Освещение и обогрев инфракрасной лампой растений
Освещение и обогрев инфракрасной лампой можно использовать при круглогодичном выращивании фруктов и овощей, цветов и декоративных растений в теплицах. Это высококачественный излучатель, обладающий тепловым и осветительным эффектом с внутренним зеркальным отражателем. Она обладает способностью воссоздания оптимальной среды в оранжереях, влияет на улучшение роста растений, благодаря действию лучей, излучаемых инфракрасной лампой, подобных солнечным.
Инфракрасные лампы для различных сфер деятельности
В большинстве случаев, инфракрасные лампы применяются для обогрева и отлично с этим справляются. Но у этих ламп есть и другие свойства, которые благодаря внутреннему зеркальному отражателю, имеющему форму параболоида, эффективно фокусируют излучение, увеличивая его интенсивность.
Использование инфракрасной лампы
- Производится обогрев птичников, хозяйственных и животноводческих помещений, общественных уличных туалетов, ларьков, котельных. Достаточно разместить лампы сверху и произвести расчет 100 Вт на 1м².
- Чтобы ускорить рост и развитие домашних животных и птиц, а также повысить их иммунитет и уменьшить заболеваемость среди поголовья, инфракрасная лампа отлично подойдет.
- Важно создать благоприятный микроклимат в террариумах где содержатся рептилии. Такие лампы могут воспроизвести тепловую точку для их временного обогрева в течение 3 — 5 мин, которых часто бывает достаточно для хорошего самочувствия животного.
- Улучшение сушки различных веществ нанесенных на определенную поверхность, благодаря этому излучению, процесс испарения увеличивается в несколько раз. Только стоит учесть один немаловажный момент, если такая процедура происходит в сушильной печи, обогреваемой при помощи ИК излучателей, саму лампу вместе с цоколем размещают так, чтобы высокая температура не воздействовала на саму лампу.
- В пищевой промышленности, а именно: высушивание грибов, овощей, фруктов, ягод и рыбы.
- Освещение и обогрев теплиц инфракрасной лампой, ботанических садов и оранжерей.
В этой статье хочется немного подробнее рассмотреть насколько совместимы растениеводство и ИК излучатели, подающие растениям искусственный солнечный свет.
Немного ботаники
Компенсация так называемого солнечного голода, в холодный зимний период, дает возможность растениям активно синтезировать необходимые для их жизнедеятельности вещества, за счет световой энергии. Одним из таких веществ является хлорофилл, который поглощая солнечный свет, путем химических процессов, а именно фотосинтеза, питает растения. Этот процесс носит название фототрофное питание, которое обеспечивает их углеводами и способствует выделению кислорода.
Какие лампы безопасные полезные для растений в теплицах?
Лампы, излучающие тепло и инфракрасные лучи, отлично подойдут для регулирования ритма прорастания, самого роста и цветения растений в оранжереях. Воздействие длинноволнового излучения, цветовой диапазон которых делится на инфракрасные, желтые и красные лучи, способствует процессу фотосинтеза, происходящему в листьях растений и улучшает их развитие, а также стеблей, цветов и плодов.
Растения испытывающие дефицит освещения, как правило, погибают, так как их развитие затормаживается. Приостанавливается рост стебля, он истончается, листья желтеют, а корневая система перестает ветвиться и начинает отмирать.
Одним из самых важных преимуществ таких ламп является экономичность. Она заключается в более длительном сроке эксплуатации, они служат дольше обычных ламп применяемых для освещения. Поэтому лучше купить инфракрасную лампу, которая не только светит, но и греет.
Основные требования к освещению теплиц
- В осенне-зимний период нужно восполнить нехватку естественного света в помещении, где находятся декоративные растения и произвести “световую подкормку”, при помощи ламп.
- Искусственный свет растение должно получать при полном дефиците солнечного. Но если теплица немного пропускает естественные солнечные лучи, то инфракрасная лампа позволит продлить световой день от 10 до 16 часов в сутки. Остальное же время растению нужно оставаться в темноте, для нормальной его жизнедеятельности.
- Освещение при выращивании овощей и фруктов ускоряет процесс их роста на несколько недель.
- Создать подходящую подсветку для рассады. Вначале нужно создать условия чтобы она проросла, а затем окрепла, перед высадкой саженцев в грунт.
- На рост и разведение водорослей в аквариумах также влияет освещение.
Как обогреть теплицу инфракрасными лампами
Установить систему ИК обогрева не составит большого труда. Подвешивать лампы следует на расстоянии 1,5 — 2 метра друг от друга, чтобы улучшить равномерный рост растений. Для защиты инфракрасного излучателя, от возможного механического повреждения или попадания капель воды на стеклянную колбу, нужно использовать специальный металлический плафон, а вкручивать лампу, только в керамический патрон.
В процессе роста растений регулируется высота подвеса ламп. Наиболее оптимальной высотой является 70 — 120 см над растением. Следует знать, что чем выше размещен инфракрасный излучатель, тем больше радиус освещения и ниже температура между растением и лампой.
Можно создать несколько зон с различной интенсивностью обогрева и освещения. Такого эффекта можно добиться регулируя высоту размещения излучателей и их мощность.
Преимущества обогрева растений инфракрасной лампой
- Искусственный свет и лучи быстро прогреют окружающие предметы, а те в свою очередь воздух.
- Нагрев растений, стен теплицы и окружающего грунта, дают возможность теплу задерживаться в почве, а не подниматься вверх под потолок, оставляя охлаждаться нижнюю часть.
- Инфракрасный обогрев растений экономически выгодный, по сравнению с конвекторным отоплением.
- ИК излучатели абсолютно бесшумные и безвредные для людей, животных и растений.
- Такие лампы не сушат воздух.
Самое главное правильно подобрать мощность лампы и длительность подсветки, чтобы не перестараться. Для их регуляции нужно приобрести диммер, благодаря которому можно увеличивать или уменьшать теплоотдачу и электропотребление лампы.
Использование такого инфракрасного излучателя отлично подойдет тем, кто выращивает рассаду на подоконнике, в этом случае растения точно не испытают дефицит тепла и освещения.
Загрузка… Предыдущая запись Скороспелая и высокопродуктивная порода кур Виандот Следующая запись График работы на новогодние праздники 2019 — 2020 год
инфракрасное излучение и его польза для здоровья
Инфракрасные лучи вокруг нас повсюду, поскольку главный их источник — солнце — с нами каждый день. А кроме того, мы чувствуем их в прямом смысле слова кожей, потому что воспринимаем инфракрасное излучение как тепло. На этом основывается принцип работы инфракрасных обогревателей и ламп — как медицинских, так и обычных бытовых.
Чем инфракрасные волны полезны для здоровья?
Они активизируют защитные силы организма и помогают естественному иммунитету, усиливают кровоток, ускоряют обмен веществ и оказывают противовоспалительное действие. Снижаются болевые ощущения, организм получает мощный стимул к очищению и выздоровлению во время простудных заболеваний и при гриппе. По сути, вы прогреваете участок тела, которому требуется помощь, и заставляете остальные системы и органы включаться в процесс лечения.
Опасность при использовании инфракрасных ламп — перегрев и сопутствующая этому кожная реакция. Поэтому лечебные сеансы лучше проводить по рекомендации врачей, под их наблюдением и в течение ограниченного времени.
В числе главных плюсов при использовании инфракрасных волн:
- стабилизация, выравнивание артериального давления за счет влияния на сосуды;
- повышение иммунитета;
- контроль над воспалительными процессами, ускорение заживления повреждений кожи, послеоперационных участков;
- воздействие на гормональный фон человека, его нормализация;
- восстановление способности организма к самоочищению;
- противомикробное и противогрибковое действие.
А теперь задумайтесь, почему даже бытовые инфракрасные лампы пользуются такой популярностью. Ведь противомикробное действие не зависит от того, на что воздействует излучение — предметы, кожа человека или воздух вокруг. Так что, выходит, вы получаете не только тепло, но и поддержание здорового фона в вашей квартире. Это и спасение при астме, и помощь при аллергических реакциях. Только следует различать между собой коротковолновые, средневолновые и длинноволновые обогреватели: первые и вторые ориентируются на быстрый и сильный нагрев помещения или улицы, такие приборы используют в холодное время для уличных мероприятий. Они не рассчитаны на прямое воздействие на организм человека и представляют для него опасность. А вот длинноволновые, распространенные в качестве домашних обогревателей, обеспечивают все описанные выше плюсы.
Когда нельзя?
Лампы инфракрасного излучения могут и навредить здоровью, если не учесть списка противопоказаний. Их нельзя использовать, когда воспалительный процесс зашел слишком далеко и создал вокруг себя гнойник или существенно нарушил работу внутренних органов.
Еще одно «нельзя» связано с уже упоминавшейся опасностью получить ожог, если слишком много времени провести под такого рода лампой.
Для чего эффективно применение инфракрасных ламп?
Прибор прогревает отдельный участок тела, помогая организму победить болезнь или болевые ощущения. Инфракрасное излучение прописывают в качестве физиотерапии для лечения суставов, при ушибах и растяжениях, поскольку обменные процессы в тканях ускоряются и стимулируют их заживление и восстановление. В списке болезней, при которых назначают инфракрасное излучение как лечебную процедуру, присутствуют вегетососудистая дистония (проблемы с тонусом сосудов), гипертония, варикоз и отеки, бронхиальная астма, всевозможные простудные заболевания и грипп, заболевания желчного пузыря, почек и мочеполовой сферы, целлюлит и последствия повышенного веса.
Сама по себе инфракрасная лампа не решит всех проблем, но окажет поддержку при сопутствующем лечении, усиливая его эффект и помогая организму окончательно победить болезнь.Лампы инфракрасные, | 8539490000 |
Источники света небытового назначения: лампы накаливания инфракрасного излучения, | 8539490000 |
Лампы инфракрасного излучения, | 8539490000 |
Лампы инфракрасного излучения «Philips» модели: BR125, BR125 IR, R125, R125 IR | 8539490000 |
Лампы инфракрасного излучения промышленного применения | 8539490000 |
Лампа накаливания инфракрасного света с цоколем R7S, | 8539490000 |
Инфракрасные лампы, | 8539490000 |
Лампа инфракрасного излучения | 8539490000 |
Лампы инфракрасного излучения | 8539490000 |
Лампы инфракрасные зеркальные — термоизлучатели | 8539490000 |
Лампа инфракрасная | 8539490000 |
Лампы инфракрасные для сушек | 8539490000 |
Инфракрасные лампы не бытового назначения | 8539490000 |
Светильники стационарные для инфракрасных ламп, | 9405409109 |
Лампы инфракрасные модель QIh340-2600R/D; | 8539490000 |
Инфракрасные лампы промышленные | 8539490000 |
Светильники стационарные с инфракрасным датчиком движения для использования с лампами накаливания, торговой марки «TDM Electric» | 9405105009 |
Лампы инфракрасные зеркальные-термоизлучатели | 8539490000 |
Лампы ультрафиолетового и инфракрасного излучения для соляриев торговой марки «HAPRO», артикулы: S16318, S14600, 12829, 12819, 12796, 12803, 12808, 12801, 12797, 12810, 12813, 12817, 09149, 12825, 12823, 09151, 09152, 1282 | 8539490000 |
Оборудование технологическое для предприятий общественного питания и пищеблоков: лампа инфракрасная для подогрева блюд, | 851679 |
Инфракрасная тепло-излучительная лампа, | 8516797000 |
Лампы галогеновые инфракрасные 2500 Ватт, | 8539490000 |
Источники света не бытового назначения: лампы ультрафиолетового, инфракрасного излучения, | 8539490000 |
Лампы нагрева инфракрасные или ультрафиолетовые для промышленных установок, | 8539490000 |
Нагревательные инфракрасные лампы, напряжение питания 220 В, небытового назначения, модели TKL-11, TKL-25, TKL-12, TM-23 | 8539490000 |
Как работает инфракрасная терапия?
Инфракрасная терапия — это метод лечения острой или хронической боли с помощью света. Это простая и безболезненная терапия, которая изучается для использования в различных областях медицины.
Марина Лорбах | Shutterstock
Что такое инфракрасная терапия?
Инфракрасный свет — один из нескольких инновационных методов лечения, которые проходят испытания для лечения пациентов с острой или хронической болью. В терапии используются световые волны определенной длины, которые доставляются к участкам тела, имеющим травмы.
В отличие от ультрафиолетового света, который оказывает разрушающее воздействие на ткани и клетки тела, инфракрасный свет помогает клеткам регенерировать или восстанавливать себя. Инфракрасный свет также улучшает циркуляцию богатой кислородом крови в организме, способствуя более быстрому заживлению глубоких тканей и облегчению боли.
Одной из характеристик инфракрасного света является его способность проникать под слои кожи, обеспечивая гораздо большую глубину, что может эффективно облегчить боль.Фактически, этот инвазивный, естественный и безболезненный метод может обеспечить широкий спектр преимуществ для здоровья, не повреждая кожу ультрафиолетовым излучением
Инфракрасный свет — это тепло, которое люди ощущают на солнце. Кожа каждый день естественным образом излучает инфракрасное тепло. Инфракрасный свет показал огромную пользу для здоровья, от облегчения боли до уменьшения воспаления.
Как работает инфракрасная терапия?
Инфракрасный свет проникает во внутренние слои кожи на глубину от 2 до 7 сантиметров.Следовательно, он достигает мышц, нервов и даже костей. Многие исследования показали, что частота инфракрасного света с длинами волн от 700 до 1000 нанометров лучше всего подходит для лечения воспалительных состояний.
Использование электричества в лечебных целях началось в 2750 году до нашей эры, когда люди использовали электрических угрей для поражения электрическим током. Электричество и магнетизм использовались людьми без особого успеха. Однако в 1975 году для лечения хронической боли была разработана чрескожная электростимуляция (ЧЭНС).Лишь недавно инфракрасная терапия была разработана для улучшения заживления ран, уменьшения боли, вызванной артритом, повышения уровня эндорфина и биоактивации нейромодуляторов.
Технология инфракрасной терапии позволяет людям использовать преимущества солнца, не подвергаясь воздействию вредных ультрафиолетовых лучей. Также инфракрасная терапия безопасна и эффективна, без побочных эффектов. На самом деле инфракрасный свет безопасен и используется даже для младенцев в отделениях интенсивной терапии новорожденных.
Инфракрасный свет поглощается фоторецепторами в клетках. После поглощения световая энергия запускает серию метаболических процессов, запускающих несколько естественных процессов в организме на клеточном уровне.
Ключом к эффективности терапии инфракрасным светом может быть оксид азота, газ, жизненно важный для здоровья артерий организма. Оксид азота — это мощная клеточная сигнальная молекула, которая помогает расслабить артерии, борется со свободными радикалами, чтобы уменьшить окислительный стресс, предотвращает скопление тромбоцитов в сосудах и регулирует кровяное давление.Следовательно, эта молекула усиливает кровообращение, доставляя жизненно важные питательные вещества и кислород к поврежденным и травмированным тканям тела.
Увеличение притока крови к различным частям тела позволяет кислороду и питательным веществам достигать клеток, позволяя им функционировать должным образом и эффективно. Следовательно, эта терапия стимулирует регенерацию и восстановление поврежденных тканей, уменьшая боль и воспаление.
Инфракрасная световая терапия применяется при лечении различных состояний здоровья, включая боль в спине, артрит, бурсит, тупую травму, растяжение мышц, синдром запястного канала, боль в шее, боль в спине, диабетическую невропатию, ревматоидный артрит, боль в височно-нижнечелюстном суставе (ВНЧС). , тендинит, раны, радикулит и хирургические разрезы.
Выводы и перспективы инфракрасной терапии
Инфракрасная терапия — это безопасный и эффективный способ уменьшить боль и лечить широкий спектр заболеваний. Это кажется безопасным, эффективным и безмедикаментозным способом длительного облегчения боли. Это также помогает заживить травмированные части тела.
Лечение травм дает множество преимуществ, таких как облегчение боли, уменьшение воспаления и восстановление функции пораженной части тела. Другие состояния, которые можно вылечить с помощью инфракрасной терапии, включают боль в суставах, воспаление суставов, мышечную боль, травмы позвоночника, нервные боли и спортивные травмы.
Дополнительная литература
Инфракрасная терапия: польза и риски для здоровья
Инфракрасная терапия — это новый инновационный световой метод лечения боли и воспалений в различных частях тела. В отличие от ультрафиолета, который может повредить кожу, инфракрасный свет усиливает регенерацию клеток. Инфракрасный свет на определенных длинах волн доставляется к месту повреждения или воспаления, способствуя восстановлению клеток.
Ключевой характеристикой инфракрасного света является его способность проникать даже в глубокие слои кожи, обеспечивая лучшее обезболивание.Кроме того, инфракрасный свет безопасен, естественен, неинвазивен и безболезненен. Таким образом, он может принести широкий спектр преимуществ для здоровья.
Инфракрасное лечение для реабилитации ортопедической медицинской помощи. Кредит изображения: VP Photo Studio / Shutterstock
Почему сегодня широко используется инфракрасная терапия?
Инфракрасная терапия широко используется в медицине, стоматологии, ветеринарии, а также при аутоиммунных заболеваниях. Терапия безопасна и естественна, что позволяет предлагать ее в качестве альтернативного лечения различных состояний здоровья, таких как мышечные боли, жесткость суставов и артрит.
Инфракрасная терапия выполняет множество функций в организме человека. К ним относятся детоксикация, обезболивание, снижение мышечного напряжения, расслабление, улучшение кровообращения, потеря веса, очищение кожи, уменьшение побочных эффектов диабета, усиление иммунной системы и снижение артериального давления.
Каковы преимущества инфракрасной терапии для здоровья?
Здоровье сердечно-сосудистой системы
Одним из основных преимуществ инфракрасной терапии для здоровья является улучшение здоровья сердечно-сосудистой системы. Инфракрасный свет увеличивает производство оксида азота, жизненно важной сигнальной молекулы, которая важна для здоровья кровеносных сосудов. Эта молекула помогает расслабить артерии и предотвращает свертывание крови и слипание в сосудах. Помимо этого, он также борется со свободными радикалами, чтобы предотвратить окислительный стресс и регулировать кровяное давление.
Оксид азота необходим для улучшения кровообращения, которое обеспечивает большее количество кислорода и питательных веществ в поврежденных тканях. Таким образом, инфракрасный свет ускоряет заживление ран и стимулирует регенерацию поврежденных тканей, уменьшая воспаление и боль.
Боль и воспаление
Инфракрасная терапия — эффективное и безопасное средство от боли и воспалений. Он может проникать глубоко через слои кожи в мышцы и кости. Поскольку инфракрасная терапия усиливает и улучшает кровообращение в коже и других частях тела, она может доставлять кислород и питательные вещества к поврежденным тканям, способствуя заживлению. Он помогает облегчить боль, снять воспаление и защитить от окислительного стресса.
Мышечные травмы
Инфракрасная терапия улучшает действие митохондрий внутри клеток, тем самым вызывая рост и восстановление новых мышечных клеток и тканей.Другими словами, инфракрасный свет может ускорить процесс восстановления после мышечной травмы.
