Система зажигания инжекторного двигателя: Электронная система зажигания инжекторного двигателя авто

Содержание

Система зажигания инжекторного двигателя авто

Система зажигания авто служит для поджигания смеси в определенный период, вследствие чего начинается процесс сгорания. От её работы зависит мощность двигателя, содержание вредных веществ в выхлопе и экономия топлива.

Процесс воспламенения

Когда поршень сжимает топливовоздушную смесь, давление в камере сгорания достигает 20-40 бар, а температура смеси 400 — 600°С. Но чтобы смесь загорелась, т.е. произошел бы процесс горения этого недостаточно и нужно на нее воздействовать. Для этого служит искра, которая возникает между центральным и боковым электродами свечи зажигания. Но если искровой заряд будет маломощным, то возгорание может и не произойти. Чтобы смесь поджигалась нужен очень мощный разряд. К примеру, для стехиометрической смеси он составляет 0.2 мДж, а для «бедной» или «богатой» смеси он должен быть равным 3.0 мДж. Необходимо, чтобы около искры находилось оптимальное количество топливовоздушной смеси. Именно это количество и поджигает всю оставшуюся смесь в цилиндре, а дальше начинается процесс сгорания топлива.

В системе зажигания автомобиля присутствует катушка зажигания, которая накапливает энергию и передает ее на свечу зажигания для возникновения напряжения. Особенность катушки зажигания состоит в том, что напряжение, которая она создает, намного превышает величину пробоя в зазоре свечи зажигания. Катушки зажигания способны накапливать энергию в районе 60 — 120 мДж и обеспечивают напряжение равное 25 — 40 кВ.

Условия для качественного горения топлива:

  • Достаточная продолжительность искрового разряда;
  • Оптимальное распыление топливовоздушной смеси;
  • Однородность топливовоздушной смеси;
  • Стехиометрический состав топливовоздушной смеси.
На процесс горения также влияет величина искрового разряда между электродами свечи зажигания. Увеличение зазора способствует увеличению длины искры, что приводит к более лучшему процессу сгорания топлива. Величину зазора в свечи зажигания надо выставлять согласно данным производителя мотора.

Угол опережения зажигания (УОЗ).

Что это такое

Три миллисекунды — именно столько проходит между моментом начала воспламенения смеси и ее полным сгоранием.

При повышении частоты вращения коленвала время сгорания остается постоянным, но средняя скорость перемещения поршня возрастает. Это ведет к тому, что когда поршень отходит от ВМТ, сгорание смеси произойдет в большем объеме и давление газов на поршень уменьшиться. Из-за этого упадет мощность двигателя.

Кроме того, при одной частоте вращения коленвала с увеличением нагрузки на двигатель момент воспламенения должен наступать позже. Это объясняется тем, что увеличивается количество горючей смеси, поступающей в цилиндры, и одновременно уменьшается количество примешиваемых к ней остаточных отработавших газов, вследствие чего повышается скорость сгорания. Искра должна возникнуть в тот момент, когда давление сгорания при разных рабочих режимах будет наиболее оптимальным.

Это вызывает необходимость воспламенять рабочую смесь с опережением (до прихода поршня к ВМТ) с таким расчетом, чтобы смесь полностью сгорела к моменту перехода поршнем ВМТ.


Момент зажигания принято определять по положению коленчатого вала относительно ВМТ и обозначать его в градусах до ВМТ. Этот угол называют углом опережения зажигания (УОЗ). Сдвиг момента зажигания в сторону ВМТ считается поздним (УОЗ уменьшается), а сдвиг от ВМТ — ранним (УОЗ увеличивается). Чем выше частота вращения коленвала, тем более ранним должен быть угол опережения зажигания.

Момент зажигания является важным показателем в работе двигателя. От него зависит экономичность мотора, максимальная мощность и содержание вредных веществ в выхлопных газах.

В инжекторных моторах система самостоятельно рассчитывает угол опережения зажигания в зависимости от работы мотора в определенный период. Угол опережения зажигания определяется на основании скорости вращения коленвала, режима работы мотора и нагрузки на двигатель. На основании этих данных система управления двигателем подбирает оптимальный УОЗ.

Что такое детонация двигателя

Детонация — это непредсказуемый взрыв в моторе, который происходит в неположенное время и может загубить двигатель. Возникает при высокой степени сжатия двигателя и носит опасный характер. Происходит из-за самопроизвольного сгорания топливовоздушной смеси в камере сгорания. Детонация свидетельствует, что момент зажигания очень ранний. Могут пострадать детали двигателя из-за повышенной температуры и давления паров. В первую очередь страдают поршни, прокладка головки цилиндров и головка в зоне клапанов. Может приводить к полному ремонту двигателя.

Детонация мотора можно возникать:

  • При большой нагрузки на двигатель и повышенных (близким к критическим) оборотов коленчатого вала.
  • При разгоне. Она слышна как металлический звон и стуки в двигателе («стучат пальчики»). Она бывает при повышенной нагрузке, но при малых оборотах мотора. Именно она считается как самая опасная, т.к. её не слышно из-за повышенного шума мотора на больших оборотах.
  • Из-за конструкции двигателя авто, а также от плохого топлива.

Электронная система зажигания инжекторного двигателя :: Avto.

Tatar

  Известно, что различные газы появляются при сгорании топлива. Они, в свою очередь, давят на поршень, из-за чего в последующем и происходит работа машины. Для того чтобы топливо сжигалось, существует специальная система зажигания. Как таковое горение начинается только после поджигания топлива. Если система работает нормально и исправно, она определит мощность в двигателе, а также то, сколько вредных веществ в газах содержится, и сэкономит топливо.


Каким образом работает система

В тот момент, когда тепловоздушная смесь сжимается при помощи определенного давления на нее, достигаются величины до сорока бар. Сама смесь температурой около пятисот градусов по Цельсию. Однако для того, чтобы произошло возгорание, этого мало. Тут нужно особое воздействие, чтобы процесс горения запустился.

С этим легко справится небольшая искорка, которая должна появиться между обоими электродами (центр и боковые). Однако если мощность искры окажется слишком малой, есть вероятность того, что возгорание все-таки не произойдет. Если смесь стехиометрическая, будет достаточно 0.2 мДж. Для прочих смесей заряд должен быть на порядок выше этого показателя. Не забывайте о необходимости определенного количества смеси тепловоздушной рядом с возникновением искры. Ведь именно от нее во многом зависит, будет ли подожжена остальная смесь, которая залита в цилиндр.

Энергия передается в свечу зажигания, в результате чего создается напряжение. Происходит это благодаря

катушке зажигания. То напряжение, которое создается при помощи катушки, значительно больше, чем напряжение от пробы в свече.

Для того чтобы горение топлива было исключительно качественным, следует придерживаться следующего:
 

  • необходимо, чтобы хватало длины разряда от искры;
  • хорошее распыление от смесей;
  • чтобы смеси были только однородными;
  • состав в смесях должен быть стехиометрическим.


Но сам процесс зависит не только от этого. Например, также необходимо знать величину, с которой происходит разряд искры, которая возникает между двумя электродами в свече. Когда зазор в искре становится больше, становится лучше и горение топлива. Какой длины должен быть зазор в свече, определяет только производитель. Это должно быть прописано в инструкции.

Существует так называемый УОЗ – угол опережения зажигания, который рассчитан всего на две миллисекунды. Данное время – это период до того, как смесь сгорает до конца. Далее происходит увеличение вращения на коленчатом валу, но то время, за которое сгорает смесь, неизменно. Хотя скорость движений в цилиндре становится только выше. Если поршень отходит от необходимого места, то смесь сгорит в большем объеме. Также будет уменьшаться давление от газов, и в конечном итоге мощность будет снижаться. В том случае, когда нагрузка двигателя становится выше, притом, что частота у вращения не меняется, воспламенение, скорее всего, задержится.

При грамотной работе с двигателем данный момент крайне важен на фоне прочих показателей. От этого зависит то, насколько высока будет его экономичность, а также мощность и степень загрязнения выходящих газов. В некоторых видах двигателей система самостоятельно высчитывает УОЗ, при этом учитывается работа двигателя в тот или иной период времени. Определить угол, с которым опережается зажигание, можно при помощи скорости, с которой вращается

коленчатый вал, а также нагрузка на сам двигатель и его работу. Учитывая все перечисленное выше и функции для лучшего УОЗ, возможно выбрать наиболее подходящую систему управления.


Каким образом происходит детонация у двигателя

Детонация может быть особенно опасна для двигателей в том случае, когда сжатие в нем слишком высокое. С чем именно это связано? Например, с тем, что воздушная смесь возгорается самопроизвольно. Если происходит детонация, значит, зажигание произошло слишком рано. Чрезмерно высокая температура вкупе с высоким давлением повреждают детали двигателя и причиняют ему существенный вред. Первым делом страдают поршни, в дальнейшем повреждения переходят к головке рядом с клапанами и прокладке в цилиндрах. Чаще всего необходим полный ремонт в моторе из-за влияния детонации.  

Диагностику и ремонт системы зажигания рекомендуется проводить в специализированных автосервисах.

Система зажигания инжекторного двигателя

Система зажигания служит для воспламенения топлива, что и позволяет ему превращаться в силу, приводящую автомобиль в движение. Искра зажигания должна появиться в правильный момент, быть достаточно длинной, сильной и долговременной. А от работы всей системы зависит мощность мотора, расход топлива и даже содержание вредоносных веществ в выхлопных газах.

Воспламенение топлива

При сжатии в цилиндре топливовоздушной смеси в камере сгорания образуется давление в 20-40 бар, а температура возрастает до 400-600°C. И хотя цифры впечатляют, но, оставаясь в покое, топливо при таких условиях не воспламенится. Для этого необходима искра.

Искра образуется между боковыми и центральным электродами свечи зажигания. Расстояние между ними определяет мощность искры, а она прямо влияет на то, произойдет ли возгорание.

При маломощном разряде, топливовоздушная смесь может не воспламениться.

Для того чтобы в свече возникла искра, необходима энергия. В системе зажигания есть катушка, функция которой и заключается в аккумулировании энергии, а затем передаче на свечу ее часть. Напряжение, создаваемое катушкой зажигания, многократно превышает силу разряда, возникающего в свече. Она способна накопить 60-120 мДж энергии и обеспечить напряжение в 25-40 кВ.

