форму, поэтому определить её точный объём расчётным методом сложно. Для определения объёма камеры сгорания применяются различные методы прямого измерения.
6. Полный объём цилиндра.
Это сумма объёма камеры сгорания и рабочего объёма цилиндра.
(Обычно измеряется в кубических сантиметрах или литрах.)
Полный объём многоцилиндрового двигателя равен полному объёму одного цилиндра умноженному на количество цилиндров двигателя.
7. Степень сжатия.
Это соотношение полного объёма цилиндра к объёму камеры сгорания. Другими словами это соотношение объёма цилиндра в сумме с объёмом камеры сгорания, когда поршень находится НМТ к объёму пространства, расположенному над поршнем, когда поршень находится в положении ВМТ.
(Безразмерная единица)
8. Соотношение диаметра цилиндра к величине хода поршня:
Является очень важным параметром при конструировании двигателя внутреннего сгорания. Двигатели, в которых ход поршня больше диаметра цилиндра называются длиноходными, двигатели, в которых ход поршня меньше диаметра цилиндра, называются короткоходными.
Значение степени сжатия.
Степень сжатия это один из очень важных технических показателей двигателя внутреннего сгорания, поэтому рассмотрим его более подробно. В общем, повышение степени сжатия поднимает эффективность работы двигателя внутреннего сгорания, то есть при сгорании равного объёма топлива двигатель производит больше механической энергии. При повышенной степени сжатия молекулы топлива физически приближаются друг к другу. При этом топливовоздушная смесь имеет более высокую температуру, в результате чего достигается лучшее испарение частичек топлива и их более равномерное перемешивание с воздухом. Для каждого типа бензина имеется предельное значение степени сжатия. Чем выше октановое число бензина, тем выше степень сжатия, при которой может работать двигатель. При превышении допустимой степени сжатия и, соответственно температуры в камере сгорания, двигатель начинает работать с детонацией (самопроизвольное воспламенение смеси). Процесс детонации достаточно сложный, поэтому, на данном этапе, ограничимся пониманием, что причиной детонации является неправильное сгорание топливовоздушной смеси. При работе двигателя с детонацией резко уменьшается эффективность работы двигателя, и более того, возросшие ударные нагрузки могут привести к разрушению двигателя. Сильные стуки во время работы двигателя являются признаком детонации. Этот режим работы очень вреден для двигателя.
Современные электронные системы управления двигателем практически исключили работу двигателя с детонацией, но те, кому пришлось ездить на автомобилях с двигателями, не имеющих электронных систем управления, помнят, что режим детонации возникал довольно часто.
Раньше для повышения октанового числа бензина применялись специальные присадки на основе свинца. Применение этих присадок позволяло поднять степень сжатия до 12,5:1, но сейчас, в соответствии с законодательными нормами по охране окружающей среды, по причине того, что свинец наносит большой вред окружающей среде, применение присадок на основе свинца запрещено.
Степень сжатия современных бензиновых двигателей равна 10:1 ? 11:1. Величина степени сжатия может изменяться не только от качества предполагаемого к использованию бензина, но и от конструкции двигателя. Современные двигатели, имеющие систему управления двигателя с датчиком детонации, позволяют поднять степень сжатия до 13:1. Такие системы управления, регулируя угол опережения зажигания в каждом отдельном цилиндре, на основе информации, полученной от датчика детонации, позволяют двигателю работать на грани возникновения детонации, но не допускают её. Двигатели с непосредственным впрыском бензина в камеру сгорания из-за особенностей процессов, протекающих в цилиндре, тоже могут работать с повышенной степенью сжатия.
Поскольку воспламенение топлива в дизельных двигателях происходит за счёт нагрева воздуха, находящегося в цилиндре, степень сжатия дизельных двигателей выше, чем бензиновых. Степень сжатия дизельных двигателей лежит в диапазоне 14:1 ? 23:1.
Двигатели с принудительным нагнетанием воздуха в цилиндры (турбокомпрессор или механический нагнетатель), как бензиновые, так и дизельные, имеют более низкую степень сжатия по сравнению с атмосферными двигателями. Это вызвано тем, что перед началом такта сжатия в цилиндре находится большая масса воздуха (и топлива). Слишком высокое давление в цилиндре в конце такта сжатия может привести к разрушению двигателя.
Ранее отмечалось, что повышение степени сжатия явление, в целом, очень желательное, но в действительности всё несколько сложнее. Двигатель внутреннего сгорания, особенно автомобильный, постоянно работает на различных режимах скорости вращения и нагрузок. Научные исследования в данной области показали, что на некоторых режимах двигатель эффективней работает с более низкой степенью сжатия, а на других режимах степень сжатия может быть повышена без риска нанесения повреждений двигателю. Некоторые производители попытались создать двигатель с изменяемой во время работы степенью сжатия. Пионером в этой области, добившимся заметных результатов, был шведский производитель автомобилей SAAB. Работы в этом направлении проводились и другими производителями автомобилей. Но до настоящего времени серийные автомобили с изменяемой степенью сжатия на рынке отсутствуют. Очевидно, это будет следующим направлением повышения эффективности двигателя внутреннего сгорания.
Ранее были рассмотрены некоторые термины, определяющие геометрические показатели двигателя. Далее запомним некоторые термины, определяющие работу двигателя внутреннего сгорания, как простейшего одноцилиндрового, так более сложных двигателей.
- Мощность двигателя. Измеряется в киловаттах (кВт) или в старых, для некоторых более привычных единицах измерения, лошадиных силах (л.с.)
- Крутящий момент. Измеряется в ньютонах на метр (Н•м).
- Удельная литровая мощность. Измеряется отношением максимальной мощности двигателя к рабочему объёму цилиндров двигателя (кВт/литр)
- Удельная весовая мощность. Измеряется отношением максимальной мощности двигателя к весу двигателя (кВт/Кг).
- Топливная эффективность. Измеряется массой топлива, которое необходимо потратить на выработку мощности в один киловатт в течение часа (гр/кВт*час)
- Скорость вращения. В автомобилестроении, как и во многих других областях техники, скорость (частота) вращения коленчатого вала измеряется в оборотах в минуту (об/мин).
За прошедшие более чем сто лет с момента изобретения двигателя внутреннего сгорания (ДВС) количество его конструкций было столь велико, что их не только описать невозможно, их просто никто даже перечислить не сможет, да и задачи такой, в общем, нет. Четко понимая общие принципы работы ДВС (кратко описанные в данной статье), можно разобраться в любой конструкции.
Комментарии ВКонтакте
Комментарии Facebook
Бесплатный звонок по России 8 (800) 302-09-80 +7 (495) 961-44-37
Автосканеры FCAR купить по выгодной цене.
г.Москва, м.Новые Черемушки
ул.Архитектора Власова, д.45А
Copyright 2014 — 2018 © Интернет-магазин диагностического оборудования для автомобилей «AUTOPRIBOR.ru»
Все права защищены и охраняются законом.
О
с
т
а
0 комментариев
МК АМЕВРО- универсальный интернет-магазин для продажи любых товаров.
Источник
Одноцилиндровый четырехтактный двигатель неисправности
Так ли прост одноцилиндровый четырехтактный двигатель?
Довольно часто на машины устанавливают одноцилиндровый четырехтактный двигатель, купить который можно в специализированных магазинах или же заказать через интернет. Этот механизм является простейшим поршневым двигателем с камерой внутреннего сгорания и с одним рабочим цилиндром. В чем же его особенности?
Как работает одноцилиндровый четырехтактный двигатель?
Эти моторы распространены довольно широко как в автомобилях, так и в других транспортных средствах, таких как мотоциклы, тракторы, мопеды. Кроме того, в Китае выпускают одноцилиндровые движки объемом 1,03 литра, которые применяются для привода тяжелых мотоблоков. Главными достоинствами можно назвать наименьшее отношение площади цилиндра к рабочему объему, поэтому потери тепла минимальные, а индикаторный КПД достаточно высокий.
Устройство одноцилиндрового дизельного двигателя, впрочем, как и бензинового, заключается в следующем. Всего у таких двигателей четыре такта, первый такт отвечает за впуск. Изначально поршень занимает позицию в верхней предельной или мертвой точке (ВМТ), а коленчатый вал, поворачиваясь на 180 градусов, перемещает его в самую нижнюю точку, тоже называемую мертвой (НМТ). Кроме этого открывается и впускной клапан, а благодаря разряжению, образовавшемуся в цилиндре, в него буквально засасывается горючая смесь, которая, перемешавшись с оставшимися в нем продуктами сгорания, образует рабочую смесь.
Во время следующего такта – сжатия, поршень возвращается обратно в ВМТ, в данный промежуток оба клапана находятся в закрытом положении, что способствует сжатию рабочей смеси, а, следовательно, скачку вверх температуры и давления. Далее идет рабочий ход (третий такт) от искры, создаваемой свечами, происходит воспламенение и сгорание смеси, также приводящее к резкому повышению этих показателей.
Поршень опускается и толкает шатун, который, совершая вращательное движение, воздействует на коленчатый вал. В этот момент и происходит преобразование тепловой энергии в так нам необходимую механическую. Также открывается выпускной клапан, это приводит к снижению температуры и давления. Последний же такт отвечает за выпуск отработанных газов через выпускной клапан в глушитель и затем в атмосферу.
Какие капризы имеет одноцилиндровый дизельный двигатель?
Так как одноцилиндровый дизельный двигатель во время работы создает высокие температуры, то его трущиеся детали, создающие пары, нуждаются в охлаждении и хорошей смазке. А зазоры между ними необходимо периодически промывать, дабы удалить ненужные продукты механического износа. Кроме того, масло еще и обеспечивает отвод тепла от нагруженных поверхностей. Отсюда следует, что поддерживать хороший уровень качественного масла в таком автомобиле необходимо.
Чтобы не допустить перегрев труженика и вовремя охладить элементы головок движка и гильзы цилиндров, применяют дополнительно систему охлаждения, она может быть как воздушной, так и жидкостной. В данных системах устанавливают термостаты, чтобы обеспечить стабильную рабочую температуру. Когда все эти узлы работают четко, ваша машина выдает максимально эффективную жизнедеятельность, пользоваться – одно удовольствие. Но отсюда можно сказать и о существенном дискомфорте при каких-либо поломках, это становится заметно резко.
Осуществляем ремонт одноцилиндрового четырехтактного двигателя
Ремонт такого двигателя иногда можно осуществить и самостоятельно, если речь идет о не очень серьезных повреждениях. Таким образом, если вы услышали характерные стуки, возникшие в головке цилиндра, вполне возможно, что необходима регулировка зазоров в газораспределительном механизме. Как раз эту операцию можно произвести своими руками, правда, если вы хоть приблизительно знакомы с устройством моторов.
Осуществлять регулировку лучше всего на снятом двигателе, естественно после его остывания.
Действовать необходимо следующим образом. Сначала снять свечу зажигания и крышку головки цилиндра, а с левой стороны головки цилиндра нужно снять круглую крышку, таким образом, можно увидеть установочные метки ГРМ. Отворачиваем пробку с левой крышки генератора и получаем доступ к гайке крепления ротора. Поворачивая данную гайку ключом, мы поворачиваем и коленчатый вал. Эту несложную операцию мы производим до того момента, как метки ГРМ наконец совпадут.
Затем, вставляя плоские щупы в зазоры между регулировочным винтом и клапаном, регулируем их величину. Достигнув нужного положения, сворачиваем нашу «кухню», и можно все собрать в обратной последовательности. Запустите мотор и послушайте, все ли посторонние звуки удалось устранить. Если да, то оставляем автомобиль в покое, если нет, возможно, причина не в этом. Скорее всего, поломки двигателя носят более серьезный характер, следует немедленно обратиться к специалистам.
Источник
Неисправности в двигателе мотоблока, пробуем определить самостоятельно
Прошла весна, пахотные работы прошли и вы заметили, что ваш металлический конь немного захромал под конец пахоты. А впереди окучивание, если есть оборудование, а то и копка картофеля и многое другое. Давайте посмотрим, стоит ли поднимать панику или справитесь сами.
Частично о ремонтах мотоблока и культиватора было сказано в статье «Наиболее частые поломки в мотоблоке и культиваторе и как их устранить самому» .
Обычно двигатель на мотоблоках бывает четырёхтактным, с воздушным охлаждением, поэтому описываю такой вариант.
Он имеет систему подачи топлива, в которой приготавливается рабочая смесь. Система состоит из топливного бака, топливного шланга, карбюратора и рабочего шланга.
Есть система смазки, система раскрутки коленчатого вала (стартёр). Кстати, есть модели, у которых стартеры, работающие от аккумулятора, то есть электрические стартёры, есть модели, имеющие и электрический и ручной стартёр.
Система охлаждения работает при помощи крыльчатки, которая гонит воздух на двигатель. Система зажигания – ну она дает постоянную искру на свече. Там работает маховик с башмаком, которые преобразуют силу, выработанную в магнето в электрическую, которая подается на свечу обеспечивая проскакивание искры, которая и воспламеняет ту саму рабочую смесь.
Разбор поломок мотоблокаВсе поломки мотоблока делим на две основные части: это проблемы с двигателем и проблемы с остальными узлами. Наиболее часто возникают проблемы именно с двигателем. И если вы решили начать ремонт самостоятельно, достаньте со схемой именно вашего оборудования. Если нет, постарайтесь найти и скачать в интернете.
В этой статье я расскажу о двигателе, основных неисправностях, в другой бут остальные неисправности.
С двигателем случаются два вида неисправностей: двигатель не запускается совсем и двигатель работает плохо, с перебоями, не хватает мощности или самопроизвольно глохнет.
Диагностируем первую проблему.
Если двигатель работает на бензине, а таких больше, проверяем такие позиции:
наличие бензина в баке;
открывается ли топливный бак;
проверяем воздушную заслонку – когда запускаем холодный двигатель, заслонка закрыта;
проверяем поступление бензина в карбюратор. Можно отсоединить топливный шланг и проверить на свободное истечение бензина. Если струйка маленькая или её нет вообще, значит засор или топливного фильтра, или воздушного клапана крышки бака. В принципе, прочистив или поменяв фильтр и клапан, работа по ремонту может быть закончена.
Если здесь все в порядке, проверяем систему зажигания, что начинается с проверки свечи. Отсоединяем проводку с цилиндром и выкручиваем её из крышки цилиндра. Если при осмотре она сухая, значит бензин не подается. Предварительно мы установили, что в карбюратор он поступает без проблем. Тогда проблема в карбюраторе. Это может быть как засоренный жиклер, так и загрязнился фильтр или что либо другое. Для этого нужно снять карбюратор, разобрать прочистить. Это сложная работа, обязательно наличие схемы карбюратора.
Если свеча мокрая, значит топливо поступает, но возможно идет переизбыток топлива, тогда также не будет заводиться. Для устранения этой проблемы перекрываем подачу бензина и просушиваем цилиндр. Затем при снятой свече прокачиваем двигатель ручным стартером.
Возможно, проблема в свече, которая окислилась, тогда при помощи бензина и тонкой наждачки – нулевки очищаем её. Также обращаем внимание на величину зазора между электродами. Согласно инструкции, должен зазор быть в пределах 0,8 мм, если не такой, регулируем. После всего и проверяем свечу, прижав металлической частью к крышке цилиндра и делаем как бы ложный пуск двигателя. Если свеча рабочая, искра будет нормальная для зажигания. Если слабая или нет совсем, меняем свечу. Если и здесь нет искры, проверяем катушку зажигания, она электронная. Если она не рабочая, меняем.
Может быть причина и в разрядке аккумулятора, перегоревшем предохранителе, неисправном стартере. Просто проверяем все по очереди. Стартер можно или отремонтировать, или поменять.
Двигатель работает, но плохоЗдесь могут быть такие проблемы:
Воздушный фильтр забился, воздуха поступает мало, смесь бензина с воздухом получается с преобладанием в сторону бензина. Так как мотоблок работает в условиях, очень далёких от стерильных, чаще чистите воздушный фильтр. Если это бумажный фильтр, чистите его просто постукиванием о твердый предмет и продуваем пылесосом. Именно продуваем, не втягиваем воздух.
Фильтр из поролона моется любым жидким средством для посуды или мойки авто и сушится. Сетчатый продувается при помощи пылесоса.
Бывает причина в бензине плохого качества или какой-то смеси, которую посоветовали знакомые. Пользуйтесь тем, которое рекомендовано производителем.
Возможно причина в свече и в зазоре между электродами, тогда регулируем согласно инструкции пользователя.
Проверьте глушитель, возможно он забит сажей от выхлопных газов. Разбираем глушитель, чистим, промываем бензином. Если глушитель в вашей конструкции неразборный, промываем и высушиваем при помощи фена, можно и для волос. ВАЖНО, обязательно промыть моющим средством в конце, воду и бензин после мойки утилизируйте. ЭТОТ НАГАР И САЖА ИМЕЮТ В СВОЕМ СОСТАВЕ ВРЕДНЫЕ ВЕЩЕСТВА, СУХАЯ ЧИСТКА С ВДЫХАНИЕМ ЧАСТИЦ ОЧЕНЬ ВРЕДНАЯ.
Отверстие при снятии глушителя закрываем как кляпом чистой ветошью.
Возможно неправильная работа мотоблока связана с неправильно отрегулированным карбюратором. Если в инструкции есть пункт об этом, производим его регулировку. Могут быть изношены цилиндры и поршни, может быть нужна замена поршневых колец. При подсоединению к отверстию от свечи компрессометр и проворачивая вал стартера, проверяем компрессию. В идеале должна быть не ниже 8 атмосфер (опять смотрим в паспорте на мотоблок). Если в двигателе есть декомпрессор, тогда показание компрессометра будет неточным. При показании 5 атмосфер можно будет говорить о том, что это сработал декомпрессионный клапан.
Дизельный двигательВ ремонте и диагностике он более сложный, чем бензиновый. И дело не особой сложности двигателя или каких то условиях, а в том, что бензиновые устройства встречаются гораздо чаще и мы привыкли к ним. Предлагаю посмотреть таблицу в инструкции, которой оснащены практически все инструкции по эксплуатации дизельных мотоблоков, в которых перечислены основные причины неисправностей и способы их решения.
Можно посмотреть ремонт дизельного мотоблока в таком видео:
Источник
Поиск неисправностей, в садово-парковой технике с четырехтактным двигателем
Если вы соблюли все предварительные условия для стабильной, хорошей работы садово-парковой или огородной техники с четырехтактным двигателем, а мотор всеравно не заводится, или работает нестабильно, вы должны начать искать неисправность в двигателе, и, по возможности, ее устранить. Действуйте при этом систематично! Обращайте внимание на четыре обстоятельства, которые должны быть в порядке, прежде чем ваш мотоблок, культиватор, газонокосилка, генератор, или любая единица техники будет стабильно выполнять свои функции:
1. В цилиндре двигателя должно быть достаточное сжатие
2. В двигатель должна поступать рабочая смесь
3. Рабочая смесь должна получить в цилиндре искру зажигания в нужный момент
4. Двигатель длолжен быть сильно раскручен в момент пуска
Исправна ли свеча?
Проверьте, работает ли свечва зажигания. Неисправная свеча не дает искры, даже если система зажигания в остальном в порядке. Свеча неисправна, если:
Между контактами свечи имеется короткое замыкание.
Свеча покрыта влажным черным грязным слоем, который появляется от масла, попавшего в камеру сгорания. Подобную свечу следует очистить, или заменить на новую.
Контакты свечи чистые, но ее изоляция покрыта черным сухим нагаром. Подобное явление может быть вызвано слишком низкой рабочей температурой свечи зажигания, слабой искрой, грязным воздушным фильтром, низким качеством бензина*, или слишком длительной работой на холостом ходу (при обкатке, например). Свечу следует очистить, или заменить на новую.
Контакты (электроды) сильно изношены. Свечу следует заменить.
Проверьте, исправна ли система зажигания.
Если свеча в порядке, проверьте, исправна ли система зажигания. Выкрутите свечу из картера, оставив ее при этом в высоковольтном проводе. Держа свечу на расстоянии трех миллиметров от резьбы в картере, дерните за шнур стартера. Если система зажигания в исправна, между контактом свечи и резьбой картера должна прыгуть четкая и сильная искра.
Если искра не образуется, проверьте более тщательно электрические детали цепи зажигания, чтобы найти неисправность. В цепи заземлени может быть короткое замыкание, или датчик уровня масла может быть неисправным, и заземлять цепь зажигания.
Проверьте подачу топлива.
Если образуется хорошая искра, свеча зажигания сухая и чистая, то неисправность скорее всего в подаче топлива. Закройте воздушную заслонку карбюратора, и попробуйте снова запустить двигатель. Тогда он получает больше горючего, и может завестись. В некоторых карбюраторах (например в двигателях Briggs&Stratton (культиваторы, газонокосилки, мотоблоки, измельчители ветвей. ) имеетсчя резиновый праймер, нажав на который несколько раз, вы докачивате топливо. Поробуйте сделать это. Вы также можете на минуту выкрутить свечу, и залить через отверстие в картер немного бензина. Теперь закрутите свечу зажигания обратно, и повторите пуск. Если двигатель подает признаки жизни, и снова останавливается, неисправность, скорее всего, в карбюраторе. Соединение между карбюратором и всасывающим каналом двигателя может также иметь неплотность, и двигатель всасывает воздух мимо карбюратора. Откройте и очистите карбюратор, проверьте его соединение с двигателем.
Не получает ли двигатель вашей садово — парковой техники слишком много топлива?
Если двигатель все еще не заводится, то можно проверить, не получет ли карбюратор слишком много топлива. Воздушная заслонка могла заклиниться, и не перекрываться полностью. Карбюратор может также давать утечку, если его поплавковый клапан заклинен в открытом положении.
Проверьте взаимодействие стартера и коленчатого вала двигателя.
Если двигатель все еще не заводится, осмотрите маховик, и проверьте, на месте ли шпонка между маховиком и валом, и исправна ли она. В газонокосилке шпонка может срезаться, если нож заденет камень, и его движение немедленно прекращается. Двигатель еще некоторое время продолжает движение, и шпонка срезается. Срез шпонки приводит к холостому вращению стартера. Все разделы статей
Источник
Одноцилиндровый четырехтактный двигатель принцип работы
Устройство и принцип работы одноцилиндрового 4х-тактного двигателя
Принцип работы двигателя внутреннего сгорания изучают в школе, но я все же опишу его.
Первый такт, впуск. Поршень идет вниз, клапан впуска открывается, и топливная смесь поступает из карбюратора в цилиндр. Когда поршень достигает нижнего положения, клапан впуска закрывается.
Второй такт, сжатие. Поршень идет вверх, топливная смесь сжимается. Кокда поршень находится в нескольких миллиметрах от верхней мертвой точки (ВМТ), свеча воспламеняет топливо, сжатое поршнем.
Третий такт, рабочий ход (расширение). После воспламенения горючего оно сгорает, горячие газы быстро расширяются, толкая поршень вниз (оба клапана закрыты).
Четвертый такт, выпуск. По инерции коленвал продолжает свое вращение (для равномерности вращения на коленвале установлены грузы – щеки коленвала), поршень идет наверх. Одновременно открывается выпускной клапан, и отработавшие газы выходят в выхлопную трубу. При достижениии поршнем ВМТ, выпускной клапан закрывается.
Далее повторяются все четыре такта.
Изобретатель 4-тактного двигателя внутреннего сгорания (как впрочем, и двухтактного) немец Николаус Август Отто (1832-1891). Поэтому ДВС иногда называют двигателем Отто.
Из соображений экономичности, все больше лодочных моторов оснащается четырехтактными двигателями. Хотя эти моторы при одинаковом объеме цилиндра уступают по мощности двухтактным, они обладают своими преимуществами:
-экономичность расхода топлива
-четырехтактный двигатель работает тише и устойчивей.
В отличие от двухтактного двигателя, в котором смазка коленвала, подшипников коленвала, компрессионных колец, поршня, пальца поршня и цилиндра осуществляется благодаря добавлению масла в топливо; коленвал четырехтакного двигателя находится в маслянной ванне. Благодаря этому Вам не надо смешивать бензин с маслом или доливать масло в специальный бачок (на моделях двухтактных лодочных моторов с раздельной системой смазки). Достаточно залить чистый бензин в топливный бак и можно ехать, при этом отпадает необходимость покупки специального масла для 2-тактных двигателей. Так же на зеркале поршня и стенках глушителя и выхлопной трубы образуется значительно меньше нагара. К тому же, в 2-тактном двигателе происходит выброс несгоревшей топливной смеси в воду, что объясняется его конструкцией.
На коленвале установлена ведущая звездочка, обеспечивающая (через цепь) вращение распределительного вала, находящегося в головке цилиндра. Этот вал определяет, когда должен быть открыт или закрыт один из двух клапанов (клапаны впуска и выпуска), в зависимости от положения поршня. На распредвале находятся кулачки, которые задействуют коромысла клапанов. (на схеме изображен распределительный вал)
Коромысла нажимают на тот или иной клапан, открывая его. Между регулировочным болтом коромысла и клапаном должен быть зазор, так называемый тепловой зазор. При нагревании металл расширяется, и если тепловой зазор мал или его нет совсем, то клапаны не будут плотно закрывать впускной или выпускной каналы, поэтому так важно регулировать зазор клапанов. Выхлопные газы горячее топливной смеси, и выпускной клапан нагревается (а следовательно и расширяется) больше, чем впускной. Этим объясняется разница зазоров на впускном и выпускном клапанах.
Двигатели внутреннего сгорания должны были заменить промышленную паровую машину. Однако энтузиасты, которые работали над созданием мотора, смогли ощутить потенциал, который заложен в него. Изобретателям удалось отыскать способы, которые позволили в значительных пределах увеличить мощность агрегата без существенного увеличения массы. Так, Николаус Отто сыграл одну из главных ролей в этом проекте.
Как Отто двигатель разрабатывал
Агрегат, изобретенный ученым по имени Альфонс Бо де Роша, а затем построенный немецким инженером Николаусом Отто в 1867 году, в те годы считался максимумом технологичности и практически совершенством. Аналогов для него просто не существовало. Мотор был очень недорогим в эксплуатации, имел компактные размеры, а также ему не нужно было частое обслуживание.
Работа четырехтактного двигателя была построена по четкому алгоритму. Сегодня его называют «циклом Отто». В 1875 г. Николаус Отто в своей компании выпускал больше, чем 600 двигателей за год.
От четырехтактного ДВС до автомобиля
В команде инженеров, которые работали над созданием агрегата, был один талантливый парень – Готлиб Даймлер.
Он тогда горел идеей создания на базе этого мотора настоящего автомобиля. Но Отто не желал модернизировать уже имевшийся успешный мотор. Даймлер был вынужден уйти из проекта, но желание построить автомобиль никуда не делось.
В итоге вместе со своим другом и единомышленником в 1889 году Даймлер таки собирает автомобиль, в основе которого лежит бензиновый четырехтактный двигатель, функционирующий по алгоритму Отто.
Отличие 4-тактного двигателя от 2-тактного
Цикл работы ДВС – это несколько процессов, которые направлены на получение порции силы, которая будет воздействовать на коленвал. Цикл этот состоит из впрыска топлива, сжатия, зажигания топливной смеси, расширения газов, выпуска.
Такт в двигателе внутреннего сгорания – это один ход поршня либо вверх, либо вниз. В двухтактном моторе за один оборот коленвала совершается два такта. Когда газы расширяются, поршень совершает полезную работу.
Агрегаты, где рабочий ход происходит в два такта, называют двухтактными. А если за два оборота коленчатого вала совершается четыре такта, то это уже четырехтактный двигатель.
И те, и другие могут быть как бензиновыми, так и для дизельного топлива. Чтобы понять особенности конструкции и эксплуатации, различия между разными моторами, нужно рассмотреть принципы их работы.
Принцип работы четырехтактного двигателя
Главное отличие 4-тактного ДВС от 2-тактного – в работе газораспределения.
Такт впуска
На первом такте осуществляется впуск. В этот самый момент поршень начинает свое движение вниз из своей верхней мертвой точки. В цилиндре вследствие этого создается разряжение. Тем временем открывается впускной клапан. Топливная смесь всасывается в полость цилиндра. Когда поршень достигает своего крайнего нижнего положения, клапан впуска закрыватся и впускная фаза полностью завершается.
Сжатие топливной смеси
Это второй такт. Здесь поршень движется вверх, а клапаны полностью закрыты. В этот момент топливно-воздушная смесь сжимается, тем самым нагреваясь. Это нужно для более эффективного сгорания смеси.
Рабочий ход поршня
Поршень не доходит до своего крайнего верхнего положения. В бензиновых агрегатах – от свечи, а в дизельных – от сжатия топливная смесь загорается. Газы от сгорания очень резко расширяются, сила воздействует на поршень, и он идет вниз. Так четырехтактный двигатель совершает работу.
Выпуск отработанных газов
После того как поршень совершил свою полезную работу, он находится в крайнем нижнем положении. Теперь нужно удалить из полости цилиндра отработанные газы. Это выполняется через выпускной клапан. Газы выталкиваются из цилиндра в тот момент, когда поршень идет вверх.
Такты в дизельных ДВС
Порядок или алгоритм в дизельных двигателях отличается только тем, что в момент сжатия в полость цилиндра подается лишь воздух. Дизельное топливо подается в камеру только в конце такта сжатия топлива при помощи форсунок.
Отличия двухтактного и четырехтактного двигателя
Среди основных отличий, как уже говорилось, выделяется разная система газообмена.
В двухтактном же моторе и процесс заполнения камеры сгорания, и ее очистка осуществляются вместе с тактом сжатия и расширения. Для этого в цилиндре имеются специальные технологические отверстия для впуска смеси и выброса газов. В агрегатах с такой конструкцией нет механизма ГРМ, что делает эти моторы гораздо проще и легче.
Одноцилиндровый четырехтактный двигатель
Моторы этой конструкции очень распространены. Их можно найти не только в автомобилях, но и в мотоциклах, скутерах, тракторах, мотоблоках. В Китае производят литровые двигатели, которые используются для работы с мотоблоками.
Одно из главных достоинств таких ДВС – это очень маленькое отношение площади камеры сгорания к объему. Это дает минимальные потери тепловой энергии. КПД в таких двигателях очень высокий.
Устройство аналогично многоцилиндровым двигателям. Ничего нового здесь нет.
Этот четырехтактный двигатель предназначен для применения в утилитарных мотоциклах, мопедах, скутерах.
Капризы одноцилиндровых моторов
Во время работы двигателя создаются очень высокие температуры. Детали, которые работают в парах трения, должны периодически охлаждаться и хорошо смазываться. Зазоры между узлами нужно промывать, чтобы удалить продукты износа. Также хорошее масло отлично отводит тепло от поверхностей, которые работают наиболее интенсивно.
Также нужно позаботиться о хорошей дополнительной системе охлаждения. В мотоциклах и скутерах охлаждение зачастую воздушное.
Четырехтактники на мотоциклах
Да, эти моторы очень популярны среди производителей хороших, серьезных мотоциклов. Основное отличие – это дизайн. Если в автомобилях двигатель спрятан под капотом и дизайн его особо не разрабатывали, то в мире мотоциклов внешний вид силового агрегата имеет серьезное значение.
Вот уже более 15 лет в моде двухцилиндровый четырехтактный двигатель мотоцикла, представленный сегодня множеством моделей с самым разным объемом. Отличить такие двигатели можно по характерному звуку.
Однако среди мотоциклистов особой популярностью пользуются рядные четырехцилиндровые агрегаты. Эти моторы лишь немного опережают автомобильные ДВС. К примеру, схема на четырех клапанах лишь недавно получила признание в строительстве автомобилей. А на мотоциклах она использовалась еще с 70-х.
Для мотоцикла четырехтактник является более актуальным. Так, эти ДВС более экономичны, эффективны, экологичны, чем двухтактные агрегаты. Это – преимущества данных двигателей на мотоциклах. Также двигатели для мотоциклов сделаны таким образом, чтобы работать на высоких оборотах. Максимальная мощность выдается на оборотах до 14-16 тысяч на современных моделях.
Новые технологии по старому принципу
С того самого момента, как изобрели четырехтактный двигатель, он постоянно совершенствовался.
Произошли изменения и в системе питания. Современные моторы больше не используют карбюратор – везде инжекторы и электроника.
Чтобы улучшить наполняемость камер сгорания воздухом, применяют системы наддува. Это позволяет увеличить мощность при малом объеме, а также снизить расход топлива.
Но при всем этом принцип действия ДВС остается все тем же, каким и был.
Четыре такта: недостатки и достоинства
Основной и “жирный” плюс таких агрегатов – это экономичность. К тому же они не слишком шумные.
Еще одно преимущество – это, конечно же, высокая надежность. Ресурс может доходить до миллиона километров, и это далеко не предел. Ремонт четырехтактного двигателя нужно делать не так часто.
Среди недостатков – сложная конструкция, дорогое производство, требовательность в эксплуатации. Этим агрегатам обязательно нужно качественное топливо и масло. Осуществить ремонт самостоятельно практически невозможно.
Чтобы с этими моторами никогда не было проблем, «кормите» их только качественным бензином. И тогда они будут работать долго, надежно и исправно. Конструкция, которая столько лет не меняется, – это показатель надежности и эффективности.
“>
Общее устройство одноцилиндрового четырехтактного бензинового двигателя.
Карбюраторный двигатель — это отдельный вид двигателя внутреннего сгорания (ДВС) с наружным формированием смеси. В карбюраторном двигателе внутреннего сгорания горючая смесь по коллектору проходит в цилиндры двигателя и вырабатывается в карбюраторе.
Карбюратор — конструкция в системе питания двигателей внутреннего сгорания, которая служит для перемешивания бензина с воздухом, образовывает горючую смесь и корректирует ее потребление. На сегодняшний день карбюраторные системы заменяются инжекторными.
Смесь представляет собой пары бензина смешанные с воздухом. Когда она проходит в цилиндры двигателя происходит перемешивание с отработанными газами и образование рабочей смеси, которая в конкретный момент поджигается системой зажигания. Поджигание смеси производится благодаря тому, что бензин поступает в газообразном виде и имеется достаточное количество воздуха для горения.
Карбюраторные двигатели подразделяются на четырехтактные и двухтактные. Рабочий цикл четырехтактного карбюраторного двигателя складывается из четырех тактов, они состоят из четырех полуоборотов коленчатого вала; двухтактные же состоят из двух полуоборотов коленчатого вала. Двухтактные двигатели наиболее легкие и получили свое применение в мотоциклах, мотокультиваторах, бензопилах и в других аппаратах.
Двигатели этого типа делятся на два подтипа:
- Атмосферные, где рабочая смесь проходит благодаря разреживанию в цилиндре при вбирающем движении поршня;
- Двигатели с наддувом. В них запуск горючей смеси в цилиндр осуществляется под воздействием давления, которое производится компрессором для расширения мощности двигателя. В различные времена использовались спирт, газ, керосин, бензин, но наиболее используемыми остались бензиновые и газовые двигатели.
Устройство карбюраторного двигателя
Общее устройство наиболее простого карбюратора заключает в себе поплавковую камеру с поплавком, жиклёр с распылителем, диффузор и дроссельную заслонку.
Если рассмотреть строение двигателя Л-12/4, то в блоке имеется четыре цилиндра. Вращение коленвала происходит на трех подшипниках. Центральный подшипник прикреплен к валу втулкой. На передней части вала прикрепляется маховик, который приводит в действие детали механизма и скапливает кинетическую энергию, она нужна для движения коленвала в период подготовительных тактов.
Смазка деталей происходит благодаря разбрызгиванию, шестеренчатый насос помогает началу движения распредвала и подает масло, которое разбрызгивается черпаками, происходит зажигание. Радиатор оснащен вентилятором, который служит для охлаждения воды.
На картере установлен сапун, который снижает давление благодаря выпуску газов.
Также имеется глушитель, который уменьшает шум от выхода отработанных газов. Количество оборотов коленчатого вала в автоматическом режиме устанавливает регулятор.
У двигателей ГАЗ-МК верхний отдел картера сделан из чугуна вместе с устройством цилиндров, которые охвачены водяной рубашкой и перекрыты головкой из чугуна, где и расположены камеры сгорания. Также имеются разъемы для свечей зажигания.
Водяная рубашка подсоединена к системе охлаждения. Низ двигателя затянут стальным поддоном, который выполняет функцию емкости для масла. Также там закреплен масляный насос, который приводит в движение распредвал.
Вращение коленчатого вала происходит также на трех подшипниках. Их вкладыши заполнены баббитом, где имеются смазочные канавки.
Чугунные крышки подшипников прикрепляются к блоку двумя болтами.
Передний сальник коленвала сделан из двух частей и представляет сердечник, который окружен платиной асбеста. Поршни сделаны из алюминия и скреплены шатуном полым стальным пальцем. Маховик прикреплен к коленвалу. Распредвал вращается на трех подшипниках и приводится в движение двумя шестернями.
Клапаны двигателя находятся справа. Система питания включает в себя бензобак, бензопроводы, отстойник, карбюратор и воздушный фильтр.
Бензобак находится выше карбюратора, поэтому топливо поступает самотеком.
Уровень масла в картере определяется специальным щупом. Охлаждение двигателя водяное. Радиатор размещен с задней стороны двигателя, водяной насос — с передней стороны. Вода, которая двигается по трубкам радиатора, остывает при помощи воздушного потока от вентилятора.
Ток в помощь
Готовящийся к выходу компактный кроссовер Peugeot 2008 должен получить еще более эффективные двигатели на базе серии EB. На помощь экологии придет технология «мягкого гибрида» с системой Stop&Start. Моторы получат совершенный стартер-генератор, способный без вибраций завести двигатель с четверти оборота. На торможении он будет запасать энергию в аккумулятор повышенной емкости, попутно облегчая труд тормозов. При остановке двигатель будет выключаться, а малейшее нажатие на газ будет заводить его снова. Систему Stop&Start можно будет в любой момент отключить кнопкой.
1,2-литровый двигатель также получит турбонагнетатель и непосредственный впрыск топлива. Мотор под названием 1.2 liter e-THP сможет развивать мощность 110 или 130 л.с.
Статья «Литр с кепкой» опубликована в журнале «Популярная механика» (№6, Июнь 2013).
Принцип работы карбюраторного двигателя
Принцип действия карбюраторного двигателя относительно простой и складывается из четырех тактов, которые совпадают с движением вверх и вниз в последовательности один за одним:
- Первый такт — впуск; клапан впуска отворяется и в цилиндр доставляется новая смесь от системы питания.
- Второй такт — сжатие; поршень сдавливает горючую смесь в камере сгорания. Все клапаны прикрыты.
- Третий такт — расширение; происходит возгорание сдавленной горючей смеси от свечи зажигания. Смесь сжигается достаточно быстро при неизменном объеме, который соответствует объему самой камеры сжатия. Это основная характерность работы карбюраторного двигателя. При перегорании формируются газы, которые двигают поршень книзу и передают движение коленвалу.
- Четвертый такт — впрыск; коленвал вращается и выбрасывает из цилиндра отработанные газы через приоткрытый клапан выпуска.
На этом один рабочий цикл карбюраторного двигателя заканчивается.
При первом такте клапан впуска уже в открытом виде при подходе поршня и благодаря высокой скорости движения поршня рабочая смесь продвигается к цилиндру и еще какое-то время при поднятии поршня во втором такте.
Искра поджигает рабочую смесь до того, как в цилиндре образуется высокое давление. В четвертом такте клапан выпускает отработанные испарения, чем очищает цилиндр еще до подхода поршня. Однако выход газов не прекращается даже после подхода поршня. Затем происходит запуск новой порции рабочей смеси, которая опять проходит в цилиндр.
Отсюда следует, что в работе между первым и четвертым тактом единовременно открываются клапаны впуска и выпуска, то есть происходит перекрытие клапанов. За момент перекрытия цилиндр очищается и в нем происходит разрежение, которое помогает выгоднее заполнить цилиндр горючей смесью при первом такте.
В таком двигателе происходит наружное образование рабочей смеси с ее сжатием и вынужденным поджиганием. На сегодняшний день как топливо чаще используется бензин, но они могут отлично выполнять свою работу и на газу.
Также популярны дизельные двигатели, где поджигание происходит от сжатия, их принцип работы зависит от нагревания газа при сжатии. Когда сжатие повышается, температура также поднимается. В это время в камеру сгорания через форсунку происходит впрыск топлива, которое поджигается и от полученных газов поршень передвигается. Сгорание топлива происходит после начала движения поршня.
Выше указан принцип работы одноцилиндрового двигателя, но он не способен создать условия непрерывного вращения с одинаковой скоростью. Расширенные газы оказывают действие на коленвал для его 1/4 части оборота, оставшиеся ¾ оборота движения поршня происходят по инерции.
Для ликвидации такой недоработки двигатели делают многоцилиндровыми, что способствует наиболее равномерному вращению и неизменному крутящему моменту.
Разное количество цилиндров
Существуют конструкции одноцилиндровых двигателей без кривошипно-шатунного механизма с одним возвратно-поступательно движущимся поршнем. В этом случае для уравновешивания сил инерции поршня необходима другая масса, движущаяся также поступательно в противоположном направлении по той же оси. Это привело к размещению противовеса по оси цилиндра и приводу его кривошипно-шатунным механизмом. В двухтактных двигателях противовес использовался в качестве нагнетателя. Такая схема нашла применение в двигателе мотоцикла «DKW» и дизелях «Юнкерс» (ФРГ).
При размещении обоих поршней по одной оси получается длинный двигатель со сложным кривошипно-шатунным механизмом. При несоосности поршней, кроме того, возникают неуравновешенные моменты от их сил инерции.
Поэтому гораздо чаще применяют конструкцию двухцилиндрового двигателя с противолежащими цилиндрами (оппозитный двигатель), в которых поршни движутся навстречу друг другу. Условие соосности цилиндров можно выполнить путем применения, например, вильчатого шатуна в одном из цилиндров. При традиционной конструкции шатунов возникающий момент сил инерции I порядка снижают минимизацией величины несоосности цилиндров. Такое решение с успехом применяется в легковых автомобилях особо малого класса («Ситроен», «Татра 12» и др.) и в качестве примера на рис. 1 представлена силовая установка автомобиля «Ситроен 2CV», в которой использован оппозитный двухцилиндровый бензиновый двигатель воздушного охлаждения с цилиндрами из алюминиевого сплава, имеющими износостойкое покрытие на никелевой основе «Никозил». За вентилятором системы охлаждения расположен масляный радиатор.
Рис. 3. Система уравновешивания сил инерции II порядка рядного четырехцилиндрового двигателя |
Целесообразность применения пятицилиндровых двигателей была рассмотрена ранее; шестицилиндровый рядный двигатель полностью уравновешен. Двигатели с другим расположением цилиндров, например, четырехцилиндровые и шестицилиндровые двигатели с V-образным расположением цилиндров уравновешиваются рассмотренными выше способами. Обычно они применяются в тех случаях, когда к двигателю предъявляются такие требования, как небольшая его длина или высота. Двигатели со звездообразным расположением цилиндров имеют небольшую массу и длину, но их конструкция не подходит для применения в автомобилях вследствие сложного устройства механизма газораспределения, впускного трубопровода, слива масла, доступности при обслуживании и. д.
Характеристики карбюраторного двигателя
Работа двигателя определяется его мощностью, действенным давлением, крутящим моментом, скоростью и частотой вращения коленчатого вала и потребление топлива.
Мощность карбюраторного двигателя, а также его крутящий момент подчиняются скорости вращения коленвала и высоты давления.
Скоростная характеристика карбюраторного двигателя устанавливается наивысшей мощностью, которую реально получить от давления при разной частоте вращения коленвала.
При небольшой скорости движения коленчатого вала давление в цилиндрах невысокое и мощность двигателя, соответственно, тоже небольшая. При ускорении вращения коленвала и давление поднимается, так как горючая смесь сгорает быстрее.
Потребление топлива увеличивается при небольшой частоте вращения коленчатого вала, так как процесс сгорания проходит медленнее, теплоотдача большая, а при увеличении частоты вращения механические и тепловые затраты увеличиваются.
Скоростная характеристика дизельного двигателя определяется при недвижимой рейке топливного насоса, который дает высокую подачу топлива на конкретном режиме скорости и бездымной эксплуатации.
При заведенном двигателе автомобиля количество вращений коленвала меняется. Если беспричинно увеличивается потребление топлива, то происходит это благодаря ухудшению рабочего процесса двигателя.
Дмитрий Мамонтов, научный редактор
Старая добрая традиция обозначать классы автомобиля буквами латинского алфавита в зависимости от размера кузова в наши дни не выдерживает никакой критики. Peugeot 208 — это целый алфавит: расход топлива (с трехцилиндровыми двигателями) от класса А, габариты от B, комфорт и оснащение не меньше С, а многофункциональный дисплей на центральной консоли — ну никак не меньше Е. Размер экрана, его разрешение, качество графики и быстродействие интерфейса явно говорят о наличии специального графического процессора. По архитектуре меню дисплей напоминает обычный планшет, поэтому разобраться с ним — проще простого. В отличие от многих других автомобилей, здесь прекрасно работает скроллинг — привычными скользящими движениями пальца можно перелистывать и экраны меню, и имена в записной книжке, и даже обои для «рабочего стола», которые загружаются с флэшки. «А теперь попробуем со всем этим взлететь», — говорил пилот авиалайнера в известном анекдоте, и был прав: 120-сильного мотора хэтчбэку хватает лишь для того, чтобы шустрить на скорости до 90 км/ч. Для разгона до шоссейных скоростей требуется время. Однако в черте города предельно простой и понятный в управлении, компактный и красивый автомобиль — это реальное преимущество.
Управление карбюратором
Как правило, действиями карбюратора руководит водитель автомобиля. На отдельных моделях карбюраторов применялись вспомогательные системы, которые немного автоматизировали управление карбюратором.
Для того чтобы управлять дроссельной заслонкой наиболее часто пользуются педалью газа, которая обуславливает ее подвижность при содействии системы тяг либо тросового привода. Тяга, как правило, лучше, однако механизм привода куда сложнее и сдерживает способность механизма по компоновке подкапотной площади. Привод тягами был популярен до 1970 года, потом стали чаще использоваться тросики из металла.
На старых машинах чаще предполагалась двойная система привода дроссельной заслонки карбюратора: вручную рычагом либо от ноги, при помощи педали. Если надавливать на педаль, то рычаг не двигается, а если перемещать рычаг, то педаль опускается.
Последующее открытие дросселя можно совершать педалью. Когда педаль опускается — дроссель остается в таком же положении, в котором зафиксировался при управлении рукой. К примеру, на «Волге» ГАЗ-21 на панели приборов был размещен рычаг для управления рукой, при его движении можно достичь постоянного функционирования холодного двигателя без действия воздушной заслонки либо применять «постоянный газ». На грузовиках «постоянный газ» применялся для облегчения передвижения задним ходом.
Воздушная заслонка может быть оснащена механическим либо автоматическим приводом. Если привод механический, то водитель закрывает ее при участии рычага. Автоматический привод очень популярен в других странах, а в России не «прижился» из-за своей ненадежности и недолгим сроком службы.
Недостатки и преимущества современных рядных двигателей
Собственно, кроме нескольких моментов, плюсы и минусы рядных движков такие же, как и у обычных ДВС.
Четырехцилиндровые агрегаты, которые наиболее распространены, считаются самыми надежными и простыми. Они относительно легки, не требуют особых затрат на ремонт и занимают мало места. Главный минус, который был уже описан выше в статье – несбалансированность.
Но, и с этим современные производители научились справляться, дополняя конструкцию балансировочными элементами. Таким образом, рядная «четверка» — лучший двигатель для современного легкового автомобиля вплоть до среднего класса.
Что же касается шестицилиндровых моторов – они сбалансированы практически идеально, справляясь с главным минусом «четверок». Но, за баланс приходится жертвовать не менее важным размером. Поэтому, несмотря на лучшие тех.показатели, «шестерки» менее распространены в обычных автомобилях – коленвал очень длинный, стоимость изготовления слишком высока, размеры слишком большие.
Метод турбонаддува одноцилиндровых четырехтактных двигателей
Аннотация
В данной статье представлено технико-экономическое обоснование метода турбонаддува одноцилиндровых четырехтактных двигателей внутреннего сгорания. Турбонаддув обычно не используется в одноцилиндровых двигателях из-за несоответствия по времени между тем, когда турбонагнетатель приводится в действие во время такта выпуска, и тем, когда он может подавать воздух в цилиндр во время такта впуска. Предлагаемое решение включает воздушный конденсатор на стороне впуска двигателя между турбонагнетателем и впускными клапанами.Конденсатор действует как буфер и будет реализован как впускной коллектор нового типа с большим объемом, чем в традиционных системах. Чтобы воздушный конденсатор был практичным, его размер должен быть достаточно большим, чтобы поддерживать давление в турбонагнетателе во время такта впуска, вызывать минимальную турбо-задержку и значительно увеличивать плотность всасываемого воздуха. Создав модели нескольких потоков воздуха через систему двигателя с турбонаддувом, мы обнаружили, что оптимальный размер воздушного конденсатора в четыре-пять раз превышает мощность двигателя.Для конденсатора, рассчитанного на двигатель объемом один литр, время задержки составило приблизительно две секунды, что было бы приемлемым для приложений с медленным ускорением, таких как тракторы, или для устройств с устойчивым режимом, таких как генераторы. Было обнаружено, что увеличение плотности, которое может быть достигнуто в конденсаторе, по сравнению с воздухом при стандартной температуре и давлении окружающей среды, варьируется от пятидесяти процентов для адиабатического сжатия и отсутствия теплопередачи от конденсатора до восьмидесяти процентов для идеальной теплопередачи.Это увеличение плотности пропорционально, в первом порядке, ожидаемому увеличению мощности, которое может быть реализовано с помощью системы турбонагнетателя и воздушного конденсатора, применяемой к одноцилиндровому четырехтактному двигателю.
Отделение
Массачусетский Институт Технологий. Кафедра машиностроенияЖурнал
Том 3: 16-я Международная конференция по передовым автомобильным технологиям; 11-я Международная конференция по дизайнерскому образованию; 7-й рубеж в области биомедицинских устройств
Цитата
Бухман, Майкл Р., и Амос Г. Винтер. «Способ турбонаддува одноцилиндровых четырехтактных двигателей». Том 3: 16-я Международная конференция по передовым автомобильным технологиям; 11-я Международная конференция по дизайнерскому образованию; 7-й рубеж в области биомедицинских устройств (17 августа 2014 г.).
Версия: Последняя рукопись автора
Термодинамическое и динамическое моделирование одноцилиндрового четырехтактного дизельного двигателя
https://doi.org/10.1016/j.apm.2015.10.046Получить права и контентОсновные характеристики
- •
Динамическая и термодинамическая модель Был разработан двигатель IC.
- •
Тепло, отдаваемое рабочему телу, моделировалось с помощью функции Гаусса.
- •
Движение шатуна моделировалось 2 уравнениями поступательного и 1 углового движения.
- •
Оптимизированы масса противовеса и его радиальное расстояние.
- •
Исследованы колебания частоты вращения коленчатого вала.
Abstract
В данном исследовании было проведено сопряженное термодинамическое и динамическое моделирование одноцилиндрового четырехтактного дизельного двигателя.Давление газа в баллоне рассчитывалось по первому закону термодинамики и общему уравнению состояния идеальных газов. Изменение тепла, отдаваемого рабочему телу в процессе нагрева термодинамического цикла, моделировалось с помощью функции Гаусса. Динамическая модель двигателя состоит из уравнений движения поршня, шатуна и коленчатого вала. Движение шатуна моделировалось 2 уравнениями поступательного и 1 углового движения. При выводе уравнений движения использовался метод Ньютона.Уравнения движения включают гидродинамическое трение и трение неровностей, а также силы газа. Путем подготовки профиля скорости тепловыделения, соответствующего приведенным в литературе, были исследованы тепловой КПД, детонация, вибрация, крутящий момент и характеристики выбросов двигателя. Оптимизированы масса противовеса и его радиальное расстояние. При полной нагрузке, если период тепловыделения начинается вскоре после прохождения поршнем верхней мертвой точки, скорость повышения давления становится критической с точки зрения детонации, однако некоторое замедление периода тепловыделения позволяет избежать детонации без вызывая значительную потерю теплового КПД.Если дросселирование составляет более 70%, температура дымовых газов достаточно высока для образования NOx. При полной нагрузке вибрационный крутящий момент, действующий на коленчатый вал, был определен как примерно в 17 раз превышающий крутящий момент двигателя.
Ключевые слова
Четырехтактный дизельный двигатель
Тепловыделение
Термодинамическое моделирование
Динамическое моделирование
Колебания скорости
Рекомендуемые статьи Цитирующие статьи (0)
Авторские права © 2015 Опубликовано Elsevier Inc.
Рекомендуемые статьи
Ссылки на статьи
Метод турбонаддува одноцилиндровых четырехтактных двигателей на JSTOR
АбстрактныйТурбонаддув может обеспечить недорогое средство увеличения выходной мощности и экономии топлива двигателя внутреннего сгорания. В настоящее время турбонаддув является обычным явлением в многоцилиндровых двигателях, но из-за непостоянного характера потока всасываемого воздуха он обычно не используется в одноцилиндровых двигателях.В этой статье мы предлагаем новый метод турбонаддува одноцилиндровых четырехтактных двигателей. Наш метод добавляет воздушный конденсатор — дополнительный объем, последовательно соединенный с впускным коллектором, между компрессором турбонагнетателя и впуском двигателя — для буферизации выходной мощности компрессора турбонагнетателя и подачи сжатого воздуха во время такта впуска. Мы проанализировали теоретическую осуществимость турбонаддува на основе воздушного конденсатора для одноцилиндрового двигателя, уделяя особое внимание времени заполнения, оптимальному объему, увеличению плотности и тепловым эффектам из-за адиабатического сжатия всасываемого воздуха.Наша вычислительная модель воздушного потока через впускной коллектор предсказывала увеличение плотности всасываемого воздуха на 37-60% в зависимости от скорости теплопередачи; эта плотность пропорциональна увеличению мощности. Была построена экспериментальная установка для измерения пиковой мощности, увеличения плотности и давления в коллекторе. Благодаря воздушному конденсатору, в семь раз превышающему мощность двигателя, наша установка могла производить на 29% больше мощности по сравнению с естественным всасыванием. Эти результаты подтверждают, что наш подход является относительно простым средством увеличения удельной мощности в одноцилиндровых двигателях.Таким образом, турбонаддув одноцилиндровых двигателей с использованием воздушного конденсатора может обеспечить более дешевую альтернативу для увеличения выходной мощности дизельного оборудования, такого как тракторы, генераторы и водяные насосы, по сравнению с добавлением дополнительного цилиндра.
Информация о журналеМеждународный журнал двигателей внутреннего сгорания (SAE International Journal of Engines) — это научный рецензируемый исследовательский журнал, посвященный науке и технике по двигателям внутреннего сгорания. Журнал освещает инновационные и архивные технические отчеты по всем аспектам разработки двигателей внутреннего сгорания, включая исследования, проектирование, анализ, контроль и выбросы.Стремясь стать всемирно признанным исчерпывающим источником для исследователей и инженеров в области исследований и разработок двигателей, журнал публикует только те технические отчеты, которые считаются имеющими значительное и долгосрочное влияние на разработку и конструкцию двигателей.
Информация об издателеSAE International — это глобальная ассоциация, объединяющая более 128 000 инженеров и технических экспертов в аэрокосмической, автомобильной и коммерческой промышленности.Основные направления деятельности SAE International — обучение на протяжении всей жизни и разработка добровольных согласованных стандартов. Благотворительным подразделением SAE International является SAE Foundation, который поддерживает множество программ, в том числе A World In Motion® и Collegiate Design Series.
Оптимизация двухтактного термодинамического цикла одноцилиндрового генератора с свободнопоршневым двигателем
Генератор со свободнопоршневым двигателем (FPEG) — это новый тип преобразователя энергии, в котором отсутствует коленчатый вал и шатунный механизм.Для достижения эффективного преобразования энергии в данной статье исследуется термодинамическая оптимизация двухтактных двигателей-генераторов с одноцилиндровым двигателем со свободным поршнем. Во-первых, подробно представлены компоненты, четырехтактный термодинамический цикл, двухтактный термодинамический цикл и прототип системы FPEG. Одномерная имитационная модель потока FPEG создается на основе уравнения газовой динамики, функции горения Вебера и функции теплопередачи, а затем модель подтверждается данными, протестированными на прототипе системы.Согласно результатам экспериментов с четырехтактным двигателем FPEG, эффективная мощность 4,75 кВт и пиковое давление 21,02 бар. Затем двухтактный термодинамический цикл моделируется и сравнивается при различных управляющих параметрах давления всасываемого воздуха, времени впрыска, момента зажигания и фаз газораспределения с помощью имитационной модели. Оптимизированные результаты показывают, что указанный тепловой КПД 27,6%, указанная мощность 6,7 кВт и максимальная рабочая частота 25 Гц могут быть достигнуты системой-прототипом при использовании двухтактного термодинамического цикла.
1. Введение
Заботы об энергосбережении и сокращении выбросов привели к изменениям в конструкции двигателя внутреннего сгорания (ДВС), одним из способов решения этой проблемы является использование двигателя со свободным поршнем [1–3]. Генератор со свободнопоршневым двигателем (FPEG) — это новый тип силовой установки, который привлек внимание исследователей во всем мире благодаря своим особым преимуществам с точки зрения высокой эффективности и низкого уровня выбросов.
По сравнению с традиционной системой генератора, это новое устройство преобразования энергии демонстрирует такие преимущества, как структурная простота, низкая стоимость производства и высокая мощность.Самая большая разница в конструкции — отсутствие коленчатого вала и маховика двигателя, а поршень и движитель линейного генератора соединены напрямую. Таким образом, свободный поршень может колебаться между двумя своими конечными точками и подвергаться влиянию всех сил, действующих на него. Без ограничения механизма шатуна трение движения поршня значительно снизилось, и конструкция FPEG стала более компактной [4, 5]. Генератор со свободнопоршневым двигателем может работать с несколькими видами топлива за счет легкого управления степенью сжатия, а указанная мощность и эффективность системы могут быть улучшены за счет оптимизации термодинамического цикла.
Исследования показали, что большинство двухтактных свободнопоршневых двигателей имеют схожий принцип работы. На основе теоретического анализа двухтактный двигатель достиг высокой удельной мощности и теплового КПД. В последние десятилетия Кларк и другие исследователи из Университета Западной Вирджинии провели большую исследовательскую работу по генератору двигателя со свободным поршнем. В 1998 году они разработали первый прототип системы генератора со свободнопоршневым двигателем, который представляет собой двухпоршневую конструкцию с искровым зажиганием и диаметром цилиндра 36.5 мм и максимальный ход поршня 50 мм [6, 7]. Сообщается, что прототип работал на частоте 23,1 Гц, максимальная выходная электрическая мощность составляет 316 Вт, а эффективность преобразования энергии составляет 11%. Однако выходная мощность и эффективность преобразования энергии значительно ниже результатов моделирования 50%.
Суат Саридемир и Фуат Кара из Университета Дюздже разработали модель искусственной нейронной сети (ИНС) для прогнозирования крутящего момента и мощности бета типа двигатель Стирлинга.После сравнения предсказанных клапанов модели с экспериментальными результатами, валидность созданной модели ИНС подтверждается. Они также использовали метод множественной регрессии для оценки предсказательной способности модели, и результаты показали, что ИНС является надежной моделью для предсказания крутящего момента и мощности двигателя Стирлинга бета-типа [8, 9].
Исследователи из Toyota Central R&D Labs Inc также разработали линейный генератор с однопоршневым двигателем со свободным поршнем (FPEG), который состоял из интегрированной камеры сгорания, камеры с газовой пружиной и линейного генератора.FPEG принял двухтактный рабочий режим, и он мог работать непрерывно в течение многих часов. После проведения эксперимента по выработке электроэнергии на прототипе системы FPEG результаты показали, что она может обеспечивать надежную и стабильную работу во всех режимах пуска, движения и стрельбы [10].
В [11, 12], Xu et al. в Нанкинском университете науки и технологий в 2010 году разработали новый одноцилиндровый четырехтактный прототип FPEG. В качестве линейного генератора внутреннего сгорания прототип системы обеспечивает непрерывную и стабильную работу четырехтактного рабочего цикла.Он оснащен электромагнитным клапаном для завершения процесса продувки. Кроме того, был получен максимальный крутящий момент 58 Нм при максимальной выходной мощности 10 кВт. На основе этого Сюй предложил улучшенный метод, который оптимизировал двухтактный термодинамический цикл FPEG для достижения термодинамических характеристик высокой эффективности и экономии энергии.
В этой статье, чтобы достичь характеристики более высокой мощности и оптимизировать термодинамические характеристики двухтактного двигателя, создана экспериментальная система FPEG и внесены соответствующие изменения.В следующих разделах представлены компоненты и принцип работы FPEG с возвратной средней пружиной. В разделе 3 построена одномерная модель потока FPEG, которая проверена с помощью четырехтактного эксперимента. Затем моделируется двухтактный термодинамический цикл FPEG при различных влияющих факторах, а результаты моделирования сравниваются и подробно анализируются. Оптимизированные результаты помогут нам понять, как двухтактный термодинамический цикл FPEG влияет на указанную мощность и эффективность системы.
2. Структура и принцип работы FPEG
2.1. Базовая структура FPEG
Элементарная структура генератора со свободнопоршневым двигателем показана на рисунке 1. Основными частями FPEG являются бензиновый двигатель, обратная пружина и линейный электрогенератор. Система имеет только одну камеру сгорания, отбойное устройство и возвратно-поступательный движущийся компонент. Камера сгорания представляет собой одноцилиндровый свободнопоршневой двигатель, оборудованный электромагнитными клапанами, форсункой и свечой зажигания.Между камерой сгорания и линейным электрогенератором установлена обратная пружина. Одиночный поршень и подвижная катушка линейного генератора соединены в один компактный компонент, как единый движитель FPEG. Свободный поршень будет свободно перемещаться между верхней мертвой точкой (ВМТ) и нижней мертвой точкой (НМТ), а его возвратно-поступательное движение определяется дисбалансом всех сил, действующих на движитель [11, 13].
Свободнопоршневой двигатель будет работать с захваченной топливной смесью и зажиганием свечи зажигания.Поскольку эффективность генерации линейного электрического генератора значительно снижается в условиях низкой скорости, задняя пружина толкает поршень вверх для обеспечения непрерывной работы. Суперконденсатор используется для включения выработки электроэнергии генератором. Преобразователь мощности используется для согласования линейного генератора и накопления электроэнергии [14, 15]. Электронный блок управления (ЭБУ) может управлять системой для регулировки характеристик двигателя после получения сигналов давления в цилиндре, смещения поршня, тока якоря и других.Кроме того, продувка осуществляется электромагнитными клапанами, которые закреплены на головке блока цилиндров. В полном рабочем цикле линейный генератор работает в моторном режиме только на такте впуска, тогда как остальные такты работают в генераторном режиме.
В системе FPEG существует большая свобода в определении движения поршня. Рабочий цикл FPEG можно переключать, изменяя закон движения поршня. Таким образом, четырехтактный термодинамический цикл и двухтактный термодинамический цикл можно использовать для разных рабочих циклов ГПЭГ.
2.2. Термодинамический цикл FPEG
Четырехтактные двигатели со свободным поршнем имеют относительно большую экономию энергии и более высокий КПД, чем двухтактные двигатели со свободным поршнем, но двухтактные имеют преимущества удельной мощности. При той же рабочей частоте число двухтактных рабочих циклов в два раза больше, чем у четырехтактных, а время газообмена короче, чем у четырехтактных [16]. Четырехтактные и двухтактные термодинамические циклы FPEG представлены для оптимизации термодинамических характеристик.
Как видно из рисунка 2, замечательными характеристиками четырехтактного термодинамического цикла являются короткие такты впуска и сжатия, которые дополняются сжатым всасываемым воздухом [17]. Во время такта впуска линейный генератор работает как электрическая машина, заставляя поршневой узел двигаться вниз от точки к точке для поглощения топливной смеси. Он может регулировать давление на входе или температуру воздуха, чтобы увеличить поток смеси и улучшить процесс сгорания.Когда поршень движется в ВМТ и приближается к этой точке, топливная смесь сжимается в такте сжатия. Во время такта расширения зажигание свечи зажигания является начальной точкой процесса сгорания, и в этой точке он заканчивается. После этого поршень движется снизу вверх и достигает точки, в которой вытесняется сгоревший газ. Таким образом, такты расширения и выпуска длиннее, чем такты впуска и сжатия, и можно достичь полного сгорания для увеличения удельной мощности.
Как показано на рисунке 3, двухтактный термодинамический цикл характеризуется коротким ходом сжатия и расширения, который дополняется регулировкой угла опережения искры для реализации более полного сгорания. Более длинное перекрытие клапанов может увеличить продолжительность открытия клапана на тактах впуска и выпуска. Прежде чем поршень достигнет точки, свеча зажигания воспламеняет топливную смесь, и поршень движется вверх, чтобы совершить такт сжатия. Во время такта выпуска поршень перемещается от точки к точке.Затем поршень перемещается от точки к точке на такте впуска. Когда поршень перемещается из точки в точку, перекрытие клапанов обеспечивает одновременное открытие впускного и выпускного клапанов для поглощения топливной смеси и удаления остаточного газа. Это может увеличить объемный КПД и улучшить процесс газообмена. Кроме того, опережающее зажигание может обеспечить достаточное сгорание для высвобождения большего количества энергии.
2.3. Прототип и экспериментальная система
Структура прототипа FPEG показана на рисунке 4.Прототип представляет собой однопоршневой четырехтактный бензиновый двигатель, оснащенный четырьмя электромагнитными клапанами. В нем используется метод охлаждения с водяным охлаждением, управление впрыском топлива с обратной связью и система искрового зажигания с электронным управлением. По сравнению с конструктивными требованиями FPEG характеристики прототипа очень согласованы и облегчают переоборудование. В таблице 1 перечислены основные параметры конструкции прототипа.
4.Проверка моделиМоделируется траектория свободного поршня FPEG во время четырехтактного рабочего цикла. Как показано на рисунке 8, рабочий период четырехтактного двигателя со свободным поршнем составляет около 100 мс. Понятно, что перемещение поршня асимметрично, такты впуска и сжатия короче тактов расширения и выпуска. Степень расширения больше, чем степень сжатия, и более длительное расширение и выхлоп полезны для достижения полного расширения и уменьшения остаточного газа.Следовательно, характеристики FPEG отличаются от характеристик обычного двигателя, и он имеет большое преимущество с точки зрения топливной экономичности и образования выбросов. В системе FPEG завершен четырехтактный эксперимент для проверки имитационной модели. Как видно из рисунка 9, он сравнивает давление в цилиндре данных испытаний с результатами моделирования во время четырехтактного рабочего цикла, которые получают датчиком давления в цилиндре. По сравнению с экспериментальными результатами, кривые давления в цилиндре испытания и моделирования совпадают; максимальное отклонение изменения давления в цилиндре — 5.2%, а среднее отклонение составляет 1,5%. В таблице 3 приведены результаты сравнения производительности FPEG. Таким образом, результаты моделирования соответствуют требованиям точности, и мы полагаем, что имитационная модель является точной моделью FPEG. Кроме того, в системе FPEG время начала сгорания составляет -3,1 мс, а продолжительность сгорания составляет 6,4 мс, что определяется результатами экспериментов с четырехтактным двигателем.
5.Оптимизация двухтактного термодинамического циклаСмоделированная кривая движения свободного поршня во время двухтактного рабочего цикла показана на рисунке 10. Как видно, рабочий период двухтактного двигателя со свободным поршнем составляет около 43 мс. . На основе перекрытия клапанов и опережающего зажигания получается длинный такт впуска и выпуска при коротком такте сжатия и расширения. Эта характеристика показывает, что двухтактный термодинамический цикл ГПЭГ может быть оптимизирован путем изменения параметров управления газообменом и горением. В этом разделе проверенный режим используется для моделирования двухтактного термодинамического цикла FPEG. При неизменных других параметрах управления модель моделируется при различных давлениях всасываемого воздуха, времени впрыска, времени зажигания, времени впускных клапанов и выпускных клапанов. Затем анализируется влияние термодинамического цикла и оптимизируются термодинамические характеристики FPEG. 5.1. Влияние повышения давления на впускеИсследования показывают, что улучшение давления всасываемого воздуха может обеспечить хорошее состояние сгорания.Модель FPEG моделируется при разном давлении всасываемого воздуха, а кривые изменения выглядят следующим образом. Указанная мощность, коэффициент остаточного газа, указанный удельный расход топлива (ISFC) и расход на всасывании являются основными оценочными показателями, и их можно найти в результатах моделирования. В соответствии с диапазоном давления фактического турбонагнетателя диапазон давления на впуске составляет от 1,0 бар до 1,4 бара. На рис. 11 показано, что указанная мощность и расход на впуске постепенно увеличиваются, коэффициент остаточного газа постепенно снижается в диапазоне давления на впуске, а четыре оценочных индекса изменяются более явно в диапазоне 1.0 бар ~ 1,1 бар. Результаты показывают, что двухтактный двигатель со свободным поршнем не может обеспечить достаточный поток всасываемого воздуха для завершения рабочего цикла при нормальном давлении всасываемого воздуха. Это связано с тем, что при повышении давления всасываемого воздуха в цилиндр может поступать больше топливной смеси. Кроме того, более высокое давление всасываемого воздуха обеспечивало большое давление сжатия. Следовательно, увеличение давления всасываемого воздуха приводит к улучшению указанной мощности и экономии топлива. 5.2. Влияние времени впрыскаВ системе сгорания одномерной имитационной модели параметры времени впрыска могут быть изменены, чтобы имитировать его влияние на производительность FPEG.Как видно, на рисунке 12 показано влияние разного времени впрыска. Среднее эффективное давление (MEP) — это эффективная мощность, генерируемая рабочим объемом на единицу цилиндра, и это важный показатель для оценки энергетических характеристик. Диапазон времени впрыска разделен на три части: 0 мс ~ 7,2 мс, 7,2 мс ~ 14,4 мс и 14,4 ~ 21,6 мс. Во-первых, указанная мощность и MEP поддерживаются на низком уровне колебаний, а коэффициент остаточного газа остается неизменным на более высоком уровне.Поскольку процесс впрыска топлива завершился до открытия впускного клапана, большая часть топливной смеси не попала в камеру сгорания. Во-вторых, время впрыска и процесс всасывания согласованы, а термодинамические характеристики FPEG значительно улучшились, что позволило улучшить указанную мощность и эффективность вентиляции. Наконец, по сравнению с первой частью, все значения производительности аналогичны в диапазоне от 14,4 мс до 21,6 мс. Это связано с тем, что время впрыска оставляет позади процесс впуска, и часть топливной смеси не может быть использована в процессе сгорания.Как видно, оптимальные характеристики двигателя достигаются в момент 14,4 мс. 5.3. Влияние момента зажиганияЭффект опережающего зажигания заключается в том, чтобы начать горение перед тем, как поршень переместится в ВМТ. Когда поршень движется в ВМТ и входит в такт расширения, смесь рабочего тела полностью сгорает и выделяет больше энергии. Следовательно, диапазон времени зажигания составляет от -5,4 мс до 0 мс, а результаты моделирования показаны на рисунке 13. В диапазоне от -3 мс до -5.4 мс, указанная мощность и MEP постепенно уменьшаются, а ISCF постепенно увеличивается. Это происходит из-за преждевременного воспламенения смеси и расширения горящего газа. Часть энергии мешает поршню двигаться вверх до ВМТ. Затем указанная мощность и MEP постепенно уменьшались с разным временем зажигания, а ISFC постепенно увеличивалась в диапазоне от -3 мс до 0 мс. Из-за задержки времени воспламенения поршень движется вниз до того, как смесь начнет гореть. Это приводит к увеличению объема цилиндра и снижению давления сгорания, а термодинамические характеристики FPEG находятся в состоянии высокого расхода топлива и низкой выходной мощности.Кроме того, оптимальные характеристики двигателя были достигнуты при −3 мс. 5.4. Влияние времени впускного клапанаПри условии сохранения неизменными высоты подъема клапана и продолжительности открытия клапана, модель FPEG моделируется при разном времени открытия впускного клапана. Как показано на рисунке 14, при времени открытия впуска от 4,8 мс до 16,8 мс, указанная мощность и расход на всасывании показывают общую тенденцию сначала к увеличению, затем к падению и получают максимальное значение на уровне 10,8 мс. Между тем характеристики коэффициента остаточного газа и ISFC противоречат закону изменения всасываемого потока. Когда время открытия впуска находится в диапазоне от 4,8 до 10,8 мс, впускной и выпускной клапаны открываются одновременно. Он создает продувочный поток в цилиндре, что делает процесс газообмена более полным и снижает количество остаточного газа. После этого время открытия впускного клапана опаздывает, и часть топливной смеси не попадает в цилиндр, поэтому процесс сгорания оказывается недостаточным, а термодинамические характеристики значительно ухудшаются. Из-за фиксированного времени работы клапана оптимальный период открытия впускного клапана от 10.От 8 мс до 24,5 мс. 5.5. Влияние времени работы выпускного клапанаКак показано на Рисунке 15, при изменении времени открытия выпускного клапана с 1,2 мс на 10,8 мс указанная мощность и расход выхлопных газов показывают общую тенденцию сначала к увеличению, а затем к снижению. Поток выхлопных газов увеличивался в диапазоне от 1,2 мс до 3,6 мс, а затем постепенно уменьшался, достигая максимального значения на 3,6 мс. Указанная мощность, коэффициент остаточного газа и ISCF улучшились с увеличением потока выхлопных газов. Результаты показывают, что преждевременное открытие выпускного клапана приводит к недостаточному процессу сгорания и снижению мощности и экономии топлива FPEG.При задержке открытия выпускного клапана остаточный газ в цилиндре не может быть удален полностью, и это повлияет на следующий цикл сгорания. Следовательно, правильное время открытия выпускного клапана значительно улучшает производительность FPEG, а оптимальный период открытия выпускного клапана составляет от 3,6 мс до 23,1 мс. 5.6. Оптимизированная производительность FPEGВ соответствии с приведенными выше результатами моделирования мы внесли корректировки в управляющие параметры модели FPEG.Настраиваемые параметры включают время зажигания, время впрыска и время открытия клапана. Уточненная модель моделировалась на рабочей частоте 25 Гц, а именно, 25 возвратно-поступательных циклов в секунду. Оптимизированные результаты показывают, что указанный тепловой КПД составляет около 27,6%, указанная мощность составляет 6,7 кВт, а ISFC составляет 481,6 г / кВтч. Конкретные результаты термодинамических характеристик FPEG для двухтактного термодинамического цикла показаны в таблице 4.
6.ВыводыВ работе представлена оптимизация термодинамических характеристик двухтактного одноцилиндрового FPEG. Создана комплексная одномерная модель потока FPEG, и точность модели подтверждена экспериментальными результатами, протестированными на прототипе FPEG. Результаты экспериментов с четырехтактным двигателем показали эффективную мощность 4,75 кВт и максимальное давление 21,02 бар. На этой основе был смоделирован и оптимизирован двухтактный термодинамический цикл.Результаты моделирования показывают, что указанный тепловой КПД FPEG составляет около 27,6%, а указанная мощность 6,7 кВт может быть достигнута на рабочей частоте 25 Гц. Из этих результатов мы заключаем, что термодинамические характеристики высокой эффективности и энергосбережения для системы FPEG могут быть значительно улучшены за счет оптимизации двухтактного термодинамического цикла. В будущем будет проведено экспериментальное испытание для проверки результатов моделирования двухтактной термодинамической оптимизации цикла в этой статье.Кроме того, двухтактный генератор с свободнопоршневым двигателем будет исследован с помощью многоцелевой интеллектуальной оптимизации для получения более высокой выходной мощности и эффективного КПД. Доступность данныхДанные, использованные для подтверждения выводов этого исследования, можно получить у соответствующего автора по запросу. Конфликт интересовАвторы заявляют об отсутствии конфликта интересов в отношении публикации этой статьи. БлагодарностиАвторы выражают признательность Национальному фонду естественных наук Китая (грант №51875290). training.gov.au — AURTTE007 — Разборка и сборка одноцилиндровых четырехтактных бензиновых двигателейAURTTE007 — Разборка и сборка одноцилиндровых четырехтактных бензиновых двигателей (выпуск 1)СводкаРекомендация по использованию: Текущий Релизов:
Сопутствующие тома: Единица компетенции Требования к оценкеУчебные пакеты, которые включают этот модульКвалификации, которые включают этот модульКлассификацииИстория классификации
|