Детоксикация
Инфракрасная терапия может применяться в саунах. Детоксикации важны, поскольку они могут укрепить иммунную систему. В то же время детоксикация способствует правильному функционированию биохимических процессов, улучшая пищеварение. В инфракрасной сауне внутренняя температура тела повышается, что приводит к детоксикации на клеточном уровне.
Потенциальное лекарство от рака
Инфракрасная терапия — потенциально эффективный метод лечения рака.Исследования показывают значительную активацию наночастиц при воздействии инфракрасного излучения, что делает их очень токсичными для окружающих раковых клеток. Одним из таких методов является фотоиммунотерапия с использованием комплекса конъюгированных антител-фотоабсорберов, который связывается с раковыми клетками.
Убийство раковых клеток с помощью инфракрасного света — фотоиммунотерапия Играть
Какие риски связаны с инфракрасной терапией?
Каждый день люди погружаются в инфракрасное излучение солнца в виде тепла.На самом деле инфракрасные сауны сегодня востребованы, но специалисты предупреждают о возможных рисках для здоровья. В зависимости от длины волны инфракрасного света могут произойти термические или тепловые травмы. Термическое повреждение может произойти даже без боли. Также беременным женщинам, людям с сердечными заболеваниями и больным никогда не следует проходить инфракрасную терапию.
Кроме того, специалисты предостерегают от использования инфракрасной терапии для лечения хронических заболеваний, пренебрегая использованием лекарств и рекомендуемых лечебных процедур.Хотя инфракрасная терапия обещает много преимуществ для здоровья, ее изучение далеко не завершено. Поэтому в настоящее время его следует рассматривать как дополнение к медикаментозному лечению, а другие схемы следует продолжать в соответствии с предписаниями.
Дополнительная литература
Биологические эффекты и медицинские применения инфракрасного излучения
Реферат
Инфракрасное (ИК) излучение — это электромагнитное излучение с длинами волн от 760 до 100000 нм. Низкоуровневая световая терапия (LLLT) или фотобиомодуляция (PBM) обычно использует свет в красном и ближнем инфракрасном диапазоне длин волн (600–100 нм) для модуляции биологической активности.Многие факторы, условия и параметры влияют на терапевтические эффекты ИК-излучения, включая плотность энергии, освещенность, время лечения и его повторение, пульсацию и длину волны. Все больше данных свидетельствует о том, что ИК может осуществлять эффекты фотостимуляции и фотобиомодуляции, особенно полезные для нервной стимуляции, заживления ран и лечения рака. Нервные клетки особенно хорошо реагируют на ИР, который был предложен для ряда приложений нейростимуляции и нейромодуляции, а недавние успехи в нервной стимуляции и регенерации обсуждаются в этом обзоре.
Применение ИК-терапии в последние годы быстро развивается. Например, была разработана ИК-терапия, которая фактически не требует внешнего источника питания, такого как материалы, излучающие ИК-излучение, и одежда, которая может работать только от тепла тела. Еще одна интересная область — возможное участие солнечного ИК-излучения в фотостарении или фотоомоложении как противоположные стороны медали, и должны ли солнцезащитные кремы защищать от солнечного ИК-излучения? Лучшее понимание новых разработок и биологических последствий ИК может помочь нам улучшить терапевтическую эффективность или разработать новые методы PBM с использованием длин волн ИК.
Ключевые слова: Инфракрасная стимуляция нейронов, фотостарение, повреждение ДНК, нейрозащита мозга, ROS, АТФ, молекулы воды, нагрев
1. Введение
Инфракрасное (ИК) — это тип электромагнитного излучения, включая длины волн между 780 нм. до 1000 мкм. ИК разделен на различные диапазоны: ближний инфракрасный (NIR, 0,78 ~ 3,0 мкм), средний инфракрасный (MIR, 3,0 ~ 50,0 мкм) и дальний инфракрасный (FIR, 50,0 ~ 1000,0 мкм), как определено в стандарте ISO 20473: 2007. Оптика и фотоника — Спектральные диапазоны [1].В нескольких исследованиях сообщалось, что ИК может улучшить заживление кожных ран, фотопрофилактику, облегчить боль, скованность, утомляемость при ревматоидном артрите, анкилозирующем спондилите, потенцировать фотодинамическую терапию, лечить офтальмологические, неврологические и психические расстройства и стимулировать распространение мезенхимальных и сердечных заболеваний. стволовые клетки [1–9].
Низкоуровневая светотерапия (НИЛИ) определяется как «лечение с использованием облучения светом низкой интенсивности, так что эффекты являются реакцией на свет, а не на тепло.Используются самые разные источники света, особенно маломощные лазеры ». в Медицинских предметных заголовках (MeSH) Descriptor Data 2017. Фотобиомодуляционная терапия (PBM) — это «форма световой терапии, в которой используются неионизирующие формы источников света, включая лазеры, светодиоды и широкополосный свет в видимом и инфракрасном спектре. Это нетепловой процесс с участием эндогенных хромофоров, вызывающий фотофизические (то есть линейные и нелинейные) и фотохимические явления на различных биологических масштабах. Этот процесс приводит к положительным терапевтическим результатам, включая, помимо прочего, облегчение боли или воспаления, иммуномодуляцию и ускорение заживления ран и регенерации тканей.», Как определено в Anders et al. [10]. Сейчас все согласны с тем, что «PBM-терапия» является более точным и конкретным термином для терапевтического применения света низкого уровня по сравнению с «LLLT».
Все фотобиологические реакции определяются поглощением энергии фотоакцепторными молекулами (хромофорами) во время светового облучения. Важно выяснить молекулярный механизм взаимодействия света с тканью путем идентификации фотоакцепторных молекул. Считается, что физиологические эффекты, вызванные ИК-излучением, связаны с двумя основными типами фотоакцепторов (т.э., цитохром с оксидаза и внутриклеточная вода) [11]. Поглощение фотонов преобразует свет в сигналы, которые могут стимулировать биологические процессы [12]. Воздействие инфракрасного света на динамику воды в мембранах, митохондриях и / или клетках может модулировать сигнальные пути, продукцию активных форм кислорода (АФК), АТФ (аденозинтрифосфат), Ca 2+ , NO и группу инозитолфосфатов [13 –16]. Вторичным эффектам всегда предшествуют первичные эффекты, включая передачу сигналов стресса, метаболические процессы, организацию цитоскелета, пролиферацию / дифференцировку клеток и гомеостаз (в зависимости от повреждения или метаболических окислительно-восстановительных потенциалов) [17, 18].Кроме того, Shapiro et al. продемонстрировали, что ИК-свет может возбуждать клетки за счет поглощения воды, при этом повышение температуры влияет на плазматическую мембрану и изменяет электрическую емкость, тем самым деполяризуя клетки-мишени [19].
Pollack et al. продемонстрировали, что вода в определенных местах внутри клеток существует как более химически / биологически активная молекула [20]. Большая часть внутриклеточной воды динамична и имеет упорядоченную структуру для поддержки жизненных процессов в биологических системах [21].Поскольку спектр электромагнитного поглощения воды в основном находится в ИК-диапазоне, поглощение фотонов может привести к быстрому увеличению внутриклеточной температуры [22], что может способствовать нежелательным физиологическим изменениям температуры, pH, осмоса и выхода АТФ [23, 24].
В течение миллиардов лет Солнце генерировало ИК-излучение, и живые организмы на Земле эволюционировали, чтобы иметь дело с ИК-излучением как важным фактором окружающей среды в зависимости от их среды обитания. Многие древние методы лечения использовали солнечный свет для заживления ран и облегчения боли.Спектр солнечного света в окружающей среде и соответствующий спектр поглощения воды показаны в [25]. Ясно, что солнечное излучение и полосы сильного поглощения воды почти совпадают. Прежде чем солнечный свет проникает в атмосферу, он имеет более однородный спектр излучения. Пока солнечный свет достигает земли, некоторые полосы поглощаются газом окружающей среды или молекулами воды в атмосфере. Поскольку человеческое тело на 70% состоит из воды, оно потенциально может накапливать большое количество энергии, которая может модулировать биологические процессы, за счет сильного резонансного поглощения инфракрасного излучения солнечного света, опосредованного молекулами воды.
Наложение спектров солнечного излучения и поглощения воды, показывающее, что наиболее значительные области перекрытия находятся в области 800–1300 нм
В последние годы для понимания проблемы стало важным сочетание технических, клинических и фотобиологических принципов. терапевтические эффекты НИЛИ. Например, в последние годы системы доставки оптического волокна стали важной технологией для облегчения LLLT [26]. Волоконная оптика может передавать свет определенной длины волны на большие расстояния за счет использования полного внутреннего отражения, позволяя им изгибаться вдоль своего пути и фокусировать пятно излучения на определенной области.Хотя процедуры доставки света, необходимые для использования НИЛИ при заболеваниях легких и дыхательных путей, сложны, оптические волокна внутри игл могут применяться [27].
Кроме того, была описана неинвазивная доставка энергии на большие расстояния с использованием инфракрасного импульсного лазерного устройства (IPLD) с длиной волны 904 нм, пульсирующего с частотой 3 МГц, который, как утверждается, имеет оригинальный механизм действия, названный «фото- инфракрасная импульсная биомодуляция »(PIPBM). Устройство было применено в клинических испытаниях пациентов с запущенным раком и в случае возрастной дегенерации желтого пятна (географической атрофии) с ассоциированным неврологическим заболеванием, оно продемонстрировало достаточные доказательства его селективных, удаленных, репаративных и / или регенеративных физиологических эффектов [ 16, 28, 29].
Предыдущие клинические исследования показали, что НИЛИ имеет широкий спектр преимуществ для различных групп пациентов, различных медицинских показаний и состояний без какого-либо серьезного риска побочных эффектов. Адекватная дозиметрия важна для LLLT и PBM терапии; Появился основной принцип, названный «двухфазная доза-реакция», когда было обнаружено, что большие дозы света менее эффективны, чем меньшие дозы [30]. Этот феномен проявляется в благоприятных неврологических эффектах транскраниальной НИЛИ при черепно-мозговой травме, где результаты значительно различаются в зависимости от количества процедур и плотности энергии каждого отдельного лечения.
В данной обзорной статье будут обобщены только некоторые ключевые исследования нового приложения и научные открытия, связанные с инфракрасным излучением. Особое внимание будет уделено новым приложениям, включая материалы, излучающие ИК-излучение для одежды, инфракрасную терапию в сауне, терапию Waon и т. Д. Кроме того, мы представляем некоторые недавно появившиеся научные открытия о нервной стимуляции, фотостарении, фотоомоложении, противоопухолевом действии, регенерации нервной системы и жировой ткани. .
2. Новые разработки и применение инфракрасной терапии в биологических областях
2.1. Материалы, излучающие инфракрасное излучение для одежды
В последние годы благодаря развитию нанотехнологий функциональная спортивная одежда приобрела множество свойств, повышающих эффективность занятий спортом, эффективность и комфорт. Например, спортивная одежда должна позволять владельцу оставаться в тепле в холодную погоду и сохранять прохладу в жаркую погоду за счет отвода пота от кожи. В общем, механизм действия материалов, излучающих ИК-излучение, заключается в преобразовании тепловой энергии тела (конвекция и проводимость) в излучение в диапазоне длин волн ИК-излучения от 3 до 20 мкм, чтобы вызвать гомеостаз и фотобиомодуляцию за счет более глубокого проникновения ИК-излучения и молекулы воды. абсорбция в коже [25].Использование материалов, генерирующих ИК-излучение, возможно, помогает улучшить кровообращение и обмен веществ в организме человека.
Предыдущие исследования показали, что эффекты IR могут активировать фибробласты, увеличивать синтез коллагена и экспрессию трансформирующего фактора роста-бета1 (TGF-beta1) в ранах крыс [31]. Предыдущие исследования показали, что включение наноразмерных частиц германия (Ge) и диоксида кремния (SiO 2 ) в композитные волокна дает нановолокна из поливинилового спирта (ПВС).Длина волны излучения этих мембран из нановолокна находилась в диапазоне 5–20 мкм при 37 ° C и показывала коэффициент излучения 0,891 (идеальное черное тело имеет максимальный коэффициент излучения 1) и мощность излучения 3,44 × 102 Вт · м — 2 с плотностью полотна 5,55 г −2 . Антимикробные свойства, вызванные дальним инфракрасным излучением, могут быть эффективными для уменьшения количества бактерий как против Staphylococcus aureus , так и против Escherichia coli на 99,9%, и показали снижение на Klebsiella pneumoniae на 34.8% [32].
Футболисты использовали одежду, излучающую FIR (плотность 225 г -2 , 88% излучающее дальнее ИК-излучение волокно из полиамида 66 Emana (PA66), 12% спандекс, коэффициент излучения 0,88 и излучаемая мощность 341 Вт / м 2 при 37 ° C в диапазоне длин волн 5–20 мкм). Эта одежда использовалась в течение 10 часов в качестве одежды для сна в течение трех ночей подряд, чтобы уменьшить болезненность мышц с отсроченным началом через 48 часов после интенсивной плиометрической тренировки [33].
Пластырь, излучающий в дальнем инфракрасном диапазоне, применялся для терапевтического лечения остеоартрита коленного сустава.На заднюю поверхность колена пациента накладывали пластырь на 12 часов в день и 5 дней в неделю в течение 4 недель. Пластырь был изготовлен компанией Chongqing Kaifeng Medical Instrument Co. Ltd, Китай, которая предоставила пластину, покрытую запатентованным минеральным образованием, состоящим из 33 элементов, предназначенных для генерации дальнего ИК-излучения за счет действия радиатора. В исследовании контролировали продольное ультразвуковое сканирование переднего отдела коленного сустава.Он показал, что у пациентов из группы FIR было меньше суставного выпота (40%) по сравнению с исходным уровнем (80%) [34].
Тинг-Кай Леунг и др. использовали керамический порошок (производства Bioenergy Development Ltd, Таоюань, Тайвань) для исследований in vitro и in vivo. Его средняя излучательная способность составляла 0,98 на длинах волн 6–14 мкм с нетепловыми эффектами при комнатной температуре. Экспериментальные мишени включали клетки рака молочной железы MCF-7, клетки макрофагов, клетки меланомы, клетки миобластов, линию клеток хондросаркомы, клетки эпителия груди человека MCF-10A и колени кроликов [35].Важнейшим результатом исследований стало то, что этот биокерамический препарат может снимать воспалительный артрит коленных суставов кролика [36]. Кроликам вводили внутрисуставные инъекции липополисахарида (ЛПС), чтобы вызвать стерильное воспаление, а затем помещали в клетки, окруженные слоем, содержащим биокерамику, в группе лечения. Позитронно-эмиссионная томография (ПЭТ) показала, что биокерамика способна снимать воспаление в суставах через 7 дней после инъекции ЛПС.
2.2. Инфракрасные сауны и Waon Therapy
Использование сауны в дальнем инфракрасном диапазоне для лечения основано на глубоком проникновении излучения в кожу для восстановления гомеостаза терморегуляции. У малоподвижных пациентов, страдающих остеоартритом или сердечно-сосудистыми респираторными проблемами, сауны в дальнем инфракрасном диапазоне могут быть использованы в качестве альтернативы умеренным упражнениям. Они оказывают терапевтическое действие без каких-либо побочных эффектов на застойную сердечную недостаточность, преждевременные сокращения желудочков, уровни натрийуретического пептида мозга, функцию эндотелия сосудов, потерю веса, окислительный стресс или хроническую усталость [37].
Терапия Waon означает, что тело предупреждается в инфракрасной камере в течение 15 минут при 60 ° C, затем его заворачивают в тепловые одеяла и кладут для поддержания тепла в течение дополнительных 40 минут, и, наконец, пациент пьет воду, чтобы восполнить потерю влаги. потоотделением. Он может улучшить сердечную функцию и полезен при реабилитации [38].
Терапия Waon проводилась один раз в день 5 дней в неделю в течение 2 недель. Всего в 19 центрах обследовали 76 пациентов, получавших терапию Waon, и 73 пациента из контрольной группы [39].Значения натрийуретического пептида B-типа в плазме, классификация болезней «New York Heart Association», 6-минутная ходьба и кардиоторакальный коэффициент были значительно улучшены в группе терапии Waon по сравнению с контрольной группой. Испытание продемонстрировало безопасность и эффективность для лечения этой целевой группы пациентов с хронической сердечной недостаточностью.
Терапия Waon оказывает адъювантный эффект при хронической обструктивной болезни легких. Группа Waon показала большую жизненную емкость и пиковую скорость выдоха, чем контрольная группа.Необходимы дальнейшие исследования для изучения механизма действия, в частности, может ли терапия Waon быть связана с увеличением потока NO через дыхательные пути [40].
Хроническая сердечная недостаточность вызывает дисфункцию эндотелия сосудов. Было продемонстрировано, что терапия сауной с инфракрасным излучением улучшает сосудистую эндотелиальную дисфункцию у хомяков с экспериментальной кардиомиопатией, которых лечили ежедневно с помощью экспериментальной системы сауны с дальним инфракрасным излучением в течение 15 минут. Через 4 недели мРНК артериальной эндотелиальной синтазы оксида азота (NO) (eNOS) (а также экспрессия белка) и продукция NO были значительно увеличены по сравнению с нормальным контролем [41].
3. Новые исследования инфракрасной терапии
3.1. Нейронная стимуляция
Инфракрасная нервная стимуляция (ИНС) имеет более высокое пространственное разрешение без электрохимической связи между источником и целевой тканью. Кроме того, инфракрасное излучение можно точно настроить для отражения входящего сигнала; однако потенциальными недостатками INS являются риски теплового повреждения тканей из-за передозировки энергии и ограниченная глубина стимуляции, зависящая от свойств поглощения ИК-излучения тканью [42].
Многие исследователи обнаружили, что применение непрерывного или импульсного света приводит к различным результатам в исследованиях заживления ран и регенерации тканей [43]. Низкочастотный импульсный ИК-лазер значительно стимулировал образование костных узелков в клетках свода черепа крысы in vitro с помощью низкоэнергетического Ga-Al-As-лазера (2 Гц, 830 нм, 500 мВт, 0,48 3,84 Дж / см 2 ) [44 ]. Что касается INS, считается, что порог безопасности включает предотвращение нагрева ткани в зависимости от нейронных целей, длины волны, частоты импульсов, мощности и т. Д. [45, 46].ИНС для кохлеарного имплантата сравнима с электростимуляцией, в то время как другие нейронные мишени могут иметь более низкие пороги безопасности для ИНС. Импульсный диодный лазер с длиной волны 1,844 1,873 мкм м, длительностью импульса 35 ~ 1000 мкс, частотой повторения 2 Гц использовался для выявления составных потенциалов действия. Результаты показали, что длительность импульса 35 мкс была достаточной для выявления сложных потенциалов действия из улитки. Для проведения составного потенциала действия 50 мкм пиковая мощность была постоянной при длительностях импульса 100 мкс ~ 1000 мкс, но показывала более высокую пиковую мощность при длительности импульса 35 мкс [47].
Одним из возможных механизмов ИНС являются фототермические эффекты, вызванные поглощением энергии водой, а не фотохимическими реакциями, которые могут происходить с излучением, обладающим большей энергией фотонов (более короткой длиной волны), или фотомеханическими волнами давления [48]. Термочувствительный ионный канал, называемый «временный рецепторный потенциал ваниллоида 1» (TRPV1), является возможным рецептором, который стимулируется во время INS. TRPV1 может активироваться термически за счет лучистой энергии, поглощаемой водой, присутствующей в нервной ткани.Поскольку у большинства мышей с нокаутом TRPV1 не было ответа на ИК-оптическую стимуляцию улитки, о чем свидетельствует отсутствие какого-либо потенциала действия, передаваемого в слуховом нерве во время ИК-воздействия (λ = 1,85, 1,86 мкм), это наблюдение подтвердило гипотезу о вовлечении TRPV1. в генерации потенциала действия с помощью ИК-излучения [49]. Кроме того, изолированные клетки сетчатки и вестибулярного ганглия грызунов были использованы для наблюдения реакции, вызванной ИК-лазером. Добавив блокаторы каналов TRPV1 и TRPV4 для идентификации первичных эффекторов, исследование пришло к выводу, что каналы TRPV4 вызывают сенсорный нейрональный ответ, запускаемый инфракрасным лазерным излучением (λ = 1.87 мкм) [50].
Внутриклеточный Ca 2+ является важным вторичным посредником для разнообразных биологических процессов, таких как сокращение гладких мышц, высвобождение нейромедиаторов и регуляция сигнальных путей [51]. После воздействия ИК-излучения (1862 нм) в кардиомиоцитах желудочков новорожденных крыс наблюдалось быстрое повышение уровня внутриклеточного кальция до частоты пульсации в клетках [52]. Используя флуоресцентный анализ, ИК-импульсы 1862 нм (0,2-1 Гц) могут стимулировать как вызванные ИК-излучением, так и спонтанные кальциевые события.ИР-вызванные кальциевые события имели меньшую амплитуду и более короткие временные константы по сравнению со спонтанными кальциевыми событиями. Был использован митохондриальный ингибитор Ca 2+ , который подтвердил гипотезу о том, что импульсное ИК-излучение регулирует Ca 2+ в митохондриях через митохондриальный обменник Na + / Ca 2+ и митохондриальный унипортер Ca 2+ .
В 2016 году Ken Zhao et al. рассмотрел применение INS, сосредоточившись на его способности стимулировать различные типы нейронов оптическим излучением, включая лицевой нерв, улитку, вестибулярную систему и кору [53].Они пришли к выводу, что ИК-излучение в основном поглощается водой ».
Периодическое инфракрасное фемтосекундное лазерное излучение (780 нм) было замечено для синхронизации отдельных или небольших групп кардиомиоцитов в качестве «оптического водителя ритма» [54]. В этом исследовании мощность ИК-лазера была адекватно отрегулирована, чтобы вызвать периодическое высвобождение кальция и избежать избыточного производства кальция в цитозоле. Лазер применялся со средней общей мощностью от 15 до 25 мВт. Кальциевый ответ с синхронизацией в изолированных кардиомиоцитах (или конкретной клетке в группе кардиомиоцитов) зависел от средней мощности лазера на целевой клетке.
Предыдущие исследования показали, что импульсное ИК-излучение с длиной волны 1860 нм или 790 ~ 850 нм стимулировало потенциалы действия во многих различных типах нервных клеток, таких как седалищные клетки, слуховые нервы и кардиомиоциты [52, 55, 56]. Полукружный канал crista ampullaris жабы (который функционирует как орган баланса внутреннего уха) был чувствителен к ИК-излучению (1862 нм) [57]. При облучении сенсорного эпителия различными типами ИК-импульсов наблюдалась активация фазовых тормозных и возбуждающих афферентных ответов.Однако при тепловой стимуляции сенсорного эпителия не наблюдалось синхронизированных по фазе потенциалов действия афферентного нерва.
Кроме того, ИК-лазер (λ = 1450 нм и 1860 нм) может временно подавлять распространение потенциалов действия в эндогенных немиелинизированных и миелинизированных аксонах. ИК-лазер, подаваемый с помощью оптического волокна 200 мкм, подавался между электростимуляцией, производимой микропипеткой, и нервом. регистратор сигналов. Данные показали, что потенциал действия, индуцированный электростимуляцией, блокировался инфракрасным излучением, включая сокращение мышц аплизии и проводимость седалищного нерва крысы.
Кроме того, для оценки пространственной селективности остро поврежденной улитки у морской свинки применялся импульсный ИК-лазер (1,86 мкм). Нейронный ответ нижнего холмика был преобразован в кривые пространственной настройки, чтобы сравнить различия между акустически вызванными ответами и реакциями, вызванными ИК-импульсом [58]. Большинство кривых пространственной настройки указывают на то, что оптическая стимуляция может активировать селективные популяции нейронов таким же образом, как и акустическая стимуляция; только 10% профилей невозможно было проанализировать или сопоставить.
Основным недостатком INS является отложение тепла в тканях, что может стать препятствием на пути разработки имплантируемых устройств для таких применений, как искусственная улитка. Недавно был разработан гибридный метод электрооптической стимуляции, сочетающий ИНС с электростимуляцией [59, 60]. Седалищный нерв задней конечности крысы облучали импульсным диодным лазером (λ = 1875 нм) во время электростимуляции. Кроме того, было замечено, что повышение температуры нервной ткани, вызванное оптической стимуляцией, могло усилить гибридную электрооптическую стимуляционную реакцию нервов.
3.2. Инфракрасное воздействие на кожу: фотостарение против фотоомоложения
В последние годы фотодерматологические исследования сделали огромный прогресс в понимании молекулярных механизмов, лежащих в основе положительных и отрицательных эффектов, которым кожа человека может подвергаться в ответ на воздействие инфракрасного излучения. В большинстве исследований для освещения ИРА использовались искусственные источники света. Это позволяет определить наиболее эффективную длину волны, мощность и плотность потока энергии для облучения объектов, чем при использовании окружающего инфракрасного излучения солнца, содержащего несколько длин волн, которое может вызывать тепловую индукцию MMP-1 и индуцированную фотозащиту кожи человека [61] .
Поскольку кожа человека постоянно подвергается воздействию инфракрасного излучения окружающей среды, эта энергия может прямо или косвенно стимулировать выработку свободных радикалов или АФК. Многие исследователи обнаружили, что кратковременная вспышка ИК-индуцированных АФК может быть полезной для фотоомоложения. ИК-излучение (8 ~ 12 мкм м), используемое для заживления ран на всю толщину кожи у крыс, показало увеличение высвобождения фактора роста и противовоспалительного цитокинового трансформирующего фактора роста-β1 (TGF-β1), который приводит к активации фибробластов для улучшения заживления ран [31].Кроме того, инфракрасное излучение (λ = 950 нм) использовалось для прямой стимуляции пролиферации фибробластов, что привело к увеличению пролиферации фибробластов in vitro [62].
Предполагается, что молекулярный механизм NIR-излучения (λ = 810 нм) для генерации митохондриальной передачи сигналов в клетках млекопитающих обусловлен активацией фотоакцептора, называемого цитохром с оксидазой (CCO). Световая активация CCO стимулирует митохондриальную респираторную цепную реакцию с образованием ROS и приводит к активации NF-κB в эмбриональных фибробластах [13, 63].Кроме того, поглощение ИК-излучения PBM структурированной внутриклеточной водой может вызывать дополнительные изменения энергии колебаний молекул и влиять на третичную конформацию ферментов, ионных каналов и других белков. Эти относительно небольшие изменения в структуре белка могут активировать сигнальные пути (например, за счет инозитолфосфатов), что приводит к активации факторов транскрипции и изменениям в экспрессии генов [64, 65].
Кроме того, первичные дермальные фибробласты человека анализировали с помощью микроматричного анализа после облучения ИРА in vitro.Анализ микроматрицы показал, что 599 IRA-регулируемых генов по-разному экспрессируются в первичных дермальных фибробластах человека, которые имеют отношение к метаболическим процессам во внеклеточном матриксе, гомеостазу кальция, передаче сигналов стресса и регуляции апоптоза [17]. Это исследование также показало, что ИРА приводит к генерации АФК как внутри, так и вне митохондрий. Авторы предположили, что для активации экспрессии генов могут быть задействованы три основных сигнальных пути, включая митоген-активируемые протеинкиназы (MAPKs), кальций и интерлейкин 6 / сигнальный трансдуктор и активатор транскрипции 3 (STAT3).Кроме того, гены, индуцированные IRA, значительно отличались от генов, индуцированных УФ-излучением. Это открытие означает, что разные длины волн света могут приводить к определенным сигнальным путям в дермальных фибробластах человека.
Однако свободные радикалы и АФК, индуцированные ИК-излучением, могут быть обоюдоострым мечом: в низких дозах они могут активировать защитные реакции, но в высоких дозах АФК могут повреждать органеллы и клетки кожи, что приводит к фотостарению. Многие исследования показали, что ИК-излучение в диапазоне от 760 до 1000 нм участвует в фотостарении и фотоканцерогенезе кожи человека [66].Механизм ИК-излучения, повреждающего кожу, основан на активации матричной металлопротеиназы-1 (MMP-1), которая опосредуется стимуляцией пути p38-MAPK и сигнальных путей киназы 1/2 (ERK1 / 2), регулируемой внеклеточными сигналами. ответ на облучение ИРА. Когда кожа человека облучается однократным или многократным нанесением (один раз в неделю в течение 4 недель) ИК-излучения, это может привести к различной экспрессии проколлагена I типа и более высокой экспрессии TGF-β1, -β2 и -β3 [67, 68].
Кроме того, для облучения кожи человека использовалась инфракрасная лампа с максимальным излучением при 1100 ~ 1120 нм.Кровеносные сосуды, окрашенные маркером эндотелиальных клеток CD31, были увеличены инфракрасным излучением, вероятно, за счет повышения регуляции фактора роста эндотелия сосудов (VEGF) и подавления антиангиогенного фактора тромбоспондина-2 (TSP-2) в эпидермисе кожи [69 ].
IRA радиационно-индуцированные свободные радикалы могут в разной степени снижать содержание антиоксидантов, таких как каротиноиды, в коже человека. Особенно каротиноид, ликопин быстро снижается по сравнению с бета-каротином [70]. Для исследования образования свободных радикалов в коже человека во время воздействия ИК-излучения использовались многие неинвазивные измерения, такие как резонансная спектроскопия комбинационного рассеяния, спектроскопия отражения и измерение цвета кожи [71, 72].
Спектроскопия электронного парамагнитного резонанса основана на резонансном поглощении микроволнового излучения путем согласования разности энергий спинов свободного неспаренного электрона в магнитном поле, и можно измерить обращение спина и поглощение микроволновой энергии [73]. Следует учитывать эффект вращения в тканевой воде со значительным демпфированием, вызванным резонансным поглощением микроволнового излучения, чтобы избежать последствий высокого импеданса на этом частотном уровне (10 9 Гц).В предыдущих исследованиях на коже 17 добровольцев параллельно использовались резонансная рамановская спектроскопия и спектроскопия электронного парамагнитного резонанса. Нитроксид-радикалы (со свободным неспаренным электроном на атоме азота) использовали для определения антиоксидантной способности кожи in vivo. Результаты показали, что скорость уменьшения нитроксида коррелирует с концентрацией кожных каротиноидов [74].
Антиоксидантный механизм каротиноидов заключается в гашении синглетного кислорода его системой двойных связей сопряженного углерода.Концентрация каротиноидов может указывать на полный уровень антиоксидантов в коже человека [75]. Резонансная рамановская спектроскопия — это неинвазивный оптический метод для устранения влияния неоднородностей и измерения концентрации каротиноидов в коже [76].
Кроме того, IRA-индуцированное истощение каротиноидов у десяти добровольцев было проанализировано с помощью резонансной рамановской спектроскопии, а распределение концентрации каротиноидов по глубине на ладонной части предплечья было определено с помощью конфокальной рамановской микроскопии [77].Результаты показали, что после воздействия IRA-излучения концентрация каротиноидов сразу же снижалась и сохранялась до 60 минут после воздействия. Первоначальный уровень исходной концентрации антиоксиданта восстановился через 24 часа после воздействия.
АФК, вызванные высокими дозами ИРА, могут значительно снизить уровень антиоксидантов in vivo. Это следует учитывать, и кожа должна подвергаться воздействию только низких и умеренных доз IRA-излучения, чтобы избежать повреждения тканей и фотостарения. Баролет и др. В статье, озаглавленной (Инфракрасное излучение и кожа: друг или враг?) [3], подчеркнули выраженное двухфазное дозовое воздействие ИК на кожу.Благоприятные эффекты низких доз ИК на кожу включали фотозащиту от повреждений, вызванных УФ-излучением, фотоомоложение, уменьшение пигментных поражений и уменьшение количества тонких линий и морщин. Таким образом, данные в целом подтверждают вывод о том, что оптимальные параметры света имеют решающее значение для различного применения НИЛИ и ПБМ, особенно на коже, но также и на других системах органов [78].
Тепловое воздействие, вызванное инфракрасным излучением, может быть патологическим для кожи. Когда температура кожи превышает 39 ° C во время ИК-облучения, это может вызвать образование АФК и патологические эффекты из-за изменений структурной целостности, вызванных индукцией ферментов в коже [79].Кроме того, регуляция экспрессии белка аквапорина 3 участвует в функциональных механизмах интенсивного импульсного света на длине волны 560 нм, который играет важную роль в гомеостазе кожи для транспортировки отходов и малых молекул растворенных веществ [80].
Как упоминалось выше, высокие температуры кожи могут активировать термочувствительные ионные каналы семейства TRPV1, увеличивая концентрацию внутриклеточного Ca 2+ внутри клетки и последующую активацию сигнальных путей [81, 82].
3.3. Противоопухолевое действие
За последнее десятилетие в ряде исследований было обнаружено, что ИК-излучение может вызывать некоторые повреждения ДНК в раковых клетках [83–85]. Предлагаемый механизм связан с окислительным стрессом. ИК влияет на цепь переноса электронов, генерируя АФК, которые не только стимулируют передачу сигнала на умеренных уровнях, но также могут напрямую повреждать клеточные органеллы при их чрезмерном генерировании. Сообщалось, что IR-индуцированные митохондриальные АФК способны повреждать митохондриальную ДНК человека (мтДНК), которая принимает форму кольцевой двухцепочечной молекулы длиной 16 559 п.н., содержащей 37 генов, что приводит к изменению функции дыхательной цепи [86].Кроме того, мутации мтДНК играют важную роль в патологических отклонениях. К настоящему времени обнаружено более 100 точечных мутаций в мтДНК [87].
Частота мутаций мтДНК значительно выше, чем у ядерной ДНК. Это связано с тем, что механизмы репарации ДНК против вызванного окислительным стрессом повреждения ДНК не так эффективны в митохондриях, как в ядре клетки. Это относится к объемным повреждениям ДНК или фотопродуктам, таким как фотопродукты пиримидин (6–4) пиримидона или димеры циклопиримидина [88].Кроме того, мтДНК расположена в непосредственной близости от цепи переноса электронов, которая имеет наивысшее количество индуцированных ИК-излучением АФК на стороне клетки. Следовательно, высока вероятность того, что АФК вызывают повреждение мтДНК и запускают каскад апоптоза и гибели клеток.
Чтобы уточнить внутриклеточное расположение IRA-индуцированных АФК, для предварительной обработки человеческих фибробластов использовали антиоксиданты [17]. Антиоксидант N-ацетил-цистеин может повышать уровень внутриклеточного глутатиона [89], улавливать активные формы кислорода во всех различных клеточных компартментах и, следовательно, способен подавлять все изменения в экспрессии генов, индуцированных IRA.Однако IRA по-прежнему активирует гены, связанные с ROS, если MitoQ используется в качестве антиоксиданта, который был разработан для удаления ROS, специфически возникающих внутри митохондрий [90]. Это означает, что другие хромофоры, активируемые IRA в различных клеточных компартментах, могут участвовать в индуцированном IRA образовании ROS, и не ограничиваются исключительно митохондриями. Более того, индуцированная IRA экспрессия фермента MMP-1 в первичных фибробластах кожи человека может быть снижена антиоксидантами, такими как аскорбиновая кислота, (α) -токоферол, эпигаллокатехингаллат, (-) — эпикатехин или фенилпропионовая кислота [91].Вдобавок было предложено, что фермент MMP-1 ведет себя как «храповик броуновского движения», управляемый динамикой воды, которую можно стимулировать инфракрасным светом. Например, активированная коллагеназа (MMP-1) действует как молекулярный храповик, участвуя в ремоделировании тканей и взаимодействиях с клеточным матриксом [92]. Следовательно, можно применять соответствующие антиоксиданты для защиты от преждевременного старения кожи, вызванного излучением IRA. Клеточные линии рака молочной железы человека MDA-MB-231, MCF7, T47D и нормальные эпителиальные клетки молочной железы (184B5) облучали MIR (λ = 3.0 ~ 5,0 мкм). Количественный протеомный анализ был использован для изучения MIR-регулируемых физиологических реакций клеток рака молочной железы, включая остановку клеточного цикла G 2 / M, ремоделирование сети микротрубочек до расположения астрального полюса, изменение цитоскелета актинового плача и уменьшение количества клеток. миграционная активность [85].
Chang et al. продемонстрировали, что ИК-излучение (3 ~ 5 мкм) может вызывать набухание и остановку клеточного цикла в фазе G 2 / M в клетках рака легкого A549 [84].ИК-излучение также может ингибировать фосфорилирование циклин-зависимой киназы 1 (CDK1) и циклина B1, что приводит к остановке прогрессирования клеточного цикла. Кроме того, перинуклеарное распределение актиновых филаментов в клетках рака легкого предполагает, что окислительный стресс, вызванный ИК-излучением, влияет на остановку клеточного цикла, реорганизацию цитоскелета и влияет на баланс антиоксидантов [93]. Это исследование также показало, что ИК-излучение запускает ось ATM / ATR-p53-p21 в ответ на повреждение ДНК, что приводит к образованию ядерных фокусов 53BP1 и c-h3AX и активации пути ATM / ATR-p53-p21, участвующего в Ремонт ДНК.Эти данные предполагают, что ИК-излучение индуцировало систему репарации ДНК в ответ на повреждение ДНК.
FIR (4 ~ 1000 мкм) излучение вызывает молекулярные колебания, приводящие к повышению температуры внутри клеток, и может вызвать локальный тепловой стресс в окружающей среде. Индукция белка теплового шока (HSP) 70 может ингибировать высвобождение цитохрома c из митохондрий, что является предшествующей стадией апоптоза [94]. Предыдущая литература показала, что низкая базальная экспрессия HSP70 и изменения клеточной морфологии наблюдались в FIR-чувствительных клеточных линиях HSC3, Sa3 и A549 [95].
Кроме того, FIR индуцировал клеточную гипертрофию и подавлял пролиферацию раковых клеток A549 (легкие), HSC3 (язык) и Sa3 (десна) за счет остановки клеточного цикла G 2 / M за счет сверхэкспрессии гена ATF3 [96]. Ген ATF3 участвует в реакции на изменения внеклеточного или внутриклеточного микросреды, клеточного гомеостаза, клеточного цикла и гибели клеток [97]. Однако ИК-излучение не влияло на экспрессию гена ATF3 и гипертрофию клеток в раковых клетках A431 (вульва) или MCF7 (груди).Эти результаты показывают, что FIR-излучение подавляет пролиферацию раковых клеток в зависимости от конкретного типа клеток и может быть эффективным средством лечения некоторых видов рака.
Предыдущие исследования показали, что терапия ионизирующим излучением в сочетании с паклитакселом может усиливать терапевтический эффект [98]. Паклитаксел стабилизирует микротрубочки и приводит к гибели клеток, ингибируя сегрегацию хромосом, нарушая сборку веретена во время деления клеток и вызывая остановку клеточного цикла в фазе G 2 / M.Кроме того, паклитаксел также активирует несколько путей митохондриальной цитотоксичности, изменяя проницаемость пор в митохондриях, рассеивая потенциал митохондриальной мембраны, высвобождая цитохром с из межмембранного пространства и формируя АФК [99]. Клетки рака шейки матки человека HeLa, обработанные паклитакселом в сочетании с облучением MIR (3,6, 4,1 и 5,0 мкм), показали улучшенный противоопухолевый эффект [100]. IR может снизить дозировку паклитаксела при клинической противоопухолевой химиотерапии, чтобы избежать тяжелых побочных эффектов, вызванных паклитакселом, таких как снижение количества лейкоцитов, выпадение волос, диарея, язвы во рту и реакции гиперчувствительности.
3.4. Нервная и жировая регенерация
Транскраниальная стимуляция мозга инфракрасным излучением — это использование когерентного или некогерентного света для реабилитации нейродегенеративных заболеваний головного мозга или черепно-мозговых травм, а также для модуляции нейробиологической функции за счет нетеплового эффекта; однако молекулярный механизм ИК-стимуляции мозга до сих пор неясен.
Чтобы прояснить клеточный механизм лечения NIR-лазером у пациентов с острым ишемическим инсультом, модель эмболического инсульта кроличьего тромба использовалась для оценки содержания кортикального АТФ после лечения лазером 808 нм [101].БИК-лазер в импульсном или непрерывном режиме может повысить содержание АТФ в коре головного мозга кроликов по сравнению с имитацией эмболии кроликов, особенно импульсный волновой режим дал значительно большее увеличение содержания АТФ в кортикальном слое.
Ga-Al-As диодный лазер с длиной волны 810 нм, импульсный с частотой 10 Гц, 100 Гц и непрерывный режим, с плотностью мощности 50 мВт / см 2 в течение 12 минут, использовался для освещения головы мыши с экспериментальной черепно-мозговой травмой (ЧМТ). Мышей умерщвляли и анализировали через 2, 15 и 28 дней после ЧМТ.Так же, как размер поражения и количество продукции АТФ, частота импульсов 10 Гц лучше всего влияла на неврологические функции [102]. Это исследование показало, что ритм 4 ~ 10 Гц, возникающий в области гиппокампа в нормальном мозге мышей, может войти в положительный резонанс с частотой лазерного импульса 10 Гц для улучшения нейрореабилитации мышей с ЧМТ.
Лазер с длиной волны 808 нм может также способствовать мозговому кровотоку и повышать уровень оксида азота у мышей [103]. Было высказано предположение, что ИК-лазер может стимулировать мозговое кровообращение за счет высвобождения NO, а также активировать нейропротективные пути для уменьшения количества апоптотических клеток в гиппокампе.
Существует множество гипотез, объясняющих дегенерацию нейронных процессов при болезни Паркинсона, включая снижение уровней дофаминергических нейронов в черной субстанции, присутствие цитоплазматических включений и аномальное увеличение альфа-синуклеин-положительных аксонов в выживших нейронах [104].
В попытке исследовать сниженный аксональный транспорт, индуцированный при болезни Паркинсона, скорость митохондриального движения в трансмитохондриальных цибридных нейрональных клетках человека была измерена во время лечения диодным лазером с длиной волны 810 нм [105].Кибриды — это нейроны, в которых собственные митохондрии заменены больными митохондриями, полученными из других клеток (например, полученных от пациентов с болезнью Паркинсона). Скорость митохондриального движения в цибридных нейритах при болезни Паркинсона была значительно увеличена после воздействия ИК-излучения в течение двух часов. Было высказано предположение, что лечение ИК-лазером может подавлять нейродегенеративные симптомы у пациентов с болезнью Паркинсона.
Кроме того, трансгенных мышей-предшественников белка амилоида-β (мышиная модель болезни Альцгеймера) лечили 3 раза в неделю различными дозами 808-нм ИК-лазера [106].Уровни пептида амилоида-β головного мозга, пептида β амилоида-β в плазме и пептида β-амилоида-β спинномозговой жидкости, а также количество бляшек β-амилоида в головном мозге были снижены путем обработки ИК-лазером в зависимости от дозы. Кроме того, индуцированная ИК-лазером генерация АТФ может также улучшить сохранение нейронов и ингибировать образование амилоидных бляшек.
Эти данные, вместе взятые, показывают, что ИК-излучение может стимулировать рост жизнеспособности клеток и факторы роста, которые вызывают потенциальные терапевтические эффекты при повреждении или дегенеративном заболевании головного мозга.Заболеваниям головного мозга, включая ЧМТ, болезнь Альцгеймера, болезнь Паркинсона и инсульт, можно улучшить за счет индуцированного ИР синтеза АТФ, продукции фактора роста, противовоспалительных эффектов и антиапоптоза. [107]. Более того, недавнее исследование также указывает на то, что пролиферация и дифференцировка стволовых клеток, полученных из жировой ткани, регулируются инфракрасным излучением 980 нм, которое, как предполагается, воздействует на каналы ионов кальция с регулируемой температурой, в то время как ИК-излучение 810 нм стимулирует выработку АТФ за счет поглощения фотонов CCO [ 108].
Следует отметить, что ИК-излучение 810 нм не только поглощается CCO, но также на малых уровнях поглощается водой. Хотя ИК-спектр с длиной волны 980 нм не сильно поглощается CCO, он в основном поглощается водой [25].
обобщает отчеты об использовании ИК-излучения для взаимодействия с клетками и тканями. В нем также освещаются некоторые медицинские применения ИК-излучения. Предполагается, что длины волн источников света соответствуют спектру поглощения молекул CCO или воды.
Таблица 1
Различные медицинские применения ИК-излучения для различных клеток и тканей.
Медицинское применение | Автор, ссылка | Цель | Источник света или материал | Длина волны | Результаты |
---|---|---|---|---|---|
Заживление ран | Toyokawa et al. [31] | Кожная рана у крысы | Лист с керамическим покрытием | 5,6 ~ 25 мкм (максимальная интенсивность 8 ~ 12 мкм) | Способствует заживлению ран и экспрессии TGF-β1 |
Заживление ран | Гупта и другие.[109] | Кожные ссадины у мышей | Диодный лазер | 810 нм | Усиленное накопление коллагена и эффекты заживления |
Заживление ран | Santana-Blank et al. [110, 111] | Мягкие ткани крысы | Диодный лазер | 904 нм | Способствует заживлению ран и росту зоны исключения (1H-ЯМР 1 / T2) |
Заживление ран | Santana-Blank et al. al. [111] Родригес-Сантана и др.[112] | Мягкие ткани у крысы | Диодный лазер | 904нм | Способствует заживлению ран, мембранный эффект измеряется тау-методом 1H-ЯМР (c) |
Нейронная стимуляция | Wells et al. [55] | Седалищный нерв крысы | Лазер на свободных электронах | 2,1, 3,0, 4,0, 4,5, 5,0 и 6,1 мкм | Создает пространственно-селективный ответ в небольших пучках седалищного нерва |
Нейральная стимуляция | Jenkins et al.[113] | Сердце взрослого кролика | Диодный лазер | 1,851 мкм | Индуцированная оптическая стимуляция сердца взрослого кролика |
Нейронная стимуляция | Izzo et al. [56] | Слуховой нерв песчанок | Гольмий: YA G-лазер | 2,12 мкм | Оптическое излучение стимулировало амплитуды кохлеарного ответа |
Нейронная стимуляция | Duke et al. [60] | Седалищный нерв крысы | Диодный лазер | 1.875 мкм | Гибридная электрооптическая стимуляция вызвала устойчивые сокращения мышц и снизила требования к мощности лазера |
Нейронная стимуляция | Shapiro et al. [19] | Клетки HEK-293T | Диодный лазер | 1,889 мкм | Временное изменение электрической емкости мембраны во время оптической стимуляции |
Фотостарение | Darvin et al. [76] | Кожа человека | Радиатор с фильтром для воды | 600 ~ 1500 нм | Образованные свободные радикалы и пониженное содержание антиоксидантов β-каротина |
Фотостарение | Schroeder et al.[91] | Дермальные фибробласты человека | Фильтрованный водой источник ИК-излучения | 760 ~ 14 40 нм | Повышенная экспрессия MMP-1 в дерме |
Antitum or Action | Tsai et al. [100] | HeLa клетка рака шейки матки | Волноводный термоизлучатель | 3,6, 4,1 или 5,0 мкм | Вызвал коллапс мембранного потенциала митохондрий и повышение окислительного стресса. |
Antitum or Action | Chang et al.[84] | Клетки рака груди и нормальные эпителиальные клетки груди. | Источник черного тела с фильтром 3 ~ 5 мкм | 3 ~ 5 мкм | Вызвал остановку цикла раковых клеток G 2 / M, реконструировал сеть микротрубочек и изменил образование актиновых филаментов |
Antitum or Action | Tanaka et al. [83] | A549 клетки аденокарциномы легких | БИК-излучатель, оборудованный фильтром для воды | 1,1 ~ 1,8 мкм | Активировал путь ответа на повреждение ДНК |
Antitum or Action | Yamashita et al.[96] | A431 (вульва), A549 (легкое), HSC3 (язык), MCF7 (грудь) и Sa3 (десна) раковые клетки | Инкубатор с лучистыми панелями FIR с покрытием из углерода / диоксида кремния / оксида алюминия / титана оксидная керамика | 4 ~ 20 мкм (максимум от 7 до 12 мкм) | Подавляет пролиферацию раковых клеток за счет усиления экспрессии гена ATF3 |
Antitum or Action | Santana-Blank et al. [114] | Солидная опухоль Клиническое исследование | Диодный лазер | 904 нм | 88% противоопухолевый эффект.Десять лет наблюдения |
Antitum or Action | Santana-Blank et al. [115] | Цитоморфология солидных опухолей | Диодный лазер | 904 нм | Избирательный апоптоз, некроз, аноикис в опухолевых тканях онкологических больных |
Antitum or Action | Santana-Blank et al. [116] | Солидная опухоль T 2w МРТ-микродезитометрия | Диодный лазер | 904 нм | Доказательства наличия межфазной зоны исключения воды (EZ) как предиктора противоопухолевого ответа у онкологических больных |
Antit Акция | Santana-Blanket al.[117] | Уровни цитокинов субпопуляций периферических лейкоцитов в сыворотке крови твердых опухолей | Диодный лазер | 904 нм | Иммуномодуляция TNF-α sIL-2R и CD4 + CD45 RA + и CD25 + активированных |
Naeser et al. [118] | Легкая черепно-мозговая травма | NIR-диоды | 870 нм | Улучшение когнитивных функций, улучшение сна и симптомы посттравматического стрессового расстройства | |
Нейронная регенерация мозга | Lapchak et al.[101] | Инсульты у эмболизированных кроликов | Лазерный источник | 808 нм | Повышенное содержание кортикального АТФ |
Регенерация жировой ткани | Wang, Y., et al. [108] | стволовые клетки, полученные из жировой ткани человека | Диодный лазер | 810 нм 980 нм | Стимулирование пролиферации и дифференциации |
4 Обсуждение
LLLT и / или PBM были использованы в широком диапазоне различных медицинских показаний в последние годы, а клеточные и молекулярные механизмы действия НИЛИ в настоящее время изучены лучше, чем в прошлые десятилетия.
Большинство исследований предполагают, что хромофоры, ответственные за эффекты PBM, можно в первую очередь классифицировать как митохондриальные хромофоры, такие как CCO.
Предыдущие исследования определили, что хромофор PBM с использованием длин волн красного или ближнего инфракрасного диапазона является митохондриальным CCO. CCO — один из четырех белковых комплексов (единица IV), составляющих цепь переноса электронов, которая осуществляет транспорт электронов на внутренней митохондриальной мембране, в конечном итоге создавая электрохимический протонный градиент для конечного фермента АТФ-синтазы (единица V) для преобразования АДФ (аденозиндифосфата). ) для производства АТФ [119, 120].НИЛИ может увеличивать активность фермента CCO для облегчения транспорта электронов и увеличения производства АТФ [121]. Более того, было обнаружено, что спектр действия биологической реакции в ближнем ИК-диапазоне соответствует спектрам поглощения CCO в ближнем ИК-диапазоне, относящимся к митохондриальным хромофорам [63, 122–124]. Поглощение цитохром с оксидазы в видимой и ближней инфракрасной областях спектра хорошо согласуется со спектром действия по увеличению синтеза ДНК в клетках млекопитающих. CCO имеет два медных центра, Cu A и Cu B , и два гемовых центра, гем A и гем B .Каждый из этих металлических центров может находиться в окисленном или восстановленном состоянии, что дает в общей сложности 16 возможностей. Различные фотоакцепторы были приписаны различным окислительно-восстановительным состояниям CCO, полоса 820 нм была приписана окисленной форме хромофора Cu A CCO, полоса 760 нм — восстановленной пены Cu B , полоса 680 нм к окисленному Cu B и полосе 620 нм к восстановленному Cu A [13, 63].
С другой стороны, несколько других исследований показали, что другим возможным механизмом PBM, особенно на длинах волн FIR и MIR, является поглощение излучения молекулами воды.Pollack et al. продемонстрировали, что лучистая энергия может генерировать зону отчуждения (EZ) на границе раздела воды, которая обладает правильным типом гидрофильного / гидрофобного баланса [65, 125]. Вода EZ может накапливать электрические заряды и выделять до 70% потребляемой энергии.
Клеточные мембраны характеризуются наличием тонкого (нанометрового) слоя воды, которая накапливается на гидрофобных поверхностях [126]. Очень небольшое количество ненагревающего ИК-излучения может передавать относительно небольшие количества колебательной энергии наноструктурированным слоям воды и может нарушать ее структуру и структуру соседних молекул, не вызывая какого-либо эффекта объемного нагрева (т.е.е. не вызывая заметного повышения температуры) [127]. Градиенты вязкости внутримитохондриальной воды идентифицированы методом наноиндентирования [128]. Синтез АТФ может уменьшаться и увеличиваться в ответ на модуляцию уровней активных форм кислорода, вызванную нетепловыми уровнями NIR. Возможный механизм контроля этого «митохондриального наномотора» заключается в том, что NIR может увеличивать оборот АТФ за счет снижения вязкости межфазных слоев воды. Недавно Сантана-Бланк и др.предположили, что внешняя электромагнитная (световая) энергия может активировать кислород-зависимые и кислородно-независимые пути, основанные на взаимодействиях воды и света [129]. В результате взаимодействия воды со светом и механизмов передачи энергии ИК-излучение создает межфазную EZ-воду в качестве селективной перезаряжаемой электролитической биобатареи [130]. Световая энергия в кислородзависимых путях генерирует высокоэнергетические молекулы, называемые нуклеотид-фосфатами, включая АТФ и ГТФ. Взаимодействие с водой и светом в кислородно-независимом пути приводит к фотоиндуцированным нелинейным колебаниям в воде, которые могут обеспечивать энергией клеточные реакции, включая метаболизм, передачу сигналов и транскрипцию генов.
Недавно Ван и др. Показали [108], что две разные длины волн ближнего ИК-диапазона влияют на стволовые клетки, полученные из жировой ткани, посредством совершенно разных механизмов действия. Лазер с длиной волны 810 нм был предложен для активации CCO, приводящей к продукции АТФ и кратковременной вспышке ROS, но не влиял на внутриклеточный кальций. Напротив, лазер с длиной волны 980 нм также увеличивал АТФ и АФК, но при гораздо более низких плотностях потока (от одной десятой до одной сотой), и увеличивал цитозольный кальций, в то же время снижая митохондриальный кальций. Действие NIR 980 нм, но не действие NIR 810 нм, может быть отменено ингибиторами кальциевых ионных каналов, такими как TRPV.Нагревание клеток или охлаждение клеток аннулировали эффекты 980 нм, но не 810 нм. Это исследование показало, что 980 нм может работать, воздействуя на наноструктурированные слои воды в ионных каналах TRPV, в то время как 810 может напрямую активировать активность фермента CCO. графически суммирует два наиболее важных предполагаемых биологических механизма действия ИР.
Предлагаемые механизмы действия ИР на молекулярном и клеточном уровне. TRPV = временный рецепторный потенциал ваниллоида; ROS = активные формы кислорода; АТФ = аденозинтрифосфат.
В дополнение к пониманию фотобиологических механизмов LLLT / PBM с использованием длин волн FIR / MIR и NIR, важно разработать параметры света с учетом клинического опыта и желаемой терапевтической цели для достижения оптимальных медицинских и биологических эффектов, как показано на. В клинической практике эффект двухфазной реакции на дозу критически важен для получения оптимальных клинических результатов [30]. Другой руководящий принцип заключается в том, что повторение лечения ежедневно (или даже более или менее часто) до тех пор, пока рана не заживет или не наступит ремиссия заболевания, лучше, чем однократное применение НИЛИ.НИЛИ можно сравнить с питательной пищей для человеческого организма; адекватное ежедневное потребление лучше всего.
Обзор детерминант и факторов, которые следует учитывать при инфракрасной терапии
Вся материя в конечном итоге состоит из заряженных частиц, таких как субатомные частицы, электроны, протоны и т. Д. Когда электромагнитное излучение падает на вещество, заряженные частицы поглощают энергию, что приводит к колебания в зависимости от энергии отдельных фотонов (длины волны). Видимый свет обычно поглощается электронами на молекулярных орбиталях, тогда как ИК-энергия обычно поглощается связями внутри молекул, что приводит к усилению колебательных мод, таких как скручивание, растяжение и изгиб.Оба вида энергии могут трансформироваться и рассеиваться в другие молекулярные колебания в виде повышенной тепловой энергии (температуры).
Как нам различать поглощение NIR и FIR, которые взаимодействуют с различными элементами структуры ткани (вода, белки, аминокислоты, липиды и т. Д.). Это интересный вопрос, потому что мы не можем предположить, что оптические характеристики излучения останутся прежними, потому что NIR и FIR могут быть поглощены и переизлучены как разные длины электромагнитных волн хромофорами ткани в течение очень короткого периода времени.Возможно, что конечный фотобиологический результат происходит из множества источников, включая исходное поглощение фотонов падающего света, различные переизлученные электромагнитные волны, возникающие из структурных молекул клетки, и индукцию электромагнитных полей, которые влияют на энергетический метаболизм внутри клеток.
Тканевая оптика описывает подходы к математическому моделированию для анализа того, как фотоны с разной длиной волны взаимодействуют с тканью. Фотоны могут либо поглощаться, либо рассеиваться (неупруго или упруго).В макроскопическом масштабе инструмент моделирования Монте-Карло применялся для изучения проникновения и поглощения света в коже человека во время НИЛИ. Насури и др. моделировало распространение лазера через трехслойную модель кожи человека в спектральном диапазоне от 1000 до 1900 нм [131]. Этот тип анализа необходим для разработки параметров, позволяющих максимально увеличить глубину проникновения света в ткань без какого-либо риска термического повреждения верхних слоев кожи. Кроме того, профиль луча лазерного пятна, который может быть однородным или гауссовым, может увеличивать локальную объемную дозировку и важен при выборе длины волны и мощности лазера в LLLT.
В целом механизмы действия ИК-излучения можно разделить на две большие группы, перечисленные в. Совершенно очевидно, что необходимы дополнительные исследования для изучения механизмов ИК-излучения в медицинской и биохимической областях.
Таблица 2
Различные аспекты механизмов ИК-излучения
Механизм передачи энергии | Механизм прохождения сигнала |
---|---|
|
|
Биологические эффекты и медицинские применения инфракрасного излучения
Реферат
Инфракрасное (ИК) излучение — это электромагнитное излучение с длинами волн от 760 до 100000 нм.Низкоуровневая световая терапия (LLLT) или фотобиомодуляция (PBM) обычно использует свет в красном и ближнем инфракрасном диапазоне длин волн (600–100 нм) для модуляции биологической активности. Многие факторы, условия и параметры влияют на терапевтические эффекты ИК-излучения, включая плотность энергии, освещенность, время лечения и его повторение, пульсацию и длину волны. Все больше данных свидетельствует о том, что ИК может осуществлять эффекты фотостимуляции и фотобиомодуляции, особенно полезные для нервной стимуляции, заживления ран и лечения рака.Нервные клетки особенно хорошо реагируют на ИР, который был предложен для ряда приложений нейростимуляции и нейромодуляции, а недавние успехи в нервной стимуляции и регенерации обсуждаются в этом обзоре.
Применение ИК-терапии в последние годы быстро развивается. Например, была разработана ИК-терапия, которая фактически не требует внешнего источника питания, такого как материалы, излучающие ИК-излучение, и одежда, которая может работать только от тепла тела. Еще одна интересная область — возможное участие солнечного ИК-излучения в фотостарении или фотоомоложении как противоположные стороны медали, и должны ли солнцезащитные кремы защищать от солнечного ИК-излучения? Лучшее понимание новых разработок и биологических последствий ИК может помочь нам улучшить терапевтическую эффективность или разработать новые методы PBM с использованием длин волн ИК.
Ключевые слова: Инфракрасная стимуляция нейронов, фотостарение, повреждение ДНК, нейрозащита мозга, ROS, АТФ, молекулы воды, нагрев
1. Введение
Инфракрасное (ИК) — это тип электромагнитного излучения, включая длины волн между 780 нм. до 1000 мкм. ИК разделен на различные диапазоны: ближний инфракрасный (NIR, 0,78 ~ 3,0 мкм), средний инфракрасный (MIR, 3,0 ~ 50,0 мкм) и дальний инфракрасный (FIR, 50,0 ~ 1000,0 мкм), как определено в стандарте ISO 20473: 2007. Оптика и фотоника — Спектральные диапазоны [1].В нескольких исследованиях сообщалось, что ИК может улучшить заживление кожных ран, фотопрофилактику, облегчить боль, скованность, утомляемость при ревматоидном артрите, анкилозирующем спондилите, потенцировать фотодинамическую терапию, лечить офтальмологические, неврологические и психические расстройства и стимулировать распространение мезенхимальных и сердечных заболеваний. стволовые клетки [1–9].
Низкоуровневая светотерапия (НИЛИ) определяется как «лечение с использованием облучения светом низкой интенсивности, так что эффекты являются реакцией на свет, а не на тепло.Используются самые разные источники света, особенно маломощные лазеры ». в Медицинских предметных заголовках (MeSH) Descriptor Data 2017. Фотобиомодуляционная терапия (PBM) — это «форма световой терапии, в которой используются неионизирующие формы источников света, включая лазеры, светодиоды и широкополосный свет в видимом и инфракрасном спектре. Это нетепловой процесс с участием эндогенных хромофоров, вызывающий фотофизические (то есть линейные и нелинейные) и фотохимические явления на различных биологических масштабах. Этот процесс приводит к положительным терапевтическим результатам, включая, помимо прочего, облегчение боли или воспаления, иммуномодуляцию и ускорение заживления ран и регенерации тканей.», Как определено в Anders et al. [10]. Сейчас все согласны с тем, что «PBM-терапия» является более точным и конкретным термином для терапевтического применения света низкого уровня по сравнению с «LLLT».
Все фотобиологические реакции определяются поглощением энергии фотоакцепторными молекулами (хромофорами) во время светового облучения. Важно выяснить молекулярный механизм взаимодействия света с тканью путем идентификации фотоакцепторных молекул. Считается, что физиологические эффекты, вызванные ИК-излучением, связаны с двумя основными типами фотоакцепторов (т.э., цитохром с оксидаза и внутриклеточная вода) [11]. Поглощение фотонов преобразует свет в сигналы, которые могут стимулировать биологические процессы [12]. Воздействие инфракрасного света на динамику воды в мембранах, митохондриях и / или клетках может модулировать сигнальные пути, продукцию активных форм кислорода (АФК), АТФ (аденозинтрифосфат), Ca 2+ , NO и группу инозитолфосфатов [13 –16]. Вторичным эффектам всегда предшествуют первичные эффекты, включая передачу сигналов стресса, метаболические процессы, организацию цитоскелета, пролиферацию / дифференцировку клеток и гомеостаз (в зависимости от повреждения или метаболических окислительно-восстановительных потенциалов) [17, 18].Кроме того, Shapiro et al. продемонстрировали, что ИК-свет может возбуждать клетки за счет поглощения воды, при этом повышение температуры влияет на плазматическую мембрану и изменяет электрическую емкость, тем самым деполяризуя клетки-мишени [19].
Pollack et al. продемонстрировали, что вода в определенных местах внутри клеток существует как более химически / биологически активная молекула [20]. Большая часть внутриклеточной воды динамична и имеет упорядоченную структуру для поддержки жизненных процессов в биологических системах [21].Поскольку спектр электромагнитного поглощения воды в основном находится в ИК-диапазоне, поглощение фотонов может привести к быстрому увеличению внутриклеточной температуры [22], что может способствовать нежелательным физиологическим изменениям температуры, pH, осмоса и выхода АТФ [23, 24].
В течение миллиардов лет Солнце генерировало ИК-излучение, и живые организмы на Земле эволюционировали, чтобы иметь дело с ИК-излучением как важным фактором окружающей среды в зависимости от их среды обитания. Многие древние методы лечения использовали солнечный свет для заживления ран и облегчения боли.Спектр солнечного света в окружающей среде и соответствующий спектр поглощения воды показаны в [25]. Ясно, что солнечное излучение и полосы сильного поглощения воды почти совпадают. Прежде чем солнечный свет проникает в атмосферу, он имеет более однородный спектр излучения. Пока солнечный свет достигает земли, некоторые полосы поглощаются газом окружающей среды или молекулами воды в атмосфере. Поскольку человеческое тело на 70% состоит из воды, оно потенциально может накапливать большое количество энергии, которая может модулировать биологические процессы, за счет сильного резонансного поглощения инфракрасного излучения солнечного света, опосредованного молекулами воды.
Наложение спектров солнечного излучения и поглощения воды, показывающее, что наиболее значительные области перекрытия находятся в области 800–1300 нм
В последние годы для понимания проблемы стало важным сочетание технических, клинических и фотобиологических принципов. терапевтические эффекты НИЛИ. Например, в последние годы системы доставки оптического волокна стали важной технологией для облегчения LLLT [26]. Волоконная оптика может передавать свет определенной длины волны на большие расстояния за счет использования полного внутреннего отражения, позволяя им изгибаться вдоль своего пути и фокусировать пятно излучения на определенной области.Хотя процедуры доставки света, необходимые для использования НИЛИ при заболеваниях легких и дыхательных путей, сложны, оптические волокна внутри игл могут применяться [27].
Кроме того, была описана неинвазивная доставка энергии на большие расстояния с использованием инфракрасного импульсного лазерного устройства (IPLD) с длиной волны 904 нм, пульсирующего с частотой 3 МГц, который, как утверждается, имеет оригинальный механизм действия, названный «фото- инфракрасная импульсная биомодуляция »(PIPBM). Устройство было применено в клинических испытаниях пациентов с запущенным раком и в случае возрастной дегенерации желтого пятна (географической атрофии) с ассоциированным неврологическим заболеванием, оно продемонстрировало достаточные доказательства его селективных, удаленных, репаративных и / или регенеративных физиологических эффектов [ 16, 28, 29].
Предыдущие клинические исследования показали, что НИЛИ имеет широкий спектр преимуществ для различных групп пациентов, различных медицинских показаний и состояний без какого-либо серьезного риска побочных эффектов. Адекватная дозиметрия важна для LLLT и PBM терапии; Появился основной принцип, названный «двухфазная доза-реакция», когда было обнаружено, что большие дозы света менее эффективны, чем меньшие дозы [30]. Этот феномен проявляется в благоприятных неврологических эффектах транскраниальной НИЛИ при черепно-мозговой травме, где результаты значительно различаются в зависимости от количества процедур и плотности энергии каждого отдельного лечения.
В данной обзорной статье будут обобщены только некоторые ключевые исследования нового приложения и научные открытия, связанные с инфракрасным излучением. Особое внимание будет уделено новым приложениям, включая материалы, излучающие ИК-излучение для одежды, инфракрасную терапию в сауне, терапию Waon и т. Д. Кроме того, мы представляем некоторые недавно появившиеся научные открытия о нервной стимуляции, фотостарении, фотоомоложении, противоопухолевом действии, регенерации нервной системы и жировой ткани. .
2. Новые разработки и применение инфракрасной терапии в биологических областях
2.1. Материалы, излучающие инфракрасное излучение для одежды
В последние годы благодаря развитию нанотехнологий функциональная спортивная одежда приобрела множество свойств, повышающих эффективность занятий спортом, эффективность и комфорт. Например, спортивная одежда должна позволять владельцу оставаться в тепле в холодную погоду и сохранять прохладу в жаркую погоду за счет отвода пота от кожи. В общем, механизм действия материалов, излучающих ИК-излучение, заключается в преобразовании тепловой энергии тела (конвекция и проводимость) в излучение в диапазоне длин волн ИК-излучения от 3 до 20 мкм, чтобы вызвать гомеостаз и фотобиомодуляцию за счет более глубокого проникновения ИК-излучения и молекулы воды. абсорбция в коже [25].Использование материалов, генерирующих ИК-излучение, возможно, помогает улучшить кровообращение и обмен веществ в организме человека.
Предыдущие исследования показали, что эффекты IR могут активировать фибробласты, увеличивать синтез коллагена и экспрессию трансформирующего фактора роста-бета1 (TGF-beta1) в ранах крыс [31]. Предыдущие исследования показали, что включение наноразмерных частиц германия (Ge) и диоксида кремния (SiO 2 ) в композитные волокна дает нановолокна из поливинилового спирта (ПВС).Длина волны излучения этих мембран из нановолокна находилась в диапазоне 5–20 мкм при 37 ° C и показывала коэффициент излучения 0,891 (идеальное черное тело имеет максимальный коэффициент излучения 1) и мощность излучения 3,44 × 102 Вт · м — 2 с плотностью полотна 5,55 г −2 . Антимикробные свойства, вызванные дальним инфракрасным излучением, могут быть эффективными для уменьшения количества бактерий как против Staphylococcus aureus , так и против Escherichia coli на 99,9%, и показали снижение на Klebsiella pneumoniae на 34.8% [32].
Футболисты использовали одежду, излучающую FIR (плотность 225 г -2 , 88% излучающее дальнее ИК-излучение волокно из полиамида 66 Emana (PA66), 12% спандекс, коэффициент излучения 0,88 и излучаемая мощность 341 Вт / м 2 при 37 ° C в диапазоне длин волн 5–20 мкм). Эта одежда использовалась в течение 10 часов в качестве одежды для сна в течение трех ночей подряд, чтобы уменьшить болезненность мышц с отсроченным началом через 48 часов после интенсивной плиометрической тренировки [33].
Пластырь, излучающий в дальнем инфракрасном диапазоне, применялся для терапевтического лечения остеоартрита коленного сустава.На заднюю поверхность колена пациента накладывали пластырь на 12 часов в день и 5 дней в неделю в течение 4 недель. Пластырь был изготовлен компанией Chongqing Kaifeng Medical Instrument Co. Ltd, Китай, которая предоставила пластину, покрытую запатентованным минеральным образованием, состоящим из 33 элементов, предназначенных для генерации дальнего ИК-излучения за счет действия радиатора. В исследовании контролировали продольное ультразвуковое сканирование переднего отдела коленного сустава.Он показал, что у пациентов из группы FIR было меньше суставного выпота (40%) по сравнению с исходным уровнем (80%) [34].
Тинг-Кай Леунг и др. использовали керамический порошок (производства Bioenergy Development Ltd, Таоюань, Тайвань) для исследований in vitro и in vivo. Его средняя излучательная способность составляла 0,98 на длинах волн 6–14 мкм с нетепловыми эффектами при комнатной температуре. Экспериментальные мишени включали клетки рака молочной железы MCF-7, клетки макрофагов, клетки меланомы, клетки миобластов, линию клеток хондросаркомы, клетки эпителия груди человека MCF-10A и колени кроликов [35].Важнейшим результатом исследований стало то, что этот биокерамический препарат может снимать воспалительный артрит коленных суставов кролика [36]. Кроликам вводили внутрисуставные инъекции липополисахарида (ЛПС), чтобы вызвать стерильное воспаление, а затем помещали в клетки, окруженные слоем, содержащим биокерамику, в группе лечения. Позитронно-эмиссионная томография (ПЭТ) показала, что биокерамика способна снимать воспаление в суставах через 7 дней после инъекции ЛПС.
2.2. Инфракрасные сауны и Waon Therapy
Использование сауны в дальнем инфракрасном диапазоне для лечения основано на глубоком проникновении излучения в кожу для восстановления гомеостаза терморегуляции. У малоподвижных пациентов, страдающих остеоартритом или сердечно-сосудистыми респираторными проблемами, сауны в дальнем инфракрасном диапазоне могут быть использованы в качестве альтернативы умеренным упражнениям. Они оказывают терапевтическое действие без каких-либо побочных эффектов на застойную сердечную недостаточность, преждевременные сокращения желудочков, уровни натрийуретического пептида мозга, функцию эндотелия сосудов, потерю веса, окислительный стресс или хроническую усталость [37].
Терапия Waon означает, что тело предупреждается в инфракрасной камере в течение 15 минут при 60 ° C, затем его заворачивают в тепловые одеяла и кладут для поддержания тепла в течение дополнительных 40 минут, и, наконец, пациент пьет воду, чтобы восполнить потерю влаги. потоотделением. Он может улучшить сердечную функцию и полезен при реабилитации [38].
Терапия Waon проводилась один раз в день 5 дней в неделю в течение 2 недель. Всего в 19 центрах обследовали 76 пациентов, получавших терапию Waon, и 73 пациента из контрольной группы [39].Значения натрийуретического пептида B-типа в плазме, классификация болезней «New York Heart Association», 6-минутная ходьба и кардиоторакальный коэффициент были значительно улучшены в группе терапии Waon по сравнению с контрольной группой. Испытание продемонстрировало безопасность и эффективность для лечения этой целевой группы пациентов с хронической сердечной недостаточностью.
Терапия Waon оказывает адъювантный эффект при хронической обструктивной болезни легких. Группа Waon показала большую жизненную емкость и пиковую скорость выдоха, чем контрольная группа.Необходимы дальнейшие исследования для изучения механизма действия, в частности, может ли терапия Waon быть связана с увеличением потока NO через дыхательные пути [40].
Хроническая сердечная недостаточность вызывает дисфункцию эндотелия сосудов. Было продемонстрировано, что терапия сауной с инфракрасным излучением улучшает сосудистую эндотелиальную дисфункцию у хомяков с экспериментальной кардиомиопатией, которых лечили ежедневно с помощью экспериментальной системы сауны с дальним инфракрасным излучением в течение 15 минут. Через 4 недели мРНК артериальной эндотелиальной синтазы оксида азота (NO) (eNOS) (а также экспрессия белка) и продукция NO были значительно увеличены по сравнению с нормальным контролем [41].
3. Новые исследования инфракрасной терапии
3.1. Нейронная стимуляция
Инфракрасная нервная стимуляция (ИНС) имеет более высокое пространственное разрешение без электрохимической связи между источником и целевой тканью. Кроме того, инфракрасное излучение можно точно настроить для отражения входящего сигнала; однако потенциальными недостатками INS являются риски теплового повреждения тканей из-за передозировки энергии и ограниченная глубина стимуляции, зависящая от свойств поглощения ИК-излучения тканью [42].
Многие исследователи обнаружили, что применение непрерывного или импульсного света приводит к различным результатам в исследованиях заживления ран и регенерации тканей [43]. Низкочастотный импульсный ИК-лазер значительно стимулировал образование костных узелков в клетках свода черепа крысы in vitro с помощью низкоэнергетического Ga-Al-As-лазера (2 Гц, 830 нм, 500 мВт, 0,48 3,84 Дж / см 2 ) [44 ]. Что касается INS, считается, что порог безопасности включает предотвращение нагрева ткани в зависимости от нейронных целей, длины волны, частоты импульсов, мощности и т. Д. [45, 46].ИНС для кохлеарного имплантата сравнима с электростимуляцией, в то время как другие нейронные мишени могут иметь более низкие пороги безопасности для ИНС. Импульсный диодный лазер с длиной волны 1,844 1,873 мкм м, длительностью импульса 35 ~ 1000 мкс, частотой повторения 2 Гц использовался для выявления составных потенциалов действия. Результаты показали, что длительность импульса 35 мкс была достаточной для выявления сложных потенциалов действия из улитки. Для проведения составного потенциала действия 50 мкм пиковая мощность была постоянной при длительностях импульса 100 мкс ~ 1000 мкс, но показывала более высокую пиковую мощность при длительности импульса 35 мкс [47].
Одним из возможных механизмов ИНС являются фототермические эффекты, вызванные поглощением энергии водой, а не фотохимическими реакциями, которые могут происходить с излучением, обладающим большей энергией фотонов (более короткой длиной волны), или фотомеханическими волнами давления [48]. Термочувствительный ионный канал, называемый «временный рецепторный потенциал ваниллоида 1» (TRPV1), является возможным рецептором, который стимулируется во время INS. TRPV1 может активироваться термически за счет лучистой энергии, поглощаемой водой, присутствующей в нервной ткани.Поскольку у большинства мышей с нокаутом TRPV1 не было ответа на ИК-оптическую стимуляцию улитки, о чем свидетельствует отсутствие какого-либо потенциала действия, передаваемого в слуховом нерве во время ИК-воздействия (λ = 1,85, 1,86 мкм), это наблюдение подтвердило гипотезу о вовлечении TRPV1. в генерации потенциала действия с помощью ИК-излучения [49]. Кроме того, изолированные клетки сетчатки и вестибулярного ганглия грызунов были использованы для наблюдения реакции, вызванной ИК-лазером. Добавив блокаторы каналов TRPV1 и TRPV4 для идентификации первичных эффекторов, исследование пришло к выводу, что каналы TRPV4 вызывают сенсорный нейрональный ответ, запускаемый инфракрасным лазерным излучением (λ = 1.87 мкм) [50].
Внутриклеточный Ca 2+ является важным вторичным посредником для разнообразных биологических процессов, таких как сокращение гладких мышц, высвобождение нейромедиаторов и регуляция сигнальных путей [51]. После воздействия ИК-излучения (1862 нм) в кардиомиоцитах желудочков новорожденных крыс наблюдалось быстрое повышение уровня внутриклеточного кальция до частоты пульсации в клетках [52]. Используя флуоресцентный анализ, ИК-импульсы 1862 нм (0,2-1 Гц) могут стимулировать как вызванные ИК-излучением, так и спонтанные кальциевые события.ИР-вызванные кальциевые события имели меньшую амплитуду и более короткие временные константы по сравнению со спонтанными кальциевыми событиями. Был использован митохондриальный ингибитор Ca 2+ , который подтвердил гипотезу о том, что импульсное ИК-излучение регулирует Ca 2+ в митохондриях через митохондриальный обменник Na + / Ca 2+ и митохондриальный унипортер Ca 2+ .
В 2016 году Ken Zhao et al. рассмотрел применение INS, сосредоточившись на его способности стимулировать различные типы нейронов оптическим излучением, включая лицевой нерв, улитку, вестибулярную систему и кору [53].Они пришли к выводу, что ИК-излучение в основном поглощается водой ».
Периодическое инфракрасное фемтосекундное лазерное излучение (780 нм) было замечено для синхронизации отдельных или небольших групп кардиомиоцитов в качестве «оптического водителя ритма» [54]. В этом исследовании мощность ИК-лазера была адекватно отрегулирована, чтобы вызвать периодическое высвобождение кальция и избежать избыточного производства кальция в цитозоле. Лазер применялся со средней общей мощностью от 15 до 25 мВт. Кальциевый ответ с синхронизацией в изолированных кардиомиоцитах (или конкретной клетке в группе кардиомиоцитов) зависел от средней мощности лазера на целевой клетке.
Предыдущие исследования показали, что импульсное ИК-излучение с длиной волны 1860 нм или 790 ~ 850 нм стимулировало потенциалы действия во многих различных типах нервных клеток, таких как седалищные клетки, слуховые нервы и кардиомиоциты [52, 55, 56]. Полукружный канал crista ampullaris жабы (который функционирует как орган баланса внутреннего уха) был чувствителен к ИК-излучению (1862 нм) [57]. При облучении сенсорного эпителия различными типами ИК-импульсов наблюдалась активация фазовых тормозных и возбуждающих афферентных ответов.Однако при тепловой стимуляции сенсорного эпителия не наблюдалось синхронизированных по фазе потенциалов действия афферентного нерва.
Кроме того, ИК-лазер (λ = 1450 нм и 1860 нм) может временно подавлять распространение потенциалов действия в эндогенных немиелинизированных и миелинизированных аксонах. ИК-лазер, подаваемый с помощью оптического волокна 200 мкм, подавался между электростимуляцией, производимой микропипеткой, и нервом. регистратор сигналов. Данные показали, что потенциал действия, индуцированный электростимуляцией, блокировался инфракрасным излучением, включая сокращение мышц аплизии и проводимость седалищного нерва крысы.
Кроме того, для оценки пространственной селективности остро поврежденной улитки у морской свинки применялся импульсный ИК-лазер (1,86 мкм). Нейронный ответ нижнего холмика был преобразован в кривые пространственной настройки, чтобы сравнить различия между акустически вызванными ответами и реакциями, вызванными ИК-импульсом [58]. Большинство кривых пространственной настройки указывают на то, что оптическая стимуляция может активировать селективные популяции нейронов таким же образом, как и акустическая стимуляция; только 10% профилей невозможно было проанализировать или сопоставить.
Основным недостатком INS является отложение тепла в тканях, что может стать препятствием на пути разработки имплантируемых устройств для таких применений, как искусственная улитка. Недавно был разработан гибридный метод электрооптической стимуляции, сочетающий ИНС с электростимуляцией [59, 60]. Седалищный нерв задней конечности крысы облучали импульсным диодным лазером (λ = 1875 нм) во время электростимуляции. Кроме того, было замечено, что повышение температуры нервной ткани, вызванное оптической стимуляцией, могло усилить гибридную электрооптическую стимуляционную реакцию нервов.
3.2. Инфракрасное воздействие на кожу: фотостарение против фотоомоложения
В последние годы фотодерматологические исследования сделали огромный прогресс в понимании молекулярных механизмов, лежащих в основе положительных и отрицательных эффектов, которым кожа человека может подвергаться в ответ на воздействие инфракрасного излучения. В большинстве исследований для освещения ИРА использовались искусственные источники света. Это позволяет определить наиболее эффективную длину волны, мощность и плотность потока энергии для облучения объектов, чем при использовании окружающего инфракрасного излучения солнца, содержащего несколько длин волн, которое может вызывать тепловую индукцию MMP-1 и индуцированную фотозащиту кожи человека [61] .
Поскольку кожа человека постоянно подвергается воздействию инфракрасного излучения окружающей среды, эта энергия может прямо или косвенно стимулировать выработку свободных радикалов или АФК. Многие исследователи обнаружили, что кратковременная вспышка ИК-индуцированных АФК может быть полезной для фотоомоложения. ИК-излучение (8 ~ 12 мкм м), используемое для заживления ран на всю толщину кожи у крыс, показало увеличение высвобождения фактора роста и противовоспалительного цитокинового трансформирующего фактора роста-β1 (TGF-β1), который приводит к активации фибробластов для улучшения заживления ран [31].Кроме того, инфракрасное излучение (λ = 950 нм) использовалось для прямой стимуляции пролиферации фибробластов, что привело к увеличению пролиферации фибробластов in vitro [62].
Предполагается, что молекулярный механизм NIR-излучения (λ = 810 нм) для генерации митохондриальной передачи сигналов в клетках млекопитающих обусловлен активацией фотоакцептора, называемого цитохром с оксидазой (CCO). Световая активация CCO стимулирует митохондриальную респираторную цепную реакцию с образованием ROS и приводит к активации NF-κB в эмбриональных фибробластах [13, 63].Кроме того, поглощение ИК-излучения PBM структурированной внутриклеточной водой может вызывать дополнительные изменения энергии колебаний молекул и влиять на третичную конформацию ферментов, ионных каналов и других белков. Эти относительно небольшие изменения в структуре белка могут активировать сигнальные пути (например, за счет инозитолфосфатов), что приводит к активации факторов транскрипции и изменениям в экспрессии генов [64, 65].
Кроме того, первичные дермальные фибробласты человека анализировали с помощью микроматричного анализа после облучения ИРА in vitro.Анализ микроматрицы показал, что 599 IRA-регулируемых генов по-разному экспрессируются в первичных дермальных фибробластах человека, которые имеют отношение к метаболическим процессам во внеклеточном матриксе, гомеостазу кальция, передаче сигналов стресса и регуляции апоптоза [17]. Это исследование также показало, что ИРА приводит к генерации АФК как внутри, так и вне митохондрий. Авторы предположили, что для активации экспрессии генов могут быть задействованы три основных сигнальных пути, включая митоген-активируемые протеинкиназы (MAPKs), кальций и интерлейкин 6 / сигнальный трансдуктор и активатор транскрипции 3 (STAT3).Кроме того, гены, индуцированные IRA, значительно отличались от генов, индуцированных УФ-излучением. Это открытие означает, что разные длины волн света могут приводить к определенным сигнальным путям в дермальных фибробластах человека.
Однако свободные радикалы и АФК, индуцированные ИК-излучением, могут быть обоюдоострым мечом: в низких дозах они могут активировать защитные реакции, но в высоких дозах АФК могут повреждать органеллы и клетки кожи, что приводит к фотостарению. Многие исследования показали, что ИК-излучение в диапазоне от 760 до 1000 нм участвует в фотостарении и фотоканцерогенезе кожи человека [66].Механизм ИК-излучения, повреждающего кожу, основан на активации матричной металлопротеиназы-1 (MMP-1), которая опосредуется стимуляцией пути p38-MAPK и сигнальных путей киназы 1/2 (ERK1 / 2), регулируемой внеклеточными сигналами. ответ на облучение ИРА. Когда кожа человека облучается однократным или многократным нанесением (один раз в неделю в течение 4 недель) ИК-излучения, это может привести к различной экспрессии проколлагена I типа и более высокой экспрессии TGF-β1, -β2 и -β3 [67, 68].
Кроме того, для облучения кожи человека использовалась инфракрасная лампа с максимальным излучением при 1100 ~ 1120 нм.Кровеносные сосуды, окрашенные маркером эндотелиальных клеток CD31, были увеличены инфракрасным излучением, вероятно, за счет повышения регуляции фактора роста эндотелия сосудов (VEGF) и подавления антиангиогенного фактора тромбоспондина-2 (TSP-2) в эпидермисе кожи [69 ].
IRA радиационно-индуцированные свободные радикалы могут в разной степени снижать содержание антиоксидантов, таких как каротиноиды, в коже человека. Особенно каротиноид, ликопин быстро снижается по сравнению с бета-каротином [70]. Для исследования образования свободных радикалов в коже человека во время воздействия ИК-излучения использовались многие неинвазивные измерения, такие как резонансная спектроскопия комбинационного рассеяния, спектроскопия отражения и измерение цвета кожи [71, 72].
Спектроскопия электронного парамагнитного резонанса основана на резонансном поглощении микроволнового излучения путем согласования разности энергий спинов свободного неспаренного электрона в магнитном поле, и можно измерить обращение спина и поглощение микроволновой энергии [73]. Следует учитывать эффект вращения в тканевой воде со значительным демпфированием, вызванным резонансным поглощением микроволнового излучения, чтобы избежать последствий высокого импеданса на этом частотном уровне (10 9 Гц).В предыдущих исследованиях на коже 17 добровольцев параллельно использовались резонансная рамановская спектроскопия и спектроскопия электронного парамагнитного резонанса. Нитроксид-радикалы (со свободным неспаренным электроном на атоме азота) использовали для определения антиоксидантной способности кожи in vivo. Результаты показали, что скорость уменьшения нитроксида коррелирует с концентрацией кожных каротиноидов [74].
Антиоксидантный механизм каротиноидов заключается в гашении синглетного кислорода его системой двойных связей сопряженного углерода.Концентрация каротиноидов может указывать на полный уровень антиоксидантов в коже человека [75]. Резонансная рамановская спектроскопия — это неинвазивный оптический метод для устранения влияния неоднородностей и измерения концентрации каротиноидов в коже [76].
Кроме того, IRA-индуцированное истощение каротиноидов у десяти добровольцев было проанализировано с помощью резонансной рамановской спектроскопии, а распределение концентрации каротиноидов по глубине на ладонной части предплечья было определено с помощью конфокальной рамановской микроскопии [77].Результаты показали, что после воздействия IRA-излучения концентрация каротиноидов сразу же снижалась и сохранялась до 60 минут после воздействия. Первоначальный уровень исходной концентрации антиоксиданта восстановился через 24 часа после воздействия.
АФК, вызванные высокими дозами ИРА, могут значительно снизить уровень антиоксидантов in vivo. Это следует учитывать, и кожа должна подвергаться воздействию только низких и умеренных доз IRA-излучения, чтобы избежать повреждения тканей и фотостарения. Баролет и др. В статье, озаглавленной (Инфракрасное излучение и кожа: друг или враг?) [3], подчеркнули выраженное двухфазное дозовое воздействие ИК на кожу.Благоприятные эффекты низких доз ИК на кожу включали фотозащиту от повреждений, вызванных УФ-излучением, фотоомоложение, уменьшение пигментных поражений и уменьшение количества тонких линий и морщин. Таким образом, данные в целом подтверждают вывод о том, что оптимальные параметры света имеют решающее значение для различного применения НИЛИ и ПБМ, особенно на коже, но также и на других системах органов [78].
Тепловое воздействие, вызванное инфракрасным излучением, может быть патологическим для кожи. Когда температура кожи превышает 39 ° C во время ИК-облучения, это может вызвать образование АФК и патологические эффекты из-за изменений структурной целостности, вызванных индукцией ферментов в коже [79].Кроме того, регуляция экспрессии белка аквапорина 3 участвует в функциональных механизмах интенсивного импульсного света на длине волны 560 нм, который играет важную роль в гомеостазе кожи для транспортировки отходов и малых молекул растворенных веществ [80].
Как упоминалось выше, высокие температуры кожи могут активировать термочувствительные ионные каналы семейства TRPV1, увеличивая концентрацию внутриклеточного Ca 2+ внутри клетки и последующую активацию сигнальных путей [81, 82].
3.3. Противоопухолевое действие
За последнее десятилетие в ряде исследований было обнаружено, что ИК-излучение может вызывать некоторые повреждения ДНК в раковых клетках [83–85]. Предлагаемый механизм связан с окислительным стрессом. ИК влияет на цепь переноса электронов, генерируя АФК, которые не только стимулируют передачу сигнала на умеренных уровнях, но также могут напрямую повреждать клеточные органеллы при их чрезмерном генерировании. Сообщалось, что IR-индуцированные митохондриальные АФК способны повреждать митохондриальную ДНК человека (мтДНК), которая принимает форму кольцевой двухцепочечной молекулы длиной 16 559 п.н., содержащей 37 генов, что приводит к изменению функции дыхательной цепи [86].Кроме того, мутации мтДНК играют важную роль в патологических отклонениях. К настоящему времени обнаружено более 100 точечных мутаций в мтДНК [87].
Частота мутаций мтДНК значительно выше, чем у ядерной ДНК. Это связано с тем, что механизмы репарации ДНК против вызванного окислительным стрессом повреждения ДНК не так эффективны в митохондриях, как в ядре клетки. Это относится к объемным повреждениям ДНК или фотопродуктам, таким как фотопродукты пиримидин (6–4) пиримидона или димеры циклопиримидина [88].Кроме того, мтДНК расположена в непосредственной близости от цепи переноса электронов, которая имеет наивысшее количество индуцированных ИК-излучением АФК на стороне клетки. Следовательно, высока вероятность того, что АФК вызывают повреждение мтДНК и запускают каскад апоптоза и гибели клеток.
Чтобы уточнить внутриклеточное расположение IRA-индуцированных АФК, для предварительной обработки человеческих фибробластов использовали антиоксиданты [17]. Антиоксидант N-ацетил-цистеин может повышать уровень внутриклеточного глутатиона [89], улавливать активные формы кислорода во всех различных клеточных компартментах и, следовательно, способен подавлять все изменения в экспрессии генов, индуцированных IRA.Однако IRA по-прежнему активирует гены, связанные с ROS, если MitoQ используется в качестве антиоксиданта, который был разработан для удаления ROS, специфически возникающих внутри митохондрий [90]. Это означает, что другие хромофоры, активируемые IRA в различных клеточных компартментах, могут участвовать в индуцированном IRA образовании ROS, и не ограничиваются исключительно митохондриями. Более того, индуцированная IRA экспрессия фермента MMP-1 в первичных фибробластах кожи человека может быть снижена антиоксидантами, такими как аскорбиновая кислота, (α) -токоферол, эпигаллокатехингаллат, (-) — эпикатехин или фенилпропионовая кислота [91].Вдобавок было предложено, что фермент MMP-1 ведет себя как «храповик броуновского движения», управляемый динамикой воды, которую можно стимулировать инфракрасным светом. Например, активированная коллагеназа (MMP-1) действует как молекулярный храповик, участвуя в ремоделировании тканей и взаимодействиях с клеточным матриксом [92]. Следовательно, можно применять соответствующие антиоксиданты для защиты от преждевременного старения кожи, вызванного излучением IRA. Клеточные линии рака молочной железы человека MDA-MB-231, MCF7, T47D и нормальные эпителиальные клетки молочной железы (184B5) облучали MIR (λ = 3.0 ~ 5,0 мкм). Количественный протеомный анализ был использован для изучения MIR-регулируемых физиологических реакций клеток рака молочной железы, включая остановку клеточного цикла G 2 / M, ремоделирование сети микротрубочек до расположения астрального полюса, изменение цитоскелета актинового плача и уменьшение количества клеток. миграционная активность [85].
Chang et al. продемонстрировали, что ИК-излучение (3 ~ 5 мкм) может вызывать набухание и остановку клеточного цикла в фазе G 2 / M в клетках рака легкого A549 [84].ИК-излучение также может ингибировать фосфорилирование циклин-зависимой киназы 1 (CDK1) и циклина B1, что приводит к остановке прогрессирования клеточного цикла. Кроме того, перинуклеарное распределение актиновых филаментов в клетках рака легкого предполагает, что окислительный стресс, вызванный ИК-излучением, влияет на остановку клеточного цикла, реорганизацию цитоскелета и влияет на баланс антиоксидантов [93]. Это исследование также показало, что ИК-излучение запускает ось ATM / ATR-p53-p21 в ответ на повреждение ДНК, что приводит к образованию ядерных фокусов 53BP1 и c-h3AX и активации пути ATM / ATR-p53-p21, участвующего в Ремонт ДНК.Эти данные предполагают, что ИК-излучение индуцировало систему репарации ДНК в ответ на повреждение ДНК.
FIR (4 ~ 1000 мкм) излучение вызывает молекулярные колебания, приводящие к повышению температуры внутри клеток, и может вызвать локальный тепловой стресс в окружающей среде. Индукция белка теплового шока (HSP) 70 может ингибировать высвобождение цитохрома c из митохондрий, что является предшествующей стадией апоптоза [94]. Предыдущая литература показала, что низкая базальная экспрессия HSP70 и изменения клеточной морфологии наблюдались в FIR-чувствительных клеточных линиях HSC3, Sa3 и A549 [95].
Кроме того, FIR индуцировал клеточную гипертрофию и подавлял пролиферацию раковых клеток A549 (легкие), HSC3 (язык) и Sa3 (десна) за счет остановки клеточного цикла G 2 / M за счет сверхэкспрессии гена ATF3 [96]. Ген ATF3 участвует в реакции на изменения внеклеточного или внутриклеточного микросреды, клеточного гомеостаза, клеточного цикла и гибели клеток [97]. Однако ИК-излучение не влияло на экспрессию гена ATF3 и гипертрофию клеток в раковых клетках A431 (вульва) или MCF7 (груди).Эти результаты показывают, что FIR-излучение подавляет пролиферацию раковых клеток в зависимости от конкретного типа клеток и может быть эффективным средством лечения некоторых видов рака.
Предыдущие исследования показали, что терапия ионизирующим излучением в сочетании с паклитакселом может усиливать терапевтический эффект [98]. Паклитаксел стабилизирует микротрубочки и приводит к гибели клеток, ингибируя сегрегацию хромосом, нарушая сборку веретена во время деления клеток и вызывая остановку клеточного цикла в фазе G 2 / M.Кроме того, паклитаксел также активирует несколько путей митохондриальной цитотоксичности, изменяя проницаемость пор в митохондриях, рассеивая потенциал митохондриальной мембраны, высвобождая цитохром с из межмембранного пространства и формируя АФК [99]. Клетки рака шейки матки человека HeLa, обработанные паклитакселом в сочетании с облучением MIR (3,6, 4,1 и 5,0 мкм), показали улучшенный противоопухолевый эффект [100]. IR может снизить дозировку паклитаксела при клинической противоопухолевой химиотерапии, чтобы избежать тяжелых побочных эффектов, вызванных паклитакселом, таких как снижение количества лейкоцитов, выпадение волос, диарея, язвы во рту и реакции гиперчувствительности.
3.4. Нервная и жировая регенерация
Транскраниальная стимуляция мозга инфракрасным излучением — это использование когерентного или некогерентного света для реабилитации нейродегенеративных заболеваний головного мозга или черепно-мозговых травм, а также для модуляции нейробиологической функции за счет нетеплового эффекта; однако молекулярный механизм ИК-стимуляции мозга до сих пор неясен.
Чтобы прояснить клеточный механизм лечения NIR-лазером у пациентов с острым ишемическим инсультом, модель эмболического инсульта кроличьего тромба использовалась для оценки содержания кортикального АТФ после лечения лазером 808 нм [101].БИК-лазер в импульсном или непрерывном режиме может повысить содержание АТФ в коре головного мозга кроликов по сравнению с имитацией эмболии кроликов, особенно импульсный волновой режим дал значительно большее увеличение содержания АТФ в кортикальном слое.
Ga-Al-As диодный лазер с длиной волны 810 нм, импульсный с частотой 10 Гц, 100 Гц и непрерывный режим, с плотностью мощности 50 мВт / см 2 в течение 12 минут, использовался для освещения головы мыши с экспериментальной черепно-мозговой травмой (ЧМТ). Мышей умерщвляли и анализировали через 2, 15 и 28 дней после ЧМТ.Так же, как размер поражения и количество продукции АТФ, частота импульсов 10 Гц лучше всего влияла на неврологические функции [102]. Это исследование показало, что ритм 4 ~ 10 Гц, возникающий в области гиппокампа в нормальном мозге мышей, может войти в положительный резонанс с частотой лазерного импульса 10 Гц для улучшения нейрореабилитации мышей с ЧМТ.
Лазер с длиной волны 808 нм может также способствовать мозговому кровотоку и повышать уровень оксида азота у мышей [103]. Было высказано предположение, что ИК-лазер может стимулировать мозговое кровообращение за счет высвобождения NO, а также активировать нейропротективные пути для уменьшения количества апоптотических клеток в гиппокампе.
Существует множество гипотез, объясняющих дегенерацию нейронных процессов при болезни Паркинсона, включая снижение уровней дофаминергических нейронов в черной субстанции, присутствие цитоплазматических включений и аномальное увеличение альфа-синуклеин-положительных аксонов в выживших нейронах [104].
В попытке исследовать сниженный аксональный транспорт, индуцированный при болезни Паркинсона, скорость митохондриального движения в трансмитохондриальных цибридных нейрональных клетках человека была измерена во время лечения диодным лазером с длиной волны 810 нм [105].Кибриды — это нейроны, в которых собственные митохондрии заменены больными митохондриями, полученными из других клеток (например, полученных от пациентов с болезнью Паркинсона). Скорость митохондриального движения в цибридных нейритах при болезни Паркинсона была значительно увеличена после воздействия ИК-излучения в течение двух часов. Было высказано предположение, что лечение ИК-лазером может подавлять нейродегенеративные симптомы у пациентов с болезнью Паркинсона.
Кроме того, трансгенных мышей-предшественников белка амилоида-β (мышиная модель болезни Альцгеймера) лечили 3 раза в неделю различными дозами 808-нм ИК-лазера [106].Уровни пептида амилоида-β головного мозга, пептида β амилоида-β в плазме и пептида β-амилоида-β спинномозговой жидкости, а также количество бляшек β-амилоида в головном мозге были снижены путем обработки ИК-лазером в зависимости от дозы. Кроме того, индуцированная ИК-лазером генерация АТФ может также улучшить сохранение нейронов и ингибировать образование амилоидных бляшек.
Эти данные, вместе взятые, показывают, что ИК-излучение может стимулировать рост жизнеспособности клеток и факторы роста, которые вызывают потенциальные терапевтические эффекты при повреждении или дегенеративном заболевании головного мозга.Заболеваниям головного мозга, включая ЧМТ, болезнь Альцгеймера, болезнь Паркинсона и инсульт, можно улучшить за счет индуцированного ИР синтеза АТФ, продукции фактора роста, противовоспалительных эффектов и антиапоптоза. [107]. Более того, недавнее исследование также указывает на то, что пролиферация и дифференцировка стволовых клеток, полученных из жировой ткани, регулируются инфракрасным излучением 980 нм, которое, как предполагается, воздействует на каналы ионов кальция с регулируемой температурой, в то время как ИК-излучение 810 нм стимулирует выработку АТФ за счет поглощения фотонов CCO [ 108].
Следует отметить, что ИК-излучение 810 нм не только поглощается CCO, но также на малых уровнях поглощается водой. Хотя ИК-спектр с длиной волны 980 нм не сильно поглощается CCO, он в основном поглощается водой [25].
обобщает отчеты об использовании ИК-излучения для взаимодействия с клетками и тканями. В нем также освещаются некоторые медицинские применения ИК-излучения. Предполагается, что длины волн источников света соответствуют спектру поглощения молекул CCO или воды.
Таблица 1
Различные медицинские применения ИК-излучения для различных клеток и тканей.
Медицинское применение | Автор, ссылка | Цель | Источник света или материал | Длина волны | Результаты |
---|---|---|---|---|---|
Заживление ран | Toyokawa et al. [31] | Кожная рана у крысы | Лист с керамическим покрытием | 5,6 ~ 25 мкм (максимальная интенсивность 8 ~ 12 мкм) | Способствует заживлению ран и экспрессии TGF-β1 |
Заживление ран | Гупта и другие.[109] | Кожные ссадины у мышей | Диодный лазер | 810 нм | Усиленное накопление коллагена и эффекты заживления |
Заживление ран | Santana-Blank et al. [110, 111] | Мягкие ткани крысы | Диодный лазер | 904 нм | Способствует заживлению ран и росту зоны исключения (1H-ЯМР 1 / T2) |
Заживление ран | Santana-Blank et al. al. [111] Родригес-Сантана и др.[112] | Мягкие ткани у крысы | Диодный лазер | 904нм | Способствует заживлению ран, мембранный эффект измеряется тау-методом 1H-ЯМР (c) |
Нейронная стимуляция | Wells et al. [55] | Седалищный нерв крысы | Лазер на свободных электронах | 2,1, 3,0, 4,0, 4,5, 5,0 и 6,1 мкм | Создает пространственно-селективный ответ в небольших пучках седалищного нерва |
Нейральная стимуляция | Jenkins et al.[113] | Сердце взрослого кролика | Диодный лазер | 1,851 мкм | Индуцированная оптическая стимуляция сердца взрослого кролика |
Нейронная стимуляция | Izzo et al. [56] | Слуховой нерв песчанок | Гольмий: YA G-лазер | 2,12 мкм | Оптическое излучение стимулировало амплитуды кохлеарного ответа |
Нейронная стимуляция | Duke et al. [60] | Седалищный нерв крысы | Диодный лазер | 1.875 мкм | Гибридная электрооптическая стимуляция вызвала устойчивые сокращения мышц и снизила требования к мощности лазера |
Нейронная стимуляция | Shapiro et al. [19] | Клетки HEK-293T | Диодный лазер | 1,889 мкм | Временное изменение электрической емкости мембраны во время оптической стимуляции |
Фотостарение | Darvin et al. [76] | Кожа человека | Радиатор с фильтром для воды | 600 ~ 1500 нм | Образованные свободные радикалы и пониженное содержание антиоксидантов β-каротина |
Фотостарение | Schroeder et al.[91] | Дермальные фибробласты человека | Фильтрованный водой источник ИК-излучения | 760 ~ 14 40 нм | Повышенная экспрессия MMP-1 в дерме |
Antitum or Action | Tsai et al. [100] | HeLa клетка рака шейки матки | Волноводный термоизлучатель | 3,6, 4,1 или 5,0 мкм | Вызвал коллапс мембранного потенциала митохондрий и повышение окислительного стресса. |
Antitum or Action | Chang et al.[84] | Клетки рака груди и нормальные эпителиальные клетки груди. | Источник черного тела с фильтром 3 ~ 5 мкм | 3 ~ 5 мкм | Вызвал остановку цикла раковых клеток G 2 / M, реконструировал сеть микротрубочек и изменил образование актиновых филаментов |
Antitum or Action | Tanaka et al. [83] | A549 клетки аденокарциномы легких | БИК-излучатель, оборудованный фильтром для воды | 1,1 ~ 1,8 мкм | Активировал путь ответа на повреждение ДНК |
Antitum or Action | Yamashita et al.[96] | A431 (вульва), A549 (легкое), HSC3 (язык), MCF7 (грудь) и Sa3 (десна) раковые клетки | Инкубатор с лучистыми панелями FIR с покрытием из углерода / диоксида кремния / оксида алюминия / титана оксидная керамика | 4 ~ 20 мкм (максимум от 7 до 12 мкм) | Подавляет пролиферацию раковых клеток за счет усиления экспрессии гена ATF3 |
Antitum or Action | Santana-Blank et al. [114] | Солидная опухоль Клиническое исследование | Диодный лазер | 904 нм | 88% противоопухолевый эффект.Десять лет наблюдения |
Antitum or Action | Santana-Blank et al. [115] | Цитоморфология солидных опухолей | Диодный лазер | 904 нм | Избирательный апоптоз, некроз, аноикис в опухолевых тканях онкологических больных |
Antitum or Action | Santana-Blank et al. [116] | Солидная опухоль T 2w МРТ-микродезитометрия | Диодный лазер | 904 нм | Доказательства наличия межфазной зоны исключения воды (EZ) как предиктора противоопухолевого ответа у онкологических больных |
Antit Акция | Santana-Blanket al.[117] | Уровни цитокинов субпопуляций периферических лейкоцитов в сыворотке крови твердых опухолей | Диодный лазер | 904 нм | Иммуномодуляция TNF-α sIL-2R и CD4 + CD45 RA + и CD25 + активированных |
Naeser et al. [118] | Легкая черепно-мозговая травма | NIR-диоды | 870 нм | Улучшение когнитивных функций, улучшение сна и симптомы посттравматического стрессового расстройства | |
Нейронная регенерация мозга | Lapchak et al.[101] | Инсульты у эмболизированных кроликов | Лазерный источник | 808 нм | Повышенное содержание кортикального АТФ |
Регенерация жировой ткани | Wang, Y., et al. [108] | стволовые клетки, полученные из жировой ткани человека | Диодный лазер | 810 нм 980 нм | Стимулирование пролиферации и дифференциации |
4 Обсуждение
LLLT и / или PBM были использованы в широком диапазоне различных медицинских показаний в последние годы, а клеточные и молекулярные механизмы действия НИЛИ в настоящее время изучены лучше, чем в прошлые десятилетия.
Большинство исследований предполагают, что хромофоры, ответственные за эффекты PBM, можно в первую очередь классифицировать как митохондриальные хромофоры, такие как CCO.
Предыдущие исследования определили, что хромофор PBM с использованием длин волн красного или ближнего инфракрасного диапазона является митохондриальным CCO. CCO — один из четырех белковых комплексов (единица IV), составляющих цепь переноса электронов, которая осуществляет транспорт электронов на внутренней митохондриальной мембране, в конечном итоге создавая электрохимический протонный градиент для конечного фермента АТФ-синтазы (единица V) для преобразования АДФ (аденозиндифосфата). ) для производства АТФ [119, 120].НИЛИ может увеличивать активность фермента CCO для облегчения транспорта электронов и увеличения производства АТФ [121]. Более того, было обнаружено, что спектр действия биологической реакции в ближнем ИК-диапазоне соответствует спектрам поглощения CCO в ближнем ИК-диапазоне, относящимся к митохондриальным хромофорам [63, 122–124]. Поглощение цитохром с оксидазы в видимой и ближней инфракрасной областях спектра хорошо согласуется со спектром действия по увеличению синтеза ДНК в клетках млекопитающих. CCO имеет два медных центра, Cu A и Cu B , и два гемовых центра, гем A и гем B .Каждый из этих металлических центров может находиться в окисленном или восстановленном состоянии, что дает в общей сложности 16 возможностей. Различные фотоакцепторы были приписаны различным окислительно-восстановительным состояниям CCO, полоса 820 нм была приписана окисленной форме хромофора Cu A CCO, полоса 760 нм — восстановленной пены Cu B , полоса 680 нм к окисленному Cu B и полосе 620 нм к восстановленному Cu A [13, 63].
С другой стороны, несколько других исследований показали, что другим возможным механизмом PBM, особенно на длинах волн FIR и MIR, является поглощение излучения молекулами воды.Pollack et al. продемонстрировали, что лучистая энергия может генерировать зону отчуждения (EZ) на границе раздела воды, которая обладает правильным типом гидрофильного / гидрофобного баланса [65, 125]. Вода EZ может накапливать электрические заряды и выделять до 70% потребляемой энергии.
Клеточные мембраны характеризуются наличием тонкого (нанометрового) слоя воды, которая накапливается на гидрофобных поверхностях [126]. Очень небольшое количество ненагревающего ИК-излучения может передавать относительно небольшие количества колебательной энергии наноструктурированным слоям воды и может нарушать ее структуру и структуру соседних молекул, не вызывая какого-либо эффекта объемного нагрева (т.е.е. не вызывая заметного повышения температуры) [127]. Градиенты вязкости внутримитохондриальной воды идентифицированы методом наноиндентирования [128]. Синтез АТФ может уменьшаться и увеличиваться в ответ на модуляцию уровней активных форм кислорода, вызванную нетепловыми уровнями NIR. Возможный механизм контроля этого «митохондриального наномотора» заключается в том, что NIR может увеличивать оборот АТФ за счет снижения вязкости межфазных слоев воды. Недавно Сантана-Бланк и др.предположили, что внешняя электромагнитная (световая) энергия может активировать кислород-зависимые и кислородно-независимые пути, основанные на взаимодействиях воды и света [129]. В результате взаимодействия воды со светом и механизмов передачи энергии ИК-излучение создает межфазную EZ-воду в качестве селективной перезаряжаемой электролитической биобатареи [130]. Световая энергия в кислородзависимых путях генерирует высокоэнергетические молекулы, называемые нуклеотид-фосфатами, включая АТФ и ГТФ. Взаимодействие с водой и светом в кислородно-независимом пути приводит к фотоиндуцированным нелинейным колебаниям в воде, которые могут обеспечивать энергией клеточные реакции, включая метаболизм, передачу сигналов и транскрипцию генов.
Недавно Ван и др. Показали [108], что две разные длины волн ближнего ИК-диапазона влияют на стволовые клетки, полученные из жировой ткани, посредством совершенно разных механизмов действия. Лазер с длиной волны 810 нм был предложен для активации CCO, приводящей к продукции АТФ и кратковременной вспышке ROS, но не влиял на внутриклеточный кальций. Напротив, лазер с длиной волны 980 нм также увеличивал АТФ и АФК, но при гораздо более низких плотностях потока (от одной десятой до одной сотой), и увеличивал цитозольный кальций, в то же время снижая митохондриальный кальций. Действие NIR 980 нм, но не действие NIR 810 нм, может быть отменено ингибиторами кальциевых ионных каналов, такими как TRPV.Нагревание клеток или охлаждение клеток аннулировали эффекты 980 нм, но не 810 нм. Это исследование показало, что 980 нм может работать, воздействуя на наноструктурированные слои воды в ионных каналах TRPV, в то время как 810 может напрямую активировать активность фермента CCO. графически суммирует два наиболее важных предполагаемых биологических механизма действия ИР.
Предлагаемые механизмы действия ИР на молекулярном и клеточном уровне. TRPV = временный рецепторный потенциал ваниллоида; ROS = активные формы кислорода; АТФ = аденозинтрифосфат.
В дополнение к пониманию фотобиологических механизмов LLLT / PBM с использованием длин волн FIR / MIR и NIR, важно разработать параметры света с учетом клинического опыта и желаемой терапевтической цели для достижения оптимальных медицинских и биологических эффектов, как показано на. В клинической практике эффект двухфазной реакции на дозу критически важен для получения оптимальных клинических результатов [30]. Другой руководящий принцип заключается в том, что повторение лечения ежедневно (или даже более или менее часто) до тех пор, пока рана не заживет или не наступит ремиссия заболевания, лучше, чем однократное применение НИЛИ.НИЛИ можно сравнить с питательной пищей для человеческого организма; адекватное ежедневное потребление лучше всего.
Обзор детерминант и факторов, которые следует учитывать при инфракрасной терапии
Вся материя в конечном итоге состоит из заряженных частиц, таких как субатомные частицы, электроны, протоны и т. Д. Когда электромагнитное излучение падает на вещество, заряженные частицы поглощают энергию, что приводит к колебания в зависимости от энергии отдельных фотонов (длины волны). Видимый свет обычно поглощается электронами на молекулярных орбиталях, тогда как ИК-энергия обычно поглощается связями внутри молекул, что приводит к усилению колебательных мод, таких как скручивание, растяжение и изгиб.Оба вида энергии могут трансформироваться и рассеиваться в другие молекулярные колебания в виде повышенной тепловой энергии (температуры).
Как нам различать поглощение NIR и FIR, которые взаимодействуют с различными элементами структуры ткани (вода, белки, аминокислоты, липиды и т. Д.). Это интересный вопрос, потому что мы не можем предположить, что оптические характеристики излучения останутся прежними, потому что NIR и FIR могут быть поглощены и переизлучены как разные длины электромагнитных волн хромофорами ткани в течение очень короткого периода времени.Возможно, что конечный фотобиологический результат происходит из множества источников, включая исходное поглощение фотонов падающего света, различные переизлученные электромагнитные волны, возникающие из структурных молекул клетки, и индукцию электромагнитных полей, которые влияют на энергетический метаболизм внутри клеток.
Тканевая оптика описывает подходы к математическому моделированию для анализа того, как фотоны с разной длиной волны взаимодействуют с тканью. Фотоны могут либо поглощаться, либо рассеиваться (неупруго или упруго).В макроскопическом масштабе инструмент моделирования Монте-Карло применялся для изучения проникновения и поглощения света в коже человека во время НИЛИ. Насури и др. моделировало распространение лазера через трехслойную модель кожи человека в спектральном диапазоне от 1000 до 1900 нм [131]. Этот тип анализа необходим для разработки параметров, позволяющих максимально увеличить глубину проникновения света в ткань без какого-либо риска термического повреждения верхних слоев кожи. Кроме того, профиль луча лазерного пятна, который может быть однородным или гауссовым, может увеличивать локальную объемную дозировку и важен при выборе длины волны и мощности лазера в LLLT.
В целом механизмы действия ИК-излучения можно разделить на две большие группы, перечисленные в. Совершенно очевидно, что необходимы дополнительные исследования для изучения механизмов ИК-излучения в медицинской и биохимической областях.
Таблица 2
Различные аспекты механизмов ИК-излучения
Механизм передачи энергии | Механизм прохождения сигнала |
---|---|
|
|
Как использовать инфракрасную тепловую лампу для воспалительной боли
Этот пост может содержать партнерские ссылки.Они помогают поддерживать этот сайт.
Сегодня у нас есть несколько отличных советов о том, как использовать инфракрасную тепловую лампу при воспалительной боли!
Несколько месяцев назад мы поделились постом о некоторых действительно отличных немедикаментозных вариантах обезболивания. Одной из идей было инфракрасное излучение.
Поскольку этот пост был всего лишь обзором, я подумал, что было бы неплохо рассказать вам о некоторых деталях.
Я получил эту инфракрасную тепловую лампу на Рождество, и мне она очень понравилась!
В прошлом году мой массажист начал использовать инфракрасную лампу на моем локте во время массажа.Я не мог поверить, как прекрасно я себя чувствовал, когда уходил с сеанса. Тепло уменьшило бы мою ревматоидную артритную боль и воспаление в локте, и я чувствовал бы себя прекрасно всю оставшуюся часть дня.
Я решил провести небольшое исследование по этому поводу, и я знал, что это то, что мне тоже нужно получить для своего дома.
Что такое инфракрасное излучение?
Инфракрасное (ИК) тепло — это тепло, которое вы ощущаете от солнца, но без вредных ультрафиолетовых лучей. Инфракрасное тепло передает световые волны (ИК-лучи) в ваше тело и проникает до костей.Честно говоря, когда вы говорите об IR, это сложный процесс. Я узнал об этом на уроке инструментального анализа в колледже. Мы использовали ИК-спектроскопию, чтобы определить, какие химические соединения были обнаружены в растворе. В классе инструментального анализа мы узнали, как на самом деле работают эти машины. Когда вы переходите к науке, это очень сложно. Вот еще об этом.
Быстрая наука, лежащая в основе этого, заключается в том, что эти инфракрасные тепловые лампы излучают инфракрасные световые волны, которые достигают ваших мышц, костей, нервов и всего, что находится под кожей.
Как инфракрасное тепло помогает при воспалении?
Инфракрасное излучение улучшает кровообращение. Этот кровоток исцеляет и облегчает боль в целевой области. Так тело лечит само. Используя инфракрасную тепловую лампу, вы резко усилите этот эффект. Усиленное кровообращение помогает заживлять травмы и раны, поэтому, увеличивая кровообращение через ИК, тело нацелено на эту область.
Преимущества инфракрасной тепловой лампы включают лечение кожных заболеваний, нервную боль, боль в мышцах, воспаление суставов, заживление ран и многое другое.
Как использовать инфракрасное излучение для снятия боли?
Большинство производителей рекомендуют сеансы по 10-15 минут несколько раз в день. Нет смысла делать это дольше, поэтому не делайте этого дольше 15 минут.
Установите инфракрасную лампу на расстоянии около 2 футов от сустава или области, на которую вы нацеливаетесь. Не забудьте также отодвинуть одежду от этой области, чтобы тепловая лампа могла легче добраться до кожи.
Какие результаты можно получить при использовании инфракрасной тепловой терапии?
Я заметил немедленное уменьшение боли! Каждый раз, когда я использую инфракрасную тепловую лампу, мои суставы прекрасно себя чувствуют в течение как минимум нескольких часов после использования.Большинство научных исследований показывают постоянное улучшение при частом использовании.
В этом исследовании хронической боли в спине они провели исследование в течение 6 недель, чтобы получить полный эффект.
Вы можете использовать эту тепловую лампу каждый день в течение нескольких недель, а затем уменьшите ее до одного раза в неделю.
Какое инфракрасное устройство следует использовать?
Доступно много разных типов, но я использовал этот. Он надежно сидит на тумбочке, и его можно регулировать под разными углами.У него были лучшие отзывы на Amazon, и он точно такой же, как у моего массажиста.
Очень доволен! И он доступнее других.
Советы по безопасности
Есть несколько советов по безопасности, которые необходимо соблюдать при использовании инфракрасной лампы.
- Обязательно защитите глаза и используйте защитные очки, особенно если вы направляете их куда-нибудь вокруг глаз.
- Не прикасайтесь к включенной лампе, она сильно нагревается!
- Всегда выключайте лампу и отключайте ее от сети после каждого использования.
- Не допускайте попадания слишком близко к ткани или мебели, это верно с любыми лампами.
- Не позволяйте ему приближаться слишком близко к вашей коже, держите его на расстоянии 18-24 дюйма от поверхности кожи.
Обязательно прочтите инструкции производителя и советы по безопасности для получения дополнительных сведений.
Меры предосторожности
Хотя это обычно безопасный метод для всех, спросите своего врача, не используете ли вы его для лечения травмы или раны. Врач должен определить, какое лечение лучше всего подходит для вашей ситуации.Я использую его при боли и воспалении при ревматоидном артрите, так что это не для травм.
Если речь идет о проблемах со здоровьем, всегда обращайтесь к врачу!
Сообщите нам, если попробуете!
Сообщите нам, если попробуете! Мы любим слышать истории успеха. Вы можете присоединиться к нам в instagram и использовать #chemistrycachet
Не стесняйтесь оставлять комментарии ниже к
🙂Для получения дополнительных советов по обезболиванию посетите нашу страницу категории здесь.
Подписаться на Facebook | Блогловин | Twitter | Instagram | Pinterest | Hometalk
инфракрасных волн | Управление научной миссии
Что такое инфракрасные волны?
Инфракрасные волны или инфракрасный свет являются частью электромагнитного спектра.Люди сталкиваются с инфракрасными волнами каждый день; человеческий глаз не видит его, но люди могут определять его как тепло.
Пульт дистанционного управления использует световые волны, выходящие за пределы видимого спектра света — инфракрасные световые волны — для переключения каналов на вашем телевизоре. Эта область спектра делится на ближнюю, среднюю и дальнюю инфракрасную. Область от 8 до 15 микрон (мкм) называется земными учеными тепловым инфракрасным, поскольку эти длины волн лучше всего подходят для изучения длинноволновой тепловой энергии, излучаемой нашей планетой.
СЛЕВА: Типичный пульт дистанционного управления телевизором использует энергию инфракрасного излучения с длиной волны около 940 нанометров. Хотя вы не можете «видеть» свет, излучаемый пультом дистанционного управления, некоторые цифровые камеры и камеры сотовых телефонов чувствительны к этой длине волны излучения. Попробуйте! СПРАВА: Инфракрасные лампы Нагревательные лампы часто излучают как видимую, так и инфракрасную энергию на длинах волн от 500 до 3000 нм. Их можно использовать для обогрева ванных комнат или для согревания еды. Тепловые лампы также могут согреть мелких животных и рептилий или даже согреть яйца, чтобы они могли вылупиться.
Кредит: Трой Бенеш
ОТКРЫТИЕ ИНФРАКРАСКИ
В 1800 году Уильям Гершель провел эксперимент по измерению разницы температур между цветами в видимом спектре. Он поместил термометры в каждый цвет видимого спектра. Результаты показали повышение температуры от синего до красного. Когда он заметил еще более теплое измерение температуры сразу за красным концом видимого спектра, Гершель открыл инфракрасный свет!
ТЕПЛОВОЕ ИЗОБРАЖЕНИЕ
Мы можем воспринимать инфракрасную энергию как тепло.Некоторые предметы настолько горячие, что излучают видимый свет — например, огонь. Другие объекты, например люди, не такие горячие и излучают только инфракрасные волны. Наши глаза не могут видеть эти инфракрасные волны, но инструменты, которые могут воспринимать инфракрасную энергию, такие как очки ночного видения или инфракрасные камеры, позволяют нам «видеть» инфракрасные волны, излучаемые теплыми объектами, такими как люди и животные. Температуры для изображений ниже указаны в градусах Фаренгейта.
Предоставлено: НАСА / Лаборатория реактивного движения — Калтех
.ХОЛОДНАЯ АСТРОНОМИЯ
Многие объекты во Вселенной слишком холодные и тусклые, чтобы их можно было обнаружить в видимом свете, но их можно обнаружить в инфракрасном.Ученые начинают открывать тайны более холодных объектов во Вселенной, таких как планеты, холодные звезды, туманности и многие другие, изучая инфракрасные волны, которые они излучают.
Космический аппарат «Кассини» сделал это изображение полярного сияния Сатурна с помощью инфракрасных волн. Полярное сияние показано синим, а нижележащие облака — красным. Эти полярные сияния уникальны, потому что они могут охватывать весь полюс, тогда как полярные сияния вокруг Земли и Юпитера обычно ограничиваются магнитными полями на кольцах, окружающих магнитные полюса.Большой и изменчивый характер этих полярных сияний указывает на то, что заряженные частицы, втекающие от Солнца, испытывают над Сатурном некоторый тип магнетизма, который ранее был неожиданным.
ПРОГНОЗИРОВКА
Инфракрасные волны имеют более длинные волны, чем видимый свет, и могут проходить через плотные области газа и пыли в космосе с меньшим рассеянием и поглощением. Таким образом, инфракрасная энергия может также обнаруживать объекты во Вселенной, которые нельзя увидеть в видимом свете с помощью оптических телескопов.Космический телескоп Джеймса Уэбба (JWST) оснащен тремя инфракрасными приборами, которые помогают изучать происхождение Вселенной и формирование галактик, звезд и планет.
Когда мы смотрим на созвездие Ориона, мы видим только видимый свет. Но космический телескоп НАСА Спитцер смог обнаружить около 2300 планетообразующих дисков в туманности Ориона, почувствовав инфракрасное свечение их теплой пыли. Каждый диск может образовывать планеты и свою солнечную систему Фото: Томас Мегит (Univ.Толедо) и др., Лаборатория реактивного движения, Калифорнийский технологический институт, НАСА
.Столб, состоящий из газа и пыли в туманности Киля, освещен свечением ближайших массивных звезд, показанных ниже на изображении в видимом свете, полученном космическим телескопом Хаббла. Интенсивное излучение и быстрые потоки заряженных частиц от этих звезд вызывают образование новых звезд внутри столба. Большинство новых звезд невозможно увидеть на изображении в видимом свете (слева), потому что плотные газовые облака блокируют их свет. Однако, когда столб рассматривается в инфракрасной части спектра (справа), он практически исчезает, открывая молодые звезды за столбом газа и пыли.
Предоставлено: НАСА, Европейское космическое агентство и команда телескопа Hubble SM4 ERO
.МОНИТОРИНГ ЗЕМЛИ
Для астрофизиков, изучающих Вселенную, источники инфракрасного излучения, такие как планеты, относительно холодны по сравнению с энергией, излучаемой горячими звездами и другими небесными объектами. Земляне изучают инфракрасное излучение как тепловое излучение (или тепло) нашей планеты. Когда падающая солнечная радиация попадает на Землю, часть этой энергии поглощается атмосферой и поверхностью, тем самым нагревая планету.Это тепло излучается с Земли в виде инфракрасного излучения. Инструменты на борту спутников наблюдения за Землей могут определять это излучаемое инфракрасное излучение и использовать полученные измерения для изучения изменений температуры поверхности земли и моря.
Есть и другие источники тепла на поверхности Земли, такие как потоки лавы и лесные пожары. Спектрорадиометр среднего разрешения (MODIS) на борту спутников Aqua и Terra использует инфракрасные данные для отслеживания дыма и определения источников лесных пожаров.Эта информация может иметь важное значение для тушения пожара, когда самолеты-разведчики не могут пролететь сквозь густой дым. Инфракрасные данные также могут помочь ученым отличить пылающий огонь от все еще тлеющих ожоговых шрамов.
Кредит: Джефф Шмальц, группа быстрого реагирования MODIS
Глобальное изображение справа — это инфракрасное изображение Земли, полученное спутником GOES 6 в 1986 году. Ученый использовал температуру, чтобы определить, какие части изображения получены из облаков, а какие — из суши и моря.Основываясь на этой разнице температур, он раскрасил каждую отдельно 256 цветами, придав изображению реалистичный вид.
Кредит: Центр космической науки и техники, Университет Висконсин-Мэдисон, Ричард Корс, дизайнер
Зачем использовать инфракрасный порт для изображения Земли? Хотя в видимом диапазоне легче отличить облака от земли, в инфракрасном диапазоне облака более детализированы. Это отлично подходит для изучения структуры облаков. Например, обратите внимание, что темные облака теплее, а светлые — холоднее.К юго-востоку от Галапагосских островов, к западу от побережья Южной Америки, есть место, где вы можете отчетливо увидеть несколько слоев облаков, с более теплыми облаками на более низких высотах, ближе к океану, который их согревает.
Мы знаем, глядя на инфракрасное изображение кошки, что многие вещи излучают инфракрасный свет. Но многие вещи также отражают инфракрасный свет, особенно ближний инфракрасный свет. Узнайте больше об ОТРАЖЕННОМ ближнем инфракрасном излучении.
Начало страницы | Далее: Отраженные волны в ближнем инфракрасном диапазоне
Цитата
APA
Национальное управление по аэронавтике и исследованию космического пространства, Управление научных миссий.(2010). Инфракрасные волны. Получено [укажите дату — например, 10 августа 2016 г.] , с веб-сайта NASA Science: http://science.nasa.gov/ems/07_infraredwaves
MLA
Управление научной миссии. «Инфракрасные волны» NASA Science . 2010. Национальное управление по аэронавтике и исследованию космического пространства. [укажите дату — например, 10 августа 2016 г.] http://science.nasa.gov / ems / 07_infraredwaves
В чем разница между инфракрасным и красным светом?
Обычный красный свет, такой как огни в системах дорожной сигнализации, и инфракрасный свет, невидимый луч, обычно встречающийся в камерах безопасности, часто путают потребители.Чтобы пролить свет на эту проблему, источники света отличаются друг от друга и имеют контрастные приложения и сборки.
Видимость и длина волны
Основное различие между красным светом и инфракрасным светом — это видимость. Красный свет можно увидеть и легко различить — как синий или оранжевый свет. Примером этого является красный луч, излучаемый светодиодной сигнальной лампой безопасности вилочного погрузчика. Компактный фонарь создает четкую и видимую красную пограничную зону вокруг транспортного средства, которая предупреждает находящихся поблизости пешеходов и рабочих о продолжающихся операциях вилочного погрузчика в этом районе.
Для сравнения, инфракрасный свет невидим. Невозможно обнаружить инфракрасные лучи без специального оборудования. Примером устройства, включающего инфракрасные лампы, является камера наблюдения. Инфракрасный свет используется для ночного видения, что позволяет операторам незаметно контролировать местоположение после захода солнца, не освещая территорию.
В шкале видимого спектра красный свет можно найти в ближней инфракрасной области в диапазоне от 620 нм до 750 нм. Инфракрасный диапазон составляет от 700 нм до 1 мм, что является началом невидимых лучей на диаграмме.Микроволны (от 1 мм до 1 метра) и радиоволны (от 1 метра до 100 000 км) приходят после инфракрасного излучения и также невидимы.
Генерация красного и инфракрасного света
Традиционно красный свет, как и свет других цветов, создается с помощью пленок или цветных линз. В эпоху ламп накаливания это было обычным делом. Вы получаете белый свет, который «фильтруется» и излучает красный свет. Хотя метод работает, у него есть некоторые недостатки. Разрушение линзы или разрыв пленки вызывают несоответствие проецируемого цветного светового луча.
Светодиодыспособны излучать красный свет без цветной линзы или пленки. Вместо этого диод окрашен, что приводит к более насыщенному, полностью красному цвету. Светодиодные лампы с цветными элементами обычно включают в себя красный, зеленый и синий цвета (RGB) в модуле. Смеси цветов можно использовать для создания множества комбинаций. Для операторов этот метод генерации красного света лучше, поскольку он обеспечивает больший контроль над точным цветом во время проецирования.
При генерации инфракрасного света с помощью светодиодов устройство должно работать в инфракрасном спектре.Преимущество инфракрасных светодиодов заключается в их твердотельной конструкции, что позволяет использовать светильники в суровых условиях с минимальным риском выхода из строя из-за несанкционированного доступа или грубого контакта.
Использование и применение
Поскольку фонари имеют разный состав, их применение также может быть разным. Красные огни применимы для сигнализации на промышленных объектах, таких как склады и площадки доставки. На обычном уровне люди могут улучшить выработку и высвобождение мелатонина за счет воздействия красного света, что приведет к комфортному и последовательному режиму сна.Этот метод очень полезен для людей, страдающих от смены часовых поясов или работающих в ночную смену. Синий свет оказывает на людей противоположный эффект, заставляя людей бодрствовать и бодрствовать во время воздействия.
Для стимуляции роста растений на закрытых коммерческих фермах может также использоваться красный свет для стимулирования фотосинтеза. Для сбалансированного роста требуется сочетание красного и синего света с соотношением 95 процентов красного света и пяти процентов синего света (для салата, согласно исследованию НАСА).
Красный свет предназначен для охоты на ночных животных, таких как койот.В приложении охотник может использовать красный светодиодный прожектор для сканирования области на предмет наличия существ в поле. Поскольку красный свет значительно тусклее по сравнению с белым светом, животные с меньшей вероятностью испугаются. Чтобы не испугаться, рекомендуется установить уровень освещенности от слабого до умеренного.
С другой стороны, инфракрасный свет полезен для ночного наблюдения (как упоминалось ранее). Этот тип света также используется в протоколах автоматического распознавания номерных знаков на платных дорогах, что позволяет операторам упростить обнаружение номерных знаков во время сбора.Кроме того, инфракрасные осветители поддерживают процессы подсчета и классификации транспортных средств для транспортных групп по всему миру. В области биометрии инфракрасный порт может применяться для повышения точности устройств распознавания лиц.
Другое использование инфракрасного света включает следующее:
- Термография: мониторинг температуры в реальном времени с безопасного расстояния
- Отслеживание тепловых сигнатур: военные, системы наведения ракет
- Анализ и проверка артефактов: обнаружение несоответствий в картинах / керамике
- Погодное слежение: наблюдение за развитием облачных образований
Подпишитесь на нашу рассылку новостей
Будьте в курсе новых продуктов, кодов скидок и последних новостей Larson Electronics!
100% конфиденциальность.