Чтобы воспламенение топлива произошло, необходимо сочетание нескольких факторов. Искра должна обладать действительно большой силой заряда. А какой именно, зависит от типа смеси. Так, для стехиометрической это 0,2 мДж, а для «бедной» или «богатой» — 3 мДж. В момент разряда возле свечи должно быть не слишком много и не слишком мало топлива и примешиваемых к нему газов, их количество должно быть оптимальным. Именно эта часть смеси и распространит горение на все остальное топливо.

Необходимые условия

Для качественного сгорания топлива необходимо соблюдение таких условий:

• искра должна сохраняться достаточно долгий промежуток времени;

• топливовоздушная смесь должна быть однородной и распыленной равномерно;

• стехиометрический состав должен быть уравновешен.

Длина самой искры так же немаловажна для процесса горения топлива. Чем она больше, тем лучше. Увеличить ее можно, увеличивая зазор между электродами свечи зажигания. Чтобы выставить это расстояние правильно, необходимо опираться на техническую документацию двигателя.

Угол опережения зажигания (УОЗ)

Момент зажигания — это важный фактор. От воспламенения топливной смеси до ее полного сгорания проходит примерно три миллисекунды. Именно поэтому зажигание должно произойти в определенный момент, так, чтобы смесь полностью сгорела до перехода поршнем верхней мертвой точки (ВМТ). Своевременное зажигание и диктует качественные свойства двигателя: экономию топлива, мощность мотора, вредность паров сгорания.

 

 

Важно понимать, что при увеличении интенсивности вращения коленвала, скорость движения поршня возрастает, но скорость горения топлива остается прежней. Так возникает ситуация, приводящая к падению давления: когда поршень находится далеко от верхней мертвой точки, объем пространства для горения смеси больше, что и снижает давление. А это, в свою очередь, снижает мощность двигателя.

Если же интенсивность вращения коленвала остается неизменной, но увеличивается нагрузка на мотор, важно, чтобы зажигание происходило позже. Ведь объем топлива в цилиндры при таком режиме поступает больший, а вот количество остаточных газов, смешиваемых с ним, уменьшается. Это ведет к уменьшению времени, необходимого для полного сгорания смеси. Поэтому и искра должна возникать позже.

Для правильной работы системы разряд должен возникать тогда, когда давление, вне зависимости от режима работы двигателя, оптимально. Поэтому воспламенение смеси до того, как поршень окажется в верхней мертвой точке, необходимо, но момент этот не одинаков.

Определяющей здесь является позиция коленчатого вала по отношению к ВТМ: момент зажигания обозначается в градусах до мертвой точки. Этот угол и называется углом опережения зажигания.

Если момент зажигания приближается к ВМТ — он называется поздним, УОЗ становится меньше. Если отдаляется — ранним, УОЗ становится больше. Чем интенсивнее движение коленвала, тем больше должен быть угол опережения зажигания.

Инжекторные системы хороши тем, что сами определяют УОЗ в зависимости от трех основных факторов: режима работы, скорости вращения коленчатого вала и нагрузки на мотор. Анализируя эти показатели, система управления двигателем высчитывает оптимальный УОЗ.

Детонация

Детонация двигателя — это настолько же нехорошо, как и звучит. Этим термином обозначаются непредсказуемый взрыв, который случается в двигателе в случайный момент времени. Опасен он тем, что может стать причиной полного выхода двигателя из строя.

 

 

Детонация случается при слишком раннем УОЗ и высокой степени сжатия. Происходит она в результате самопроизвольного возгорания топливовоздушной смеси.

Сила самого взрыва незначительна, но температура и давление возрастают, что и может привести к поломке деталей двигателя. Чаще всего возникают повреждения поршней и прокладки головки блока цилиндров, особенно возле клапанов.

Вероятность возникновения детонации особенно высока при:

• высокой нагрузке на мотор и приближающейся к критической частоте оборотов коленвала;

• разгоне — когда нагрузка на двигатель большая, но обороты малые; такая детонация слышится как серия стуков и металлического звона, её принято считать самым опасным видом детонации, так как рёв мотора способен полностью заглушить звуки взрывов;

• конструктивных дефектах двигателя;

• некачественном топливе.

Система зажигания инжекторного и дизельного двигателя автомобиля: виды (контактная и другие)

Эффективная работа автомобильного двигателя достигается только за счет нормальной работоспособности основных систем и узлов. Одной из таковых является система зажигания. Какие функции она выполняет, какие существуют виды СЗ, из каких механизмов и элементов она состоит? Ответы на эти и многие другие вопросы вы можете найти ниже.

Содержание

[ Раскрыть]

[ Скрыть]

Характеристика системы зажигания двигателя

Автомобильные бензиновые инжекторные и дизельные моторы не могут работать при неисправностях в работе системы зажигания. Если хотя бы один составляющий элемент СЗ по каким-то причинам выходит из строя, это приведет к некорректной работе мотора в целом. Для начала рассмотрим основные характеристики СЗ, начнем с предназначения.

Предназначение и функции

Предназначение СЗ заключается в подаче высоковольтного разряда (искры) на свечи в определенный так работы двигателя автомобиля. В частности, речь идет о бензиновых силовых агрегатах. Что касается дизельных моторов, то в данном случае под зажигание подразумевают момент впрыска горючего и такт сжатия.

Виды

Если с назначением все понятно, то перейдем к видам:

  1. Контактные СЗ, в данном случае процесс управления за процедурой накопления и распределения высоковольтного разряда по цилиндрам производится с помощью распределительного механизма. Более совершенствованные контактные СЗ стали транзисторными, в них в первичной цепи катушки используется специальный транзисторный коммутатор.
  2. Бесконтактные СЗ. В таких системах управление зарядом осуществления с помощью транзисторного коммутатора, который взаимодействует с бесконтактным датчиком Холла. Многоискровое коммутаторное устройство используется в качестве прерывателя, а процесс распределения энергии производится с помощью механического распределительного узла.
  3. Электронные СЗ. В таких системах применяются специальные управляющие модули, которые осуществляют накопление и дальнейшее распределение разряда одно- или двухконтурной СЗ.

Конструкция

Теперь перейдем к вопросу конструкции СЗ:

  1. Основным элементом считается источник питания, используется батарейное устройство (АКБ), а также генераторный узел. Первый применяется для запуска мотора, а второй — для питания оборудования во время езды.
  2. Выключатель, то есть замок, в который водитель вставляет ключ. Этот механизм используется для подачи напряжения на электросеть авто, а также на втягивающее реле стартерного узла.
  3. Катушка или модуль зажигания. Этот элемент используется непосредственно для накопления, а также дальнейшего преобразования электрической энергии в высоковольтный разряд. Накопители могут быть емкостными или индуктивными.
  4. Не менее важный элемент — это свечи. Эти элементы представляют собой устройства, оснащенные электродами, их количество может варьироваться в зависимости от типа свечей и их производителя. На центральной части конструкции расположен специальный проводниковый элемент.
  5. Механизм распределения. Его предназначение заключается в подачи высоковольтного заряда на определенный цилиндр в определенное время, то есть в самый оптимальный момент. Такие механизмы состоят из распределительных устройств (трамблеров), коммутаторов и управляющих модулей, но их состав может быть разным в зависимости от типа СЗ.
  6. Высоковольтные провода. По сути, это одножильный кабель, оснащенный надежной изоляцией. Проводник, расположенный внутри изоляции, может быть выполнен в виде спирали, это позволят предотвратить образование помех в радиодиапазоне.

Принцип работы и порядок зажигания

Как работает СЗ:

  1. На первом этапе происходит накопление электрической энергии, а также дальнейшая подача заряда нужного уровня.
  2. Далее, осуществляется преобразование накопленной энергии в высоковольтный разряд.
  3. На следующем этапе осуществляется распределение заряда по цилиндрам. Здесь же следует упомянуть о порядке. Порядок зажигания — это процесс подачи заряда на определенные цилиндры, данный параметр определяется производителем для каждого конкретного автомобиля. К примеру, в отечественных ВАЗ 2109 порядок такой — сначала заряд подается на первый цилиндр, затем на третий, четвертый, а потом на второй.
    В Газелях порядок немного другой — сначала в работу вступает первый цилиндр, затем второй, потом четвертый и третий. Если вам нужно точно узнать о порядке работы цилиндров, уточните эту информацию в сервисной книжке.
  4. Далее, с помощью свечей в цилиндрах образовывается искра.
  5. На завершающем этапе осуществляется возгорание топливовоздушной смеси, что приводит к запуску силового агрегата (автор видео — Михаил Нестеров).

Следует отметить, что на каждом из этапов важно, чтобы все компоненты системы работали слаженно, только это позволит добиться наиболее эффективной работы.

Характерные неисправности зажигания двигателя

Поскольку по своей конструкции СЗ — это достаточно сложная система, выход из строя одного из ее компонентов может привести к невозможности запуска мотора.

Если двигатель не запускается, причины могут быть следующими:

  1. Окислились контакты на прерывателе, возможно, между ними отсутствует зазор. В данном случае люфт следует отрегулировать, а сами контакты качественно очистить.
  2. Произошло замыкание на массу конденсаторного элемента или проводки контактов. Замыкание необходимо устранить для ликвидации неисправности, а конденсаторный компонент — поменять на работоспособный. Также причина может заключаться в его пробое.
  3. Произошел обрыв в электроцепи высоковольтного напряжения катушки, на ней могла появиться трещина. В данном случае катушка подлежит замене.
  4. В некоторых случаях причина кроется в неправильной установке момента, тогда его следует проверить и при необходимости — отрегулировать.
  5. Еще одна проблема — не включается замок, она актуальна для авто с замком, в машинах, где запуск мотора осуществляется путем нажатия на кнопку, такой проблемы не бывает. Необходимо полностью снять и разобрать механизм, зачистить его, а если нужно — поменять контактную группу (автор видео — канал Мир Матизов).

Если силовой агрегат функционирует неустойчиво на небольших и средних оборотах, причины могут быть такими:

  1. На крышке трамблера появилась трещина, загрязнился роторный механизм. Устройство необходимо протереть, а если трещина серьезная — то крышка подлежит замене.
  2. Заедает уголек крышки или этот компонент износился. Если есть возможность, то заедание следует устранить, а уголек можно поменять.
  3. Перегорело сопротивление, неисправность решается путем замены.
  4. Еще одна причина — пробой изоляции высоковольтных проводов. Неисправность нельзя решить путем дополнительного изолирования провода изолентой, это не тот случай. Нужно точно убедиться в том, что пробой имеет место, если есть необходимость, провод следует поменять.
  5. На свечах по каким-то причинам уменьшился или увеличился зазор, также сами свечи могли замаслиться. Если проблема в зазоре, то его следует отрегулировать. В том случае, если электроды перегорели, то свечи подлежат замене. Проблема замасливания решается путем очистки свечей, но также следует определить причину, по которым это произошло.
  6. Произошло подгорание распределительной пластины роторного механизма. В данном случае пластина подлежит очистке.

Фотогалерея «Неисправности СЗ»

Может быть такое, что мотор не позволяет развивать полную мощность, при этом нет приемистости двигателя, в некоторых случаях проблема может сопровождаться стуком поршневых колец.

Причины:

  1. На прерывательном механизме ослабла пружина подвижного контакта, можно попытаться произвести регулировку ее натяжения либо просто поменять.
  2. Выставлено позднее или ранее зажигание, необходимо его отрегулировать.
  3. Произошли перебои в образовании искры между электродами. Такая проблема, как правило, требует полной замены вышедшей из строя свечи.
  4. Если причина неисправности заключается в износе подшипниковых элементов прерывателя распределителя, то эти детали также полежат замене, поскольку отремонтировать их не получится.
  5. Проблема может быть обусловлена износом втулки подвижного контакта на прерывательном механизме. Необходимо произвести диагностику, а если есть необходимость, полностью поменять стойку с контактами.
 Загрузка …

Видео «Самостоятельно чистим свечи»

Как в домашних условиях произвести очистку свечей зажигания — подробная инструкция с описанием основных нюансов приведена в ролике ниже (автор видео — Oleg Ars).

Система зажигания бензиновых двигателей автомобиля

Система зажигания предназначена для поджигания топливовоздушной смеси в бензиновых и газовых двигателях внутреннего сгорания. Поджог осуществляется за счет электрического разряда между электродами свечи при подведении к ней напряжения в 18000 – 20000 Вольт.

Основные составные части системы зажигания (каждый из элементов описан подробно ниже):

  • выключатель зажигания;
  • катушка зажигания;
  • прерыватель-распределитель;
  • регуляторы опережения зажигания;
  • свечи зажигания;
  • провода, соединяющие данные элементы.

Система зажигания с распределителем

На рисунке 10.6 приведена типичная схема системы зажигания с распределителем.


Рисунок 10.6 Контактная система зажигания двигателя с распределителем.

 Выключатель зажигания

Выключатель зажигания собран в сборе с замком зажигания. Основная функция данного выключателя — запитывание потребителей электрическим током от источников питания. Система зажигания в целом — это тоже потребитель электротока. Как видно из схемы ниже, через выключатель от источника питания запитывается первичная обмотка катушки зажигания.

 Катушка зажигания

По сути, катушка зажигания — это трансформатор, который преобразует низкое напряжение от бортовых источников питания (12 В) в напряжение, достаточное для получения мощной искры между электродами свечи, необходимой для поджигания топливовоздушной смеси в цилиндре двигателя. Достаточное напряжение – это 20 – 30, а то и 60 тысяч вольт.

Для такого рода преобразования в корпусе катушки имеются две обмотки – первичная и вторичная, а также сердечник. Каждая обмотка имеет различное количество витков и сечение проводов.

Когда вы поворачиваете ключ и включаете зажигание от аккумуляторной батареи, электрический ток поступает на первичную обмотку и через контакты замыкается на «массу». При прохождении через первичную обмотку тока вокруг катушки создается электромагнитное поле. Как только контакты разомкнутся и течение тока через первичную катушку резко прекратится, во вторичной катушке возникнет необходимое напряжение и ток. И уже ток в 30 и более тысяч вольт от вторичной обмотки катушки зажигания потечет через распределитель к свече зажигания.

 Прерыватель-распределитель

Прерыватель-распределитель (в простонародии — «трамблер») предназначен для того, чтобы прерывать и распределять: прерывать — ток, текущий через первичную обмотку катушки зажигания, распределять – ток от вторичной катушки зажигания между свечами зажигания в той последовательности, которая предусмотрена порядком работы двигателя. В центр крышки распределителя подсоединен высоковольтный провод от вторичной обмотки катушки зажигания, а по периметру крышки расположены выводы, которые через высоковольтные провода соединены со свечами зажигания.

Прерыватель может быть контактным и бесконтактным. В контактном прерывателе разрыв цепи первичной обмотки катушки зажигания происходит за счет контактов, что очень ненадежно.

Примечание
Причина ненадежности контактов в том, что исчезающее магнитное поле пересекает витки не только вторичной, но и первичной обмотки, вследствие чего в ней возникает ток самоиндукции и напряжение около 250-300 вольт. Это приводит к искрению и обгоранию контактов, кроме того, замедляется прерывание тока в первичной обмотке, что приводит к уменьшению напряжения во вторичной обмотке. Конечно, это решается установкой конденсатора (обычно емкостью в 0,25 мкф). Однако все-таки имеет место такое явление, как эрозия – постепенное разрушение поверхности контактов, вследствие которого контакты прилегают неплотно и понижается напряжение, возникающее во вторичной обмотке катушки зажигания.

Чтобы исключить механическую составляющую прерывателя, вместо контактов установили специальное устройство, называемое датчиком Холла. Никаких контактов, только управляющие импульсы, которые контролируют работу катушки зажигания.

 Регуляторы опережения зажигания

Для того чтобы топливовоздушная смесь успела сгореть, пока поршень движется от верхней мертвой точки к нижней, ее необходимо поджигать немного раньше. Основным показателем момента зажигания является угол опережения зажигания, который говорит нам о том, за сколько градусов до ВМТ на такте сжатия возникнет пробой между электродами свечи.

В распределителях описанного выше типа изменение угла опережения зажигания осуществляется механическим путем — проворачиванием контактов относительно приводного вала в ту или иную сторону.

 Свечи зажигания

Элемент, благодаря которому в цилиндре поджигается топливовоздушная смесь, называется свечой зажигания. Устройство этого элемента простейшее (смотрите рисунок 10.7): корпус с нарезанной резьбой и электродом (отрицательным, так как контактирует с «массой» — головкой блока цилиндров), изолятор, внутри которого проходит положительный электрод. К этому электроду с одной стороны через наконечник подсоединен высоковольтный провод системы зажигания. Положительный электрод расположен рядом с отрицательным электродом (воздушный зазор между ними составляет 0,8-1,2 мм — в зависимости от модели свечи). Когда от распределителя зажигания высоковольтный разряд по проводу подводится к положительному электроду, воздушный зазор пробивается, то есть возникает искра — довольно мощная, чтобы поджечь топливовоздушную смесь.


Рисунок 10.7 Свеча зажигания.

Микропроцессорная система зажигания

Как уже не раз было сказано, развитие автомобилестроения движется семимильными шагами и на смену системе зажигания с распределителем пришли микропроцессорные системы. В них нет каких-либо вращающихся и подвижных частей (смотрите рисунок 10.8), но есть катушки зажигания (все чаще — по катушке на каждый цилиндр), электронный блок управления (с интегрированным блоком зажигания) и коммутатор (если блок катушки зажигания один) или коммутаторы (если катушек зажигания несколько).


Рисунок 10.8 Система зажигания с микропроцессорным управлением.

В электронный блок управления стекаются данные от ряда датчиков, обрабатывая которые ЭБУ выдает управляющий сигнал на коммутатор (или коммутаторы), определяющий, в какой момент поджечь в цилиндре топливовоздушную смесь. Получение каждого искрового разряда производится по электронным сигналам с очень высокой точностью и без использования каких-либо подвижных частей. Во многих двигателях искра образуется не только во время такта сжатия (это значит, что каждая свеча генерирует искровой разряд каждый раз, когда поршень доходит до ВМТ). Содержание вредных компонентов в отработавших газах при этом несколько снижается.

Диагностика системы зажигания — из-за чего неисправности?

Зачастую причиной того, что машина не заводится, являются проблемы с ее системой зажигания. Для того, чтобы выявить проблему, нужно выполнить диагностику зажигания. Порой бывает сделать это нелегко, поскольку, во-первых, велико количество диагностируемых узлов (проблемы могут быть в свечах, различных датчиках, трамблере и других элементах), а во-вторых, для этого нужно пользоваться дополнительным оборудованием — мотор-тестером, омметром, сканером для выявления ошибки на машинах, оборудованных ЭБУ. Далее рассмотрим эти ситуации детальнее.

О чем мы расскажем

Система зажигания автомобиля

Общие рекомендации при поломке

Чаще всего поломки в системе зажигания автомобиля связаны с нарушением качества электрических соединений в цепи, либо утечкой тока в высоковольтных проводах. Кратко перечислим, на что в первую очередь необходимо обращать внимание при возникновении проблем в работе системы зажигания автомобиля, а также по какому алгоритму действовать.

  1. Проверьте состояние заряда аккумуляторной батареи с помощью вольтметра. Напряжение на нем должно быть не ниже 9,5 В. В противном случае аккумулятор нужно зарядить или заменить.
  2. Проверьте качество контактов на катушечного модуля на всех свечах зажигания.
  3. Проведите ревизию всех свечей. Они не должны иметь значительный черный нагар, а расстояние между электродами должно составлять около 0,7…1,0 мм.
  4. Снимите и проверьте датчики распределительного и коленчатого валов. В случае необходимо нужно провести их замену.

Чаще всего проблемы кроются в нарушении качества контактов или утечке тока в высоковольтных проводах. Проверьте их изоляцию, состояние катушки зажигания, замка зажигания, предохранителя катушки.

Помните, что возможной причиной того, что двигатель не заводится, может быть противоугонная система автомобиля. Перед запуском проверьте ее состояние.

Распространенные причины неисправностей

Поврежденный высоковольтный провод зажигания

Чаще всего неисправности в системе зажигания возникают в контактных соединениях электрических цепей, в том числе на высоковольтных проводах. Часто вследствии разрушения их изоляции искра пробивает на корпус, из-за чего возникают проблемы в работе двигателя. Пробитую изоляцию высоковольтных проводов хорошо проверять в темноте. Тогда появляющуюся искру хорошо видно.

Всегда следите за чистотой изоляции высоковольтных проводов. Дело в том. что попадающее на их поверхность масло сильно размягчает изоляцию, и притягивает к ней частицы пыли и грязи, которая может стать причиной пробоя искры.

На изоляторах свечей могут возникнуть “дорожки”, по которым проходит пробой. Если питание не подходит к высоковольтным проводам, то необходимо проверить низковольтные части системы зажигания, в частности, подачу напряжения от аккумулятора на катушку зажигания. Возможными неисправностями могут стать выключатель зажигания или выход из строя предохранителя.

Свечи зажигания

Электроды на свече зажигания

Часто причинами неисправностей в системе являются проблемы со свечами зажигания. На исправной свече:

  • электроды на ней не подгорелые, а зазор между ними составляет 0,7…1,0 мм;
  • нет черного нагара, сколов изолятора на корпусе;
  • на наружном изоляторе свечи нет следов прогара, а также трещин или механических повреждений.

Информацию о том, как по нагару свечи определить ее состояние и провести диагностику двигателя вы можете почитать в отдельной статье.

Пропуски зажигания

Появление отдельных пропусков зажигания может возникнуть по двум причинам:

  • нестабильные контактные соединения или непостоянный дефект в низковольтной части системы зажигания;
  • неисправность высоковольтного контура системы зажигания или повреждение бегунка.

Бегунок и крышка трамблера

Причинами пропуска зажигания могут быть неисправности в работе датчиков положения коленчатого и распределительного валов (как проверить датчик Холла вы можете посмотреть в отдельном материале).

На карбюраторных автомобилях проблемным местом является крышка трамблера. Часто на ней возникают трещины или повреждения. Диагностику необходимо выполнять с обеих сторон, предварительно протерев ее от пыли и грязи. Нужно обратить внимание на возможное наличие трещин, угольных дорожек, прогоревших контактов и других дефектов. Также нужно проверить состояние щеток, и плотность их прижимания к контактной поверхности бегунка. По окончании ревизии желательно побрызгать поверхность системы влагопоглотителем.

Катушка зажигания

Частой причиной проблем в системе становится катушка зажигания (далее КЗ). Ее задача — образование высоковольтного разряда на свече зажигания. Конструктивно катушки бывают разными. На старых машинах использовались катушки с одной обмоткой, на более современных — сдвоенные или монолитные модули, содержащие высоковольтные провода и наконечники. В настоящее время чаще всего устанавливают катушки для каждого цилиндра. Они монтируются непосредственно на свечи, их конструкция не предусматривает использование высоковольтных проводов и наконечников.

Катушка зажигания

На старых автомобилях, где КЗ устанавливалась в единственном экземпляре, ее выход из строя (обрыв обмотки или короткое замыкание в ней) автоматически приводил к тому, что машина попросту не заводилась. На современных автомобилях в случае возникновения проблем на одной из катушек двигатель начинает “троить”.

Выполнить диагностику катушки зажигания можно различными методами:

  • визуальным осмотром;
  • с использованием омметра;
  • при помощи мотор-тестера (осциллографа).

При визуальном осмотре необходимо внимательно осмотреть токоизоляционные части. На них не должно быть следов нагара, а также трещин. Если в процессе осмотра вы выявили подобные дефекты — это значит, что катушка однозначно подлежит замене.

Диагностика неисправностей зажигания подразумевает замер сопротивления изоляции на первичной и вторичной обмотках катушки зажигания. Измерить его можно с помощью омметра (мультиметра, работающего в режиме замера сопротивления), произведя измерения на выводах обмоток.

Каждая катушка зажигания имеет свое значение сопротивления. Более точные сведения вы найдете в технической документации к ней.

Подробная информация о проверке представлена в статье о том, как проверить катушку зажигания. А наиболее точный и совершенный метод диагностики катушки зажигания и всей системы проводится при помощи мотор-тестера (осциллографа).

Диагностика модуля зажигания

Модуль зажигания двигателя

Упомянутую диагностику необходимо проводить при возникновении следующих неисправностей:

  • нестабильный холостой ход двигателя;
  • провалы мотора в режиме разгона;
  • двигатель троит или двоит.

В идеале для диагностики модуля зажигания необходимо использовать профессиональный сканер и мотор-тестер. Однако поскольку это оборудование стоит дорого и используется лишь на профессиональных СТО, то для рядового водителя остается возможным проверить модуль зажигания лишь подручными средствами. В частности, методов проверки существует три:

  1. Замена модуля на заведомо рабочий. Однако тут существует ряд проблем. Первая — отсутствие машины-донора. Вторая — другой модуль должен быть точно таким же, как и проверяемый. Третья — высоковольтные провода должны быть заведомо исправны. Поэтому этот метод используют очень редко.
  2. Метод шевеления модуля. Для диагностики узла необходимо всего лишь пошевелить колодку проводов, а также сам модуль. Если при этом режим работы двигателя заметно меняется — это значит, что где-то имеется плохой контакт, который необходимо исправить.
  3. Замер сопротивления. Для этого вам понадобится омметр (мультиметр, работающий в режиме измерения электрического сопротивления). Щупами прибора замеряют сопротивление на выводах между 1 и 4, и также 2 и 3 цилиндрами. Значение сопротивления должно быть одинаковым. Что касается его величины, то оно может быть разным у разных машин. Например, у ВАЗ-2114 это значение должно находиться в районе 5,4 кОм.

Электронная система управления двигателем

Практически все современные автомобили снабжены электронным блоком управления (ЭБУ). Он автоматически подбирает оптимальные рабочие параметры для двигателя на основании поступающей от датчиков информации. С его помощью можно диагностировать возникшие поломки в различных автомобильных системах, в том числе в системе зажигания. Для диагностики необходимо подключить специальный сканер, который в случае возникновения ошибки покажет вам ее код. Зачастую ошибка в работе системы может возникнуть из-за поломки одного из электронных датчиков, дающих информацию для ЭБУ. Об ошибке вам сообщит электронный сканер.

Диагностика системы зажигания с помощью осциллографа

Часто при профессиональной проверке системы зажигания автомобиля используют прибор под названием мотор-тестер. Его основная задача — мониторинг осциллограммы высокого напряжения в системе зажигания. Кроме этого, с помощью этого прибора можно посмотреть следующие рабочие параметры в реальном времени:

Полный набор мотор-тестера для диагностики авто

  • напряжение искры;
  • время существования искры;
  • пробивное напряжение искры.

Вся информация выводится на экран в виде осциллограммы на экран компьютера, что дает исчерпывающее представление о рабочих характеристиках свечей и других элементов системы зажигания автомобиля. В зависимости от системы зажигания диагностика проводится по разным алгоритмам.

В частности, классическое (трамблерное), индивидуальное и DIS системы зажигания проверяются с помощью осциллографа по-разному. Подробную инструкцию об этом вы можете найти в отдельной статье посвященной проверке зажигания осциллографом.

Выводы

Неисправности в системе зажигания автомобиля порой могут обернуться большими проблемами в самый неподходящий момент. Поэтому рекомендуем вам периодически проводить процедуру осмотра ее основных элементов (свечей зажигания, высоковольтных проводов, катушки зажигания). Проверка эта несложная, и вполне под силу даже неопытному автомобилисту. А в случае возникновения сложных поломок рекомендуем обратиться за помощью на СТО для того, чтобы провести детальную диагностику с помощью мотор-тестера и другого диагностического оборудования.

Спрашивайте в комментариях. Ответим обязательно!

Зажигание ВАЗ 2110 инжектор, схема, свечи, модуль зажигания ВАЗ-2110

Зажигание ВАЗ 2110 инжектор принципиально отличается от карбюраторных версий. Во первых, в системе зажигания инжекторных «десяток» нет распределителя на валу распредвала и основной катушки зажигания, которые характерны для всех карбюраторных машин. В инжекторных моделях ВАЗ 2110, 2111, 2112 система зажигания построена без использования подвижных элементов.

Особенностью зажигания ВАЗ 2110 инжектор является отсутствие регулировок угла опережения, кроме того инжекторное зажигание «десятки» не требует какого либо обслуживания. Основным элементом всей схемы является модуль зажигания, смотрим фото модуля вначале нашей статьи. Модуль состоит из пары катушек зажигания и электроники, которая управляет распределением высокой энергии на свечи. В свою очередь команды на модуль зажигания ВАЗ 2110 инжектор подает контроллер. Вся схема зажигания далее на нашем изображении.

На схеме зажигания инжекторного двигателя ВАЗ-2110 изображены следующие элементы —

  • 1 — аккумуляторная батарея
  • 2 — выключатель зажигания
  • 3 — реле зажигания
  • 4 — свечи зажигания
  • 5 — модуль зажигания
  • 6 — контроллер
  • 7 — датчик положения коленчатого вала
  • 8 — задающий диск
  • А — устройство согласования

Свечи зажигания инжектора на «десятке» для 8-клапанного двигателя и для 16-клапанного моторов разные по конструкции. Для 8-клапанных инжекторов применяются свечи марки А17ДВРМ, для 16-клапанных силовых агрегатов это свечи АУ17ДВРМ. Последние имеют более компактный размер и откручиваются ключом на 16. В 8-клапнной головке блока цилиндров свечи установлены так же, как и на карбюраторных версиях мотора, а вот в 16 клапанной ГБЦ свечи утоплены вертикально в колодцах головки блока цилиндров. Нормальный зазор между электродами у этих свечей составляет 1,0-1,15 мм.

Искрообразование в инжекторном моторе 2110 происходит сразу в двух цилиндрах. При этом в одном цилиндре искра воспламеняет рабочую смесь на такте сжатия, а на втором цилиндре искра появляется на такте выпуска и никак не влияет на работу мотора, то есть это так называемая «холостая искра». Таким образом искрообразование происходит по парам, что облегчает всю схему работы силового агрегата. Для этого в модуле зажигания как раз имеются две высоковольтные катушки с постоянным направлением тока. Искра попеременно появляется в 1-4 и 2-3 цилиндрах.

Еще один важный элемент зажигания ВАЗ-2110, это контроллер. Именно контроллер зажигания дает команду на модуль, о том что пора направить ток на те или иные свечи. В контроллер поступает информация с датчиков положения коленчатого вала, датчика массового расхода воздуха, частоты вращения коленвала и  наличия детонации. Используется даже информация о температуре охлаждающей жидкости. После обработки всех сведений с датчиков и расчета последовательности срабатывания катушек в модуле, контроллер подает сигнал на модуль, а уже с него идет ток на свечи. Благодаря такой системе зажигания инжекторный двигатель ВАЗ-2110 стабильно и надежно работает.

MAHLE Трансмиссия | MAHLE Jet Ignition

Система MAHLE Jet Ignition® имеет небольшую камеру зажигания, в которой находится обычная свеча зажигания, которая соединена с основной камерой несколькими небольшими отверстиями, которые создают быстро движущиеся струи частично сгоревших продуктов, которые воспламеняют основной заряд. . Эти струи горячего газа проникают глубоко в основную камеру сгорания, создавая эффект распределенного воспламенения. При использовании 4-8 форсунок зажигания, в зависимости от области применения, основной заряд воспламеняется в нескольких местах, что приводит к быстрому и стабильному сгоранию.Характеристики системы предлагают дополнительные преимущества как за счет способности воспламенять разбавленные смеси, так и за счет снижения требований к высоким уровням движения заряда, вызванного портом.

В обеих конфигурациях основная камера заправляется топливом через обычный порт или инжектор прямого впрыска. В «пассивной» конфигурации это единственный источник топлива, что делает эту конструкцию пригодной для использования в приложениях с λ = 1, при этом разбавление обеспечивается за счет добавления рециркуляции выхлопных газов (EGR).Эта система совместима с обычными системами нейтрализации бензина. В «активной» конфигурации в узел форкамеры встроен 2-й прямой инжектор с низким расходом. Это позволяет точно и независимо регулировать подачу топлива как в форкамеру, так и в основной камере, обеспечивая гомогенное сверхбедное сгорание топлива в современных бензиновых двигателях, где смеси с бедностью λ = 2 могут воспламеняться при сохранении стабильности.

Помимо работы над клиентскими приложениями для обеих систем, продолжаются внутренние исследования с использованием версий нашей собственной 1.5-литровый 3-цилиндровый демонстрационный двигатель. На этом двигателе пассивная система зажигания MAHLE Jet Ignition®, которая, как правило, может быть упакована в один корпус с обычной установкой свечи зажигания M12, продемонстрировала способность работать на всей карте как для первичных двигателей, так и для специализированных гибридных двигателей. Благодаря сочетанию пассивного зажигания MAHLE Jet Ignition®, очень высокой геометрической степени сжатия, впрыска топлива в порт, работы по циклу Миллера и системы рециркуляции ОГ низкого давления была продемонстрирована более 41% термического КПД тормозов.

В конфигурации Active MAHLE Jet Ignition® значительная экономия топлива достигается за счет более высокого, почти сравнимого с дизельным КПД. Испытания двигателя показали удельный расход ниже 200 г / кВтч и соответствующее сокращение выбросов CO 2 . Это эквивалентно текущему пиковому уровню заушных слуховых аппаратов в 43%, с планом работы, запланированным для достижения заушных слуховых аппаратов> 45%. Помимо повышения эффективности и расхода топлива, Active MAHLE Jet Ignition® также позволяет снизить выбросы NO x при выходе из двигателя более чем на 99% в условиях сверхнормативной обедненной смеси.Выбросы углеводородов (HC) поддерживаются на уровне, эквивалентном стандартному процессу искрового зажигания. Активное зажигание MAHLE Jet Ignition® (с заправкой в ​​основную камеру PFI) генерирует несколько повышенные твердые частицы по сравнению с двигателем PFI, но их количество значительно меньше по сравнению с двигателем с прямым впрыском.

Как в «пассивном», так и в «активном» вариантах, форкамера была разработана таким образом, что она способна обеспечивать сопоставимую работу по задержке искры на холостом ходу и нагреву катализатора и подавать выбросы газа в центральную свечу зажигания в стехиометрических условиях, без Требование наличия второго воспламенителя в основной камере.

MAHLE Jet Ignition® — это новая захватывающая система сгорания, которая обеспечивает большой потенциал для дальнейшего снижения выбросов CO 2 в бензиновых двигателях последнего поколения.

MAHLE Jet Ignition® Passive [PDF; 545 KB]

MAHLE Jet Ignition® Active [PDF; 429 КБ]

Доступ к дополнительному содержимому

Страница не найдена | Институт науки и технологий Сатьябамы (считается университетом)

Состояние

Выберите StateAndaman и NicobarAndhra PradeshArunachal PradeshAssamBiharChandigarhChhattisgarhDadra И Нагар HaveliDaman И DiuDelhiGoaGujaratHaryanaHimachal PradeshJammu и KashmirJharkhandKarnatakaKeralaLakshadweepMadhya PradeshMaharashtraManipurMeghalayaMizoramNagalandOdishaPuducherryPunjabRajasthanSikkimTamil NaduTelanganaTripuraUttar PradeshUttarakhandWest Бенгальский

Курсы

— Select -Undergraduate Courses (UG) Инженерные курсы (B.E. / B.Tech / B.Arch / B.Des) BE — Информатика и инженерия B.E — Электротехника и электроника B.E — Электроника и коммуникационная техника B.E — Электроника и приборостроение B.E — Машиностроение B.E — Автомобильная инженерия B.E — Мехатроника B.E — Авиационная техника B.E — Гражданское строительство B.Tech — Информационные технологии B.Tech — Химическая инженерия B.Tech — БиотехнологияB.Tech — Биомедицинская инженерия B.Arch — Бакалавр архитектуры B.Des. — Бакалавр дизайна, инженерные курсы (Б.E. / B.Tech) — неполный рабочий деньB.E — информатика и инженерияB.E — электротехника и электроникаB.E — электроника и коммуникационная инженерияB.E — машиностроениеB.E — гражданское строительствоB.Tech — химическая инженерияArts & Science CoursesB. BA — Бакалавр делового администрированияB.Com. — Бакалавр коммерцииB.Com. — Финансовый учет — Визуальная коммуникация, бакалавр наук — Медицинские лабораторные технологии, бакалавр наук — Клиника, питание и диетология. — Физика — Химия — Компьютерные науки Б.Sc. — Математика — Биохимия, бакалавр наук. — Дизайн одежды — BioTechnologyB.Sc. — MicroBiologyB.Sc. — Психология — Английский — Биоинформатика и Data ScienceB.Sc — Специализация в области компьютерных наук в области искусственного интеллекта — Бакалавр наук по курсам сестринского права LL.B. (С отличием) B.B.A. LL.B. (С отличием) B.Com.LL.B. (С отличием) Бакалавр фармацевтических курсов, бакалавр фармацевтики, степень бакалавра фармации, диплом фармацевта, аспирантура, инженерные курсы Компьютерные науки и инженерия Прикладная электроника М.E. Компьютерное проектирование Структурная инженерия Силовая электроника и промышленные приводы Биотехнология Медицинское оборудование Встраиваемые системы и IoTM.Arch. Устойчивая архитектура Программа управления зданием MBA — Магистр делового администрирования Заочная аспирантура Компьютерные науки и инженерия Прикладная электроника Компьютерный дизайн Структурная инженерия Медицинское оборудование Биотехнология Магистр делового администрированияPG Arts & Science Courses Прием М.A — английский, магистр — визуальная коммуникация, магистр — физика, магистр — математика, магистр — химия, магистр — химия — биоинформатика и наука о данных — Прием в исследовательские программы — доктор философии по всем дисциплинам инженерии / технологии, менеджмента и естественных наук Бакалавр стоматологической хирургииМастер стоматологической хирургии (MDS) MDS — Ортодонтия и челюстно-лицевая ортопедияM.DS — Консервативная стоматология и эндодонтияM.DS — Педодонтия и профилактическая стоматология

Объяснение системы зажигания предкамеры

— Maserati MC20 Engine Tech

После нескольких месяцев тизеров Maserati, наконец, представила свой суперкар MC20 в начале этого месяца.В его основе лежит новый двигатель V-6 с двойным турбонаддувом, получивший название Nettuno, который, как отметила итальянская компания, использует технологию, полученную из Формулы 1, внутри головки блока цилиндров, называемую «форкамерой», предназначенной для повышения эффективности и производительность. Вот как это работает.

Road & Track автор сообщения Джейсон Фенске недавно опубликовал на своем канале YouTube Engineering Explained видео, в котором анализируется процесс горения Nettuno. Предварительные камеры — это именно то, на что они похожи: отдельные камеры внутри головки блока цилиндров, соединенные с областью главного цилиндра.Есть два типа: активный и пассивный. Активные форкамеры содержат свечу зажигания и топливную форсунку и воспламеняются после подачи обедненной топливовоздушной смеси в цилиндр. Обычно в этой смеси не хватает топлива, чтобы воспламениться самостоятельно, но топлива из форкамеры достаточно для создания оптимального соотношения воздух-топливо и ускорения процесса сгорания, повышения эффективности.

Пассивные форкамеры, с другой стороны, имеют только свечу зажигания в форкамеру, без добавления топлива или воздуха внутри.Когда свеча зажигания загорается, камера распространяет пламя по всей площади цилиндра, обеспечивая сверхбыстрый цикл сгорания. Это тип предкамеры, которую использует Maserati, и производитель утверждает, что она позволяет на 15 процентов увеличить степень сжатия, при этом не нарушая законов о выбросах.

В системе форкамеры Maserati используется как порт, так и прямой впрыск, что является обычным усовершенствованием для повышения энергоэффективности. Впрыск через порт создает лучшую топливно-воздушную смесь, а прямой впрыск охлаждает смесь в цилиндре, обеспечивая большую мощность.Система также имеет вторую свечу зажигания непосредственно внутри основной камеры для стабилизации горения при низких нагрузках.

Как отмечает Фенске, это довольно сложная установка, поэтому надежность может стать проблемой в долгосрочной перспективе. Также стоит отметить, что топливо или воздух не проходят через предкамеру Nettuno во время цикла сгорания, поэтому накопление углерода с течением времени также может быть проблемой. Нам просто нужно подождать несколько лет и посмотреть, как все обернется.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

System32 — FlyEFII

Комплекты System32 EFII

Комплектный электронный впрыск и зажигание EFII для 4- и 6-цилиндровых двигателей Lycoming и Continental 520/550.

EFII означает «электронный впрыск топлива и зажигание». Комплект System32 EFII — это полностью дублированная электронная система управления двигателем для двигателей легких самолетов.В настоящее время мы концентрируем наши усилия на четырех- и шестицилиндровых двигателях Lycoming и двигателях Continental с большим диаметром цилиндра (520 и 550). Комплект System32 можно использовать в любых самолетах экспериментальной категории, использующих один из этих двигателей.

Комплект System32 EFII очень похож на то, что вы найдете на любом современном автомобильном двигателе.

Электронный впрыск топлива и электронная система зажигания с компьютерным управлением. Система управляется ЭБУ (компьютером) и включает полностью отображенную кривую топлива и кривую опережения зажигания.В части системы с электронным впрыском топлива используются клапаны электронных топливных форсунок, которые устанавливаются в каждый цилиндр с помощью нашей системы форсунок с креплением к отверстию (PMI). Корпус дроссельной заслонки заменяет типичный карбюратор или механический узел бабочки инжектора. Электронная часть системы зажигания использует высокоэнергетические индукционные катушки зажигания вместо магнето, чтобы подавать очень сильную и эффективную искру на каждую свечу. Все комплекты System32 полностью дублированы и включают два ЭБУ System32 и дублированные датчики двигателя.

Подробнее

Комплекты двойного зажигания System32

Электронные системы зажигания для авиационных двигателей существуют уже давно, но мы думаем, что у нас есть лучшая идея. Система зажигания EFII System32 представляет собой высокоэнергетическое индуктивное зажигание с большой продолжительностью искры. Это то, что вы найдете на всех современных автомобильных двигателях. Когда у вас есть длинная горячая искра для воспламенения топливовоздушной смеси в вашем двигателе, есть явное преимущество как в мощности, так и в эффективности. Независимо от того, являетесь ли вы человеком максимальной мощности или человеком максимальной эффективности, зажигание System32 принесет пользу эксплуатации вашего самолета.

При 2750 об / мин система зажигания System32 обеспечивает непрерывную горячую искру на коленчатый вал более 36 градусов, чтобы топливо загорелось. Это означает, что вы можете продвигать смесь глубже в богатый диапазон для большей мощности или дальше в обедненный диапазон для большей эффективности.

Подробнее

Новая система впрыска и зажигания снижает расход топлива — UAS VISION

Sky Power, партнер 3W-International по производительности, также представил на рынке новую систему впрыска и зажигания, которая может использоваться для всех бензиновых двигателей 3W и двигателей на тяжелом топливе (HF).Новые системы доступны немедленно.

Также предлагается переоборудование уже используемых двигателей. Задача заключалась в том, чтобы значительно снизить расход двигателей.

«Эффективное использование БПЛА становится все более важным для наших клиентов. Вот почему мы, как производители двигателей, заинтересованы в снижении расхода топлива », — объясняет Карл Шудт, управляющий директор Sky Power GmbH. Температура выхлопных газов, окружающего воздуха и двигателя, а также давление воздуха могут влиять на расход топлива.Поэтому для эффективного управления двигателем необходимо постоянно контролировать эти параметры », — продолжает Шудт. «Поэтому оптимизация управления двигателем была одной из целей новой разработки».

Новая система впрыска

Sky Power для двигателей от 3W-International называется ECU030. Универсальная электронная система впрыска может использоваться как для бензиновых смесей, так и для высокочистых газов. Четыре канала зажигания с двумя отдельно настраиваемыми форсунками воспламеняют топливную смесь.Здесь давление насоса регулируется электронным способом. Также интегрирована функция холодного запуска двигателя. Автоматический контроллер регулирует топливную смесь в соответствии с преобладающей температурой цилиндра, давлением воздуха и внешней температурой.

ПК можно использовать для контроля всех данных двигателя. Пользовательский интерфейс настолько интуитивно понятен, что все настройки двигателя и обслуживание могут быть легко выполнены. Шина CAN служит связью. Управление серводвигателями и впрыском, анализ сигналов датчиков (аналоговых и цифровых), общие и ручные диагностические функции, а также обновления системы могут контролироваться через шину CAN.

HKZ215, новая система зажигания, которую Sky Power также разработала в то же время, также настроена на все двигатели 3W-International. Новое зажигание также можно использовать для 2- и 4-тактных двигателей. Обе системы уже используются сегодня в гибридном двигателе Ванкеля 3W-180 SRE от 3W-International, представленном в 2017 году. Высокопроизводительная система HKZ была разработана для значительно большей мощности зажигания. Таким образом повышается общий топливный КПД двигателя и улучшаются характеристики выхлопных газов.HKZ установлен в легкий и прочный никелированный алюминиевый корпус. Все дополнительные компоненты, такие как соединительные свечи и соединители для свечей зажигания, спроектированы и экранированы для сложных областей применения.

«Благодаря новой системе зажигания и впрыска мы достигаем лучших показателей мощности двигателей мощностью 3 Вт», — поясняет Шудт. Испытания серийного двигателя серии 3W-110xi B2 TS FI демонстрируют это. Двигатель испытывался на двух различных экспериментальных конструкциях с одинаковым глушителем из алюминия L70 и одним и тем же двухлопастным винтом 24 × 14.В первом испытании двигатель работал с обычным блоком управления двигателем и зажиганием от 3W-International. Во втором испытании они были обменены на ECU030 и HKZ215. В результате достигается снижение расхода топлива до 28% при 5500 об / мин. Даже снижение до 69% может быть продемонстрировано в более низких диапазонах частоты вращения. «Полученные результаты тоже нас удивили, но они ясно показывают, что возможно в области эффективного управления топливом», — сказал Шудт.

В дополнение к впрыску и зажиганию был оптимизирован впускной корпус цилиндров.Удельная мощность двигателя выше благодаря улучшенному наполнению цилиндров. Двигатель производит меньше вредных компонентов выхлопных газов, и его можно лучше контролировать в различных состояниях двигателя. Кроме того, улучшенное сгорание создает меньше остатков в двигателе, что приводит к сокращению интервалов технического обслуживания. Кроме того, двигатель может быть встроен в самолет независимо от положения, что обеспечивает оптимальную интеграцию и распределение веса.

«Новая система зажигания и впрыска доступна для всех бензиновых и высокочастотных двигателей 3W-International.Мы также предлагаем переоборудование приводных систем, уже имеющихся на рынке. Для этого двигатель необходимо отправить в наш сервисный центр в Германии. Усилия по переоборудованию зависят от двигателя », — объясняет Шудт. В настоящее время новые системы подходят для двигателя объемом 110 куб. См. Дополнительные двигатели появятся в будущем. «Наша цель — предложить системы зажигания ECU030 и HKZ для всех двухтактных двигателей 3W-International», — сказал Шудт.

Sky Power GmbH является партнером 3W-International GmbH.3W-International — ведущий производитель двухтактных двигателей внутреннего сгорания для беспилотных летательных аппаратов. Функция Sky Power аналогична контрактному тюнеру для производителя автомобилей. Адаптация к потребителю, новые разработки и повышение производительности продуктов 3W — цель этого партнерства. Также выполняются запросы клиентов и новые разработки для клиентов.

Источник: пресс-релиз

Поршневые двигатели

Узнайте, как работают поршневые двигатели

Знание нескольких общих принципов работы двигателя эксплуатация помогает пилотам эффективно управлять двигателями, продлевает срок службы электростанции, и помогает избежать отказов двигателя.

Основные принципы поршневого двигателя

Поршневые двигатели с возвратно-поступательным движением являются наиболее распространенными. силовые установки на самолетах авиации общего назначения. Эти двигатели практически идентичны автомобильным двигателям, за тремя важными исключениями:

  1. Большинство авиационных двигателей имеют воздушное охлаждение. Этот подход экономит вес радиатора и охлаждающей жидкости и добавляет меру безопасности.Потеря охлаждающей жидкости или отказ системы охлаждения в жидкостном охлаждении двигатель быстро вызывает полный отказ двигателя.
  2. Авиационные двигатели имеют двойную систему зажигания, с энергия для создания искры, генерируемой магнето. Магнето, вращаемое коленчатым валом, не зависимо на батарее самолета. Каждый цилиндр также имеет два Свечи зажигания.При выходе из строя одной вилки или магнето другой обеспечивает искру для сжигания топлива.
  3. Поскольку авиационный двигатель работает на протяжении всего широкий диапазон высот, регуляторы мощности включают ручное управление смесью, которое пилот использует для поддерживать надлежащее соотношение воздух / топливо, пока самолет поднимается и спускается.

Четырехтактный цикл

Типичный поршневой двигатель работает в соответствии с четырехтактный цикл.

Впуск: Поршень движется вниз в цилиндр, всасывающий воздух и топливо через открытый впускной клапан.

Компрессия: Впускные и выпускные клапаны в цилиндр закрывается, и поршень движется вверх в цилиндр, сжимающий топливно-воздушную смесь.

Мощность: По мере приближения поршня к верхней части цилиндр во время такта сжатия, взрыв электричество от системы зажигания генерирует искру в свечах зажигания.Искры воспламеняют воздух / топливо смесь, которая быстро расширяется при горении. Сила этого расширения толкает поршень обратно в цилиндр. Когда поршень движется вниз, он поворачивает коленчатый вал, на котором крутится гребной винт.

Выхлоп: Когда поршень достигает дна цилиндра открывается выпускной клапан. Поршень затем перемещается обратно в цилиндр, толкая сгоревшие воздушно-топливная смесь из цилиндра.

Каждый цилиндр проходит эти четыре хода в поверните, убедившись, что хотя бы один поршень всегда производящая мощность.

Карбюраторы и топливные форсунки

Большинство поршневых двигателей, используемых в самолетах, имеют либо карбюратор или система впрыска топлива для подачи топлива и воздух в цилиндры. Карбюратор смешивает топливо и воздух до того, как он попадет в цилиндры.Карбюраторы распространены на меньших двигателях, потому что они относительно недорого. В более крупных двигателях обычно используется впрыск топлива. системы, которые впрыскивают топливо прямо в цилиндры, где он смешивается с воздухом во время всасывания Инсульт.

Системы зажигания

Система зажигания дает искру для зажигания воздушно-топливная смесь в цилиндрах поршневого двигателя.Большинство современных авиационных двигателей используют магнето для генерации Искра. Хотя и не такой изощренный, как электронные системы зажигания, используемые в новейших автомобилях, магнето полезны в самолетах, потому что:

  • Они дают более горячую искру при высоких оборотах двигателя. чем аккумуляторная система, используемая в автомобилях.
  • Они не зависят от внешнего источника энергия, такая как аккумулятор, генератор или генератор.

Начало работы
При вращении магнето генерирует электричество. Итак, чтобы запустить двигатель, пилот должен включить аккумуляторный стартер, который вращает коленчатый вал. После того, как магнето начинают вращаться, они подают искра в каждый цилиндр для воспламенения топливовоздушной смеси и система стартера отключена.Батареи нет больше не участвует в работе двигателя. Если выключен аккумуляторный (или главный) выключатель, двигатель продолжает работать.

Двойное зажигание

Большинство авиадвигателей оснащены двойным зажиганием. система — два магнето, которые снабжают электричеством ток на две свечи зажигания на каждый цилиндр. Один магнито-система подает ток на один комплект заглушки; вторая система подает ток на другой комплект заглушек.Вот почему зажигание включено. Cessna Skyhawk SP Model 172 (с обозначением MAGNETO на некоторых самолетах) имеет пять позиций: ВЫКЛ , L ( слева ), R ( правый ), ОБА и START . С переключатель в положении L или R , только один магнето подает ток и только один комплект искры заглушки пожаров.С переключателем в ОБЕИХ положение, оба магнето подают ток и оба набора свечи зажигания огонь.

Преимущества двойного зажигания
Самолеты имеют двойную систему зажигания для безопасности и эффективность.

  • При выходе из строя одной магнитосистемы двигатель может работайте с другой системой, пока не сможете сделать безопасный посадка.
  • Две свечи зажигания улучшают горение и горение смесь, обеспечивающая улучшенные характеристики.

Эксплуатация системы зажигания
Вы должны повернуть ключ зажигания в положение ОБА после запуска двигателя и оставить его на ОБЕИХ во время полета. Выключите после выключения двигатель.Если вы оставите зажигание включенным ОБА (или L или R ), двигатель мог огонь, если винт перемещается из-за пределов самолет — даже если главный электрический выключатель выключенный.

Проверка перед взлетом
Чтобы убедиться, что обе системы зажигания работают правильно, проверьте каждую систему во время обкатки двигателя перед взлетом.Обычная процедура — установить мощность около 1700 оборотов в минуту. Поверните ключ зажигания из ОБЕИХ до R , затем обратно на ОБЕИХ , затем на L , а затем обратно на BOTH . Вам следует вижу небольшое снижение оборотов при каждом переключении с ОБА с до R или L . Если оба магнето работают нормально, капля должна быть не более примерно 75 об / мин.

Выключение двигателя
Вы не должны останавливать поршневой двигатель, поворачивая переключатель зажигания в положение ВЫКЛ. . Вместо этого переместите регулятор смеси в положение отключения холостого хода, чтобы выключить подача топлива в цилиндры. После двигателя останавливается, поверните ключ зажигания в положение ВЫКЛ. . Этот процедура гарантирует, что топливо не останется в цилиндрах и что двигатель не заведется случайно, если кто-то поворачивает опору или если нагар внутри цилиндры создают горячие точки, которые воспламеняют остаточные топливо.

Органы управления поршневым двигателем

Большинство современных поршневых двигателей имеют два или три основных контролирует.

  • A дроссельная заслонка , орган управления, имеющий наибольшее прямое влияние на мощность.
  • Управление воздушным винтом (если самолет оснащен винтом постоянной скорости) для регулировки скорость вращения воздушного винта, измеренная в оборотов в минуту (об / мин).
  • Контроль смеси для регулировки воздуха / топлива смеси, когда самолет набирает и опускается.

Карбюраторные двигатели нагреваются до предотвратить образование льда в карбюраторе или растопить его. Двигатели мощностью около 200 лошадиных сил и более обычно имеют закрылки капота, чтобы пилот мог регулировать количество охлаждающий воздух, обтекающий двигатель.Открытие заслонки капота особенно важны при большой мощности такие операции, как взлет и длительный поднимается.

Винты

Поршневые двигатели обычно подключаются к винт фиксированного шага или постоянной скорости.

Гребные винты фиксированного шага прикручены непосредственно к коленчатый вал двигателя и поэтому всегда поворачивайте на той же скорости, что и двигатель.Стойка с фиксированным шагом что-то вроде трансмиссии только с одной передачей. Этот конфигурация компенсирует неэффективность за счет очень проста в эксплуатации. Единственный измеритель, который вы нужно следить за тахометром.

Винт постоянной частоты вращения имеет регулятор который регулирует угол лезвий для поддержания оборотов в минуту, которые вы выбираете.Этот тип пропеллера делает гораздо больше. эффективное использование мощности двигателя. На низкой скорости, когда требуется максимальная мощность (как при взлете), вы выберите максимальные обороты или «полное увеличение» с помощью управление пропеллером, и лопасти пропеллера соответствуют воздух под небольшим углом. Во время круиза вы регулируете обороты на более низкую настройку, и лезвия откусывают больше воздуха при повороте на более низкой скорости.

Управление мощностью

С гребным винтом фиксированного шага управляющая мощность просто. Нажмите на дроссельную заслонку и обороты (и мощность) увеличивается. Вытяните дроссельную заслонку, и обороты уменьшатся. Быть осознавая, однако, что с увеличением воздушной скорости обороты имеют тенденцию тоже подкрасться. Внимательно следите за тахометром во время спусков на высокой скорости, чтобы убедиться, что обороты остается в пределах.

Винт с постоянной скоростью делает управление мощностью немного сложнее. Вы должны контролировать коллектор манометр, управляемый дроссельной заслонкой, и тахометр, показывающий число оборотов винта. Вы настраиваете об / мин с управлением пропеллером.

При установке мощности винтом с постоянной частотой вращения помните эти основные правила, чтобы не переоценивать двигатель:

Для увеличения мощности

  1. Увеличить число оборотов за счет продвижения гребного винта контроль.
  2. Увеличьте давление в коллекторе с помощью дроссель.

Для уменьшения мощности

  1. Уменьшите давление в коллекторе с помощью дроссель.
  2. Уменьшить частоту вращения гребного винта контроль.

Двигатели с карбюраторами

Во многих авиационных поршневых двигателях карбюраторы используются для объединить воздух и топливо для создания горючей смеси что горит в цилиндрах.

Как работает карбюратор

Наружный воздух проходит через воздушный фильтр, затем попадает в карбюратор. Воздух проходит через трубку Вентури, узкое горло в карбюраторе. Воздух ускоряется в Вентури и ее давление падает в соответствии с Принцип Бернулли. Частичный вакуум заставляет топливо течь через струю в воздушный поток, где он смешивается с потоком воздуха.Затем воздушно-топливная смесь течет во впускной коллектор, который направляет его к каждому цилиндр.

Правильное соотношение

Карбюратор смешивает воздух и топливо по весу. Поршень двигатели обычно развивают максимальную мощность, когда смесь воздух / топливо примерно 15: 1. откалиброван при давлении на уровне моря для измерения правильного количество топлива с контролем смеси в полном объеме богатое положение.По мере увеличения высоты плотность воздуха уменьшается. Чтобы компенсировать эту разницу, пилот использует регулятор смеси для регулировки воздушно-топливной смеси попадание в камеру сгорания.

Для контроля количества топлива, которое смешивается с воздух, большинство карбюраторов используют поплавок в топливной камере. А игла, прикрепленная к поплавку, открывает и закрывает отверстие в топливной магистрали, дозирование правильного количества топлива в карбюратор.Положение поплавка, контролируется уровнем топлива в поплавковой камере, определяет, когда клапан открывается и закрывается.

Запуск Rich

Слишком богатая топливно-воздушная смесь, т. Е. он содержит слишком много топлива — вызывает избыток топлива расход, грубая работа двигателя и потеря мощности. Запуск слишком богатого двигателя также охлаждает двигатель, вызывая температуру ниже нормы при сгорании камеры, что приводит к засорению свечей зажигания, среди другие проблемы.

Бережливое производство

Работа со слишком бедной смесью — слишком малой топливо для текущего веса воздуха — приводит к грубая работа двигателя, детонация, перегрев и потеря мощности.

Карбюратор Ice

Испарение топлива и расширение воздуха в карбюратор вызывает внезапное охлаждение воздуха / топлива смесь.Температура может упасть на 60 F (15 C) за доли секунды. Это охлаждение вызывает водяной пар в воздухе конденсируется, а если температура в карбюраторе достигает 32 градусов F (0 В) вода замерзает внутри каналов карбюратора. Даже небольшое накопление этого депозита может ограничить поток воздуха в карбюратор, снижающий мощность. Обледенение карбюратора также может привести к сбою двигателя. отказ, особенно когда дроссельная заслонка частично или полностью закрыта.

Условия обледенения

В засушливые дни или когда температура значительно ниже замерзание, влага в воздухе обычно не вызвать обледенение карбюратора. Но если температура между 20 F (-7 C) и 70 F (21 C), с видимой влажностью или высокая влажность, пилот должен постоянно находиться на предупреждение об обледенении карбюратора.

Показания обледенения карбюратора

Для самолетов с винтами фиксированного шага первый Индикация обледенения карбюратора — падение оборотов на тахометр.Для самолетов с регулируемым шагом (с постоянной скоростью) пропеллеры, первая индикация обычно падение давления в коллекторе. В обоих случаях двигатель может начать неровно работать. В самолетах с винты с постоянной частотой вращения, частота вращения остается постоянной.

Оттаивание

Для предотвращения образования льда в карбюраторе и устраняет образование льда, карбюраторы оснащены обогреватели.Нагреватель карбюратора предварительно нагревает воздух перед он достигает карбюратора. Этот подогрев тает лед или снег, попадая в водозабор, тает лед, образующийся в каналы карбюратора (при условии, что скопление не слишком велика), и держит воздушно-топливную смесь выше замерзание, чтобы предотвратить образование льда в карбюраторе.

Использование нагрева карбюратора

При полете в условиях, благоприятных для карбюратора обледенение, следите за приборами двигателя, чтобы следить за признаки образования льда.Если вы подозреваете, что Обледенение карбюратора, подайте полный нагрев карбюратора немедленно. Оставьте его включенным, пока не убедитесь, что весь лед удален. Частичное нагревание или оставлять тепло на слишком короткое время может усугубить ситуация.

При первом нагреве карбюратора ожидайте падения в об / мин в самолетах с фиксированным шагом пропеллеры; в самолетах с постоянной скоростью пропеллеры, ожидайте падения давления в коллекторе.Если нет Обледенение карбюратора, обороты или давление в коллекторе будет оставаться ниже обычного, пока карбюратор не нагреется. выключен. Если карбюратор обледенел, ожидайте рост оборотов или давления в коллекторе после начального падения (часто сопровождается периодической неровностью двигателя). Когда вы выключаете нагрев карбюратора, частота вращения или коллектор давление поднимается выше значения до подачи тепла.Двигатель также должен работать более плавно после обледенения. растаял.

В крайних случаях обледенения карбюратора, после обледенения был удален, вам может потребоваться подать достаточно нагрейте карбюратор, чтобы предотвратить дальнейшее образование льда.

Нагрев карбюратора в качестве меры предосторожности

Когда дроссельная заслонка закрывается во время полета, особенно когда вы готовитесь к приземлению, двигатель остывает быстро и испарение топлива менее полное чем если двигатель теплый.Если вы подозреваете карбюратор условия обледенения, полностью нагреть карбюратор перед закрыв дроссельную заслонку и оставьте огонь включенным.

Больше мощности

Использование тепла карбюратора приводит к снижению производительности двигатель и увеличить его работу температура. Поэтому не используйте обогрев карбюратора, когда нужна полная мощность (как при взлете) или во время нормальная работа двигателя, за исключением проверки наличие или удаление наледи карбюратора.

Двигатели с впрыском топлива

Поршневые двигатели мощностью более 200 л.с. часто используют систему впрыска топлива, а не карбюратор.

Система впрыска топлива впрыскивает топливо непосредственно в цилиндров или прямо перед впускным клапаном. В затем топливо смешивается с воздухом в цилиндрах. Потому что это тип системы требует наличия насосов высокого давления, блок управления воздухом / топливом, распределитель топлива и напорные патрубки для каждого цилиндра, это обычно дороже карбюратора.

Как и двигатель с карбюратором, пилот контролирует расход топлива, регулируя контроль смеси.

Преимущества впрыска топлива

Впрыск топлива имеет ряд преимуществ перед карбюраторная топливная система, которые компенсируют ее большая стоимость и сложность.

  • Нет возможности обледенения карбюратора (хотя при ударе лед может блокировать воздухозаборники).
  • Улучшенный расход топлива.
  • Более быстрый отклик дроссельной заслонки.
  • Точный контроль смеси.
  • Лучшее распределение топлива.
  • Более легкий запуск в холодную погоду.

Недостатки системы впрыска топлива

Впрыск топлива имеет некоторые недостатки, самое важное существо:

  • Сложность запуска горячего двигателя.
  • Паровые пробки при наземных операциях на горячих дней.
  • Сложность перезапуска двигателя, который выключается из-за результат топливного голодания.

Замечания по зажиганию для RFI

Замечания по зажиганию RFI

Содержание: Основы; Топливные форсунки и насосы; Другие источники импульсных радиопомех;

Основы

Без сомнения, наиболее распространенным источником шума RFI (радиочастотных помех) в любом современном автомобиле с бензиновым двигателем является система зажигания.Эти системы содержат катушку с проводом в виде трансформатора. Когда поле катушки схлопывается (после того, как ток питания снят), генерируется импульс CEMF (противоэлектродвижущая сила). Именно этот импульс, который звучит так, заставляет искру прыгать через зазор свечи. Это, в свою очередь, генерирует богатые гармониками радиопомехи, большая часть которых излучается. Небольшое количество может быть наведено в первичную проводку, хотя и редко.

Между прочим, многие операторы мобильной связи считают, что системы инъекций также являются основной причиной импульсных радиопомех.Истина в другом, и эта проблема раскрыта ниже

.

Большинство производителей автомобилей перешли на технологию Coil Over Plug (COP) в той или иной форме, которая, как правило, работает тише, чем те, которые все еще используют провода. Хорошим примером последнего являются фирменные толкательные двигатели GM, в которых до сих пор используется короткая высоковольтная перемычка между отдельными блоками катушек и вилками.

Если вас беспокоят радиопомехи при зажигании, вы можете сделать несколько вещей, а некоторые — не делать! Склеивание различных деталей, прикрученных болтами, особенно горизонтальных, таких как выхлопная система и капот, всегда является хорошей любительской практикой.Некоторые формы RFI, AFI и EMI могут быть вызваны или усугублены контурами заземления, поэтому важны также правильные методы подключения. И всегда требуются синфазные дроссели!

Если в вашем автомобиле все еще используется провод зажигания высокого напряжения, запасные части должны быть заменены непосредственно OEM. Использование нерезисторных проводов и вилок увеличит уровень радиопомех. Если ничего другого не видно, уменьшение RFI зажигания не является одноэтапным, панацеей.

Следует отметить, что экранирование современных, регулируемых жилых высоковольтных систем зажигания — это катастрофа, ожидающая своего часа.Более того, использование ферритовых шариков является пустой тратой ресурсов и может фактически увеличить RFI, а не уменьшить его. Предупрежден — значит вооружен!

Наконец, схема АРУ, встроенная в каждый трансивер, и то, как она настраивается, действительно влияет на уровень воспринимаемого шума , который мы слышим. Этот вопрос освещен в выделенной статье.

☜Возврат☜

Топливные форсунки и насосы

Топливные форсунки с индукционной катушкой действительно вызывают радиопомехи, но по сравнению с любой формой искрового зажигания они бледнеют.Когда они издают радиопомехи, это указывает на неисправный инжектор и / или неисправный жгут проводов, питающий их. Единственные системы впрыска топлива, которые могут быть широко распространены, — это старые дизельные двигатели, в которых используется система челнока. Они звучат так. Двигатели с механическими или пьезоинжекторами практически не имеют радиопомех.

За последние несколько лет были достигнуты большие успехи в разработке и применении топливных форсунок как для бензиновых, так и для дизельных двигателей. До сих пор большинство бензиновых форсунок распыляли топливо во впускной коллектор, но последние версии распыляют топливо непосредственно в камеру сгорания (прямой впрыск бензина), как это делает дизель.Эти системы требуют другого подхода к форсункам, поскольку давление в топливной рампе может достигать 35 000 фунтов на квадратный дюйм (2500 бар). Это намного превышает возможности инжекторов с индукционной катушкой. Чтобы поднять штифт (открыть клапан), используется стопка пьезоэлектрических кристаллов, которые расширяются при включении питания. Сами форсунки не генерируют радиопомех, но управляющая ими электроника может быть второстепенным источником. Здесь также важно правильное соединение.

Топливные насосы, питающие форсунки, также могут вызывать радиопомехи.Однако, если у вас есть автомобиль, выпущенный после ≈ 2004 г., вероятность того, что топливный насос станет основным источником радиопомех, составляет очень . Если у вас возникла проблема с RFI, вы думаете, что может быть топливным насосом , вот вам некое просветление. Все автомобили последних моделей используют шину данных между различными встроенными процессорами. Их обычные RFI-сигнатуры представляют собой серию равномерно расположенных птичек, некоторые из которых могут быть пульсирующими . Эти автобусы работают при включенном зажигании и при наличии давления моторного масла.

В течение короткого времени, необходимого для падения давления масла, топливный насос продолжает работать, облегчая продувку адсорбера паров топлива. Таким образом, радиопомехи от смешения частот шины данных (пульсирующие или другие) совпадают с работой топливного насоса. Поэтому легко сделать неверное предположение о том, откуда исходит RFI. Обычно после включения зажигания возникает небольшая задержка, прежде чем вы услышите, как насос заряжает топливную рампу, а затем ритмичный импульс, когда насос поддерживает давление в топливной рампе.

☜Возврат☜

Другие источники импульсных радиопомех

Автомобильная электроника плывет по течению с цифровыми подписями, большая часть которых не утомительна, но некоторые раздражают! Как отмечалось в выделенной статье, некоторые автомобильные компьютеризированные системы управления представляют собой кварцевый генератор цветовой синхронизации (3,579545 МГц). Гармоники от этих генераторов могут доходить до ОВЧ-спектра.

Еще один очень хороший пример — бортовые инверторы на 120 вольт. Подавляющее большинство использует модифицированную квадратно-волновую технологию, главным образом потому, что она недорогая.Они также являются основными источниками RFI! К счастью, они всегда соединены по отдельности, что упрощает диагностику.

Вентиляторы радиатора и переменного тока часто имеют ШИМ (широтно-импульсную модуляцию), как и некоторые формы регуляторов генератора. Известно, что даже органы управления стеклоочистителями вызывают низкосортные радиопомехи.

Хотя с большинством форм RFI можно справиться или, по крайней мере, снизить до допустимого уровня, предположение, что RFI исходит из какого-то конкретного источника, исключая все другие, просто значительно затрудняет идентификацию и / или адресацию.

☜Возврат☜

Дом

.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *