Особенности дизельного двигателя: Как правильно эксплуатировать дизельный автомобиль зимой — Российская газета

Содержание

Семь фактов о дизеле, о которых вы наверняка не знали — Российская газета

Дизельные моторы долгое время являлись на российском легковом транспорте экзотикой, однако сегодня они набирают у нас популярность. «РГ» собрала главные факты о дизелях, чтобы потенциальным покупателям было легче сделать выбор в пользу машин, потребляющих «тяжелое топливо».

Откуда название

Далеко не все в курсе, что дизельные моторы называются так в честь изобретателя такой установки, немецкого инженера французского происхождения Рудольфа Дизеля. В 1892 году Дизель подает заявку на получение патента на «новый рациональный тепловой двигатель» и начинает разработки на Аугсбургском машиностроительном заводе.

Первый функционирующий двигатель с самовоспламенением топлива был создан Дизелем здесь в 1897 году. Воспламенение горючего производилось здесь не искрой от свечи зажигания, а за счет высокой температуры, которой воздух достигал в результате его сжатия поршнем в цилиндре.

Мощность первого агрегата с увеличенной степенью сжатия составила 20 л. с. при 172 оборотах в минуту при КПД 26,2%, что намного превосходило существующие двигатели Отто. В 1908 году дебютировал первый грузовой автомобиль на дизельном двигателе, а в 1936 году был впервые запущен в серию легковой дизельный автомобиль — Mercedes-Benz-260D. Первоначально в качестве топлива использовали растительные масла, а также легкие нефтепродукты.

2. Масло в дизелях меняют чаще, чем в бензиновом моторах

При работе дизельного двигателя из-за особенностей химического состава дизтоплива образуется значительно большее количество сажи, чем в случае с бензиновым мотором.

В итоге масло здесь быстрее загрязняется сажевыми частицами. Этот осадок лишь частично нейтрализуется большим количеством различных присадок, которые изнашиваются быстрее, чем в бензиновых моторах.

Дизельные моторы требовательнее к качеству моторного масла, и у них особые пакеты присадок. В среднем автопроизводители рекомендуют производить замену масла в дизельном моторе на 3 тыс. — 5 тыс. км раньше, чем в бензиновых двигателях. Скажем, если большинство европейских брендов рекомендуют обновить лубрикант в бензиновых «легковушках» на 15 тыс. км, то в случае с дизельным транспортом речь идет о 10 тыс. км, причем при тепличных условиях езды в режиме город-трасса.

3. Солярка — сезонное топливо

Важной особенностью дизельного топлива является его сезонность. С наступлением холодов в баки дизельных машин следует заливать зимнюю солярку и соответственно с потеплением — летнюю. В СССР в соответствии с ГОСТом дизтопливо делилось на летнее (не ниже 0°С), зимнее (не ниже -20°С) и арктическое (до -50°С).

С 2005 г. в РФ начал действовать новый госстандарт. Согласно ему, для районов с умеренным климатом солярка разделялась по сортам: А Сорт (+5 °С), B Сорт (0 °С), C Сорт (-5 °С), D Сорт (-10 °С), E Сорт (-15 °С), F Сорт (-20 °С).

Для районов с экстремально холодным климатом дизтопливо подразделяют на классы: 0 Класс (-20 °С), 1 Класс (-26 °С), 2 Класс (-32 °С), 3 Класс (-38 °С), 4 Класс (-44 °С). И, наконец, в 2011 г. в рамках Технического регламента Таможенного союза Беларуси, Казахстана и России приняты новые обозначения марок дизельного топлива. Л — летнее (температура фильтруемости не определяется), Е — межсезонное (-15 °С), З — зимнее (-20°С), А — арктическое (-38°С). Позднее появились разновидности арктической солярки: ДТ-А-К3 (К4, К5) до -44 °С, ДТ-А-К3 (К4, К5) до -48 °С и ДТ-А-К3 (К4, К5) до -52 °С.

4. Горит хуже, чем бензин, но дает больше энергии

В пожарном отношении дизельное топливо менее опасно, чем бензин по причине более низкой испаряемости. А именно — температура вспышки паров дизельного топлива составляет от 52 до 96 ºС.

Для сравнения: для бензина это значение составляет -43 ºС. Однако при этом вещества, имеющие температуру вспышки паров ниже 61 ºС, относятся к легковоспламеняющимся, поэтому и бензин, и дизтопливо — в их числе.

Тем не менее, как известно, одним из достоинств советских танков Т-34 было использование дизтоплива вместо бензина, что существенно снижало их пожароопасность. В то же время у солярки выше полнота сгорания. Дизтопливо при сгорании дает на 15% больше энергии, чем бензин. Иными словами, дизельному мотору не приходится «подливать» горючего для создания идеальной смеси, как это происходит с бензиновыми ДВС. Дизель впрыскивает топлива ровно столько, сколько требуется на преодоление сил трения. На практике это дает уменьшение расхода топлива на холостом ходу до трех раз по отношению к бензину.

5. Дизелю свечи не нужны, но они есть

Топливная смесь в дизельном моторе воспламеняется и отдает энергию в тот момент, когда соединяется с воздухом, сжатым в цилиндрах под высоким давлением. Бензин же загорается и дает энергию в тот момент, когда к нему направляется искра от свечей.

Соответственно, в дизельном двигателе в теории можно было бы обойтись без свечей. Однако эти детали в агрегатах на тяжелом топливе все же применяются. Только речь идет не о свечах зажигания, а о свечах накаливания, нагревательных элементах, которые в считанные секунды раскаляют воздух вокруг себя до температуры до 1000 градусов и выше.

Благодаря им, к примеру, происходит запуск дизельного мотора, даже когда на улице холодно и агрегат остывший. Кстати, время прогрева первых свечей накаливания в 20-е годы прошлого века составляло нескончаемые 180 секунд. Современным свечам требуется для этого от 2 до 10 секунд. Скажем, свечи накаливания с керамическим стержнем осуществляют прогрев за 2 с и выдают максимальную температуру 1350 °C.

6. Турбодизель дороже бензинового ДВС в обслуживании

Как мы уже упоминали, моторное масло на автомобилях с дизелями приходится менять чаще, чем на бензиновых машинах.

К тому же объем масла для заливки в дизельные агрегаты, как правило, больше, чем у бензиновых машин, а «расходники»(фильтры и свечи) дороже, да и топливный фильтр к тому же требует частой замены.

Однако дизельный мотор потребляет в среднем на 20% меньше топлива, чем бензиновый. Соответственно общие затраты (скажем, по итогам года) будут у дизельных машин либо сопоставимы с таковыми у бензинового транспорта.

Правда и то, что обслуживание уже не новых дизельных моторов может обойтись дороже, чем бензиновых, если речь пойдет о замене в частности двухмассового маховика, турбокомпрессора, инжекторов и т.д. С другой стороны, как правило, дизельные автомобили теряют в цене намного медленнее чем бензиновые аналоги.

7. Дизель вибронагруженный

Ввиду особенностей конструкции (прежде всего высокой степени сжатия, отсутствия классических свечей зажигания и меньшее, чем в бензиновых агрегатах, время, отведенное на смесеобразование и подрыв) шум от дизельного двигателя на холостых оборотах выше в сравнении с бензиновыми аналогами.

Кроме того, двигатели на солярке, как правило, отличаются более высокой в сравнению с бензиновыми моторами вибронагруженностью, которая, впрочем, уменьшается по мере прогрева дизельного агрегата. Впрочем, все зависит от класса автомобиля и его возраста.

Дорогие автомобили сегодня оснащают мощной виброшумоизоляцией, они имеют эффективные вибропоглощающие опоры силового агрегата и/или, к примеру, такое ноу-хау, как аккумуляторные топливные системы высокого давления (Common-rail), снижающие шум прежде всего за счет разделения одного импульса впрыска на несколько.

Правильная эксплуатация дизельного двигателя – важные моменты

Каждый водитель имеет свои соображения по поводу того, какой силовой агрегат на самом деле лучше. Одни считают, что малый объем приносит большое преимущество и дает экономию топлива. Другие полагают, что стоит покупать только бензиновый двигатель из-за его неприхотливости и универсальной эксплуатации. Третьи выбирают только объемистые дизели с турбиной для получения громадного удовольствия от прекрасной тяги. Давайте разберемся с тем, как стоит эксплуатировать дизельный силовой агрегат, который имеет ряд особенностей использования. Правильная эксплуатация может значительно продлить срок жизни агрегата и предоставить немало важных преимуществ. Если же вы пересядете с бензинового внедорожника на дизельный без смены привычек, то вашего силовому агрегату придется непросто.

Использования двигателей — это тема, которую можно обсуждать бесконечно. Основываясь на том, какие особенности поездки нарушают владельцы техники в сравнении с заводскими рекомендациями, можно очень просто подыскать целый ряд важных рекомендаций.

Вопрос этот касается заправки определенного топлива и заливания масла, сервисного обслуживания, а также ремонта. Есть определенные советы по практичной эксплуатации для понижения расхода и износа дизельного двигателя. Можно также вспомнить зимнее использование дизельного двигателя, которое должно быть очень аккуратным. Учитывая все представленные категории, мы можем сформировать несколько важных советов для владельцев дизельных силовых агрегатов. Стоит только сказать, что все сказанное ниже относится к современным турбированным дизелям, которые устанавливаются на массовые легковые машины.

Заправка и обслуживание — два важнейших момента использования

В первую очередь при покупке дизельного силового агрегата нужно выбрать нормальное место заправки. Речь идет не только о качественном бренде заправочной станции, но и о качестве солярки, что не всегда совпадает. Воспользуйтесь рекомендациями специалистов и проверьте солярку на качество с помощью нехитрых тестов. Топливо не должно замерзать, мутнеть и должно быть чистым в любых условиях.

Также стоит соблюдать рекомендации по обслуживанию:

  • для дизельного силового агрегата многие производители ставят несколько меньший межсервисный интервал, чем для бензиновых двигателей, но это не всегда именно так;
  • нужно на сто процентов соблюдать все условия обслуживания, которые выставлены производителем автомобиля, использовать только оригинальные материалы на сервисе;
  • при покупке неизвестного масла можно попрощаться с двигателем уже через 10-20 тысяч километров, фильтры также стоит покупать оригинальные и очень качественные;
  • особое внимание нужно уделить диагностике оборудования во время проведения сервиса — это поможет избежать самых неприятных неполадок, связанных с ТНВД, и головкой блока;
  • выполнять ремонт дизельного двигателя нужно сразу после того, как автомобиль показал неполадку, это поможет сохранить определенное качество и нужные свойства установки.

Если бензиновый двигатель иногда эксплуатируют успешно и с неполадками, то в дизельных силовых агрегатах такая идея не пройдет. Нужно использовать услуги профессионального сервиса для обслуживания Common Rail, турбины, ТНВД и головки блока цилиндров. Именно эти детали наиболее часто выходят из строя и доставляют определенные неприятности в процессе эксплуатации. Поломка может полностью вывести агрегат из строя.

Как ездить на дизельном двигателе с турбиной современного типа?

Актуальные силовые агрегаты на тяжелом топливе не слишком сильно отличаются от бензиновых двигателей. Вопрос качества поездки может оказаться весьма серьезным, поскольку неправильная эксплуатация приводит к ряду проблем. Нужно помнить основные рекомендации, а также почитать особенности и индивидуальные советы в инструкции по эксплуатации вашего автомобиля. Базовые рекомендации для таких двигателей следующие:

  • используйте высокий крутящий момент при низком показателе оборотов — не раскручивайте дизельный двигатель до высоких показателей оборотов силового агрегата;
  • воспользуйтесь удобным ранним переключением передач и прекрасными тяговыми характеристиками автомобиля с дизельным двигателем, это поможет получить комфорт;
  • не перегревайте агрегат, длительная работа на повышенных оборотах или эксплуатация на бездорожье в срединном режиме выводит из строя ТНВД и прочие важные модули;
  • не стоит гонять на дизельной машине — вы покупаете автомобиль для комфорта и низкого расхода, поэтому используйте все важные преимущества транспорта с такими чертами;
  • в городе вполне возможна поездка на скорости 60-70 километров в час с использованием последней передачи — это один из любимых режимов работы дизельного агрегата.

Нужно понимать, что дизель имеет совершенно иную структуру, нежели привычный нам бензиновый двигатель. Есть ряд преимуществ, но и недостатки имеются. Поэтому всегда нужно изучать рекомендации производителя по использованию автомобиля, иначе можно попасть в неприятную ситуацию. Используйте наиболее качественные решения поездки и всегда стремитесь соблюдать рекомендации завода. Это поможет сохранит работоспособность вашей машины.

В чем важные преимущества дизельного двигателя?

Силовой агрегат дизельного типа известен тем, что кушает меньше топлива, чем бензиновый собрат с подобными характеристиками мощности. Это действительно так, но силовой агрегат дизельного типа является одним из растратчиков бюджета на сервисе, он требует большего количества денег для выполнения всех поставленных задач. Поэтому стоит выделить такие чистые и неоспоримые преимущества силового агрегата на тяжелом топливе:

  • возможность раннего переключения передач, очень хороший крутящий момент, который подхватывает КПП в любом режиме и прекрасно едет даже в неудачно выбранном положении;
  • очень высокие показатели тяги непосредственно в процессе разгона, то есть на низких оборотах возникает самый высокий показатель оптимальной полезной мощности агрегата;
  • сниженный расход топлива в сравнении с бензином выравнивает стоимость эксплуатации силового агрегата на тяжелом топливе, так что он не обойдется вам намного дороже;
  • срок эксплуатации дизеля при соблюдении всех важных рекомендаций будет достаточно высоким, с аппаратом не возникает никаких проблем, многие доезжают до 500 000 км;
  • экологическая чистота выбросов намного лучше, чем у бензиновых вариантов, отсутствие угарный газ, а вот твердые частицы есть, и часто они превышают норму для авто такого класса.

Современные разработки силовых агрегатов становятся все более утонченными и требовательными. Поэтому стоит внимательно следить за каждым обновлением и перед покупкой изучать двигатель, информацию и отзывы о нем. Один и тот самый агрегат в разных поколениях автомобилей от производителя может иметь совершенно разные варианты эксплуатации. И в данном случае можно получить действительно разочарование при покупке.

Как эксплуатировать дизельный двигатель зимой?

Зимняя эксплуатация силового агрегата с дизельным топливом происходит несколько сложнее. Если бензин не застывает вообще в принципе, то температура помутнения дизельного топлива составляет -25 градусов Цельсия. Температура замерзания уже при -35 градусах исключает эксплуатацию авто в таких условия. Впрочем, сегодня есть солярка с присадками, которая без проблем используется в любых условиях. Есть ряд осторожных моментов:

  • зимой в дизельном двигателе неплохо было бы установить турботаймер, который продолжал бы медленно снижать температуру двигателя после поездки, когда вы уже вышли из авто;
  • также следует выбирать зимнее топливо на заправке, выбрав изначально нормальную заправочную станцию, на которой вы не зальете в бак некачественную жидкость;
  • можно также использовать ряд присадок для снижения температуру кристаллизации топлива, когда залитое в бак горючее превращается в гелеобразную массу;
  • после превращения солярки в гель придется везти машину на сервис, причем на эвакуаторе, чтобы вычистить топливные элементы и шланги для дальнейшего использования.

По этим причинам дизельные машины в северных условиях — это не самый удачный вариант. В средней полосе России такие авто вполне приемлемы и могут выполнять свои функции прекрасно. На юге вообще не возникает проблем с их эксплуатацией. Тем не менее, нужно учитывать ряд особенностей по использованию топлива и качеству сервисного обслуживания вашего авто. Предлагаем посмотреть небольшое видео про особенности дизельного автомобиля:

Подводим итоги

Есть ли смысл покупки дизельного автомобиля? В экономическом плане этого смысла практически нет. Но в плане поездки, ваши условия действительно серьезно поменяются.

Вы познакомитесь с новой технологией, которая полностью открывает новое восприятие автомобильного транспорта. Есть ряд положительных и ряд отрицательных факторов использования такого транспорта. Но зачастую любители дизелей утверждают, что плюсы значительно превосходят минусы. Конечно, все это очень условно. Вы можете приобрести дизель и остаться крайне недовольным ситуацией при первой поломке зимой. Но помните, что качество эксплуатации напрямую зависит от вас.

Также следует помнить о заправке, которая может быт нормальной и ужасной. Если бензиновый агрегат от плохой заправки просто повысит расход, то дизельное топливо может уничтожить ряд дорогостоящих элементов в машине. Поэтому в Европе, к примеру, эксплуатировать дизельные агрегаты непроблематично. С другой стороны, всегда есть ряд сложностей во владении автомобилем с таким агрегатом. Так что если вы боитесь этих сложностей, лучше выбирайте бензиновую машину. Если же хотите попробовать нечто новое, смело покупайте турбодизель.

А какой двигатель вы бы предпочли для личной эксплуатации?

Плюсы и минусы дизельного двигателя

Ни для кого не секрет, что на территории СНГ транспортные средства с дизельным двигателем зачастую ассоциируются с тяжелыми грузовиками, спецтехникой, автобусами и коммерческими автомобилями. Что касается легковых авто, дизель на таких машинах скорее редкость, чем норма.

При этом общемировые тенденции демонстрируют неуклонно растущую популярность данного типа ДВС. Более того, в развитых странах наблюдается активное вытеснение привычных бензиновых моторов дизельными аналогами.

Вполне очевидно, что для этого есть достаточно весомые основания, которые склоняют расчетливых иностранцев к покупке именно дизельной машины. В этой статье мы рассмотрим основные плюсы и минусы дизельного двигателя, а также поговорим о том, в каких случаях такой тип мотора можно или, напротив, нельзя считать оптимальным выбором.

Содержание статьи

Эволюция дизельного мотора

Как известно, на начальном этапе силовые агрегаты данного типа не могли достойно конкурировать с бензиновыми аналогами. Дело в том, что дизель долгое время оставался тяговитым и экономичным мотором, однако был тихоходным.

На практике это значит, что такой ДВС уверенно тянул с самых «низов», однако о высоких оборотах и, соответственно, больших скоростях речь не шла. При этом главным плюсом оставался низкий расход дизтоплива (солярки) и высокий крутящий момент на низких оборотах. Для коммерческого транспорта такое решение было оптимальным, однако не подходило для легковых ТС.

Если к этому добавить шум и повышенные вибрации, тогда становится понятно, почему дизельные моторы не были востребованы на легковых авто. Однако за последние 30 лет ситуация в корне изменилась. С учетом сокращения запасов нефти, ужесточения экологических стандартов и постоянного роста цен на топливо, на первый план вышел расход горючего.

Автопроизводители начали активно внедрять новейшие разработки, дизельный мотор получил модернизированную систему топливного впрыска и турбонаддув. В результате удалось практически полностью избавиться от шума и вибрации, а также приблизить дизель по целому ряду эксплуатационных показателей к бензиновым двигателям.

Плюсы дизельного двигателя

  • Итак, начнем с очевидных преимуществ. Расход горючего на дизеле, как правило, на 30-35% меньше, чем у бензиновых моторов.
  • Также дизельный двигатель отличается высоким показателем крутящего момента на низких оборотах, что позволяет добиться отличной разгонной динамики с места и уверенной тяги.
  • Дизельный агрегат более экологичный, так как полноценнее и эффективнее сжигает топливный заряд. В результате токсичность выхлопа современного дизельного ДВС значительно снижена.
  • Ресурс дизельного двигателя больше, чем у бензиновых моторов. На практике такой силовой агрегат при условии грамотного обслуживания способен пройти около 350-400 тыс. км, в то время как мотору на бензине капремонт может понадобиться уже к 200 тыс. км.
  • Отсутствие в конструкции дизеля системы зажигания исключает целый ряд проблем, которые присущи бензиновым силовым агрегатам (заливает свечи зажигания, слабая искра на свечах, пробой высоковольтных бронепроводов и т. д.). Нет необходимости менять свечи, катушки зажигания, высоковольтные провода и другие элементы.
  • Конструктивные особенности и способ воспламенения топлива в цилиндрах от сжатия обеспечивают дизелю более высокий КПД. Другими словами, в результате сжигания топлива больше энергии преобразуется в полезную работу. Это значит, что мощность такого двигателя больше.

Недостатки дизельного двигателя

Казалось бы, современный дизель не только не уступает бензиновому, но и превосходит его по целому ряду важных показателей. Однако на практике дизельный ДВС также имеет несколько существенных недостатков. По этой причине, особенно на территории СНГ, многие водители все равно выбирают бензиновые авто. Давайте разбираться.

  • Прежде всего, необходимо начать со стоимости. Дизельный автомобиль, в среднем, изначально стоит на 25-35% дороже аналогов на бензине (в зависимости от типа и класса авто).

Также стоит понимать, что при продаже дизельного авто б/у старше 5-7 лет цена на вторичном рынке значительно падает. Другими словами, продать подержанный дизель через несколько лет на те же 25-30% дороже по сравнению  с аналогичной моделью на бензине достаточно сложно.

  • Даже с учетом того, что дизельные ДВС стали более оборотистыми, машины с таким мотором все равно менее скоростные. Еще нужно добавить, что дизельный мотор тяжелее бензинового, что влияет на развесовку авто, его динамические характеристики и управляемость.

На дизелях с «механикой» нужно чаще переключать передачи. Если же на дизельном авто установлена автоматическая или роботизированная КПП, ресурс коробки может быть меньше, чем на точно такой же бензиновой модели. Причина — КПП необходимо выдерживать значительный крутящий момент.

  • Дизельный двигатель медленнее прогревается. Причиной является то, что КПД дизеля выше, то есть меньшее количество энергии от сгорания дизтоплива расходуется на тепло. В результате мотор более производительный, но меньшее тепловыделение также означает, что такой агрегат одновременно «холодный».

На практике это проявляется таким образом, что греть дизель на холостом ходу бесполезно. Этот мотор нужно прогревать в движении, то есть под нагрузкой. Получается, если машина с таким ДВС эксплуатируется для коротких поездок по городу, мотор попросту не будет успевать выйти на рабочие температуры. В результате ресурс агрегата сокращается.

Что касается комфорта, многие владельцы дизельных авто без специального дополнительного подогрева салона отмечают медленный прогрев внутрисалонного пространства в зимний период.

  • Проблема холодного пуска и затрудненной эксплуатации в зимний период в значительной мере касается именно дизельных моторов. Прежде всего, солярка имеет свойство замерзать и парафинизироваться на морозе. Чтобы этого не происходило, с наступлением холодов в горючее отдельно добавляются специальные присадки. Другими словами, дизельное топливо делится на зимнее и летнее.

Владельцу нужно обязательно учитывать эту особенность и заливать солярку, подходящую по сезону. С учетом того, что качество горючего на АЗС в СНГ не самое высокое, риски очевидны. Также в регионах, где температура значительно понижается, дизельный автомобиль должен быть оборудован отдельными системами предпускового подогрева. Добавим, что владельцам дизельных машин необходимо следить за состоянием и регулярно менять свечи накаливания, которые прогревают камеру сгорания перед запуском ДВС.

  • Дизельный двигатель дороже обслуживать и ремонтировать. Такие моторы обычно требуют больше масла, необходимо чаще менять смазку и фильтры. Как правило, с учетом качества топлива в СНГ и ряда других особенностей эксплуатации, межсервисный интервал для дизеля сокращен на 40-50%.

Даже с учетом того, что дизельный мотор имеет больший срок службы до капремонта, сам ремонт обходится намного дороже по сравнению с бензиновыми агрегатами.

  • Все современные дизели турбированные, а также оснащаются сложными высокотехнологичными системами топливного впрыска. По этой причине к качеству смазки и топлива, а также к общему состоянию ДВС выдвигаются повышенные требования. Важно понимать, что дорогостоящую дизельную топливную аппаратуру можно «убить» одной заправкой горючим низкого качества или неподходящим видом топлива.

Справедливости ради отметим, что для жителей крупных городов вопрос с топливом стоит не так остро. Однако этого нельзя сказать о тех автолюбителях, которые проживают в сельской местности или регулярно заправляют  дизельную машину на мелких АЗС вдоль трасс во время поездок. Проблема найти качественную солярку в этом случае остается достаточно актуальной.

  • Надежность турбины на дизеле и отдельных элементов системы питания (например, ТНВД или насос-форсунки) далеко не такая, как у самого мотора. Ремонт или замена указанных деталей является достаточно затратным мероприятием.

Также следует добавить, что диагностики и ремонт современных дизельных двигателей требует наличия дорогостоящего оборудования и профильных специалистов. Как правило, не на каждом СТО есть квалифицированные мастера по дизелям, а сама стоимость любых манипуляций с таким мотором и его системами однозначно будет выше.

  • Повышенные шумы, а также более высокий уровень вибраций все равно можно отметить даже на самом современном дизельном двигателе, если сравнивать его с бензиновыми аналогами. Хотя разница не так критична, но все же присутствует.

Подведем итоги

Как видно, преимущества дизельного двигателя на легковом авто в условиях практической эксплуатации на отечественных дорогах могут в значительной мере перекрываться перечисленными выше недостатками.

Важно понимать, что приобретение автомобиля с дизельным ДВС позволяет экономить на топливе, однако выгода может быть частично или полностью нивелирована более высокими затратами на обслуживание и ремонт агрегата данного типа.  Другими словами, перед покупкой нужно учитывать не только преимущества, но и минусы дизельного двигателя.

Рекомендуем также прочитать статью о том, какие двигатели самые надежные. Из этой статьи вы узнаете о дизельных и бензиновых моторах, кторые зарекомендовали себя в качестве самых надежных агрегатов с большим ресурсом.

Напоследок хотелось бы добавить, что если дизельная машина коммерческая и приобретается новой, тогда подобное решение себя вполне оправдывает. Если же владелец планирует приобрести легковой автомобиль с дизельным мотором, особенно подержанный, тогда нужно быть готовым к более высоким расходам, дорогим поломкам и жестким требованиям касательно эксплуатации такого ТС.

Читайте также

Особенности работы дизельных двигателей

Дизельный двигатель
Фото Hans Haase

Андрей Квитка, 15 июня 2018, 09:00

Дизельные двигатели имеют довольно существенные конструктивные различия в сравнении с бензиновыми. В первую очередь это касается системы питания. В дизельных моторах основной деталью этой системы является топливный насос высокого давления (ТНВД). Это ключевая деталь дизельного двигателя, требующая периодического обслуживания.

Для ее диагностики используются специальные стенды ТНВД, которые позволяют выявить возможные дефекты в работе насоса. Именно из-за неполадок с ТНВД возникают самые частые проблемы дизельных двигателей. Напомним, что в отличие от бензиновых моторов, дизели не требуют наличия свечей зажигания, а воспламенение осуществляется путем повышения давления в камере сгорания.

Уже после того как воздух, поступивший в цилиндр, сжимается поршнем, в камеру сгорания под высоким давлением впрыскивается дизельное топливо, которое, образовав рабочую смесь, детонирует в верхней точке хода поршня, толкая его вниз. Чтобы добиться такого самовоспламенения, необходима высокая степень сжатия, которая примерно в два раза выше, чем у бензиновых моторов.

Конечно, в  связи с этим заметно возрастают нагрузки, в первую очередь, на шатунно-поршневую группу. В связи с этим ее приходится упрочнять, что ведет к увеличению общего веса всего силового агрегата. Именно поэтому дизельные моторы всегда тяжелее бензиновых аналогов того же объема. Кроме большей массы, у дизелей есть еще одна особенность – низкий «потолок» максимальных оборотов.

Это связано с тем, что для эффективного смесеобразования дизельному топливу нужно больше времени, поэтому чаще всего такие моторы крутятся примерно до 4500—5000 оборотов. Впрочем, этот недостаток компенсируется более высоким крутящим моментом, который, к тому же, доступен буквально с холостых оборотов. Более того, с появлением турбонаддува на дизелях, существенно выросла как их мощность, так и максимальные обороты.

Современные турбодизели практически не уступают своим бензиновым собратьям по максимальной мощности, а по крутящему моменту заметно их превосходят. Благодаря использованию инновационных методов доочистки выхлопных газов, дизели перестали чадить и выбрасывать вредные вещества в атмосферу.

Однако это имеет и обратную сторону. Так, начать с того, что упомянутые системы доочистки поднимают конечный ценник автомобиля, а также сами по себе дороги в случае необходимости замены. Кроме того, современные высокотехнологичные дизели очень требовательны к качеству топлива, а с этим, как известно, у нас бывают проблемы. Поэтому заправляться лучше на проверенных АЗС, иначе придется ехать на вышеупомянутую диагностику ТНВД.

Эксплуатация дизельного двигателя: Особенности — Opel Россия

Функция сажевого фильтра – это прямое отфильтровывание частичек сажи из выхлопных газов автомобиля.

 

Весь поток выхлопных газов проходит через пористую керамическую структуру сажевого фильтра, частички сажи задерживаются в фильтре. Естественно, происходит накопление сажи внутри фильтра и с какого-то момента фильтр начинает создавать повышенное сопротивление выхлопным газам.

 

Система управления двигателем автомобиля определяет переполнение сажевого фильтра с помощью специальных датчиков, и включает режим регенерации сажевого фильтра.

 

При этом режиме дополнительное количество топлива подаётся в цилиндр при открытом выпускном клапане, что значительно повышает температуру выхлопных газов, в результате чего сажа в фильтре окисляется («сгорает») до углекислого газа, и сопротивление фильтра потоку газов возвращается до нормального, до следующего переполнения фильтра, затем процесс повторяется.

 

Для водителя очень важным моментом является отслеживание идущей регенерации сажевого фильтра, и действия водителя должны дать завершиться регенерации.

 

При движении автомобиля по шоссе или дороге, длительных поездках с достаточной скоростью и нагрузкой на двигатель, сам процесс регенерации происходит без особых проблем, и не требует от водителя каких-либо действий.

 

Проблемы возникают при движении в транспортных пробках, когда двигатель работает практически на холостом ходу, или работа двигателя на стоянке, короткие поездки. В этих режимах потока газов и температуры двигателя не хватает, чтобы полноценно регенерировать фильтр. Ошибкой будет заглушить двигатель во время процесса регенерации. При включении регенерации на холостом ходу следует помочь системе: нажатием педали акселератора поднять обороты двигателя до 2000-2500 оборотов в минуту на несколько минут, до завершения процесса регенерации.

 

На части автомобилей процесс регенерации сажевого фильтра индицируется специальным индикатором, на остальных процесс идет без отдельной индикации.

 

Повторные регенерации сажевого фильтра, кроме всего прочего, значительно снижают ресурс моторного масла (при регенерации топливо попадает в масло двигателя, разбавляя его и снижая его смазывающие свойства).

 

На всех автомобилях с сажевым фильтром имеется индикация необходимости сервисной регенерации сажевого фильтра – это когда автоматическая регенерация сажевого фильтра самого автомобиля не смогла выполнить свою задачу. В этом случае необходимо обращаться в сервис.

Эксплуатация дизельного двигателя

Дизельные силовые агрегаты представляют собой принципиально иную конструкцию, нежели их бензиновые аналоги. Ключевое различие заключается в технологии приготовления и воспламенения горючего. Образование смеси производится в камере сгорания, а такт работы заключается во впрыскивании дозированной порции под огромным давлением, после чего она возгорается при контакте с разогретым воздухом. Такая технология позволяет избавиться от бензонасоса, свечей зажигания, высоковольтных проводов и остальных элементов, необходимых для бензиновых моторов.

Преимущества

Силовые агрегаты на дизельном топливе характеризуются рядом общих преимуществ.

  • Экономичность. КПД таких моторов составляет 40% и может достигать 50% при наличии системы наддува.
  • Мощность. При эксплуатации дизельных двигателей с турбиной не наблюдается классической ярко выраженной турбоямы, а весь крутящий момент становится доступен практически с самых низких оборотов.
  • Надежность. Пробег дизельных силовых агрегатов составляет до 700 000 км.
  • Экологичность. Использование технологии EGR и значительно меньший объем СО в выхлопных газах позволяют существенно снизить негативное воздействие на окружающую среду.

Заправка

Одной из особенностей эксплуатации дизельных двигателей любого типа является придирчивое внимание к качеству топлива. Специалисты советуют проверять самостоятельно даже горючее с брендовых заправок.

Главный враг дизельной установки — это наличие воды в смеси, которая способна спровоцировать коррозию в топливной аппаратуре. Во избежание этого рекомендуется не заправлять горючее сразу в бак, а набрать его в канистры и дать отстояться, чтобы возможный осадок и примеси успели опуститься на дно.

Простым способом проверить смесь на наличие воды является добавление кристаллов марганцовки в пробную порцию, набранную в прозрачную посуду. При наличии воды вокруг них сразу же образуются окрашенные разводы.

Еще одним важным критерием является абсолютная прозрачность смеси. Любое помутнение, особенно — в зимний период, может означать начальную стадию кристаллизации парафина, легко забивающего топливные фильтры.

Обслуживание

Специфика эксплуатации дизельных двигателей подразумевает скрупулезное выполнение всех требований производителя, любое нарушение которых в итоге может привести к необходимости дорогостоящего ремонта. К числу рекомендаций, общих для всех силовых установок данного типа, относятся:

  • Своевременная замена и контроль качества масла. Специалисты советуют проводить данную процедуру даже чаще прописанного в мануале межсервисного интервала. Эта рекомендация связана с нестабильными характеристиками сернистости российского дизтоплива. В качестве условного интервала можно ориентироваться на пробег в 7000км ?7500 км.
  • Своевременная замена ремня ГРМ. В этом случае рекомендуется руководствоваться тем же принципом, что и при замене масла. У многих моторов допустимый пробег ремня достигает 100000 км, однако необходимо учитывать, что речь идет о практически стерильных условиях, принципиально недостижимых на отечественных дорогах. Обрыв износившегося раньше срока ремня всегда означает разрушение головки блока, ремонт или замена которой обходятся в значительную сумму.
  • Контроль чистоты топливной системы. Замену фильтра рекомендуется проводить не реже чем в 10 000 км, а из самого фильтра — регулярно сливать накапливающийся в отстойнике осадок. Топливный бак желательно промывать дважды в год, снимая его с автомобиля. Несоблюдение этих требований может привести к выходу из строя форсунок и топливного насоса.

Особенности езды

Прогрев и остановка мотора. Вопрос езды «на холодную» является дискуссионным. Эксплуатация дизельных двигателей допускает такую возможность, однако стоит учитывать, что тепловые зазоры в этот момент увеличены, а охладившееся масло, наоборот, частично утрачивает смазывающие свойства, что в сочетании приводит к повышенному износу деталей. Оптимальным решением будет движение на скорости до 40 км/ч при включенной 3 или 2 передаче. Глушить не турбированный двигатель можно сразу же, а мотору, снабженному системой наддува, необходимо предоставить возможность поработать без нагрузки, чтобы подшипники успели остыть и не покрылись лаковой пленкой.

Оптимальные обороты. Силовые агрегаты данного типа относятся к низкооборотистым. Привычка «крутить» мотор выше 3 500 об/мин — 4 000 об/мин приводит к ускорению износа цилиндро-поршневой группы и кривошипно-шатунного механизма. Оптимальным диапазоном для таких двигателей является, в зависимости от модели, промежуток от 1600 об/мин до 3200 об/мин.

Специфика воздушного фильтра. Дизельные агрегаты не снабжаются дросселированием на впуске, что в сочетании с малым объемом камеры сгорания и высокими втягивающими свойствами провоцирует гидроудар при попадании в фильтр даже минимального количества воды.

Отказ от запуска «с тяги». Корректно работающий силовой агрегат штатно заводится при температуре окружающей среды до ?20°С. При затрудненном запуске категорически запрещается пытаться «дернуть» автомобиль, так как при этом может пострадать привод ГРМ. Кроме того, несовпадение температурного допуска горючего и температуры за бортом приводит к кристаллизации парафина и утрате топливом требуемой текучести. В таком случае попытка завести мотор на буксире приведет к сухому трению и повреждению деталей силового агрегата.

Эксплуатация зимой

Эксплуатация дизельных двигателей на холоде усложняется необходимостью использовать соответствующее топливо при понижении температуры до 20°С и более («зимнее» и «арктическое» соответственно). Особого внимания при этом требует состояние форсунок и ТНВД. В это время специалисты советуют оставлять автомобиль на ночь в теплом гараже, чтобы избежать кристаллизации парафинов в горючей смеси. В случае эксплуатации дизельного двигателя, оснащенного турбиной, весьма пригодится наличие турботаймера, который позволит выдерживать необходимые для прогрева и остывания интервалы.

Советы по ремонту

Попытка сэкономить на запчастях или обслуживании при эксплуатации дизельного двигателя может привести к необходимости его дорогостоящего ремонта. В силу значительных нагрузок к качеству комплектующих данного типа силовых установок предъявляются жесткие требования.

Использование дешевых свечей, цепей и иных комплектующих может превратиться в бессмысленную трату денег, так как детали будут выходить из строя в кратчайшие сроки.

Аналогичный принцип актуален и для самого сервиса, в котором проводятся ремонтные работы. Привлечение неквалифицированных механиков может закончиться потерей времени, денег и даже новыми повреждениями мотора.

Ремонт дизелей требует строгого соблюдения регламента работ и наличия профессиональных знаний и оборудования у исполнителей.

Современные дизельные двигатели зарекомендовали себя с положительной стороны, однако сложная конструкция и требовательность таких моделей требует квалифицированного сервисного обслуживания.

Дизельный центр «Diesel-PRO» является представителем крупнейших торговых марок автокомпонентов, а также предлагает услуги по регулировке и ремонту топливной аппаратуры отечественного и иностранного производства. Подобрать нужный дизельный двигатель, а также ознакомиться с характеристики и фото товаров вы можете в каталоге на сайте компании.

Что нужно знать про дизельный двигатель

Многие автомобилисты, которые уже выбрали дизельное транспортное средство, видят все преимущества и особенности. Однако у тех, кто только начинает использовать этот тип двигателя, может возникнуть много вопросов. Попробуем рассказать немного о дизельных двигателях.

Дизельные двигатели: история

Дизельный двигатель появился в 1824 г., когда физик и математик Сади Карно выдвинул теорию, что для повышения эффективности радиатора необходимо быстро сжимать среду внутри до точки воспламенения. Позже этот принцип был использован в качестве функции первого дизельного двигателя.

На протяжении многих лет над проектом дизельного двигателя работали несколько ученых, в том числе Герберт Акройд-Стуарт и Густав Тринклер. Однако только в 1887 году «Рудольфу Дизель» удалось создать первый практически осуществимый и эффективный прототип.

Изначально изобретатель считал, что лучшим топливом для этого двигателя будет угольная пыль, но из-за абразивных свойств и сложности подачи такого топлива в цилиндры ему пришлось отказаться от этой идеи. С другой стороны, изобретение Diesel хорошо работало на растительных маслах и светлых нефтепродуктах.

С тех пор дизельные двигатели постоянно совершенствовались и модернизировались. Многие современные легковые автомобили и большая часть коммерческого транспорта оснащены этими мощными, надежными и эффективными силовыми агрегатами.

Принцип работы

Сегодня легковые автомобили, как правило, оснащаются 4-тактными двигателями. Их рабочий цикл состоит из 4 этапов: допуск, который соответствует вращению коленвала от 0 до 180o. В этот момент воздух поступает в цилиндр через открытый клапан.

Сжатие

Во время этого хода коленвал перемещается от 180oC до 360oC. Поршень сжимает воздух, уже присутствующий в камере, в 16–25 раз и увеличивает его температуру на 700-900oC.

Горение

На этом этапе, соответствует смещению коленвала на 360-540o, топливо впрыскивается и воспламеняется. Образующиеся таким образом вещества опускают поршень.

Выхлоп: при перемещении коленвала из исходного положения от 540 до 720 поршень поднимается вверх, и сжигаемые газы удаляются.

На дизельных двигателях топливо подается через инжекторный насос. Есть несколько типов насосов, используемых в современных транспортных средствах, они содержат пары поршней столько, сколько в цилиндре. Распредвал, соединенный с коленвалом, приводит в движение поршень, и поочередно открывает и закрывает впускные отверстия. Затем создается давление для открытия клапана впрыска, топливо идет в инжектор. Эти насосы надежны и устанавливаются на транспортные средства.

Распространение

Они включают в себя два поршня, которые выполняют возвратно-поступательные вращательные движения, распределяя топливо между цилиндрами. Это обеспечивает еще более равномерное распределение топлива, но при этом изнашиваются элементы. По этой причине распределительные насосы устанавливаются в основном в легковых автомобилях.

Насосы высокого давления

Они используются в топливных системах Common Rail для перекачки топлива в топливные системы, где поддерживается высокое давление независимо от режима работы двигателя. Использование этой системы повышает крутящий момент двигателя на 25% при малом вращении и снижает расход топлива на 20%.

Насосные форсунки

Каждому цилиндру соответствует инжектор насоса с функциями сжатия и впрыска. Использование этой системы повышает энергоэффективность автомобиля и снижает токсичность выхлопных газов, так как сам процесс впрыска осуществляется в 3 этапа. Предварительное впрыскивание обеспечивает плавное горение, а последующее впрыскивание способствует регенерации сажевого фильтра.

5 ключевых преимуществ дизельных двигателей

Они потребляют значительно меньше топлива — в среднем на 30% меньше, чем бензиновые двигатели. Это связано с высоким давлением в камерах зажигания, конструкцией двигателя, принципами его работы и рядом других факторов. Кроме того, в большинстве стран дизельное топливо дешевле бензина.

В дизельных двигателях топливо сгорает непрерывно, как только подается внутрь, обеспечивая высокий крутящий момент при малом вращении. Это улучшает сцепление с дорогой, динамику и управляемость автомобиля. Иногда они обладают высокой эффективностью — до 50%.

Благодаря свечам накаливания и тепловым инжекторам дизельные двигатели легко запускаются независимо от температуры окружающей среды. Они служат почти в два раза дольше бензиновых двигателей.

Дизельные двигатели: 9 правил для экспертов AutoDoc

Во избежание частого ремонта двигателя и топливной системы следуйте этим простым правилам: замените топливный фильтр и топливный/водоотделитель во времени. Дизельные компоненты очень чувствительны к механическим частицам и воде. Благодаря своей сложной конструкции форсунки и компоненты насоса легко засоряются, а сера в топливе смешивается с водой и превращается в серную кислоту, что негативно сказывается на компонентах двигателя.

Убедитесь, что вы используете качественное топливо. Высокое содержание серы в топливе низкого качества значительно сокращает срок службы и эффективность моторного масла и может привести к выходу из строя сажевого фильтра.

Избегайте вращения с высокой частотой: это создает дополнительное напряжение на двигателе. Всегда следите за тем, чтобы топливо было комнатной температуры. Дизельное топливо содержит парафин, который замерзает при низких температурах. Поэтому рекомендуется использовать зимнее топливо (для температур от -25oC до 0oC) или арктическое топливо, сохраняющее свою вязкость при температурах от -35oC до 0oC. На АЗС обычно указывается диапазон температур продаваемого топлива.

Тщательно выбирайте присадки к дизельному топливу. Если вы едете в районах со сложным климатом, антифриз прекрасно подойдет для вашего автомобиля. Имеются также присадки для увеличения крутящего момента и мощности двигателя за счет повышения эффективности сгорания воздушно-топливной смеси, а также чистящие средства для двигателя и топливных магистралей.

Альтернативное вождение в городских районах с поездками в сельскую местность, чтобы двигатель время от времени работал со скоростью 2500 об/мин. При таком режиме работы расходуются сажа и отложения углерода, что снижает риск растрескивания форсунок, прилипания поршневых колец и выхода из строя катализатора.

Двигатель с турбонаддувом не должен выключаться сразу после остановки автомобиля, дайте ему поработать на холостом ходу от 2 до 5 минут, чтобы дать турбине время остыть. Всегда покупайте моторное масло, рекомендованное производителем вашего автомобиля, и никогда не смешивайте смазки разной вязкости. Запускайте медленно, чтобы не повредить кольца внутри турбины.

Заключение

Современные дизельные двигатели экономичны и мощны. Несмотря на стереотипы, они экологичны. Автомобили с дизельными двигателями идеально подходят для поездок в сельскую местность, удобны для больших групп и семей и не ломаются даже при частом использовании. Они очень надежны на бездорожье, что объясняет их популярность среди любителей рыбалки, охоты и активного отдыха. Однако, если вы всегда хотели спортивный автомобиль, или стремились к ускорению или резкому торможению, дизельный автомобиль вам не подойдет: агрессивное вождение будет оказывать слишком сильное давление на двигатель.

Ремонт дизельного двигателя стоит дорого. Однако, следуя вышеизложенному совету, вы понимаете, что необходимость в ремонте возникает нечасто.

Фото: asroad.org

Дизельные двигатели

— Система внутреннего сгорания — Журнал Diesel Power

Расход воздуха и топлива в четырехтактном дизельном двигателе
Воздух, поступающий в четырехтактный дизельный двигатель, очищается при прохождении через воздушный фильтр. Затем он течет по трубопроводу, пока не сжимается вращающимися лопастями турбонагнетателя. В результате воздух становится плотнее и горячее, поэтому он охлаждается в промежуточном охладителе. Интеркулер соединен шлангами с воздухозаборником двигателя. Когда поршень скользит в нижнюю часть своего хода, камера сгорания заполняется воздухом из-за открытого впускного клапана.Это называется тактом впуска. Впускной клапан (-ы) закрывается, и поршень выталкивает воздух вверх к головке цилиндров. Во время этой фазы, известной как такт сжатия, воздух занимает примерно 1/16 места, которое он занимал раньше.

Насос (электрический или механический, расположенный в баке или на балке) подает топливо под низким давлением в топливный насос высокого давления. ТНВД значительно повышает давление до 17 000–30 000 фунтов на квадратный дюйм. Затем топливо впрыскивается в камеру сгорания (заполненную перегретым воздухом) под огромным давлением прямо перед верхней мертвой точкой.Возникающее сгорание толкает поршень обратно вниз. Это называется силовым ходом. Последний цикл происходит, когда выпускной клапан (ы) открывается, и поршень выталкивает выхлоп. У отработанного воздуха еще достаточно энергии, чтобы толкнуть выхлопную сторону турбонагнетателя. Затем воздух попадает в выхлопную трубу и выходит из выхлопной трубы.

Зажигание сгорания
Зажигание сгорания — ключевая характеристика дизельного двигателя, и проще всего объяснить это с помощью пожарного поршня.Эти древние устройства для зажигания огня состояли из поршня с утопленным концом и герметичного цилиндра. Когда они быстро сдвигаются, температура воздуха в цилиндре поднимается достаточно высоко, чтобы сгорел кусок трута, нанесенный на конец поршня. Дизельный двигатель использует тот же принцип, что и пожарный поршень, только в гораздо большем и более сложном масштабе.

Если вы любите цифры, уравнение PV = nRT очень полезно. Это уравнение определяет соотношение между давлением (P), объемом (V), количеством присутствующего газа, измеренным в молях (n), универсальной газовой постоянной (R) и температурой (T).По мере увеличения давления в цилиндре увеличивается и температура. Таким образом, когда поршень сжимает воздух внутри цилиндра до 1/16 его первоначального объема, температура внутри цилиндра превышает 400 градусов. Этого тепла и давления достаточно для воспламенения дизельного топлива без использования свечей зажигания.

Более пристальный взгляд на дизельное сгорание
Одно из основных различий между бензиновым двигателем и дизельным двигателем — это тип сгорания. Горение дизельного топлива очень сложное и использует тот же принцип, что и свеча, где топливо и воздух смешиваются в результате сгорания.Конвекционные токи и турбулентность играют большую роль в том, как сгорает несмешанное (гетерогенное) топливо. Бензиновый двигатель, с другой стороны, смешивает топливо и воздух полностью (гомогенно) задолго до его сравнительно простого сгорания. Одним из недостатков бензиновых двигателей с впрыском является то, что когда поршень сжимает топливно-воздушную смесь, часть ее застревает в дефектах стенок цилиндра. Вот почему бензиновые двигатели имеют более высокие выбросы окиси углерода (CO) и углеводородов по сравнению с дизельными двигателями.

Просмотреть все 5 фото

Почему дизельный двигатель так громко звучит?
Помните, как мы только что сказали, что у дизелей нет смеси топливо-воздух? Это не совсем так. Часть топлива смешивается с кислородом на атомарном уровне. Эти маленькие карманы похожи на маленькие бомбы и воспламеняются первыми. Эти предварительно смешанные (дефлаграционные) волны известны как детонация. Это мощный сверхзвуковой фронт пламени, который движется быстрее скорости звука. Вследствие этого высвобождения энергии подавляющее большинство несмешанного топлива сгорает как диффузионное (не предварительно смешанное) пламя.Таким образом, количество смешанного топлива в цилиндре в начале сгорания определяет, сколько шума вы услышите. Турбокомпрессоры и системы рециркуляции выхлопных газов (EGR) делают дизель тише.

Зачем включать дизельное топливо?
Блочные обогреватели используют 110 вольт для нагрева охлаждающей жидкости и моторного масла, поэтому двигатель, подключенный к сети холодной зимней ночью, запустится намного легче, чем если его оставить отключенным от сети. В дизельном двигателе содержится большое количество густого масла. В сочетании с высокой степенью сжатия дизельного двигателя эти два условия создают большую нагрузку на аккумуляторные батареи (мощность которых снижается из-за холода).В этом случае наличие горячего резервуара с маслом в поддоне гарантирует, что смазка будет мгновенно доступна, чтобы уменьшить трение и облегчить запуск.

Почему они служат дольше?
Дизельные двигатели служат дольше, потому что они созданы в тяжелой промышленности. Из этого следует, что их поршни с масляным охлаждением, механический привод всех жизненно важных компонентов, коленчатые валы из кованой стали и усиленная арматура в местах с высоким напряжением, таких как крышки подшипников. Еще одна причина, по которой они служат дольше, заключается в том, что в цилиндрах дизельного двигателя сжимается только воздух, а не такой растворитель, как бензин.Кроме того, дизельное топливо действует как смазка и хорошо влияет на стенки цилиндров и поршневые кольца. Дизели работают на более низких оборотах из-за их механической конструкции и скорости сгорания в камере сгорания. Скорость сгорания зависит от времени, необходимого для сжигания топлива. Форма распыления, размер капель, перепады давления на форсунке, температура и конструкция камеры — все это влияет на скорость вращения дизельного двигателя. Поскольку дизельный двигатель работает с высокой степенью сжатия, ему необходимы прочный блок и вращающийся узел, способные выдерживать мощные нагрузки.

Как дизели развивают такой высокий крутящий момент и при этом обеспечивают отличную экономию топлива?
Дизельный двигатель развивает крутящий момент благодаря высокой степени сжатия. В тепловых двигателях увеличение разницы давлений от сжатого поршня к несжатому поршню равняется увеличению его эффективности и выходного крутящего момента. Еще одна причина мощности дизеля — это само дизельное топливо. Он содержит на 15% больше энергии на галлон, чем бензин. Кроме того, дизельный двигатель может работать на очень бедной смеси и без насосных потерь, связанных с дроссельной заслонкой.В бензиновом двигателе богатая топливно-воздушная смесь используется для охлаждения сгорания и исправной работы каталитических нейтрализаторов. Дизель может работать на очень бедной смеси и при этом иметь низкие температуры выхлопных газов.

В чем разница между свечами накаливания и свечами зажигания?
Практически во всех дизелях используются свечи накаливания или подогреватели воздуха. Эти устройства используют электричество для создания тепла внутри цилиндра, когда он холодный во время запуска. После достижения рабочей температуры двигателю они больше не нужны.С другой стороны, свечи зажигания всегда необходимы в бензиновом двигателе, чтобы начать сгорание.

Интересные факты о дизельных двигателях
* У них нет дроссельной заслонки; крутящий момент создается за счет добавления большего количества топлива в двигатель. Топливо дозируется, и воздух следует.

* Дизели выделяют меньше окиси углерода (CO) и углеводородов, чем бензиновые двигатели, поскольку топливо не застревает в стенках цилиндров во время такта сжатия, поскольку сжимается только воздух.

* НАСА провело эксперименты с диффузионным пламенем в условиях невесомости.Они обнаружили, что из-за отсутствия конвекционных токов пламя светилось синим цветом в идеальном круге.

Посмотреть все 5 фото Используется с двигателями GM 6,2 л и 6,5 л, Ford 6,9 л и 7,3 л (pre-Power Stroke).

Непрямой впрыск (IDI)
Непрямой впрыск (IDI) состоит из предкамеры или вихревой камеры, соединенной с основной камерой цилиндра узким проходом. Топливная форсунка распыляется в меньшую камеру, в которой также находится свеча накаливания. Здесь начинается горение.Разница давлений в двух камерах вызывает сильную турбулентность, поскольку обе стороны стремятся к равновесию. Двигатели IDI имеют более низкий тепловой КПД, чем двигатели с прямым зажиганием (DI). Это потому, что две камеры сгорания имеют большую площадь поверхности, чем одна. Потери тепла в этой области плохо сказываются на тепловом КПД — они могли привести к опусканию поршня. Энергия, необходимая для создания турбулентности в камере сгорания, учитывается в насосных потерях. Положительной особенностью двигателя IDI является то, что насосу высокого давления не требуется создавать высокое давление для распыления топлива.

Посмотреть все 5 фотографий Используется с двигателями Cummins 5,9 и 6,7 л, Duramax 6,6 л, а также 6,0, 6,4 и 7,3 л двигателями Power Stroke.

Прямой впрыск (DI)
Прямой впрыск происходит, когда топливная форсунка распыляется непосредственно в камеру сгорания. Поршни этих двигателей имеют куполообразную форму, чтобы создать приют для пламени. Одна из целей распыления топлива в камеру сгорания — не задевать верхнюю часть поршня или стенки цилиндра, потому что падение температуры не позволяет топливу сгорать.Дизели с прямым впрыском более эффективны, но для поддержания горения требуется высокое давление впрыска. DP

Frontiers | Преимущества и недостатки дизельных одно- и двухтопливных двигателей

Введение

Обедненная смесь с воспламенением от сжатия (CI) и прямым впрыском (DI) является наиболее эффективным двигателем внутреннего сгорания (ДВС) (Zhao, 2009; Mollenhauer and Tschöke, 2010). Он производит выбросы оксидов азота и твердых частиц (ТЧ) из двигателя, которые нуждаются в последующей обработке, чтобы соответствовать чрезвычайно низким пределам, установленным для транспортных средств (Lloyd and Cackette, 2001; Burtscher, 2005; Maricq, 2007), несмотря на то, что качество воздуха невысокое. не только под влиянием транспортных выбросов, но и из многих других источников.Одних только стратегий сжигания (Khair and Majewski, 2006) было недостаточно для достижения пороговых значений выбросов, и требовались специальные катализаторы сжигания обедненной смеси, особенно для NOx в дополнение к фильтрам твердых частиц в выхлопных газах. Несмотря на свой экономический успех, дизельные двигатели во всем мире сталкивались со все более строгими законами о выбросах (Knecht, 2008; Zhao, 2009) ценой постепенного отказа от технологии, нацеленной на нереалистичные минимальные дополнительные улучшения.

У дизеля есть как все плюсы, так и минусы.Он имеет эффективность преобразования топлива при полной и частичной нагрузке, превышающую эффективность стехиометрических ДВС с искровым зажиганием (SI), как с прямым впрыском, так и с впрыском топлива в порт (PFI). CIDI ICE имеют пиковый КПД около 50% и КПД выше 40% на большинстве скоростей и нагрузок. Напротив, у SI ICE пиковый КПД составляет около 30%, и этот КПД резко снижается за счет снижения нагрузки. CI ICE поставляют механическую энергию по запросу с эффективностью преобразования топлива, которая также выше, чем эффективность электростанций на сжигании топлива, вырабатывающих электроэнергию.По данным EIA (2018), в 2017 году в США угольные парогенераторы работали со средней эффективностью 33,98%. Парогенераторы на нефтяном и природном газе работают примерно с одинаковым КПД — 33,45 и 32,96%. Газотурбинные генераторы работают с пониженным КПД 25,29% для нефти и 30,53% для природного газа. КПД генераторов с двигателями внутреннего сгорания выше, чем у газовых турбин и парогенераторов: 33,12% для нефти и 37,41% для природного газа. Только парогазовые генераторы, не работающие на нефти, имеют КПД 34.78%, но с природным газом, который имеет КПД 44,61%, превосходят генераторы внутреннего сгорания.

По сравнению с электрической мобильностью, двигатели CIDI ICE по-прежнему имеют неоспоримые преимущества для транспортных приложений (Boretti, 2018). Однако у CIDI ICE плохая репутация, что ставит под угрозу его потенциал. Дизельные двигатели CIDI ICE в недавнем прошлом не смогли обеспечить удельные выбросы NOx для сертификационных циклов холодного пуска во время прогретых реальных графиков вождения, которые сильно отличались от сертификационных циклов (Boretti, 2017; Boretti and Lappas, 2019).Этот досадный случай был разыграен против CIDI ICE, чтобы создать впечатление, что этот двигатель экологически вреден для выбросов загрязняющих веществ, хотя это не так.

Большие выбросы NOx двигателей CIDI ICE являются результатом большого образования NOx в цилиндрах, работающих в условиях избыточного обедненного воздуха стехиометрии, в сочетании с неправильной работой системы доочистки. Катализатор сжигания обедненной смеси для ДВС CIDI менее развит, чем трехкомпонентный каталитический преобразователь (TWC) стехиометрических ДВС SI (Heywood, 1988; Zhao, 2009; Mollenhauer and Tschöke, 2010; Reşitoglu et al., 2015). Кроме того, не учитывалась длительная разминка при эксплуатации (Boretti and Lappas, 2019). Кроме того, некоторые производители, применяющие впрыскивание мочевины для последующей обработки, решили вводить меньше мочевины, чем необходимо, когда это не строго требуется сертификацией выбросов. Точно так же некоторые производители также сосредоточились на вопросах управляемости и экономии топлива, а не на выбросах, когда их строго не спрашивали, вдали от условий эксплуатации, вызывающих озабоченность при сертификации выбросов. Таким образом, несоблюдение требований по выбросам NOx в случайно выбранных условиях не было фундаментальным недостатком двигателей CIDI ICE в целом, а только конкретных продуктов, разработанных с учетом нормативов выбросов и требований рынка в конкретное время.Противники CIDI ICE не считают, что эти двигатели оснащены уловителями твердых частиц с почти идеальной эффективностью, циркуляция автомобилей, оснащенных этими двигателями, в сильно загрязненных районах приводит к лучшим условиям для выхлопной трубы, чем условия впуска, для твердых частиц, что способствует для очистки воздуха.

Настоящая статья представляет собой объективный обзор плюсов и минусов экономичного сжигания, CIDI ICE, которые намного лучше, чем предполагалось. Поскольку ДВС, безусловно, потребуется в ближайшие десятилетия, дальнейшие улучшения сжигания обедненной смеси CIDI ICE будут полезны для экономики и окружающей среды.Помимо дизельных двигателей CIDI ICE, в этой работе также рассматриваются двухтопливные двигатели, работающие на дизельном СПГ (Goudie et al., 2004; Osorio-Tejada et al., 2015; Laughlin and Burnham, 2016), дизель-CNG (Maji et al. , 2008; Shah et al., 2011; Ryu, 2013) или дизель-СНГ (Jian et al., 2001; Ashok et al., 2015). Работа с небольшим количеством дизельного топлива и гораздо большим (с точки зрения энергии) количеством гораздо более легкого углеводородного топлива с пониженным содержанием углерода до водорода позволяет дополнительно снизить выбросы ТЧ из двигателя вне двигателя, а также CO . 2 выбросов и освобождение от компромисса PM-NOx, влияющего на стратегии впрыска только дизельного топлива, также снижает выбросы NOx из двигателя.Также рассмотрены тенденции развития двухтопливных двигателей CIDI ICE.

Использование биодизеля для производства низкоуглеродного дизельного топлива с использованием однотопливного подхода, безусловно, является еще одним вариантом сокращения выбросов CO 2 . Хотя эта возможность не влияет на выбросы загрязняющих веществ, производство биотоплива в целом растет, но не ожидаемыми темпами (IEA, 2019), и вопрос о соотношении продуктов питания и топлива (Ayre, 2007; Kingsbury, 2007; Inderwildi and King, 2009) также может иметь негативный вес в мире с прогнозируемым неизбежным водным и продовольственным кризисом (United Nations, 2019).Кроме того, преимущества биотоплива перед LCA — давняя и противоречивая дискуссия в литературе (McKone et al., 2011).

Существует возможность выбросов метана из двухтопливных дизельных двигателей, работающих на природном газе (Camuzeaux et al., 2015). Поскольку метан является мощным парниковым газом, этот аспект следует должным образом учитывать при сокращении выбросов парниковых газов. Существует не только возможность утечки метана из транспортных средств, оснащенных двухтопливными дизельными двигателями, работающими на СПГ. Также существуют выбросы метана при добыче нефти и газа.Помимо выбросов метана при добыче природного газа, существуют выбросы электроэнергии, связанные с эксплуатацией завода по производству СПГ. Хотя СПГ (и КПГ), безусловно, будет иметь преимущества по сравнению с дизельным топливом, это преимущество может быть меньше, чем то, что можно было бы вывести из отношения C-H в топливе. Безусловно, существует проблема сокращения выбросов метана, связанных с производством, транспортировкой и сжижением природного газа (Ravikumar, 2018).

Наконец, хотя фумигация природного газа для двухтопливных дизельных двигателей широко используется, поскольку она намного проще и может быть достигнута за счет низкотехнологичных преобразований, и, таким образом, большинство транспортных средств используют этот подход, дизельные двигатели переведены на дизельное топливо и фумигационный природный газ страдают от значительного снижения эффективности преобразования топлива по сравнению соригинальный дизель, как при полной, так и при частичной нагрузке, со сниженной мощностью и удельным крутящим моментом. Если природный газ смешивается (окуривается) с всасываемым воздухом перед подачей в цилиндр, а дизельное топливо используется в качестве источника воспламенения, количество вводимого природного газа ограничивается возможностью детонации предварительно смешанной смеси. Кроме того, нагрузка обычно регулируется дросселированием всасывания, как в обычных бензиновых двигателях, а не количеством впрыскиваемого топлива, как в дизельном двигателе.Поскольку цель состоит в том, чтобы обеспечить равные или лучшие характеристики (мощность, крутящий момент, переходный режим) и выбросы новейшего дизельного топлива с двухтопливной конструкцией, эта двухтопливная конструкция должна предусматривать прямой впрыск дизельного и газообразного топлива.

Происхождение плохой репутации дизеля

Плохая репутация дизеля и двигателя внутреннего сгорания (ДВС) в целом является результатом действий Совета по воздушным ресурсам Калифорнии (CARB), а также Агентства по охране окружающей среды США (EPA) (Parker , 2019), а с « Diesel-gate » — всего лишь один шаг.

В те времена водородная экономика была более вероятной моделью будущего для транспорта, лучше, чем любая другая альтернатива, учитывая непостоянство производства энергии ветра и солнца (Crabtree et al., 2004; Muradov and Veziroglu, 2005; Marbán and Valdés- Солис, 2007). Предполагалось, что в автомобилях будут использоваться ДВС, работающие на возобновляемом водороде (H 2 -ICE), со всем, кроме кардинальных изменений, которые требовались в технологии двигателей, но усилия в основном были направлены на хранение и распространение.Примерно в те же дни была популярна идея метанольной экономики, в которой метанол, полученный с использованием возобновляемого водорода и CO 2 , улавливаемого на угольных электростанциях, был прямой заменой традиционного бензинового топлива (Olah, 2004 , 2005). H 2 -ICE стал историей после того, как CARB рассмотрел BMW Hydrogen 7, первый автомобиль с двигателем внутреннего сгорания, который был доставлен на рынок и не мог квалифицироваться как автомобиль с нулевым уровнем выбросов (CO 2 ). В 2005 году BMW предложила автомобиль Hydrogen 7 как автомобиль с нулевым уровнем выбросов.При сжигании водорода в выхлопной трубе был в основном водяной пар и абсолютно не выделялся CO 2 , но Агентство по охране окружающей среды США не согласилось с нулевым уровнем выбросов CO 2 (Nica, 2016). Агентство по охране окружающей среды США заявило, что у транспортного средства все еще был ДВС, с возможностью того, что масло, используемое для смазки, могло попасть в цилиндр, образуя CO 2 . Тот факт, что общий расход масла составлял ничтожно малые 0,04 л масла на 1000 км, не учитывался. Из-за неофициального обсуждения BMW отказалась от исследования водородных ДВС.Все остальные производители оригинального оборудования впоследствии прекратили свои исследования и разработки.

Что касается негативного отношения CARB и Агентства по охране окружающей среды США к ДВС в целом, в 2011 году BMW предложила в качестве концептуального автомобиля аккумуляторно-электрический i3 с возможностью расширения запаса хода (Ramsbrock et al., 2013; Scott and Burton, 2013). . Расширителем запаса хода был небольшой бензиновый ДВС, приводивший в действие генератор для подзарядки аккумулятора. Внедрение расширителя диапазона позволило увеличить запас хода автомобиля и снизить стоимость, вес и объем аккумуляторной батареи, что является серьезной проблемой для экономики и окружающей среды.Поскольку производство планируется начать только в 2013 году, CARB сразу же поспешил установить правила, предотвращающие оптимизацию этой концепции, выпустив в 2012 году (CARB, 2012) чрезмерно долгое постановление, предписывающее, что расширитель диапазона должен использоваться только для достижения ближайшей подзарядки. точка. В промежутке между другими требованиями CARB запросил у транспортного средства с расширителем запаса хода номинальный запас хода на полностью электрической основе не менее 75 миль, диапазон меньше или равный диапазону заряда батареи от вспомогательной силовой установки, и, наконец, чтобы Вспомогательная силовая установка не должна включаться до тех пор, пока не разрядится аккумулятор.В результате всех этих ограничений BMW изо всех сил пыталась сделать расширитель диапазона конкурентоспособным, и в конечном итоге они недавно прекратили производство i3 с расширителем диапазона (Autocar, 2018).

Эти два события помогают объяснить « diesel-gate » 2015 года и последующий « дизельфобия ». Дизельный двигатель был популярен (для легковых автомобилей) в основном в Европе, и ЕС продвигал дизельные автомобили для решения проблем изменения климата. В то время было ясно, что преждевременный переход к электромобильности мог привести к экономической и экологической катастрофе.Таким образом, концерн Volkswagen стал мишенью скандала « дизельные ворота ». Дизельные ДВС обеспечивали низкие выбросы CO 2 , конкурируя с аккумуляторными электромобилями в анализе жизненного цикла, при этом выделяя меньше, чем предписано, загрязняющих веществ в ходе испытаний, предписанных в то время. Легковые автомобили тестировались на соответствие правилам выбросов в течение заданного цикла, в лаборатории, в повторяющихся условиях с правильным оборудованием. Международный совет по чистому транспорту (ICCT) организовал случайную езду по дорогам на различных дизельных транспортных средствах и измерения загрязняющих веществ с помощью PEM.Они обнаружили, что автомобили, оптимизированные для производства низких удельных выбросов CO 2 (на км) и выбросов загрязняющих веществ в определенных условиях, не могли обеспечить такие же удельные выбросы при любых других условиях, как это было логично. EPA выпустило уведомление о нарушении в отношении Volkswagen, что привело к огромному штрафу в следующих судебных исках. « Diesel-gate » обошлась VW более чем в 29 миллиардов долларов в виде штрафов, компенсаций и обратных закупок, в основном в США (физ.орг, 2018). Часть миллиарда долларов Volkswagen была направлена ​​на поддержку мобильности аккумуляторных электромобилей, финансирование инфраструктуры подзарядки электромобилей в Соединенных Штатах отдельными поставщиками (O’Boyle, 2018). Затем « Diesel-gate » использовался для определения конца мобильности на базе ICE (Raftery, 2018; Taylor, 2018).

Предполагаемый избыточный выброс NOx автомобилями, оснащенными дизельными ДВС CIDI, которые начинались с « diesel gate », по-прежнему популярны, хотя и не соответствуют действительности (Chossière et al., 2018) утверждает, что дизельные автомобили вызвали в 2015 году 2700 преждевременных смертей только в Европе из-за их выбросов NOx « сверх ». Эта работа не является объективной при анализе выбросов дизельного двигателя. Неверно утверждать, что дизельные автомобили в ЕС выбрасывают на дороге гораздо больше NOx, чем нормативные ограничения. Как было написано ранее, правила выбросов регулируют выбросы загрязняющих веществ в конкретных условиях лабораторных испытаний, а не во всех других возможных условиях.Неразумно ожидать определенной экономии топлива и выбросов регулируемых загрязнителей и углекислого газа, которые не зависят от конкретного испытания. Чтобы иметь выбросы « превышение », сначала необходимо установить предел для конкретного применения, а затем — показатель « превышение » при определенных условиях. Утверждение о преждевременной смертности, вызванной избыточными выбросами NOx от дизельных транспортных средств, основано на завышенной разнице выбросов NOx, предполагая, что выбросы намного хуже, чем фактические, и сравнивая этот выброс с невероятной эталонной ситуацией, близкой к нулю.Требование также основано на завышении количества смертей в этой разностной эмиссии. Эти два предположения не подтверждаются доказанными данными.

Поскольку более современные автомобили с дизельным двигателем заменили еще больше автомобилей, загрязняющих окружающую среду, единственное возможное объективное заявление, которое можно сделать о выбросах старых и новых дизельных автомобилей в Европе, основанное на неоспоримых доказательствах, основано только на правилах рассмотрения жалоб на выбросы время их регистрации. Поскольку правила выбросов стали все более ограничительными, хотя и подтверждено только лабораторными сертификационными испытаниями, как показано в таблице 1, неверно предполагать, что дизельные ДВС CIDI выбрасывают больше NOx, чем раньше.В то время как легковые автомобили с дизельным двигателем, соответствующие стандарту Euro 6, должны были выделять менее 0,08 г / км NOx при выполнении лабораторных испытаний NEDC, дизельные транспортные средства, соответствующие стандартам Euro 5–3, в противном случае могли выделять 0,18, 0,25 и 0,50 г / км на тот же тест, и дизельные автомобили, соответствующие стандартам Euro 1 и 2, должны были проверить только пороговые значения выбросов 0,7-0,9 и 0,97 г / км в одном и том же тесте. Нет никаких измерений, подтверждающих, что старые дизельные автомобили, соответствующие предыдущим правилам Евро, были более экологически чистыми по всем критериям загрязнения, включая NOx, во время реального вождения, чем новейшие дизельные автомобили.Кроме того, характеристики выбросов обычно ухудшаются с возрастом, а отсутствие технического обслуживания может еще больше усугубить ситуацию. Это утверждает, что Chossière et al. (2018) непоследовательно.

Таблица 1 . Нормы выбросов Евросоюза для легковых автомобилей (категория M) положительного (бензин) и компрессионного (дизельного) исполнения.

Преимущества и недостатки экономичного двигателя CIDI

Основным преимуществом сжигания обедненной смеси, CIDI ICE, является эффективность преобразования топлива, которая намного выше, чем у стехиометрических, SI ICE, как при полной нагрузке, так и, более того, при частичной нагрузке (Heywood, 1988; Zhao, 2009; Mollenhauer and Чёке, 2010).В то время как у легковых автомобилей с обедненной топливной смесью CIDI ICE на дизельном топливе пиковая эффективность преобразования топлива составляет около 45%, пиковая эффективность легковых автомобилей со стехиометрическими двигателями SI ICE, работающими на бензине, составляет всего около 35%. Снижение нагрузки за счет количества впрыскиваемого топлива, эффективности преобразования топлива при сжигании обедненной смеси, CIDI ICE является высоким в большей части диапазона нагрузок. И наоборот, при уменьшении нагрузки, дросселируя впуск, эффективность преобразования топлива стехиометрического, SI ICE резко ухудшается при уменьшении нагрузки.Это дает возможность легковым автомобилям, оснащенным системой сжигания обедненной смеси CIDI ICE, потреблять гораздо меньше топлива и, следовательно, выделять гораздо меньше CO 2 во время ездовых циклов (Schipper et al., 2002; Zervas et al., 2006; Johnson , 2009; Zhao, 2009; Mollenhauer, Tschöke, 2010; Boretti, 2017, 2018; Boretti, Lappas, 2019).

Бедное сжигание после обработки в целом (дизельные ДВС CIDI изначально работают на обедненной смеси, за исключением случаев экстремального использования рециркуляции выхлопных газов, EGR), однако, гораздо менее эффективны, чем стехиометрические после обработки преобразователями TWC бензиновых ДВС SI (Lloyd and Cackette, 2001; Burtscher, 2005; Maricq, 2007).Следовательно, выбросы регулируемых загрязняющих веществ, в частности NOx, в течение рабочих циклов, которые в значительной степени отклоняются от сертификационных циклов, являются гораздо более продолжительными и требуют, чтобы двигатель работал в значительной степени полностью прогретым, намного больше в ДВС, работающем на обедненной смеси, чем стехиометрические ДВС. Кроме того, двигатели CIDI ICE, работающие на обедненной смеси, содержат твердые частицы, что является обычным недостатком, даже в меньшей степени, двигателей с прямым впрыском, включая SI DI ICE. ТЧ возникают, когда закачиваемая жидкость, еще жидкая, взаимодействует с пламенем, образуя сажу.Сажа образуется в богатых топливом областях камеры сгорания (Hiroyasu and Kadota, 1976; Smith, 1981; Neeft et al., 1997). Постное сжигание, CIDI ICE, таким образом, нуждаются в ловушках для частиц (Neeft et al., 1996; Saracco et al., 2000; Ambrogio et al., 2001; Mohr et al., 2006). Однако это также есть возможность, поскольку циркуляция в областях с фоновыми частицами может обеспечить лучшее качество воздуха в выхлопной трубе, чем во впускной. Кроме того, двигатели CIDI ICE, работающие на обедненной смеси, обычно с турбонаддувом стоят дороже.Двухтопливная работа с LPG, CNG или LNG не имеет никаких недостатков с точки зрения регулируемых загрязняющих веществ или CO 2 , а только дает преимущества.

Эффективность преобразования топлива

Без нацеливания на рекуперацию отработанного тепла (WHR) дизельные двигатели CIDI ICE доказали свою способность достигать максимальной эффективности преобразования топлива около 50%, обеспечивая при этом чрезвычайно высокое среднее эффективное давление при торможении в гонках на выносливость (Boretti and Ordys, 2018). Благодаря высокому давлению, высокой степени распыления, высокой скорости потока и быстродействующим форсункам, несколько стратегий впрыска позволяют контролировать процессы сгорания, происходящие в объеме камеры сгорания, для наилучшего компромисса между работой давления, повышением давления и пиковое давление.

Хотя системы рекуперации отработанного тепла (WHR), безусловно, могут улучшить стационарную эффективность преобразования топлива в дизельных двигателях (Teng et al., 2007, 2011; Teng and Regner, 2009; Park et al., 2011; Wang et al., 2014; Yu et al., 2016; Shi et al., 2018), переходные процессы при холодном пуске являются ахилловой пятой традиционных WHR. Кроме того, WHR увеличивают вес, тепловую инерцию, проблемы с упаковкой и сложность. Инновационные концепции WHR, использующие контур охлаждающей жидкости в качестве подогревателя модифицированного « turbo steamer » (Freymann et al., 2008, 2012) без необходимости использования двойного контура, требуют значительных усилий в области исследований и разработок.

Результаты, достигнутые Audi в гонках на выносливость (Audi, 2014) менее чем за десять лет разработок, очень важны. С 2006 по 2008 год Audi использовала двигатель V12 TDI в Audi R10 TDI. Двигатель объемом 5,5 л развивал крутящий момент 1100 Нм. На номинальной скорости очень тихий твин-турбо выдавал около 480 кВт. В 2009 и 2010 годах Audi перешла на V10 TDI в Audi R15 TDI. Он был короче и легче двенадцатицилиндрового.Рабочий объем 5,5 л был распределен на два цилиндра меньше. Двигатель имел примерно 440 кВт и крутящий момент более 1050 Нм. Верхний BMEP превышал 24 бара. Затем, с 2011 по 2013 год, Audi перешла на V6 TDI в Audi R18 TDI, R18 ultra и R18 e-Tron Quattro. Уменьшение объема двигателя позволило довести рабочий объем двигателя до 3,7 л. Легкий и компактный двигатель V6 TDI развивал более 397 кВт и крутящий момент более 900 Нм. Система Common Rail создавала давление до 2600 бар. Верхний BMEP превышал 30 бар.

Когда основное внимание уделялось экономии топлива, в 2014 году двигатель V6 TDI в Audi R18 e-Tron Quattro был оснащен модернизированным двигателем V6 TDI с рабочим объемом 4,0 л. Максимальная мощность составляла 395 кВт, а максимальный крутящий момент — более 800 Нм. Давление закачки составило более 2800 бар. Расход топлива снизился более чем на 25% по сравнению с 3,7-литровым двигателем. Последняя (2016 г.) выходная мощность 4-литрового двигателя составляла 410 кВт, что соответствовало 870 Нм крутящего момента при максимальной скорости 4500 об / мин.Это преобразовалось в BMEP 27,3 бар в рабочей точке максимальной скорости / максимальной мощности. Последние двигатели имели ограниченный расход топлива, так что для системы рекуперации энергии 6 МДж (ERS) для торможения максимальный расход топлива составлял 71,4 кг / ч. Для дизельного топлива с низшей теплотворной способностью (НТС) 43,4 МДж / кг мощность потока топлива составила 860,8 кВт. Таким образом, максимальная мощность была получена при пиковом КПД торможения η = 0,475, что намного больше, чем максимальный КПД многих серийных высокоскоростных дизельных двигателей, которые могут работать, вплоть до максимального КПД η = 0.45 при более низких оборотах двигателя.

Из расчетов максимальный крутящий момент, а также максимальная эффективность торможения были получены при скоростях <4500 об / мин, что является технологическим пределом диффузионного горения (Boretti and Ordys, 2018). Из-за постоянного времени, необходимого для испарения топлива и его смешивания с воздухом, фаза диффузионного сгорания имеет продолжительность в градусах угла поворота коленчатого вала, которая увеличивается с частотой вращения двигателя. Таким образом, на скоростях выше 4500 об / мин продолжительность фазы сгорания обычно становится чрезмерной, и гораздо лучшая мощность получается на более низких скоростях.Максимальный крутящий момент, скорее всего, превышал 916 Нм, что соответствует BMEP 29 бар. Пиковая эффективность преобразования топлива с большой вероятностью приближалась к η = 0,50. Дальнейшие разработки в области гонок были в пределах легкой досягаемости, в то время как деятельность была остановлена ​​после выхода « diesel-gate ». Более высокое давление впрыска и более совершенный турбонаддув, такой как современный F1 e-turbo или супер турбонаддув (Boretti and Castelletto, 2018; Boretti and Ordys, 2018), могли бы быть полезны для обычных серийных дизельных двигателей для легковых автомобилей.

Выбросы при лабораторных испытаниях

Прошлая сертификация выбросов, которая проводилась производителями оригинального оборудования (OEM) и не подвергалась независимым испытаниям, была связана с неточностями в тестах и ​​несоответствием цикла сертификации (Boretti, 2017; Boretti and Lappas, 2019). Короткий, сильно стилизованный новый европейский ездовой цикл (NEDC) был чрезвычайно далек от реальных условий вождения, с которыми сталкиваются европейские пассажиры. Поскольку более двух десятилетий OEM-производители были вынуждены сосредоточить свои RandD на производстве двигателей, соответствующих требованиям и экономичных в течение этого цикла, из-за ухудшения состояния из-за холодного запуска, другие возможные применения не регулировались и оставались на усмотрение производителя.Неточности (и осторожность) в способе проведения испытаний привели к множеству несоответствий, начиная с большого разброса выбросов углекислого газа (CO 2 ) при потреблении теоретически одного и того же литра топлива (Boretti and Lappas, 2019). Новый согласованный во всем мире цикл испытаний легких транспортных средств (WLTC), который недавно заменил NEDC из-за « diesel gate » (Chossière et al., 2018), лучше, поскольку он немного длиннее. Тем не менее, это по-прежнему связано с условиями вождения, отличными от тех, которые наблюдаются в часы пик в густонаселенных районах (Boretti and Lappas, 2019).

С исторической точки зрения, правила по выбросам из года в год ужесточаются и ужесточаются, но заявлено, что они измеряются только в ходе предписанных лабораторных испытаний. В таблице 1 представлены нормы выбросов Европейского Союза (ЕС) для легковых автомобилей (категория M) с принудительным (бензин) и компрессионным (дизель) воспламенением. Несгоревшие углеводороды (HC) + NOx были предписаны для бензина и дизельного топлива только стандартами Euro 1 и 2. Выбросы были проверены через NEDC с использованием лабораторной процедуры динамометрического стенда.На протяжении многих лет от OEM-производителя требовалось производить автомобили, выбрасывающие меньше, чем регулируемый загрязнитель, в течение определенного цикла сертификации во время лабораторных испытаний. Реальное вождение было нематериальным понятием, не переведенным ни в одно конкретное законодательное требование. Снижение предельных значений выбросов NOx и PM в стандартах Euro 5 и 6 привело к резкому увеличению затрат на последующую обработку и к увеличению, а не снижению расхода топлива, иногда с проблемами управляемости.Еще раз важно понимать компромисс между экономией топлива и выбросами загрязняющих веществ и понимать, что чрезмерные запросы по одному критерию могут привести к невозможности удовлетворить другие критерии.

Выбросы от вождения в реальном мире

Только недавно Европейский Союз (ЕС) ввел тесты на выбросы выхлопных газов в реальных условиях движения (RDE). Выбросы от дорожных транспортных средств теперь измеряются с помощью портативных анализаторов выбросов (PEM). Тест RDE должен длиться 90–120 минут и включать один городской (<60 км / ч), один сельский (60–90 км / ч) и один автомагистральный (> 90 км / ч) сегмент равного веса, покрывающий расстояние. не менее 16 км.Затем в пределах выбросов RDE используются коэффициенты соответствия, которые относятся к лабораторным испытаниям на динамометрическом стенде. Что касается NOx, коэффициент соответствия составляет 2,1 с сентября 2017 года для новых моделей и с сентября 2019 года для всех новых автомобилей. Другие факторы соответствия еще предстоит определить. Хотя тест RDE по-прежнему не является репрезентативным для реального вождения в густонаселенных районах, он неточный, субъективный, невоспроизводимый и еще не определяющий (Boretti and Lappas, 2019), это, безусловно, шаг вперед.

Реальные данные по австралийским выбросам от вождения автомобилей, выпущенных до введения новых правил, предложены ABMARC (ABMARC, 2017). В отчете, подготовленном для Австралийской автомобильной ассоциации, представлены результаты испытаний на выбросы и расход топлива 30 различных легковых и легких коммерческих автомобилей, измеренные с помощью PEMS на австралийских дорогах. Большинство автомобилей соответствовали стандартам Euro 4, 5 и 6, а 1 из них соответствовал стандартам Euro 2. Реальный расход топлива протестированных автомобилей по сравнению с результатами цикла сертификации был в среднем на 23% выше, на 21% выше для автомобилей с дизельным двигателем, с 4% ниже до 59% выше и на 24% выше для автомобилей с бензиновым двигателем, начиная с 3% ниже до 55% выше.У одного транспортного средства, работающего на сжиженном нефтяном газе, реальный расход топлива на 27% выше, чем результат цикла сертификации. Один подключаемый к сети гибридный автомобиль имел реальный расход топлива на 166% выше, чем результат цикла сертификации с полным состоянием заряда, и на 337% выше при испытании с низким уровнем заряда. Данные о расходе топлива для автомобилей с дизельными сажевыми фильтрами включают поправочный коэффициент для учета регенерации фильтра.

Таким образом, расхождения между лабораторными испытаниями и реальным вождением были разными не только для автомобилей, оснащенных дизельными ДВС CIDI, но и для автомобилей с бензиновыми ДВС SI, а также с традиционными и гибридными силовыми агрегатами.Однако основным отличием были выбросы NOx дизельных двигателей CIDI. В последних правилах ЕВРО автомобили должны соответствовать все более строгим стандартам выбросов регулируемых загрязняющих веществ, а также сокращать выбросы CO 2 . Поскольку эти требования противоречили друг другу и их трудно было удовлетворить, несоответствие между реальным расходом топлива и результатами цикла сертификации увеличивается с увеличением стандарта. Автомобили, соответствующие стандарту Euro 6, имеют наибольшее расхождение между реальными результатами и результатами цикла сертификации.

Что касается выбросов, то у 13 транспортных средств превышены удельные выбросы NOx, предписанные для сертификационного цикла. Из этих 13 автомобилей 11 были дизельными. Только 1 из 12 автомобилей с дизельным двигателем произвел выброс NOx в пределах цикла сертификации. Пять автомобилей с бензиновым двигателем превысили лимит выбросов CO, установленный в сертификационном цикле. Только 1 автомобиль с дизельным двигателем превысил лимит PM цикла сертификации. В среднем выбросы NOx и PM у автомобилей с дизельным двигателем были в 24 и 26 раз выше, чем у автомобилей с бензиновым двигателем, а выбросы CO у автомобилей с дизельным двигателем были в 10 раз ниже, чем у автомобилей с бензиновым двигателем.Транспортные средства с дизельным двигателем превысили лимит NOx цикла сертификации на 370%, а автомобили с бензиновым двигателем выбросили 43% предела NOx цикла сертификации. Автомобили с бензиновым двигателем выбрасывают 95% предельного количества CO, установленного в сертификационном цикле. Автомобили с дизельным двигателем выбрасывают 20% от предельного количества CO, установленного в сертификационном цикле. Что касается ТЧ, то выбросы дизельных автомобилей составили 43% от предельного количества ТЧ сертификационного цикла, а от автомобилей с прямым впрыском 2-х бензинового бензина (GDI) выбрасывается 26% от предельного количества ТЧ сертификационного цикла.Что касается выбросов NOx от двигателей с обедненной горючей смесью, измеренные результаты были лучше, чем заявленные во время « diesel gate » или заявленные в таких работах, как (Chossière et al., 2018).

Новые правила были введены после « diesel gate », а дизельные двигатели CIDI были улучшены. Европейские реальные данные о выбросах транспортных средств после введения новых правил представлены ACEA (2018a). В ходе правильно проведенной экспериментальной кампании, в повторяемых условиях, с соответствующим оборудованием и с применением научного метода, Европейская ассоциация автопроизводителей (ACEA) недавно показала, что все 270 протестированных автомобилей с дизельным двигателем были ниже пределов выбросов, установленных недавно. тесты по вождению в реальных условиях (RDE), как общие, так и городские.Ни один из транспортных средств не превышал установленный в настоящее время удельный выброс NOx в 165 мг / км (ACEA, 2018a), рис. 1. Подробные результаты утверждения типа для 270 типов дизельных транспортных средств, соответствующих требованиям RDE, доступны в ACEA (2018b). . Результаты RDE для отдельных автомобилей можно найти на сайте (ACEA, 2018c).

Новые данные, опубликованные ACEA, недвусмысленно свидетельствуют о том, что дизельные автомобили последнего поколения выделяют низкие выбросы загрязняющих веществ на дорогах и являются экономичными. Испытания проводились в реальных условиях вождения водителями различных национальных органов по официальному утверждению типа.270 новых типов дизельных автомобилей, сертифицированных по последнему стандарту Euro 6d-TEMP, были представлены на европейском рынке в течение предыдущего года. Все эти автомобили с дизельным двигателем показали себя значительно ниже порогового значения NOx теста RDE, которое теперь применяется ко всем новым типам автомобилей с сентября 2017 года. Большинство этих автомобилей имеют выбросы NOx значительно ниже более строгого порога, который будет обязательным с января 2020 года. test гарантирует, что уровни выбросов загрязняющих веществ, измеренные во время новых лабораторных испытаний WLTP, подтверждаются на дороге.Каждый протестированный автомобиль представляет собой «семейство », состоящее из похожих автомобилей различных вариантов. Эта деятельность доказывает, что дизельные автомобили, доступные сейчас на рынке, имеют низкий уровень выбросов в любом приемлемом состоянии. Немецкий автомобильный клуб (ADAC) недавно подсчитал, что на 30 октября 2018 года было доступно 1206 различных автомобилей, совместимых с RDE, как с бензиновым, так и с дизельным двигателем (ADAC, 2018a). Следовательно, дизельные ДВС CIDI не заслуживают плохой репутации, которую они получили из-за « diesel gate », что является скорее политическим, чем технологическим вопросом.

Современные дизельные автомобили, поддерживаемые политикой обновления парка и в сочетании с альтернативными силовыми агрегатами, могут сыграть важную роль в содействии городам в достижении целей по качеству воздуха при одновременном повышении топливной эффективности и сокращении выбросов CO 2 в краткосрочной и среднесрочной перспективе . Недавние дорожные испытания, проведенные ADAC (2018b), показали, что новейшие автомобили с дизельным двигателем выбрасывают в среднем на 85% меньше NOx, чем автомобили стандарта Евро 5, а самые эффективные дизельные автомобили стандарта Евро 6, соответствующие требованиям RDE, выбрасывают на 95–99% меньше NOx по сравнению с автомобилями Euro 5.Каждый протестированный автомобиль выделяет меньше лимитов для каждого регулируемого загрязнителя. Эти автомобили также обеспечивают исключительную экономию топлива. Кроме того, есть возможность производить еще меньше CO 2 и менее регулируемых загрязнителей, переходя на двухтопливное дизельное топливо — СПГ, КПГ или СНГ.

PM Преимущества дизельных автомобилей

Дизельные двигатели

не являются мишенью из-за того, что транспортный сектор вносит свой вклад в общее качество воздуха. Однако, поскольку качество воздуха во многих частях мира оставляет желать лучшего, а дизельные фильтры твердых частиц могут помочь улучшить качество воздуха, аргумент PM может фактически быть использован в пользу мобильности на основе дизельного топлива, а также против альтернатив, таких как электрические. мобильность.В то время как неверно утверждать, что более современные автомобили с дизельным двигателем выделяют « избыток » NOx и ухудшают качество воздуха, более современные автомобили с дизельным двигателем способствуют очистке воздуха на загрязненных территориях, например, от ТЧ. Из Таблицы 1 видно, что старые дизельные автомобили были произведены в соответствии с гораздо менее строгими правилами PM. Загрязнители воздуха выбрасываются из многих естественных и антропогенных источников, последние включают сжигание ископаемого топлива в электроэнергетике, промышленности, домашнем хозяйстве, транспорте, промышленных процессах, использовании растворителей, сельском хозяйстве и переработке отходов.Следовательно, наличие транспортных средств с выбросами ТЧ из выхлопной трубы потенциально ниже, чем на впуске, — это возможность очистить воздух.

Экологический табачный дым (ETS) вызывает загрязнение помещений мелкими ТЧ, превышающее допустимые пределы для транспортных средств. Данные, сравнивающие выбросы ТЧ от ETS и автомобиля с дизельным двигателем Euro 3, показывают, что концентрации ТЧ в помещении в 10 раз превышают те, которые выбрасываются от двигателя с дизельным двигателем Euro 3 на холостом ходу (Invernizzi et al., 2004). Пределы PM были значительно улучшены для Euro 4, 5 и 6, а если быть точным, то в 10 раз.Исследование Всемирной организации здравоохранения (ВОЗ) (Martuzzi et al., 2006) показывает значительное воздействие ТЧ 10 на здоровье городского населения 13 крупных итальянских городов, которое, по оценкам, составляет 8220 смертей в год, что связано с концентрациями ТЧ 10 выше 20 мкг / м. Это 9% смертности от всех причин (без учета несчастных случаев) среди населения старше 30 лет. Эти уровни PM 10 не являются результатом использования новейших автомобилей с чистым дизельным двигателем.

Характеристики дизельных сажевых фильтров (DPF) относительно сложные (Fiebig et al., 2014). Новейшие технологии DPF более эффективны для больших размеров, в то время как менее эффективны или даже отрицательны для меньших нанометрических размеров. Мониторинг часто ограничивается PM 10 — частицами диаметром 10 микрометров или PM 2,5 — частицами диаметром 2,5 микрометра. DPF может улавливать от 30% до более 95% микрометрических PM (Barone et al., 2010). При оптимальном сажевом фильтре выбросы ТЧ могут быть уменьшены до 0,001 г / км или менее (Fiebig et al., 2014), что в 5 раз меньше, чем в настоящее время 0.005 of Euro 6. Хотя эта мера массы не учитывает загрязнение субмикрометрическими и нанометрическими частицами, в настоящее время нет контроля над этим типом загрязнителя из любого источника.

Если новые автомобили с дизельным двигателем не выбрасывают больше NOx, чем старые автомобили с дизельным двигателем, они, безусловно, выбрасывают гораздо меньше ТЧ и, возможно, при некоторых обстоятельствах способны очищать воздух от ТЧ, производимых из других источников, которые не являются адекватным направлением деятельности директивных органов. . Случай Гонконга, который не является худшим на Земле, описан в Haas (2017).Помимо местных выбросов из различных источников, в том числе от легковых автомобилей, в Гонконг есть значительное количество загрязняющих веществ, привезенных из материкового Китая. Хотя данные о загрязнителях в Китае ограничены, хорошо известно, что Гонконг сталкивается с серьезными проблемами со здоровьем, связанными с загрязнением воздуха, в основном импортируемым с материка. Загрязнение воздуха в Гонконге не так ужасно, как в Китае или Индии, где токсичное облако, получившее название « airpocalypse », часто покрывает значительную часть этих стран, но это все еще один хороший пример того, что более современные дизельные автомобили заменяют на дорога старые автомобили оказывают положительное влияние.

Из множества типов аэрозольных частиц, циркулирующих в атмосфере, одним из самых разрушительных является PM 2,5 . Во многих областях Китая и Индии уровни ТЧ 2,5 и ТЧ 10 намного превышают рекомендованные ВОЗ, Рисунок 2. Рекомендации ВОЗ (среднегодовые): ТЧ 2,5 из 10 мкг / м 3 и ТЧ. 10 из 20 мкг / м 3 . Во всем мире средний уровень загрязнения окружающего воздуха колеблется от <10 до более 100 мкг / м 3 для PM 2.5 , и от <10 до более 200 мкг / м 3 , для PM 10 . Случаи плохого качества воздуха широко распространены не только в Китае и Индии. Однако промышленный центр южного побережья Китая является одним из районов с наиболее высоким уровнем загрязнения, как Пекин и Дели. В то время как пекинский « airpocalypse » подавляется решительными мерами, в основном направленными на использование угля, но также ограничивающими движение любого транспортного средства (South China Morning Post, 2018), « airpocalypse » Дели достигает нового чрезвычайно высокий, в том числе благодаря « выжиганию стерни » из окрестностей (Indiatimes, 2018).

Рисунок 2 . Карта PM 2.5 для Азии осенью 2018 года в режиме реального времени. Показаны только области, покрытые станциями. Изображение с Земли Беркли, www.berkeleyearth.org.

Качество воздуха в Гонконге не самое лучшее (Haas, 2017). Уровни загрязняющих веществ превышают стандарты ВОЗ более 15 лет. На пиках они более чем в пять раз превышают допустимые уровни. Выбросы от транспортных средств и судов являются одними из крупнейших местных источников загрязнения.Свою роль играют и электростанции, которые почти полностью зависят от ископаемого топлива, в основном угля. Однако около 60-70% PM поступает из материкового Китая. Этот поток чрезвычайно актуален, особенно зимой, когда импортируемый PM составляет около 77% от общего количества. В последние годы резко возросли масштабы астмы и бронхиальных инфекций. Только в Гонконге было зарегистрировано более 1600 фактов, а не гипотетических, как у Chossière et al. (2018), преждевременная смерть в 2016 году только из-за загрязнения воздуха (Haas, 2017).

В дополнение к улучшенным стандартам топлива и расширению использования электромобилей, значительный рост недавних дизельных транспортных средств, оборудованных уловителями твердых частиц, может внести дополнительный вклад в улучшение качества воздуха в городе, которое по-прежнему не соответствует ни одному руководству ВОЗ.Что касается возможности использовать электромобили, подзаряжаемые электростанциями на горючем топливе, электромобили могут фактически способствовать загрязнению ТЧ. Согласно Hodan and Barnard (2004), самый крупный источник PM 2,5 из антропогенных источников — это износ шин и дорожного покрытия. Поскольку электромобили тяжелее и имеют более высокий крутящий момент, чем автомобили на базе ДВС, они производят намного больше PM 2,5 . Следовательно, увеличение количества электромобилей сделает Гонконг еще более грязным по отношению к PM, поскольку они производят PM 2.5 , и они не могут сжигать ТЧ, произведенные из других источников, например дизельный ДВС CIDI, оснащенный уловителем твердых частиц.

Как показано на Рисунке 1 и Таблице 1, автомобили, оснащенные новейшими двигателями ХИ, не производят избыточных NOx, а из Рисунков 2, 3 видно, что во многих регионах мира концентрация ТЧ в воздухе намного выше, чем можно найти. в выхлопной трубе автомобилей, оснащенных новейшими дизельными двигателями CIDI, таблица 1 и NO 2 концентрации также довольно велики. Двухтопливный режим работы на СПГ, КПГ или СНГ с неизменным в остальном транспортным средством, в котором установлен сажевый фильтр, может еще больше способствовать очистке окружающего воздуха от твердых частиц.

Рисунок 3 . Среднемесячные концентрации для Китая в январе 2015 г.: PM 2,5 , вверху, и NO 2 , внизу. Изображения с Земли Беркли, www.berkeleyearth.org.

Преимущества двухтопливного дизельного топлива — СПГ / СНГ / КПГ

Современные технологии

Diesel-LNG (Goudie et al., 2004; Osorio-Tejada et al., 2015; Laughlin and Burnham, 2016), дизельное топливо-CNG (Maji et al., 2008; Shah et al., 2011; Ryu, 2013) или дизельное топливо-СНГ (Jian et al., 2001; Ashok et al., 2015) двигатели обеспечивают, например, эффективность преобразования дизельного топлива и удельную мощность, улучшая при этом выбросы как регулируемых загрязняющих веществ (PM, NOx), так и CO 2 . СПГ может использоваться для большегрузных автомобилей благодаря криогенному хранению. LPG (и CNG) может быть предпочтительнее в легковых и легких транспортных средствах.

Дизельные двигатели по-прежнему выделяют значительное количество углекислого газа (CO 2 ) и выбросы твердых частиц (ТЧ) из двигателя из-за диффузионного сгорания тяжелых углеводородов, высокого отношения C / H и жидкого дизельного топлива.Выбросы оксидов азота (NOx) из двигателя также являются неотъемлемой частью процесса сжигания обедненной смеси в избыточном воздухе (Heywood, 1988). Как PM, так и NOx могут быть уменьшены посредством дополнительной обработки, хотя стратегии сжигания дизельного топлива часто определяются для наилучшего компромисса между NOx и PM.

Использование газообразного топлива с пониженным содержанием углерода, такого как природный газ, который в основном представляет собой метан CH 4 , в жидкой форме, как СПГ, или в газовой форме, как СПГ, или сжиженный нефтяной газ (СНГ), в основном пропан C 3 H 8 , имеет интуитивно понятные основные преимущества по выбросам CO 2 по сравнению сдизельное топливо переменного состава, но примерно C 13,5 H 23,6 . Поскольку испарение намного проще, существуют также преимущества для выбросов ТЧ из двигателя и, следовательно, косвенно также для выбросов NOx из двигателя по сравнению с дизельным топливом (Kathuria, 2004; Chelani and Devotta, 2007; Yeh, 2007; Engerer and Horn, 2010; Lin et al., 2010; Kumar et al., 2011).

LNG, CNG и LPG имеют меньшее соотношение углерода и водорода. Следовательно, гораздо меньше CO 2 выбрасывается для получения такой же мощности с примерно такой же эффективностью преобразования топлива.CNG — это нагнетаемый газ. СПГ также является газом в нормальных условиях. LPG в нормальных условиях жидкий, но испаряется намного быстрее, чем дизельное топливо. Это практически сводит к нулю выбросы твердых частиц (кроме выбросов пилотного дизельного топлива). Поскольку СПГ, КПГ и СНГ представляют собой высокооктановое топливо с низким цетановым числом, их трудно использовать отдельно в двигателе с воспламенением от сжатия. Проблема решена при работе на двух видах топлива (westport.com, 2019a, b). Воспламенение вызывает небольшое количество дизельного топлива. СПГ, КПГ или СНГ, впрыскиваемые до или после зажигания впрыска дизельного топлива, могут затем сгореть в смеси с предварительным смешиванием или диффузией.Первая фаза сгорания вызывает быстрое повышение давления. Скорость сгорания второй фазы определяется скоростью впрыска СПГ, КПГ или СНГ, нацеленной на поддержание давления во время первой части такта расширения.

Одной из основных проблем при использовании СПГ или КПГ является удельный объем топлива, так как плотность газа в нормальных условиях низкая. Это создает проблемы для системы впрыска, которой требуются форсунки с гораздо большей площадью поперечного сечения дизельного топлива, и значительно затрудняет быстрое срабатывание и возможности многократного впрыска, характерные для новейших дизельных форсунок.Это также проблема для хранения, поскольку объем топлива, необходимый для данного количества энергии на борту транспортного средства, намного больше, чем у дизельного топлива. СПГ имеет лучшую объемную плотность, но для поддержания низкой температуры требуется криогенная система. КПГ имеет меньшую объемную плотность и дополнительно требует резервуаров под давлением.

Система Westport HPDI для дизельного топлива и КПГ / СПГ — это технология, хорошо зарекомендовавшая себя десятилетиями (Li et al., 1999; westport.com, 2015). Вначале HPDI представлял собой простой основной впрыск природного газа после пилотного / предварительного впрыска дизельного топлива.В последнее время HPDI развивается в сторону более сложных стратегий, регулирующих предварительно смешанное и диффузионное сжигание природного газа, как было предложено Боретти (2013).

Традиционный HPDI в сверхмощных ДВС позволяет ДВС, работающему на природном газе, сохранять рабочие характеристики, аналогичные характеристикам дизеля, при этом большая часть энергии обеспечивается за счет природного газа. Небольшой пилотный впрыск дизельного топлива (5–10% энергии топлива) используется для зажигания непосредственно впрыскиваемой газовой струи. Природный газ горит в режиме диффузионного горения с контролируемым смешением (Li et al., 1999; westport.com, 2015).

Технологии будущего

В нескольких работах описаны тенденции развития технологии HPDI. McTaggart-Cowan et al. (2015) отчет о двухтопливных форсунках 600 бар для СПГ. Событие сгорания СПГ ограничено давлением впрыска, которое определяет скорость смешения и сгорания. Значительное повышение эффективности и снижение PM достигаются при высоких нагрузках, и особенно на более высоких скоростях, за счет увеличения давления впрыска с традиционных 300 бар до последних 600 бар.Скорость горения ограничена. McTaggart-Cowan et al. (2015) сообщают о выгодах эффективности от более высоких давлений около 3%, добавленных к сокращению выбросов твердых частиц на 40–60%.

Mabson et al. Рассмотрели разные формы сопла. (2016). Инжектор « сопла с парными отверстиями » был разработан для уменьшения образования твердых частиц за счет увеличения уноса воздуха из-за взаимодействия струи. Выбросы CO и PM были наоборот в 3–10 раз выше при использовании сопел с парными отверстиями. Сопло с парными отверстиями давало более крупные агрегаты сажи и большее количество частиц.

Mumford et al. сообщают об улучшениях Westport HPDI 2.0 (Mumford et al., 2017). HPDI 2.0 обеспечивает лучшие характеристики и уровень выбросов по сравнению с HPDI первого поколения, а также только с базовым дизельным двигателем. Мамфорд и др. (2017) также обсуждают потенциал и проблемы более высокого давления нагнетания.

Стратегии сжигания с контролируемой диффузией и с частичным предварительным смешиванием рассматриваются Florea et al. (2016) с помощью Westport HPDI. Сгорание с частичным предварительным смешиванием, называемое DI 2 , является многообещающим, повышая эффективность двигателя более чем на 2 пункта по сравнению со стратегией сгорания с контролируемой диффузией.Модуляция двух фаз горения, потенциально более полезная, в работе не исследуется.

Режим горения DI 2 также исследован в Neely et al. (2017). Природный газ впрыскивается во время такта сжатия до зажигания впрыска дизельного топлива. Показано, что такое сгорание природного газа с частичной предварительной смесью улучшает как термическую эффективность, так и эффективность сгорания по сравнению с традиционным режимом двухтопливного сгорания с фумигацией. Сгорание природного газа с частичной предварительной смесью также обеспечивает повышение теплового КПД по сравнению со сгоранием с регулируемой диффузией по базовой линии, когда впрыск природного газа происходит после впрыска дизельного зажигания.

Влияние стратегий впрыска на выбросы и характеристики двигателя HPDI изучено Faghani et al. (2017а, б). Они исследуют влияние позднего дополнительного впрыска (LPI), а также сгорания с небольшим предварительным смешиванием (SPC) на выбросы и характеристики двигателя. При использовании SPC впрыск дизельного топлива задерживается. Работа SPC при высокой нагрузке снижает PM более чем на 90% с улучшением топливной эффективности на 2% при почти таком же уровне NOx. Однако SPC имеет большие колебания от цикла к циклу и чрезмерную скорость нарастания давления.ТЧ не увеличивается для SPC с более высоким уровнем рециркуляции отработавших газов, более высоким глобальным коэффициентом эквивалентности на основе кислорода (EQR) или более высокой контрольной массой, что обычно увеличивает количество ТЧ при сгорании HPDI с регулируемым смешиванием. LPI, последующий впрыск 10–25% от общего количества топлива, происходящий после основного сгорания, приводит к значительному сокращению выбросов твердых частиц с незначительным влиянием на другие выбросы и характеристики двигателя. Основное сокращение PM от LPI связано с уменьшением количества топлива при первом впрыске. Вторая закачка дает незначительный нетто-вклад в общие PM.

Двухтопливный инжектор дизель-СПГ Westport HPDI дает отличные результаты. Однако у этого подхода есть фундаментальный недостаток. Он не обладает такими же характеристиками, как дизельные форсунки последнего поколения, как по скорости потока, так и по скорости срабатывания и распылению дизельного топлива. Таким образом, может быть предпочтительным соединение с одним дизельным инжектором последнего поколения со специальным инжектором для второго топлива, чтобы обеспечить лучшие характеристики впрыска как для дизельного, так и для второго топлива.Более высокое давление впрыска и более быстрое срабатывание являются движущими силами улучшенных режимов сгорания.

Двухтопливные дизель-водородные ДВС CIDI с возможностью установки двух прямых форсунок на цилиндр были исследованы, например, в (Boretti, 2011b, c). Один инжектор использовался для дизельного топлива, а другой — для водорода. Смоделированный дизельный двигатель, преобразованный в двухтопливный дизель-водород после этого подхода, продемонстрировал КПД при полной нагрузке до 40–45% и снижение потерь в КПД, снижая нагрузку, работающую немного лучше, чем базовое дизельное топливо в каждой рабочей точке.Хотя использование двух форсунок на цилиндр не представляет проблемы для новых двигателей, сложно установить две форсунки при модернизации существующих дизельных двигателей. Специальные форсунки прямого впрыска для СПГ, СНГ или КПГ требуют дальнейшего развития для конкретного применения.

Использование двух специализированных форсунок вместо одной двухтопливной форсунки с более высоким давлением впрыска, более быстрым срабатыванием и полной независимостью от впрыска отдельных видов топлива обеспечивает большую гибкость в формировании впрыска.Двухтопливный режим обычно характеризуется предварительным / предварительным впрыском дизельного топлива, за которым следует основной второй впрыск топлива. Предпочтительно, чтобы второе топливо не впрыскивалось полностью после зажигания впрыска дизельного топлива. Его можно впрыскивать до или одновременно с дизельным топливом или после дизельного топлива, причем не только за один впрыск, но и за несколько впрысков. Таким образом, второе топливо может гореть частично предварительно смешанным и частично диффузионным.

Возможны разные режимы горения. « Controlled » HCCI — один из таких режимов.В управляемом HCCI второе топливо впрыскивается первым, и воспламенение дизельного топлива происходит до ожидаемого начала самовоспламенения HCCI (Boretti, 2011a, b). HCCI не имеет преимуществ с точки зрения эффективности преобразования топлива по сравнению с объемным сгоранием в центре камеры, окруженной воздушной подушкой. Однородное горение всегда страдает большими потерями тепла на стенках и неполным сгоранием на гашение пламени. HCCI также не создает пикового давления во время такта расширения, обеспечивая пиковое давление точно в верхней мертвой точке.Однако HCCI может иметь преимущества для выбросов из двигателя, поскольку это чрезвычайно низкотемпературный процесс, и это событие сгорания намного ближе к теоретически лучшему изохорному сгоранию из анализов цикла давления.

Наиболее интересные режимы — это предварительное смешение, диффузия или модулированное предварительное смешение и диффузия в центре камеры. При предварительно смешанном, но стратифицированном сгорании второе топливо впрыскивается в центр камеры и сжигается за счет впрыска дизельного топлива до однородного заполнения всей камеры.При диффузионном сгорании второе топливо впрыскивается в центр камеры после того, как зажигание впрыска дизельного топлива создает подходящие условия для того, чтобы следующее сгорание проходило под контролем диффузии, и там оно сгорает. Существует возможность для предварительного впрыска второго топлива, а также для современного или последующего впрыска второго топлива в отношении пилотного / предварительного впрыска дизельного топлива, которые должны быть тщательно сформированы для обеспечения наилучшей эффективности преобразования топлива. в пределах ограничений по выбросам из двигателя, скорости нарастания давления и пиковому давлению.

Альтернатива электрической мобильности все еще преждевременна

Экологичность и экономичность дизельной мобильности не признается многими странами, которые в противном случае задумывались о преждевременном переходе на электрическую мобильность, не решив сначала многие проблемы электромобилей, т. Е. Высокую экономичность и экономичность. экологические затраты на строительство, эксплуатацию и утилизацию автомобилей, ограниченные характеристики этих тяжелых транспортных средств из-за все еще неадекватных технологий аккумуляторов, отсутствие инфраструктуры для подзарядки только за счет возобновляемых источников энергии.

Номинально для решения проблемы глобального потепления, а не загрязнения воздуха, Великобритания, Франция и Китай обсуждали прекращение мобильности на базе ДВС к 2040 году. Однако данные МЭА (IEA, 2018) показывают, что производство геотермальной электроэнергии, Солнце, ветер, приливы, волны и океан по-прежнему составляли около 1% от общего количества в 2015 году, при этом общее предложение первичной энергии (ОППЭ) значительно превышает производство электроэнергии. Поскольку доля солнечной и ветровой энергии в TPES все еще невелика, не имеет смысла предлагать только электромобили, даже забывая о других ключевых моментах, связанных с поиском электрической мобильности.

В настоящее время анализ жизненного цикла выбросов CO 2 (LCA) не показывает явного преимущества электрической мобильности по сравнению с мобильностью на базе ДВС (Boretti, 2018). Пример LCA для электрической мобильности критически зависит от того, как вырабатывается электричество, которое без огромного увеличения накопления энергии, а не просто увеличение зарегистрированной мощности ветра и солнца, нуждается в подкреплении ископаемым топливом. С 1990-х годов в аккумуляторных технологиях произошел прогресс, но пока еще не произошло необходимого прорыва.Производство, использование и утилизация электромобилей по-прежнему слишком дорого с экономической и экологической точек зрения, а также возникают дополнительные проблемы, связанные с материалами, необходимыми для производства батарей, которые подвержены большему риску истощения, чем ископаемое топливо (Boretti, 2018). . Кроме того, эти материалы добываются неэтично в очень немногих местах.

Amnesty International (Onstad, 2019) недавно отметила, что индустрия электромобилей (EV) позиционирует себя как экологически чистые, но при этом многие из своих аккумуляторов производят с использованием ископаемого топлива и минералов, полученных из неэтичных источников, зараженных нарушениями прав человека.Маловероятно, что имеется достаточно сырья для удовлетворения ожидаемого резкого спроса на литий-ионные батареи электромобилей и подключенных к сети аккумуляторных систем для хранения периодически возобновляемой энергии ветра и солнца (Jaffe, 2017). Более того, без четкого пути для рециркуляции и отрицательных прошлых (и настоящих) примеров рециркуляции промышленно развитыми странами за счет экологического ущерба в развивающихся странах (Minter, 2016), электрическая мобильность может привести к значительному ущербу для экономики. и окружающая среда.

Хотя электрическая мобильность, безусловно, может решить некоторые из проблем, связанных с загрязнением воздуха на транспорте, маловероятно, что это может произойти в ближайшее время, она не решает проблемы загрязнения из других источников, и в целом это еще не так. , где все включено. Потребление топлива для сжигания все еще резко увеличивается, и существует очень мало примеров технологических возможностей для преобразования химической энергии топлива в механическую или электрическую энергию с более высокой эффективностью преобразования энергии топлива и снижением выбросов загрязняющих веществ дизельных ДВС CIDI.Переход на электрическую мобильность в транспортном секторе потребует огромных затрат, в том числе с точки зрения выбросов парниковых газов.

Обсуждение и выводы

Хотя ICCT, Агентство по охране окружающей среды США и CARB описывают автомобили с дизельным двигателем как вредные для окружающей среды, последние испытания вождения в реальных условиях, проведенные ACEA, показывают, что это неверно. Современные дизельные автомобили имеют относительно низкий уровень выбросов CO 2 и загрязняющих веществ, включая NOx и PM. Как бы то ни было, движение дизельных автомобилей в сильно загрязненных районах может улучшить качество воздуха, загрязненного другими источниками, а не только старыми дизельными автомобилями.

Дизельные ДВС

CIDI могут быть улучшены и более экологичны благодаря дальнейшим усовершенствованиям в системе впрыска, а также в системе дополнительной обработки. ДВС CIDI также можно улучшить, просто приняв двухтопливную конструкцию со сжиженным нефтяным газом, сжатым природным газом или сжиженным природным газом в качестве второго топлива. Эти альтернативные виды топлива обеспечивают такие же или лучшие характеристики ДВС, работающего только на дизельном топливе, в том, что касается установившегося крутящего момента, мощности и эффективности преобразования топлива, а также переходных процессов, при этом значительно улучшая выбросы CO 2 , а также Выбросы ТЧ и NOx из двигателя.

В дополнение к лучшему соотношению CH для выбросов CO 2 , преимущества двухтопливных двигателей CIDI ICE на СПГ, КПГ или СНГ также проистекают из возможности регулирования фаз предварительного смешивания и диффузии сгорания путем впрыска второй топливо, которое намного легче испаряется и менее склонно к самовоспламенению до, после или после предварительного / пилотного дизельного топлива. Также особенно важен для СПГ эффект охлаждения за счет криогенного впрыска. Дальнейшее развитие системы впрыска является основной проблемой при разработке двухтопливных ДВС CIDI.

Преимущества дизельных или двухтопливных двигателей CIDI ICE по сравнению с любыми другими альтернативными решениями для транспортных приложений в настоящее время не признаются ни одним директивным органом. Европейские автопроизводители уже приостановили свои планы исследований и разработок своих ДВС, чтобы сосредоточиться только на электромобилях. Учитывая нерешенные проблемы, связанные с электромобильностью, это может вскоре оказаться неправильным для экономики и окружающей среды. Использование более современных дизельных транспортных средств и транспортных средств, работающих на двухтопливном дизельном топливе, может только спасти жизни, но не вызывать смертность, улучшить качество воздуха, ограничивая истощение природных ресурсов и выбросы CO 2 , не требуя непозволительных усилий и кардинальные изменения.

Вклад авторов

Автор подтверждает, что является единственным соавтором этой работы, и одобрил ее к публикации.

Конфликт интересов

Автор заявляет, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могут быть истолкованы как потенциальный конфликт интересов.

Список литературы

Амброджио, М., Саракко, Г. и Спеккиа, В. (2001). Сочетание фильтрации и каталитического сжигания в уловителях твердых частиц для обработки выхлопных газов дизельных двигателей. Chem. Англ. Sci. 56, 1613–1621. DOI: 10.1016 / S0009-2509 (00) 00389-4

CrossRef Полный текст | Google Scholar

Ашок Б., Ашок С. Д. и Кумар К. Р. (2015). Дизельный двухтопливный двигатель LPG — критический обзор. Александр. Англ. J. 54, 105–126. DOI: 10.1016 / j.aej.2015.03.002

CrossRef Полный текст | Google Scholar

Бароне, Т. Л., Стори, Дж. М., и Доминго, Н. (2010). Анализ характеристик отработанного в полевых условиях сажевого фильтра: выбросы твердых частиц до, во время и после регенерации. J. Управление отходами воздуха. Доц. 60, 968–976. DOI: 10.3155 / 1047-3289.60.8.968

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Боретти А. (2011a). Дизельный и HCCI-подобный режим работы двигателя грузовика, преобразованного на водород. Внутр. J. Hydr. Energy 36, 15382–15391. DOI: 10.1016 / j.ijhydene.2011.09.005

CrossRef Полный текст | Google Scholar

Боретти А. (2011b). Достижения в двигателях внутреннего сгорания с воспламенением от сжатия водорода. Внутр. J. Hydr. Энергия 36, 12601–12606. DOI: 10.1016 / j.ijhydene.2011.06.148

CrossRef Полный текст | Google Scholar

Боретти, А. (2011c). Преимущества прямого впрыска дизельного топлива и водорода в двухтопливном h3ICE. Внутр. J. Hydr. Energy 36, 9312–9317. DOI: 10.1016 / j.ijhydene.2011.05.037

CrossRef Полный текст | Google Scholar

Боретти А. (2013). Рассматриваются новейшие концепции систем сжигания и утилизации отработанного тепла для водородных двигателей. Внутр. J. Hydr. Энергия 38, 3802–3807. DOI: 10.1016 / j.ijhydene.2013.01.112

CrossRef Полный текст | Google Scholar

Боретти А. (2017). Будущее двигателей внутреннего сгорания после «Diesel-Gate. Warrendale, PA: SAE Technical Paper 2017-28-1933. DOI: 10.4271 / 2017-28-1933

CrossRef Полный текст | Google Scholar

Боретти А. (2018). Анализ жизненного цикла Сравнение мобильности на основе электрических двигателей и двигателей внутреннего сгорания .Варрендейл, Пенсильвания: Технический документ SAE 2018-28-0037. DOI: 10.4271 / 2018-28-0037

CrossRef Полный текст | Google Scholar

Боретти, А., Кастеллетто, С. (2018). «Бензиновый двигатель с супер-турбонаддувом и непосредственным впрыском с реактивным зажиганием», в Труды Всемирной автомобильной конференции FISITA, 2–5> ОКТЯБРЬ 2018 г. (Ченнаи).

Google Scholar

Боретти, А., Лаппас, П. (2019). Комплексные независимые лабораторные испытания, подтверждающие экономию топлива и выбросы в реальных условиях вождения. Adv. Technol. Innovat. 4, 59–72.

Google Scholar

А. Боретти и А. Ордыс (2018). Супертурбонаддув двухтопливного дизельного двигателя с системой зажигания . Технический документ SAE 2018-28-0036. DOI: 10.4271 / 2018-28-0036

CrossRef Полный текст | Google Scholar

Burtscher, Х. (2005). Физические характеристики выбросов твердых частиц из дизельных двигателей: обзор. J. Аэрозоль. Sci. 36, 896–932. DOI: 10.1016 / j.jaerosci.2004.12.001

CrossRef Полный текст | Google Scholar

Камузо, Дж. Р., Альварес, Р. А., Брукс, С. А., Браун, Дж. Б. и Стернер, Т. (2015). Влияние выбросов метана и эффективности транспортных средств на воздействие большегрузных грузовиков, работающих на природном газе, на климат. Environ. Sci. Technol. 49, 6402–6410. DOI: 10.1021 / acs.est.5b00412

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Шоссьер, Г. П., Малина, Р., Аллрогген, Ф., Истхэм, С. Д., Спет, Р. Л., и Барретт, С. Р. (2018). Атрибуция на уровне страны и производителя воздействия на качество воздуха из-за чрезмерных выбросов NOx от дизельных легковых автомобилей в Европе. Атмос. Environ. 189, 89–97. DOI: 10.1016 / j.atmosenv.2018.06.047

CrossRef Полный текст | Google Scholar

Крэбтри, Г. В., Дрессельхаус, М. С., и Бьюкенен, М. В. (2004). Водородная экономика. Phys. Сегодня 57, 39–44. DOI: 10.1063 / 1.1878333

CrossRef Полный текст | Google Scholar

Энгерер, Х., и Хорн, М. (2010). Автомобили, работающие на природном газе: вариант для Европы. Энергетическая политика 38, 1017–1029. DOI: 10.1016 / j.enpol.2009.10.054

CrossRef Полный текст | Google Scholar

Faghani, E., Kheirkhah, P., Mabson, C., McTaggart-Cowan, G., et al. (2017a). Влияние стратегий нагнетания на выбросы от экспериментального газового двигателя с прямым впрыском — Часть I: Поздний дополнительный впрыск . Warrendale, PA: SAE Paper 2017-01-0774. DOI: 10.4271 / 2017-01-0774

CrossRef Полный текст | Google Scholar

Фагани, Э., Kheirkhah, P., Mabson, C., McTaggart-Cowan, G., et al. (2017b). Влияние стратегий впрыска на выбросы от экспериментального двигателя прямого впрыска природного газа — Часть II: Горение с небольшим предварительным смешиванием . Warrendale, PA: SAE Technical Paper 2017-01-0763. DOI: 10.4271 / 2017-01-0763

CrossRef Полный текст | Google Scholar

Фибиг М., Виарталла А., Холдербаум Б. и Кисоу С. (2014). Выбросы твердых частиц из дизельных двигателей: взаимосвязь между технологией двигателя и выбросами. J. Occup. Med. Toxicol. 9: 6. DOI: 10.1186 / 1745-6673-9-6

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Флореа Р., Нили Г., Абидин З. и Мива Дж. (2016). КПД и характеристики выбросов при сжигании двух видов топлива с частичным предварительным смешиванием с прямым впрыском природного газа и дизельного топлива (DI2) . Warrendale, PA: SAE Paper 2016-01-0779. DOI: 10.4271 / 2016-01-0779

CrossRef Полный текст | Google Scholar

Фрейманн, Р., Ринглер, Дж., Зайферт, М., и Хорст, Т. (2012). Турбопарогенератор второго поколения. МТЗ в мире 73, 18–23. DOI: 10.1365 / s38313-012-0138-1

CrossRef Полный текст | Google Scholar

Фрейманн Р., Штробл В. и Обьегло А. (2008). Турбопарогенератор: система, представляющая принцип когенерации в автомобильной промышленности. МТЗ в мире 69, 20–27. DOI: 10.1007 / BF03226909

CrossRef Полный текст | Google Scholar

Гуди, Д., Данн, М., Мунши, С. Р., Лайфорд-Пайк, Э., Райт, Дж., Дуггал, В. и др. (2004). Разработка сверхмощного экспериментального двигателя с воспламенением от сжатия, работающего на природном газе, с низким уровнем выбросов NOx (№ 2004-01-2954) . Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2004-01-2954

CrossRef Полный текст | Google Scholar

Хейвуд, Дж. Б. (1988). «Сжигание в двигателях с воспламенением от сжатия», в Internal Combustion Engine Fundamentals (New York, NY: McGraw-Hill), 522–562.

Google Scholar

Хироясу, Х., и Кадота, Т. (1976). Модели сгорания и образования оксида азота и сажи в дизельных двигателях с непосредственным впрыском. SAE Trans. 85, 513–526. DOI: 10.4271 / 760129

CrossRef Полный текст | Google Scholar

Invernizzi, G., Ruprecht, A., Mazza, R., Rossetti, E., Sasco, A., Nardini, S., et al. (2004). Твердые частицы табака по сравнению с выхлопными газами дизельных автомобилей: образовательная перспектива. Контроль над табаком 13, 219–221.DOI: 10.1136 / tc.2003.005975

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Джаффе, С. (2017). Уязвимые звенья в цепочке поставок литий-ионных аккумуляторов. Джоуль 1, 225–228. DOI: 10.1016 / j.joule.2017.09.021

CrossRef Полный текст | Google Scholar

Цзянь Д., Сяохун Г., Гешэн Л. и Синьтан З. (2001). Исследование двухтопливных двигателей дизель-СНГ (№ 2001-01-3679) . Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2001-01-3679

CrossRef Полный текст | Google Scholar

Джонсон, Т.В. (2009). Обзор дизельных выбросов и контроль. Внутр. J. Eng. Res. 10, 275–285. DOI: 10.1243 / 14680874JER04009

CrossRef Полный текст | Google Scholar

Катурия, В. (2004). Воздействие КПГ на загрязнение автотранспортом в Дели: примечание. Транспорт. Res. Часть Д. 9, 409–417. DOI: 10.1016 / j.trd.2004.05.003

CrossRef Полный текст | Google Scholar

Хайр, М. К., Маевски, В. А. (2006). Выбросы дизельного топлива и их контроль (Том.303). Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / R-303

CrossRef Полный текст | Google Scholar

Кнехт, В. (2008). Разработка дизельного двигателя с учетом пониженных стандартов выбросов. Energy 33, 264–271. DOI: 10.1016 / j.energy.2007.10.003

CrossRef Полный текст | Google Scholar

Кумар, С., Квон, Х. Т., Чой, К. Х., Лим, В., Чо, Дж. Х., Так, К. и др. (2011). СПГ: экологически чистое криогенное топливо для устойчивого развития. Заявл. Энергия 88, 4264–4273. DOI: 10.1016 / j.apenergy.2011.06.035

CrossRef Полный текст | Google Scholar

Лафлин М. и Бернхэм А. (2016). Пример : региональные транспортные средства для перевозки природного газа (№ DOE / CHO-AC02-06Ch21357-1603). Аргонн, Иллинойс; Колумбия, Мэриленд: Энергетика; Аргоннская национальная лаборатория.

Google Scholar

Ли, Г., Уэллетт, П., Думитреску, С., и Хилл, П. Г. (1999). Исследование оптимизации прямого впрыска природного газа с экспериментальным зажиганием в дизельные двигатели .Warrendale, PA: SAE Paper 1999-01-3556. DOI: 10.4271 / 1999-01-3556

CrossRef Полный текст | Google Scholar

Линь В., Чжан Н. и Гу А. (2010). СПГ (сжиженный природный газ): необходимая часть будущей энергетической инфраструктуры Китая. Energy 35, 4383–4391. DOI: 10.1016 / j.energy.2009.04.036

CrossRef Полный текст | Google Scholar

Mabson, C., Faghani, E., Kheirkhah, P., Kirchen, P., et al. (2016). Сгорание и выбросы парных сопел в газовом двигателе прямого впрыска с пилотным зажиганием .Warrendale, PA: SAE Paper 2016-01-0807. DOI: 10.4271 / 2016-01-0807

CrossRef Полный текст | Google Scholar

Маджи С., Пал А. и Арора Б. Б. (2008). Использование КПГ и дизельного топлива в двигателях CI в двухтопливном режиме (№ 2008-28-0072). Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2008-28-0072

CrossRef Полный текст | Google Scholar

Марбан, Г., и Вальдес-Солис, Т. (2007). К водородной экономике? Внутр. J. Hydr. Энергия 32, 1625–1637.DOI: 10.1016 / j.ijhydene.2006.12.017

CrossRef Полный текст | Google Scholar

Марик, М. М. (2007). Химическая характеристика выбросов твердых частиц из дизельных двигателей: обзор. J. Аэрозоль. Sci. 38, 1079–1118. DOI: 10.1016 / j.jaerosci.2007.08.001

CrossRef Полный текст | Google Scholar

Мартуцци М., Митис Ф., Явароне И. и Серинелли М. (2006). Влияние PM10 и озона на здоровье в 13 городах Италии . Европейское региональное бюро ВОЗ.

Google Scholar

McKone, T. E., Nazaroff, W. W., Berck, P., Auffhammer, M., Lipman, T., Torn, M. S., et al. (2011). Основные задачи оценки жизненного цикла биотоплива. Environ. Sci. Technol. 45, 1751–1756. DOI: 10.1021 / es103579c

PubMed Аннотация | CrossRef Полный текст | Google Scholar

McTaggart-Cowan, G., Mann, K., Huang, J., Singh, A., et al. (2015). Прямой впрыск природного газа под давлением до 600 бар в двигатель большой мощности с пилотным зажиганием. SAE Int. J. Eng. 8, 981–996. DOI: 10.4271 / 2015-01-0865

CrossRef Полный текст | Google Scholar

Мор М., Форсс А. М. и Леманн У. (2006). Выбросы твердых частиц от дизельных легковых автомобилей, оборудованных уловителем твердых частиц, по сравнению с другими технологиями. Environ. Sci. Technol. 40, 2375–2383. DOI: 10.1021 / es051440z

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Mollenhauer, K., and Tschöke, H., (eds.). (2010). Справочник по дизельным двигателям, Vol. 1. Берлин: Спрингер. DOI: 10.1007 / 978-3-540-89083-6

CrossRef Полный текст | Google Scholar

Мамфорд Д., Гуди Д. и Сондерс Дж. (2017). Возможности и проблемы HPDI . Warrendale, PA: SAE Paper 2017-01-1928. DOI: 10.4271 / 2017-01-1928

CrossRef Полный текст | Google Scholar

Мурадов, Н. З., Везироглу, Т. Н. (2005). От углеводородной к водородно-углеродной к водородной экономике. Внутр.J. Hydr. Энергия 30, 225–237. DOI: 10.1016 / j.ijhydene.2004.03.033

CrossRef Полный текст | Google Scholar

Нефт, Дж. П., Макки, М., и Мулиджн, Дж. А. (1996). Контроль выбросов твердых частиц из дизельного топлива. Топливный процесс. Technol. 47, 1–69. DOI: 10.1016 / 0378-3820 (96) 01002-8

CrossRef Полный текст | Google Scholar

Нефт, Дж. П., Ниджхейс, Т. X., Смакман, Э., Макки, М., и Мулейн, Дж. А. (1997). Кинетика окисления дизельной сажи. Топливо 76, 1129–1136. DOI: 10.1016 / S0016-2361 (97) 00119-1

CrossRef Полный текст | Google Scholar

Нили, Г., Флореа, Р., Мива, Дж., И Абидин, З. (2017). Эффективность и характеристики выбросов при сжигании двух видов топлива с частичным предварительным смешиванием путем совместного прямого впрыска природного газа и дизельного топлива (DI2) — Часть 2 . Warrendale, PA: SAE Paper 2017-01-0766. DOI: 10.4271 / 2017-01-0766

CrossRef Полный текст | Google Scholar

Осорио-Техада, Дж., Ллера, Э., и Скарпеллини, С. (2015). СПГ: альтернативное топливо для грузовых автомобильных перевозок в Европе. WIT Trans. Встроенная среда. 168, 235–246. DOI: 10.2495 / SD150211

CrossRef Полный текст | Google Scholar

Парк Т., Тенг Х., Хантер Г. Л., ван дер Вельде Б. и Клавер Дж. (2011). Система цикла Ренкина для рекуперации отработанного тепла дизельных двигателей HD — экспериментальные результаты (№ 2011-01-1337). Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2011-01-1337

CrossRef Полный текст | Google Scholar

Рэмсброк, Дж., Вилимек, Р., Вебер, Дж. (2013). «Изучение удовольствия от вождения на электромобиле — пилотные проекты BMW EV», Международная конференция по взаимодействию человека и компьютера, (Берлин; Гейдельберг: Springer), 621–630. DOI: 10.1007 / 978-3-642-39262-7_70

CrossRef Полный текст | Google Scholar

Решитоглу, И. А., Алтинишик, К., Кескин, А. (2015). Выбросы загрязняющих веществ от автомобилей с дизельными двигателями и систем нейтрализации выхлопных газов. Clean Technol. Environm. Политика 17, 15–27.DOI: 10.1007 / s10098-014-0793-9

CrossRef Полный текст | Google Scholar

Рю, К. (2013). Влияние момента предварительного впрыска на характеристики сгорания и выбросов в дизельном двигателе, использующем биодизельное топливо и КПГ. Заявл. Энергия 111, 721–730. DOI: 10.1016 / j.apenergy.2013.05.046

CrossRef Полный текст | Google Scholar

Саракко, Г., Руссо, Н., Амброджио, М., Бадини, К., и Спеккиа, В. (2000). Снижение выбросов твердых частиц дизельного топлива с помощью каталитических ловушек. Catal. Сегодня , 60, 33–41. DOI: 10.1016 / S0920-5861 (00) 00314-X

CrossRef Полный текст | Google Scholar

Шиппер, Л., Мари-Лиллиу, К., и Фултон, Л. (2002). Дизели в Европе: анализ характеристик, моделей использования, экономии энергии и последствий выбросов CO2. J. Transp. Экон. Политика 36, 305–340.

Google Scholar

Шах, А., Типсе, С. С., Тьяги, А., Райрикар, С. Д., Кавтекар, К. П., Марате, Н. В. и др. (2011). Обзор литературы и моделирование двухтопливных дизельных двигателей, работающих на КПГ (№ 2011-26-0001). Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2011-26-0001

CrossRef Полный текст | Google Scholar

Ши, Л., Шу, Г., Тиан, Х., и Дэн, С. (2018). Обзор модифицированных органических циклов Ренкина (ORC) для рекуперации отработанного тепла двигателей внутреннего сгорания (ICE-WHR). Обновить. Поддерживать. Energy Rev. 92, 95–110. DOI: 10.1016 / j.rser.2018.04.023

CrossRef Полный текст | Google Scholar

Смит, О.I. (1981). Основы образования сажи в пламени применительно к выбросам твердых частиц дизельных двигателей. Прог. Энергия сгорания. Sci. 7, 275–291. DOI: 10.1016 / 0360-1285 (81)

-2

CrossRef Полный текст | Google Scholar

Teng, H., Klaver, J., Park, T., Hunter, G. L., and van der Velde, B. (2011). Система цикла Ренкина для утилизации отработанного тепла дизельных двигателей высокого давления — разработка системы WHR (№ 2011-01-0311) . Warrendale, PA: SAE Technical Paper.DOI: 10.4271 / 2011-01-0311

CrossRef Полный текст | Google Scholar

Teng, H., and Regner, G. (2009). Повышение экономии топлива для дизельных двигателей HD с циклом Ренкина, управляемым за счет отвода тепла охладителя EGR (№ 2009-01-2913). Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2009-01-2913

CrossRef Полный текст | Google Scholar

Teng, H., Regner, G., and Cowland, C. (2007). Рекуперация отходящего тепла дизельных двигателей для тяжелых условий эксплуатации с помощью органического цикла Ренкина, часть I: гибридная энергетическая система дизельных двигателей и двигателей Ренкина (No.2007-01-0537). Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2007-01-0537

CrossRef Полный текст | Google Scholar

Ван Т., Чжан Ю., Чжан Дж., Пэн З. и Шу Г. (2014). Сравнение преимуществ системы и термоэкономики для рекуперации энергии выхлопных газов на дизельном двигателе большой мощности и бензиновом двигателе легкового автомобиля. Energy Conv. Управлять. 84, 97–107. DOI: 10.1016 / j.enconman.2014.04.022

CrossRef Полный текст | Google Scholar

Ага, С.(2007). Эмпирический анализ внедрения транспортных средств, работающих на альтернативном топливе: на примере транспортных средств, работающих на природном газе. Энергетическая политика 35, 5865–5875. DOI: 10.1016 / j.enpol.2007.06.012

CrossRef Полный текст | Google Scholar

Ю. Г., Шу Г., Тиан Х., Хо Ю. и Чжу В. (2016). Экспериментальные исследования каскадной системы парового / органического цикла Ренкина (RC / ORC) для рекуперации отработанного тепла (WHR) дизельного двигателя. Energy Conv. Управлять. 129, 43–51. DOI: 10.1016 / j.enconman.2016.10.010

CrossRef Полный текст | Google Scholar

Zervas, E., Poulopoulos, S., и Philippopoulos, C. (2006). CO 2 Изменение выбросов в результате внедрения легковых автомобилей с дизельным двигателем: пример Греции. Energy 31, 2915–2925. DOI: 10.1016 / j.energy.2005.11.005

CrossRef Полный текст | Google Scholar

Чжао, Х. (ред.). (2009). Передовые технологии и разработки двигателей внутреннего сгорания с прямым впрыском топлива: дизельные двигатели .Кембридж: Издательство Вудхед.

Google Scholar

Дизельные и бензиновые двигатели: почему вы должны выбрать дизель в качестве следующего автомобиля

Дизельные и бензиновые двигатели

Чем отличаются дизельный и бензиновый двигатели?

Дизельные и бензиновые двигатели, которые используются в большинстве автомобилей, очень похожи. По сути, это двигатели внутреннего сгорания, работающие по двух- или четырехтактному циклу. В двигателе внутреннего сгорания цикл мощности состоит из четырех фаз: впуска, сжатия, мощности и выпуска.

В фазе впуска воздух втягивается в цилиндр через открывающийся впускной клапан. В фазе сжатия впускной клапан закрывается, и воздух сжимается топливом. В этот момент смесь топлива и воздуха воспламеняется, чтобы вызвать взрыв. Именно этот взрыв заставляет поршень опускаться и приводить в движение коленчатый вал. Это фаза питания. Заключительная фаза — выхлоп, когда отработанная топливовоздушная смесь выбрасывается из цилиндра через открывающийся выпускной клапан, так что может начаться новый цикл.

Основное различие между дизельными и бензиновыми двигателями состоит в том, что в бензиновых двигателях используются свечи зажигания для воспламенения топливовоздушной смеси, а в дизельных двигателях используется исключительно сжатый воздух . Как упоминалось ранее, Рудольф Дизель обнаружил, что температуру воздуха можно повысить достаточно высоко, если он будет сильно сжат. Температура поднимется настолько высоко, что может вызвать возгорание дизельного топлива.

Следовательно, в дизельных двигателях воздух в цилиндре будет очень сильно сжат, как правило, примерно в 14–23 раза по сравнению с первоначальным объемом.В бензиновых двигателях степень сжатия обычно намного ниже, потому что они больше полагаются на свечу зажигания, чтобы начать фазу мощности. Степень сжатия в бензиновых двигателях обычно составляет от 7 до 10, а у высокопроизводительных автомобилей степень сжатия выше до 13.

Желательны высокие степени сжатия, поскольку это приводит к более высокому тепловому КПД. Другими словами, из топливовоздушной смеси можно извлечь больше энергии. Это также объясняет, почему дизельные двигатели значительно эффективнее бензиновых.Фактически, дизельные двигатели обладают самым высоким тепловым КПД среди двигателей внутреннего сгорания.

Плюсы и минусы

Какие еще преимущества имеют дизельные двигатели по сравнению с их бензиновыми аналогами, помимо высокой эффективности? А какие недостатки есть у дизельных двигателей? Давайте кратко рассмотрим некоторые из наиболее важных из них.

Плюсы
  • Дизельные двигатели не только более эффективны, но и дешевле приобретать дизельное топливо.На момент написания, дизельное топливо было примерно на 40% дешевле за литр , чем бензин. Это означает, что использование дизельных транспортных средств будет дешевле, что также объясняет, почему автобусы и большинство такси имеют дизельные двигатели.
  • Поскольку дизельные двигатели настолько эффективны, автомобили могут сэкономить на них невероятный пробег. Пассажирские автомобили со скромными 50-литровыми топливными баками нередко могут проехать более 1000 км на одном баке. Это означает, что больше времени тратится на поездку и меньше на заправку.
  • Чтобы противостоять сильному сжатию газов в цилиндрах, дизельные двигатели созданы очень выносливыми и обычно служат дольше, чем их бензиновые аналоги. У них также может быть больше времени между техобслуживанием.
  • Дизельные двигатели
  • могут работать на альтернативных и возобновляемых видах топлива, таких как биодизель, с небольшими модификациями или без них. Биодизель обычно относится к отработанному растительному маслу, которое использовалось для приготовления пищи, а затем перерабатывается и обрабатывается, чтобы его можно было использовать в дизельных автомобилях.
Минусы
  • Дизельные двигатели должны быть более прочными, чтобы выдерживать высокое сжатие газов, в результате их производство обычно обходится дороже. Следовательно, дизельные автомобили иногда могут стоить больше, чем их бензиновый эквивалент. Это сильно зависит от производителя.
  • Дизельные двигатели
  • издают характерный стук, называемый грохотом дизельного двигателя. Этот звук является результатом внезапного возгорания топлива, которое вызывает волну давления.Это делает звук дизельного двигателя менее изысканным и более шумным.
  • Дизельные двигатели тяжелее и менее активны, чем бензиновые, что делает их нежелательными в спортивных автомобилях. Это также делает автомобили с дизельным двигателем менее подвижными и привлекательными для вождения.
  • В Сингапуре дизельные автомобили облагаются специальным налогом сверх обычного дорожного налога, который может увеличить эксплуатационные расходы автомобиля. Поскольку этот налог может быть значительным, мы рассмотрим его более подробно ниже.

Специальный налог

Дизельные автомобили были редкостью в Сингапуре, и это неудивительно, учитывая дурную репутацию, которую они имели. Дизельные автомобили часто считаются экологически чистыми и медленными, и не помогло то, что с дизельных автомобилей взимался огромный специальный налог. Этот специальный налог взимается с автомобилей с дизельным двигателем, поскольку на дизельное топливо пошлины не взимаются. Бензин, с другой стороны, облагается пошлиной на бензин, которая, согласно LTA, способствует экономии топлива и препятствует чрезмерному использованию бензиновых автомобилей, что может способствовать скоплению пробок и загрязнению окружающей среды.

Но времена кардинально изменились за последнее десятилетие. Дизельные технологии стремительно совершенствуются, и правительства признают экологические преимущества дизельных автомобилей и приняли законы для стимулирования их продаж. В результате выросли продажи дизельных автомобилей. Во многих европейских странах, таких как Австрия, Бельгия и Германия, продажи дизельных автомобилей находятся на одном уровне или даже превышают продажи бензиновых автомобилей.

В Сингапуре продажи дизельных автомобилей растут, хотя и медленно.Знающие покупатели автомобилей теперь открыты для опробования дизельного топлива, и этому частично помогло правительство, которое пересмотрело специальный налог на дизельные автомобили. Для современных дизельных автомобилей, соответствующих стандарту Euro V, специальный налог был резко снижен. Чтобы понять, насколько теперь дешевле водить автомобиль с дизельным двигателем, достаточно взглянуть на налоговые ставки.

Для автомобиля , соответствующего требованиям стандарта до Евро IV, специальный налог в 6 раз превышает дорожный налог эквивалента бензина.Другими словами, если мы возьмем в качестве примера дизельный автомобиль объемом 1600 куб. См, который имеет шестимесячный базовый дорожный налог в размере 372 сингапурских доллара, специальный налог, взимаемый с дизельного автомобиля, соответствующего требованиям стандарта до Евро IV, составит колоссальные 2232 сингапурских доллара. Таким образом, общий налог за 6 месяцев составит 2 604 сингапурских долларов.

Для автомобиля , соответствующего стандарту Euro IV, специальный налог рассчитывается в размере 0,625 доллара за куб.см рабочего объема двигателя и облагается минимумом 625 сингапурских долларов. Это означает, что помимо 6-месячного базового дорожного налога в размере 372 сингапурских долларов мы должны добавить специальный налог в размере 1000 сингапурских долларов.Следовательно, общий дорожный налог составит 1 372 сингапурских долларов за 6 месяцев. Это существенно меньше, но все же это значительная наценка по сравнению с автомобилем с бензиновым эквивалентом.

Однако, если вы приобрели новое дизельное топливо, которое стоит евро V или JPN2009 соответствует т, специальный налог рассчитывается по более низкой ставке в размере 0,20 доллара США за куб. См и облагается минимумом 200 долларов США. Это означает, что для дизеля объемом 1600 куб. См. Специальный налог будет составлять всего 320 сингапурских долларов, в результате чего общий дорожный налог за 6 месяцев составит гораздо более разумные и доступные сингапурских доллара, 692 сингапурских долларов.

Вот таблица для сравнения различных налогов, подлежащих уплате с использованием автомобиля с двигателем 1600 куб. См.


Тип автомобиля Итого налогов
Соответствует требованиям Pre-Euro IV S $ 2 604
Соответствует Euro IV S $ 1 372
Соответствует Euro V S $ 692
Бензин S $ 372

Это означало, что в прошлом и с более старыми дизельными автомобилями вам приходилось преодолевать огромные расстояния, чтобы оправдать дополнительные расходы на специальный налог.Но благодаря более выгодным налоговым ставкам водить дизельное топливо стало доступнее и практичнее с финансовой точки зрения.

Строительство и эксплуатация дизельного двигателя

Строительство и эксплуатация дизельного двигателя

Power Transmission and Technology Menu

Строительство и эксплуатация дизельного двигателя

Дизельный двигатель похож на бензиновый двигатель, используемый в большинстве автомобилей.Оба двигателя являются двигателями внутреннего сгорания, то есть сжигают топливно-воздушную смесь в цилиндрах. Оба являются поршневыми двигателями, приводимыми в движение поршнями, перемещающимися в двух направлениях в поперечном направлении. Большинство их частей похожи. Хотя дизельный двигатель и бензиновый двигатель работают с одинаковыми компонентами, дизельный двигатель, по сравнению с бензиновым двигателем равной мощности, тяжелее из-за более прочных и тяжелых материалов, используемых для противодействия большим динамическим силам от более высокого давления сгорания, присутствующего в дизельном топливе. двигатель.

Более высокое давление сгорания является результатом более высокой степени сжатия, используемой в дизельных двигателях. Степень сжатия — это мера того, насколько двигатель сжимает газы в цилиндре двигателя. В бензиновом двигателе степень сжатия (которая контролирует температуру сжатия) ограничена воздушно-топливной смесью, поступающей в цилиндры. Более низкая температура воспламенения бензина приведет к его воспламенению (горению) при степени сжатия менее 10: 1.У среднего автомобиля степень сжатия 7: 1. В дизельном двигателе обычно используются степени сжатия от 14: 1 до 24: 1. Возможны более высокие степени сжатия, потому что сжимается только воздух, а затем впрыскивается топливо. Это один из факторов, который позволяет дизельному двигателю быть таким эффективным.

Еще одно различие между бензиновым двигателем и дизельным двигателем заключается в способе управления частотой вращения двигателя. В любом двигателе скорость (или мощность) напрямую зависит от количества топлива, сожженного в цилиндрах.Бензиновые двигатели имеют автоматическое ограничение скорости из-за метода, который двигатель использует для управления количеством воздуха, поступающего в двигатель. Частота вращения двигателя косвенно регулируется дроссельной заслонкой в ​​карбюраторе. Дроссельная заслонка в карбюраторе ограничивает количество воздуха, поступающего в двигатель. В карбюраторе скорость воздушного потока определяет количество бензина, которое будет смешано с воздухом. Ограничение количества воздуха, поступающего в двигатель, ограничивает количество топлива, поступающего в двигатель, и, следовательно, ограничивает скорость двигателя.Ограничивая количество воздуха, поступающего в двигатель, добавление большего количества топлива не увеличивает частоту вращения двигателя сверх точки, в которой топливо сжигает 100% доступного воздуха (кислорода).

Дизельные двигатели не имеют автоматического ограничения скорости, поскольку количество воздуха (кислорода), поступающего в двигатель, всегда является максимальным. Следовательно, частота вращения двигателя ограничивается исключительно количеством топлива, впрыскиваемого в цилиндры двигателя. Следовательно, в двигателе всегда имеется достаточно кислорода для сгорания, и двигатель будет пытаться разогнаться, чтобы соответствовать новой скорости впрыска топлива.Из-за этого ручное управление подачей топлива невозможно, потому что эти двигатели в ненагруженном состоянии могут ускоряться со скоростью более 2000 оборотов в секунду. Дизельным двигателям требуется ограничитель скорости, обычно называемый регулятором, для контроля количества топлива, впрыскиваемого в двигатель.

В отличие от бензинового двигателя, дизельный двигатель не требует системы зажигания, потому что в дизельном двигателе топливо впрыскивается в цилиндр, когда поршень достигает вершины своего такта сжатия.Когда топливо впрыскивается, оно испаряется и воспламеняется из-за тепла, создаваемого сжатием воздуха в цилиндре.

5 Дизельные двигатели с воспламенением от сжатия | Оценка технологий экономии топлива для легковых автомобилей

Восхождение и буксировка. Этот атрибут дизельных двигателей CI является преимуществом по сравнению с другими вариантами технологий, которые выгодны только для части рабочего диапазона транспортного средства (например, гибридные силовые агрегаты снижают расход топлива в основном при движении по городу / городу).

Вывод 5.4: Ожидается, что выявленные усовершенствованные технологические усовершенствования для дизельных двигателей CI выйдут на рынок в период 2011–2014 годов, когда на рынок также выйдут усовершенствованные технологические дополнения к бензиновым двигателям SI. Таким образом, между этими двумя системами силовой передачи будет продолжаться конкуренция по расходу топлива и стоимости. В период 2014-2020 гг. Дальнейшее потенциальное снижение расхода топлива для дизельных двигателей CI может быть компенсировано увеличением расхода топлива из-за изменений двигателя и системы выбросов, необходимых для соответствия более строгим стандартам выбросов (например,г., LEV III).

Вывод 5.5: Проникновение дизельных двигателей CI на рынок будет во многом зависеть как от увеличения стоимости дизельных силовых агрегатов CI по сравнению со стоимостью бензиновых силовых агрегатов SI, так и из-за разницы в ценах на дизельное топливо по сравнению с бензином. Предполагаемая разница в дополнительных затратах для дизельных двигателей I4 CI базового и улучшенного уровня для замены бензиновых двигателей SI для седанов среднего размера 2007 модельного года колеблется от 2400 долларов (базовый уровень) до 2900 долларов (продвинутый уровень).Для двигателей I4 базового уровня в сочетании с DCT стоимость замены силовой передачи оценивается в 2550–2800 долларов, а для силовых передач I4 повышенного уровня оценивается в 3050–3300 долларов (оба округлены до ближайших 50 долларов). Для среднеразмерных внедорожников 2007 модельного года ориентировочная стоимость замены бензиновых двигателей SI на дизельные двигатели V6 CI базового и расширенного уровня колеблется от 3150 долларов (базовый уровень) до 4050 долларов (расширенный уровень) (оба округляются до ближайших 50 долларов). . Для двигателей V6 CI в сочетании с DCT предполагаемое увеличение стоимости замены силовой передачи V6 CI по сравнению с силовыми передачами SI 2007 модельного года составляет от 3300 до 3550 долларов (базовый уровень), а дополнительные затраты на силовую передачу расширенного уровня составляют от 4200 до 4500 долларов (оба округлены). до ближайших 50 долларов).Эти затраты не включают фактор эквивалента розничной цены.

ССЫЛКИ

Bression, G., D. Soleri, S. Savy, S. Dehoux, D. Azoulay, H.B-H. Хамуда, Л. Дораду, Н. Геррасси и Н. Лоуренс. 2008. Исследование методов снижения выбросов HC и CO в дизельных HCCI. Документ SAE 2008-01-0034. SAE International, Warrendale, Pa.

Дизель Форум. 2008. Доступно по адресу http://www.dieselforum.org/DTF/news-center/pdfs/Diesel%20Fuel%20Update%20-%20Oct%202008.pdf.

DieselNet. 2008. 22 февраля. Доступно на http://www.dieselnet.com/news/2008/02acea.php.

DOT / NHTSA (Департамент транспорта / Национальная администрация безопасности дорожного движения). 2009. Нормы средней экономии топлива для легковых и легких грузовиков — модельный год 2011. Номер дела NHTSA-2009-0062, RIN 2127-AK29, 23 марта. Вашингтон, округ Колумбия,

.

Доу. 2009. Доступно по адресу http://www.dow.com/PublishedLiterature/dh_02df/0901b803802df0d2.pdf?filepath=automotive/pdfs/noreg/299-51508.pdf & fromPage = GetDoc.

Duleep, K.G. 2008/2009. Анализ затрат на дизельное и гибридное топливо: EEA в сравнении с Martec, презентация для комитета NRC, 25 февраля 2008 г., обновлено 3 июня 2009 г.

EIA (Управление энергетической информации). 2009a. Легковые дизельные автомобили: характеристики эффективности и выбросов, а также вопросы рынка. Февраль. Доступно по адресу http://www.eia.doe.gov/oiaf/servicerpt/lightduty/execsummary.html.

EIA. 2009b. Цены на дизельное топливо. Доступно по адресу http: // tonto.eia.doe.gov/oog/info/gdu/gasdiesel.asp. По состоянию на 9 мая 2009 г. и 5 июня 2009 г.

EPA (Агентство по охране окружающей среды США). 2005. Документ 420-F-05-001. Доступно на http://www.epa.gov/otaq/climate/420f05001.htm.

EPA. 2008. Исследование потенциальной эффективности транспортных средств, снижающих выбросы углекислого газа. Отчет 420r80040a. Пересмотрено в июне.

EPA. 2009. Обновленная смета расходов на основе данных Агентства по охране окружающей среды США, 2008 г. Электронная переписка комитета с Агентством по охране окружающей среды 27 и 28 мая.

Hadler, J., F. Rudolph, R. Dorenkamp, ​​H. Stehr, T. Düsterdiek, J. Hilzendeger, D. Mannigel, S. Kranzusch, B. Veldten, M. Kösters, and A. Specht. 2008. Новый двигатель Volkswagen 2,0 л TDI соответствует самым строгим стандартам выбросов, 29-й Венский автомобильный симпозиум.

Ивабучи Ю., К. Каваи, Т. Сёдзи и Ю. Такеда. 1999. Испытания новой концепции дизельной системы сгорания — горение с воспламенением от сжатия с предварительным смешиванием. Документ SAE 1999-01-0185. SAE International, Warrendale, Pa.

Joergl, Volker, P.Келлер, О. Вебер, К. Мюллер-Хаас и Р. Конечны. 2008. Влияние конструкции пред-турбокатализатора на характеристики дизельного двигателя, выбросы и экономию топлива. Документ SAE 2008-01-0071. SAE International, Warrendale, Pa.

Т. Канда, Т. Хакодзаки, Т. Учимото, Дж. Хатано, Н. Китайма и Х. Соно. 2005 г. Эксплуатация PCCI с ранним впрыском обычного дизельного топлива. Документ SAE 2005-01-0378. SAE International, Warrendale, Pa.

Келлер П.С., В. Йоргл, О. Вебер и Р. Чарновски.2008. Компоненты, способствующие созданию экологически чистых дизельных двигателей будущего. Документ SAE 2008-01-1530. SAE International, Warrendale, Pa.

Martec Group, Inc. 2008. Переменная стоимость технологий экономии топлива. Подготовлено к альянсу автопроизводителей, 1 июня; с изменениями, внесенными 26 сентября и 10 декабря.

Маттес, Вольфганг, Петер Рашль и Николай Шуберт. 2008. Специально разработанные концепции DeNO x для высокопроизводительных дизельных двигателей. Вторая конференция MinNO x , 19-20 июня, Берлин.

Müller, W., et al. 2003. Селективное каталитическое восстановление — европейская технология восстановления NO x . SAE 2003-01-2304. SAE International, Warrendale, Pa. Myoshi, N., et al. 1995 г. Разработка новой концепции трехкомпонентного катализатора для автомобильных двигателей на обедненной смеси. Документ SAE 95809. SAE International, Warrendale, PA

NRC (Национальный исследовательский совет). 2002. Эффективность и влияние корпоративных стандартов средней экономии топлива (CAFE). Национальная академия прессы, Вашингтон, Д.С.

Пекхэм, Джон. 2003. Как JD Power / LMC рассчитывает 16% долю продаж легких дизельных двигателей в Северной Америке. Новости дизельного топлива, 13 октября.

Пикетт, Л.М. и Д.Л. Зиберс. 2004. Сгорание дизельного дизельного топлива DI без образования сажи, низкая температура пламени, контролируемое перемешиванием. Документ SAE 2004-01-1399. SAE International, Warrendale, Pa.

Райан, T.W. и T.J. Каллахан. 1996. Воспламенение дизельного топлива от сжатия однородного заряда. Документ SAE 961160. SAE International, Warrendale, PA.

Стайлз, Д., Дж. Джулиано, Дж. Хоард, С. Слудер, Дж. Стори, С. Льюис и М. Ланс. 2008. Выявление и контроль факторов, влияющих на загрязнение охладителя EGR. 14-я конференция по исследованию эффективности дизельных двигателей и выбросов, Дирборн, штат Мичиган,

Tilgner, Ingo-C., T. Boger, C. Jaskula, Z.G. Pamio, H. Lörch и S. Gomm. 2008. Новый материал для сажевых фильтров для легковых автомобилей: сажевые фильтры Cordierite для нового Audi A4 V6 TDI, 17. Aachener Kolloquium Fahrzeug- und Motorentechnik, p.325.

Каждый новый дизель 2021 года для продажи в США сегодня

Автомобиль и водитель

Основное преимущество дизельных двигателей заключается в том, что они являются двигателями с воспламенением от сжатия и полагаются на механическое сжатие для зажигания воздуха и топлива в каждом цилиндре. Это более эффективный способ превратить топливо в механическую работу. Увы, воспламенение от сжатия громче, чем газовые двигатели с искровым зажиганием. А сажу от дизельного топлива очень сложно контролировать с экономической точки зрения.Просто спросите Volkswagen, который в 2014 году был уличен в обмане своей линейки двигателей TDI, чтобы выйти за рамки норм выбросов. Были потеряны рабочие места. Некоторые попали в тюрьму.

Скандал с дизельным двигателем VW почти в одночасье убил рынок дизельных автомобилей. Но совсем другое дело — автомобили, известные как «грузовики».

Да, дизель всегда был второстепенным игроком на автомобильном рынке США. Но ботаники и экономные среди нас по-прежнему жаждут дизелей. Нажмите здесь, как маньяк, на этот полный список всех дизельных автомобилей, выставленных на продажу в США.С. Или щелкайте, как спокойный, рассудительный человек. Просто нажмите.

Реклама — продолжить чтение ниже

Cadillac Escalade и Escalade ESV

Многие из автомобилей в этом списке заряжаются толстым стеком, чтобы добавить дополнительную дизельную трансмиссию. Только не Cadillac Escalade. Цена на бензиновый Escalade мощностью 420 л.с. такая же, как и на 277-сильный 3,0-литровый рядный шестицилиндровый турбодизель. И оба они идут с 10-ступенчатой ​​автоматикой.Это самый большой вариант в списке, и с точки зрения роскошных дизелей, с ним может соперничать только более дорогой Land Rover Range Rover из этого списка.

  • Базовая цена: 77 490 долларов (RWD Escalade) 80 490 долларов (RWD Escalade ESV)
  • Двигатель: 3,0-литровый дизельный рядный 6-цилиндровый двигатель мощностью 277 л.с. с турбонаддувом, 10-ступенчатая автоматическая коробка передач 23/21/27 миль на галлон (задний привод)
  • Макс.буксировка: 8000 фунтов (RWD Escalade) 7900 фунтов (RWD Escalade ESV)

БОЛЬШЕ ХАРАКТЕРИСТИК ESCALADE

Шевроле Колорадо

Chevrolet Colorado и его близнец GMC Canyon доступны с 181-сильным двигателем Duramax 2.8-литровый турбодизельный четырехцилиндровый двигатель, развивающий 369 Нм крутящего момента всего лишь при 2000 об / мин. Грузовик должен иметь четырехдверную кабину для экипажа, по крайней мере, в уровне отделки салона LT. Дизель может буксировать до 7700 фунтов и имеет рейтинг EPA на скорости 30 миль на галлон на шоссе. Добавьте дизель к оптимизированной для бездорожья модели ZR2, и в результате получится один из самых мощных внедорожников, сжигающих масло, но стартовая цена подскочит до 46 295 долларов.

  • Базовая цена: 37 810 долларов
  • Двигатель: 2,8-литровый дизельный рядный 4-цилиндровый двигатель мощностью 181 л.с. с турбонаддувом, шестиступенчатая автоматическая коробка передач
  • EPA Экономия топлива в смешанном цикле / город / шоссе: 23/20/30 миль на галлон (2WD)
  • Макс. Буксировка: 7700 фунтов

БОЛЬШЕ СПЕЦИФИКАЦИИ COLORADO

Шевроле Экспресс

General Motors не относит полноразмерный фургон Express к категории потребительских автомобилей.Это коммерческая рабочая лошадка, которая (вместе со своим близнецом Savana под маркой GMC) добавит 2,8-литровый турбодизельный четырехцилиндровый двигатель пикапа Colorado к своему ассортименту двигателей. Четырехцилиндровый двигатель Duramax мощностью 181 л.с. и крутящим моментом 369 фунт-фут будет предлагаться как в полутонной, так и в трех четвертитонной версиях Express. Express Cargo также имеет самую доступную стартовую цену из всех транспортных средств из этого списка. Вперед на фургонах!

  • Базовая цена: 37 865 долларов (грузовой) 4 690 долларов (пассажирский)
  • Двигатель: 181 л.с. с турбонаддувом 2.8-литровый рядный 4-цилиндровый двигатель, 8-ступенчатая автоматическая коробка передач
  • EPA Экономия топлива: Полноразмерные фургоны, такие как Express, освобождены от федеральных стандартов экономии топлива.
  • Макс. Буксировка: 7000 фунтов

БОЛЬШЕ EXPRESS SPECS

Шевроле Сильверадо 1500

Полутонная дизельная волна поставляется в Chevrolet Silverado с добавлением 277-сильного 3,0-литрового рядного шестицилиндрового турбодизеля в большинстве комплектаций LT или выше, даже для моделей с полным приводом.Этот гладкий и плавный двигатель Duramax, обеспечивающий крутящий момент до 460 Нм при 1500 об / мин и поддерживаемый 10-ступенчатой ​​автоматической коробкой передач, меняет характер Silverado. Мы достигли 26 миль на галлон с 4×4 Crew Cab в нашем тесте на экономию топлива на шоссе. Полноприводный дизельный Silverado 1500 — самый экономичный автомобиль в этом списке.

  • Базовая цена: 48 500 долларов
  • Двигатель: 3,0-литровый дизельный рядный 6-цилиндровый двигатель с турбонаддувом 277 л.с., 10-ступенчатая автоматическая коробка передач
  • EPA Экономия топлива в смешанном цикле / город / шоссе: 27/23/33 миль на галлон (2WD)
  • Макс.буксировка: 9300 фунтов

БОЛЬШЕ ХАРАКТЕРИСТИК SILVERADO 1500

Шевроле Сильверадо 2500HD / 3500HD

Chevrolet Silverado HD (и версия GMC Sierra) снова доступен с 6.6-литровый дизельный двигатель Duramax V-8 мощностью 445 лошадиных сил и колоссальным крутящим моментом в 910 фунт-фут. И теперь он поддерживается 10-ступенчатой ​​автоматической коробкой передач. Этого должно быть достаточно, чтобы вытащить правду из комиссии Уоррена. Не обманывайтесь этой ценой в 48 585 долларов; это для обычного полноприводного рабочего грузовика с кабиной. Пикапы весом в три четверти и одну тонну становятся дорогими, поскольку в кабине добавляются двери, а внутренняя отделка становится роскошной.

  • Базовая цена: 48 585 долларов США
  • Двигатель: 6,6-литровый дизельный V-8 с турбонаддувом мощностью 445 л.с., 10-ступенчатая автоматическая коробка передач
  • EPA Экономия топлива: тяжелые пикапы, такие как Silverado 2500HD / 3500HD, освобождены от федеральные стандарты экономии топлива.
  • Макс. Буксировка: 18500 фунтов (2500HD) и 20000 фунтов (3500HD)

БОЛЬШЕ СПЕЦИФИКАЦИИ SILVERADO HD

Chevrolet Suburban и Tahoe

Новые Chevrolet Tahoe и Suburban доступны с тем же 3,0-литровым рядным шестицилиндровым двигателем с турбонаддувом, который предлагается в их двоюродном пикапе Silverado 1500. Между прочим, это не будет первый Suburban с дизельным двигателем. Между 1978 и 1981 годами Suburban (и предшественник Tahoe, Blazer) были доступны с легендарно ужасным Oldsmobile 5.7-литровый V-8. С 1982 по 1991 год предлагались внедорожники Detroit Diesel с 6,2-литровым двигателем V-8. Этот 277-сильный дизельный силовой агрегат доступен на базовых моделях Tahoe и Suburban во всех комплектациях, вплоть до внедорожного Chevys Z71.

  • Базовая цена: 51 290 долларов (Tahoe) 52 695 долларов (пригород)
  • Двигатель: 3,0-литровый рядный шестицилиндровый дизельный двигатель с турбонаддувом мощностью 277 л.с., 10-ступенчатая автоматическая коробка передач
  • EPA Fuel Economy в сочетании / город / шоссе: 24/21 / 28 миль на галлон (2WD Tahoe) 23/21/27 миль на галлон (RWD Suburban)
  • Макс.буксировка: 8200 фунтов (RWD Tahoe) 8000 фунтов (RWD Suburban)

БОЛЬШЕ ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК TAHOE

БОЛЬШЕ ПРИГОРОДНЫХ ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК

Форд Ф-150

Вариант дизельного двигателя для невероятно популярного Ford F-150 — приемистый.Этот 3,0-литровый двигатель V-6 с турбонаддувом мощностью 250 л.с., который Ford назвал Power Stroke, как и более крупные двигатели V-8 в линейке Super Duty, развивает максимальный крутящий момент 440 фунт-фут при 1750 об / мин. В сочетании с 10-ступенчатой ​​автоматической коробкой передач и доступный только с полным приводом в F-150, Power Stroke достигает на шоссе 27 миль на галлон по рейтингу EPA. Хотя дизельный V-6 стоит почти 5000 долларов, он доступен в комплектациях XL и выше.

  • Базовая цена: 44 780 долларов США
  • Двигатель: 250 л.с. с турбонаддувом 3.0-литровый дизельный двигатель V-6, 10-ступенчатая автоматическая трансмиссия
  • EPA Экономия топлива в смешанном цикле / город / шоссе: 23/30/27 миль на галлон
  • Макс.буксировка: 12 100 фунтов (требуется максимальный буксировочный пакет с прицепом)

ПОДРОБНЕЕ F -150 СПЕЦИФИКАЦИЯ

Ford F-серии Super Duty

Опциональный 6,7-литровый турбодизельный V-8 Power Stroke для Ford F-серии Super Duty развил крутящий момент до 1050 фунт-фут благодаря новой системе впрыска топлива мощностью 36 000 фунтов на квадратный дюйм.Это ставит его впереди Ram в соревновании «грузовики с хрюканьем». Двигатель Power Stroke V-8 мощностью 475 л.с. доступен на всех моделях F-250, F-350 и F-450 Super Duty. 10-ступенчатая автоматическая коробка также входит в стандартную комплектацию.

  • Базовая цена: 46 170 долларов США
  • Двигатель: 7,3-литровый двигатель V-8 с турбонаддувом мощностью 475 л.с., 10-ступенчатая автоматическая коробка передач
  • EPA Экономия топлива: тяжелые пикапы, такие как Super Duty серии F, освобождены от уплаты налогов. федеральные стандарты экономии топлива.
  • Макс. Буксировка: 24200 фунтов (F-450 Crew Cab)

БОЛЬШЕ SUPER DUTY SPECS

GMC Canyon

Покопайтесь в механике Chevrolet Colorado, но хотите, чтобы он выглядел более квадратным? GMC Canyon — это тот же грузовик, одетый в обломки GMC, и, как и Colorado, имеет двигатель Duramax General Motors мощностью 181 л.с., 2.8-литровый турбодизель с четырьмя цилиндрами. Дизель предлагается на моделях SLE, SLT, All-Terrain и Denali, но не на базовой комплектации SL. Canyon с дизельным двигателем зарабатывает те же 30 миль на галлон на шоссе, что и Colorado, по рейтингу EPA, хотя полноприводные модели, по оценкам, возвращают только 28 миль на галлон по шоссе.

  • Базовая цена: 39 325 долларов США
  • Двигатель: 181-сильный 2,8-литровый дизельный рядный 4-цилиндровый двигатель с турбонаддувом, 6-ступенчатая автоматическая коробка передач
  • EPA Экономия топлива в смешанном цикле / город / шоссе: 23/20/30 миль на галлон
  • Макс. : 7700 фунтов

ДОПОЛНИТЕЛЬНЫЕ ХАРАКТЕРИСТИКИ CANYON

GMC Savana

Грузовой фургон GMC Savana чуть дешевле своего почти идентичного близнеца Chevrolet Express и доступен с теми же 181 лошадиными силами 2.8-литровый турбодизельный четырехцилиндровый двигатель Duramax. Как и Express, Savana также предлагается в версии для перевозки пассажиров, которая идеально подходит для церковных фургонов и маршрутных автобусов.

  • Базовая цена: 37 865 долларов (грузовой) 41 690 долларов (пассажирский)
  • Двигатель: 2,8-литровый дизельный рядный 4-цилиндровый двигатель мощностью 181 л.с. с турбонаддувом, 8-ступенчатая автоматическая коробка передач
  • EPA Экономия топлива: полноразмерные фургоны, такие как Express освобождены от федеральных нормативов экономии топлива.
  • Макс. Буксировка: 7000 фунтов

БОЛЬШЕ EXPRESS SPECS

GMC Sierra 1500

То, что подходит для Chevrolet Silverado, обычно подходит для GMC Sierra.Поэтому неудивительно, что новый 3,0-литровый турбодизельный рядный шестицилиндровый двигатель Duramax Duramax предлагается на Sierra так же, как и на Silverado. И за ним стоит все та же 10-ступенчатая автоматическая коробка передач. Мы могли бы просто написать именно то, что написали о Сильверадо здесь, но мы чертовски заботимся о том, чтобы сделать это.

  • Базовая цена: 45 385 долларов
  • Двигатель: 3,0-литровый рядный 6-цилиндровый двигатель с турбонаддувом мощностью 277 л.с., 10-ступенчатая автоматическая трансмиссия
  • EPA Экономия топлива в смешанном цикле / город / шоссе: 26/23/30 миль на галлон (2WD)
  • Макс. Буксировка: 9200 фунтов (короткая задняя кабина для экипажа)

БОЛЬШЕ SIERRA 1500 SPECS

GMC Сьерра 2500HD / 3500HD

General Motors модернизировала свои грузовики Heavy Duty к 2020 году, поэтому эволюционировали и Chevrolet Silverado HD, и его брат GMC Sierra HD.GMC Sierra HD мощностью три четверти тонны 2500 и одну тонну 3500 может быть оснащен 6,6-литровым дизельным двигателем Duramax V-8, который может похвастаться мощностью 445 лошадиных сил и крутящим моментом 910 фунт-фут. Да, это тот же двигатель, что находится под капотом Chevrolet Silverado HD. И он оснащен той же 10-ступенчатой ​​автоматической коробкой передач Allison, что и в этом грузовике.

  • Базовая цена: 49 910 долларов
  • Двигатель: 6,6-литровый дизельный V-8 с турбонаддувом мощностью 445 л.с., 10-ступенчатая автоматическая коробка передач
  • EPA Экономия топлива: тяжелые пикапы, такие как Sierra 2500HD / 3500HD, освобождены от федеральные стандарты экономии топлива.
  • Макс. Буксировка: 18500 фунтов (2500HD Crew Cab) 20,000 (3500HD Crew Cab)

БОЛЬШЕ SIERRA HD SPECS

GMC Юкон и Юкон XL

Как братья Chevrolet Tahoe и Suburban, новые внедорожники GMC Yukon и Yukon XL получают опциональный 3,0-литровый рядный шестицилиндровый турбодизель мощностью 277 л.с. Двигатель имеет крутящий момент 460 фунт-фут и работает в паре с 10-ступенчатой ​​автоматической коробкой передач Chevy. Масляные горелки доступны почти в каждой комплектации GMC Yukon, включая все двух- и полноприводные модели.Единственное исключение, как и в случае с Tahoe и Suburban, — внедорожная версия AT4.

  • Базовая цена: 52 990 долларов (Юкон) 55 690 долларов (Юкон XL)
  • Двигатель: 3,0-литровый рядный шестицилиндровый двигатель мощностью 277 л.с. с турбонаддувом, 10-ступенчатая автоматическая коробка передач
  • EPA Экономия топлива в смешанном цикле / город / шоссе: 23/21 / 27 (задний привод)
  • Максимальная буксировка: TBA

БОЛЬШЕ YUKON SPECS

Джип Рэнглер

Jeep наконец-то предлагает Wrangler с дизельным двигателем.В данном случае это версия того же 3,0-литрового турбодизельного двигателя V-6 итальянского производства, который Ram предлагает в своем пикапе 1500. В Wrangler он рассчитан на 260 лошадиных сил и 442 фунт-фут максимального крутящего момента. Дизельный двигатель указан как вариант за 4500 долларов, но для него также требуется покупка восьмиступенчатой ​​автоматической коробки передач за 1500 долларов. Дизельный вариант доступен на большинстве четырехдверных автомобилей Wrangler Unlimited, за исключением некоторых моделей специального выпуска. Он еще не предлагается с двухдверным кузовом. EPA заявляет, что Wrangler Unlimited EcoDiesel должен расходовать 22 мили на галлон в городе и до 29 миль на галлон на шоссе, а мы измерили его экономию топлива на шоссе на уровне 22 миль на галлон.

  • Базовая цена: 39 470 долл. : 3500 фунтов

БОЛЬШЕ СПЕЦИФИКАЦИИ WRANGLER

Джип Гладиатор

О боже, вот и джип, превратившийся в пикап Gladiator. Как и Wrangler, он также оснащен 3,0-литровым турбодизельным двигателем V-6 мощностью 260 л.с. и крутящим моментом 442 фунт-фут при 1400 об / мин.Одним из недостатков дизельной трансмиссии является то, что она снижает тяговую нагрузку с 7650 фунтов до 6000 из-за ограничений по охлаждению. Он на 600 фунтов тяжелее, чем его газовый аналог, в основном из-за дополнительной звукоизоляции и большого веса. Вариант трансмиссии за 4000 долларов требует восьмиступенчатой ​​автоматической коробки передач за 2000 долларов и доступен почти в каждой отделке Gladiator, за исключением версий Sport и Mojave. Это может показаться сумасшедшим, но дизельный двигатель Gladiator High Altitude 2021 года стоит от 57 260 долларов. Это на 4400 долларов больше, чем у полноприводной кабины Ford F250 Super Duty.

  • Базовая цена: 43 005 долларов
  • Двигатель: 3,0-литровый дизельный V-6 с турбонаддувом мощностью 260 л.с., восьмиступенчатая автоматическая коробка передач
  • EPA Экономия топлива в смешанном цикле / город / шоссе: 25/22/29 миль на галлон
  • Макс. : 3500 фунтов

БОЛЬШЕ ХАРАКТЕРИСТИК ГЛАДИАТОРА

Ленд Ровер Рендж Ровер

Жемчужина линейки Land Rover, Range Rover, с 1970 года представляет бренд с достоинством и потрясающими возможностями.Таким образом, в 2020 году ему исполнилось полвека. Нынешнее поколение является первым в Штатах с дизельным двигателем, 3,0-литровым V-6, общим с другими продуктами Land Rover, который обеспечивает мощность в 255 лошадиных сил и 443 фунт-фут. крутящего момента. Мы протестировали один из этих вездеходов под маркой Td6 на 40 000 миль и были впечатлены его производительностью и эффективностью. Он был настолько эффективным, что за долгое время пребывания у нас в среднем расходовал 26 миль на галлон.

  • Базовая цена: 99 350 долларов США
  • Двигатель: 255 л.с. с турбонаддувом 3.0-литровый дизельный двигатель V-6, 8-ступенчатая автоматическая коробка передач
  • EPA Экономия топлива в смешанном цикле / город / шоссе: 24/22/28 миль на галлон
  • Макс.буксировка: 7716 фунтов

БОЛЬШЕ СПЕЦИФИКАЦИИ RANGE ROVER

Ленд Ровер Рендж Ровер Спорт

Как и его старший брат, Land Rover Range Rover Sport, меньшая версия Sport, имеет версию Td6, оснащенную 3,0-литровым двигателем V-6 с турбонаддувом производства Ford, мощностью 254 лошадиных силы и 443 фунт-фут крутящего момента.Это на 4 лошадиные силы больше, чем у того же двигателя (более или менее), рассчитанного на пикап Ford F-150, и на 1 фунт-фут крутящего момента меньше. Как и настоящий Range Rover, Sport поставляется в стандартной комплектации с полным приводом и удивительной способностью преодолевать бездорожье, которое бросает вызов козам и якам.

  • Базовая цена: 80 850 долларов
  • Двигатель: 3,0-литровый дизельный V-6 с турбонаддувом мощностью 254 л.с., 8-ступенчатая автоматическая коробка передач
  • EPA Экономия топлива в смешанном цикле / город / шоссе: 24/22/28 миль на галлон
  • Макс. : 7716 фунтов

ДРУГИЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ RANGE ROVER SPORT

Мерседес-Бенц Спринтер

Микроавтобус Sprinter Mercedes-Benz на протяжении многих поколений был верным помощником в коммерческой эксплуатации.Впервые появившись на дорогах Европы, теперь это один из самых продаваемых автомобилей на планете. Мир появляется на пороге вашего дома, оставленный спринтером. Для многих коммерческих клиентов дизельный двигатель практически необходим. Mercedes предлагает 3,0-литровый двигатель V-6 мощностью 188 лошадиных сил в трехчетвертных и более тяжелых грузовых и пассажирских спринтерах. Трансмиссия доступна только с полным приводом. Это не обеспечивает блестящей производительности, но имеет ли это значение?

  • Базовая цена: 48 595 долларов (грузовой) 55 195 долларов (пассажирский)
  • Двигатель: 188 л.с. с турбонаддувом 3.0-литровый дизельный двигатель V-6, семиступенчатая автоматическая коробка передач
  • EPA Экономия топлива: Полноразмерные фургоны, такие как Sprinter, освобождены от федеральных стандартов экономии топлива.
  • Макс. Буксировка: 7500 фунтов

БОЛЬШЕ СПРИНТЕРА

Баран 1500

Пикапы полутонны с дизельными двигателями все еще остаются нишей на развивающемся рынке. Ram 1500 стал пионером в этом сегменте в 2014 году, когда он представил в качестве опции 3,0-литровый турбодизель VM Motori итальянского производства и назвал его EcoDiesel.Этот двигатель превратился в свое третье поколение и теперь имеет мощность 260 лошадиных сил и максимальный крутящий момент 480 фунт-фут. Он оснащен восьмиступенчатой ​​автоматической коробкой передач и стоит 4995 долларов за весь диапазон пикапов Ram 1500 от рабочего грузовика Tradesman до роскошного Limited.

  • Базовая цена: 39 285 долларов
  • Двигатель: 3,0-литровый дизельный V-6 с турбонаддувом мощностью 260 л.с., 8-ступенчатая автоматическая коробка передач
  • EPA Экономия топлива в смешанном цикле / город / шоссе: 26/23/33 миль на галлон (2WD HFE)
  • Макс. Буксировка: 12560 фунтов

БОЛЬШЕ RAM 1500 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Баран 2500/3500

В 1989 году грузовики Ram были грузовиками Dodge, и продажи были практически нулевыми.Затем кому-то пришла в голову идея соединить старый Dodge Ram с трехчетвертной и одной тонной массой с промышленным 5,9-литровым рядным шестицилиндровым дизельным двигателем Cummins с турбонаддувом, и мир изменился. Первый Cummins был рассчитан на 160 лошадиных сил и 400 фунт-фут крутящего момента. 6,7-литровая версия шестицилиндрового двигателя Cummins, предлагаемая в трех четвертитонном Ram 2500HD 2021 года, обладает удивительной мощностью в 370 лошадиных сил и максимальным крутящим моментом в 850 фунт-фут. Это также вариант за 9300 долларов. Существует также 3500 High Output с 420-сильной версией этого двигателя, но число крутящего момента увеличено до безумных 1075 фунт-фут крутящего момента.

  • Базовая цена: 44 890 долларов
  • Двигатель: 6,7-литровый рядный 6-цилиндровый дизель с турбонаддувом мощностью 370 л.с., 6,7-литровый рядный 6-цилиндровый дизель с турбонаддувом мощностью 420 л.с. 6-ступенчатая автоматическая коробка передач
  • EPA по экономии топлива: Пикапы большой грузоподъемности, такие как Ram 2500HD и 3500HD, освобождены от федеральных стандартов экономии топлива.
  • Макс. Буксировка: 35100 фунтов

БОЛЬШЕ RAM 2500 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Лучшие грузовики для максимальной буксировки

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

Реклама — продолжить чтение ниже

Двухтопливные двигатели, работающие на природном газе / дизельном топливе: технологии, характеристики и выбросы

В этом документе обобщается обзор технологии двухтопливных двигателей, работающих на природном газе / дизельном топливе, выполненный для Института исследований газа. (1) * В прошлом двухтопливные двигатели, работающие на природном газе / дизельном топливе, были отведены на несколько небольших нишевых рынков, но наш обзор показал, что технология двухтопливных двигателей имеет значительный потенциал.Потенциальные преимущества двухтопливных двигателей включают эффективность дизельного топлива и среднее эффективное давление в тормозной системе (BMEP) с гораздо более низкими выбросами оксидов азота (NOx) и твердых частиц. Новые технологии предлагают решения проблем низкой эффективности и выбросов при небольшой нагрузке. Двухтопливные двигатели могут быть разработаны для работы на природном газе с пилотным дизельным топливом или на 100% дизельном топливе. Многие существующие дизели могут быть переведены на двухтопливный режим. Предварительный экономический анализ показывает, что такие преобразования могут быть оправданы только за счет экономии затрат на топливо в таких приложениях, как железнодорожные локомотивы, морские суда, карьерные самосвалы и системы выработки дизельной энергии.

Двухтопливный двигатель — это двигатель внутреннего сгорания, в котором основное топливо (обычно природный газ) смешано более или менее однородно с воздухом в цилиндре, как в двигателе с искровым зажиганием. Однако, в отличие от двигателя с искровым зажиганием, воздушно-топливная смесь воспламеняется путем впрыска небольшого количества дизельного топлива («пилот»), когда поршень приближается к вершине такта сжатия. Это пилотное дизельное топливо быстро подвергается предпламенным реакциям и воспламеняется из-за теплоты сжатия, как это было бы в дизельном двигателе.Затем при сгорании пилотного дизельного двигателя воспламеняется топливовоздушная смесь в остальной части цилиндра.

Поскольку воздух и основное топливо предварительно смешаны в цилиндре, двухтопливные двигатели имеют много общих черт с двигателями с искровым зажиганием и двигателями с циклом Отто. Однако, поскольку они основаны на воспламенении от сжатия пилотного двигателя, они также имеют некоторые общие характеристики с дизелями, а также некоторые собственные уникальные преимущества и недостатки.

Одним из преимуществ двухтопливных двигателей является то, что в большинстве случаев они могут быть разработаны для работы на природном газе с пилотным дизельным двигателем или на 100% дизельном топливе.Это делает их особенно ценными в обстоятельствах, когда использование природного газа желательно по экологическим или экономическим причинам, но где газоснабжение может быть не полностью надежным. Например, двухтопливный грузовик мог работать на сжатом природном газе там, где это топливо было доступно — например, в городских районах, страдающих от сильного загрязнения воздуха. Однако, если бы грузовику пришлось выехать за пределы диапазона подачи сжатого природного газа, он все равно мог бы вернуться на 100% -ное дизельное топливо. Точно так же генераторная установка может большую часть времени работать на относительно недорогом трубопроводном газе, но мгновенно переключиться на 100% дизельное топливо, если подача газа была прервана.Другие потенциальные применения, в которых эта возможность будет важна, включают дизель-электрические локомотивы, морские суда, сельскохозяйственное оборудование, строительное и промышленное оборудование, а также двигатели, использующие биогаз, канализационный газ или другие источники переменного газа.

Еще одним преимуществом двухтопливных двигателей является легкость, с которой большинство существующих дизелей можно перевести на двухтопливный режим. В отличие от трудностей, связанных с переводом дизельного двигателя на искровое зажигание, многие дизельные двигатели можно перевести на двухтопливный режим работы, даже не снимая головок цилиндров.Учитывая большое количество используемых автомобилей, оборудования и техники с дизельными двигателями, такие двухтопливные преобразования могут сделать возможным повсеместную замену дизельного топлива природным газом с большой экономией капитальных затрат и времени по сравнению с тем, что требуется для преобразования. к двигателям с искровым зажиганием.

Характеристики и выбросы двухтопливного двигателя зависят от условий эксплуатации и сложности системы управления. Двухтопливные двигатели лучше всего работают при средней и высокой нагрузке и часто могут быть равны или лучше топливной экономичности чистого дизельного топлива в этих условиях.Работая с обедненным воздушно-топливным соотношением, они также могут достичь гораздо более низких выбросов (особенно NOx и твердых частиц (PM)), чем чистое дизельное топливо. Существующие двухтопливные конверсии страдают от значительного увеличения выбросов окиси углерода (CO) и углеводородов (HC) и снижения топливной эффективности при малых нагрузках. Это связано с тем, что они работают без дросселирования, так что топливно-воздушная смесь становится беднее при уменьшении нагрузки. По мере того, как смесь становится беднее, сгорание в конечном итоге ухудшается, оставляя большое количество продуктов частичной реакции в выхлопных газах.Поскольку для многих дизельных двигателей, особенно транспортных средств, характерны большие объемы работы с малой нагрузкой, высокие выбросы и низкая эффективность двухтопливных двигателей в этих условиях являются серьезным препятствием. Это, возможно, основная причина того, что практически все разрабатываемые новые двигатели для тяжелых грузовиков, работающих на природном газе, имеют искровое зажигание, а не двухтопливные. Но последние технологические разработки в области больших двухтопливных двигателей в сочетании с электронными системами учета и контроля топлива нового поколения могут позволить преодолеть проблемы, связанные с выбросами при малой нагрузке и топливной экономичностью в двухтопливном двигателе, при сохранении и даже усиление преимуществ двухтопливного подхода.

В этом отчете представлены выводы исследовательского проекта, выполненного для Группы технологий двигателей Института исследований газа (GRI). Целью данного исследования было определение и оценка существующей двухтопливной технологии, выявление потенциально многообещающих применений этой технологии и определение соответствующих областей внимания для будущих исследований и разработок двухтопливных двигателей, финансируемых GRI. В этой статье рассматривается текущее состояние технологии двухтопливных двигателей и дается характеристика текущих и потенциальных будущих характеристик и уровней выбросов, а также основных явлений сгорания, ответственных за производительность и выбросы.В нем представлены данные о выбросах и характеристиках ряда коммерческих двухтопливных двигателей. Кроме того, в нем обсуждается возможность модернизации двухтопливной технологии существующих дизельных двигателей. Наконец, в нем представлены рекомендации для будущих исследований и разработок.

.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *